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Abstract. The paper studies a higher order unfitted finite element method for the Stokes
system posed on a surface in R3. The method employs parametric Pj—Pj;_; finite element pairs on
tetrahedral bulk mesh to discretize the Stokes system on embedded surface. Stability and optimal
order convergence results are proved. The proofs include a complete quantification of geometric
errors stemming from approximate parametric representation of the surface. Numerical experiments
include formal convergence studies and an example of the Kelvin—Helmholtz instability problem on
the unit sphere.
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1. Introduction. Fluid equations posed on manifolds arise in continuum based
models of thin material layers with lateral viscosity such as lipid monolayers and
plasma membranes [16, 3, 36, 44]. Beyond biological sciences, fluid equations on
surfaces appear in the literature on modeling of foams, emulsions and liquid crystals;
see, e.g., [42, 43, 13, 6, 35, 26]. Despite the apparent practical and mathematical
relevance, such systems have received little attention from the scientific computing
community until the very recent series of publications [27, 20, 38, 39, 12, 30, 34, 26,
15, 4, 21, 33, 5, 23] that evidences a strongly growing interest in the development and
analysis of numerical methods for fluid equations posed on surfaces.

Discretization of fluid systems on manifolds brings up several difficulties in addi-
tion to those well-known for equations posed in Euclidian domains. First, one has to
approximate covariant derivatives. Another difficulty stems from the need to recover
a tangential velocity field on a surface I'. It is not straightforward to build a finite
element method (FEM), which is conformal with respect to this tangentiality condi-
tion. Two natural ways to enforce the condition in the numerical setting are either to
use Lagrange multipliers or add a penalty term to the weak variational formulation.
Next, one has to deal with geometric errors originating from approximation of I by
a “discrete” surface I'j, or, more general, from inexact integration over I'.

Among recent publications, Ref. [39, 12] applied surface FEMs to discretize the
incompressible surface Navier—Stokes equations in primitive variables on stationary
triangulated manifolds. In [39], the authors considered P;—P; finite elements without
pressure stabilization and with a penalty technique to force the flow field to be ap-
proximately tangential to the surface. In [12], instead, surface Taylor—Hood elements
are used and combined with a Lagrange multiplier method to satisfy the tangentiality
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constraint. Divergence-free DG and H(div)-conforming finite element methods for the
surface Stokes problem were recently introduced in [23, 4]. These methods enforce
the tangentiality condition strongly. In [15] the authors suggest meshfree methods
for hydrodynamic equations on steady curved surfaces. In [40, 45] special surface
parametrizations are used, such that penalty and Lagrange multiplier techniques for
treating the tangential constraint can be avoided. Finally, yet another approach was
taken in [27, 38], where the governing equations were written in vorticity—stream func-
tion variables and surface finite element techniques available for scalar equations are
applied. None of these references address the numerical analysis of the discretization
method.

First stability and error analyses of finite element formulations for the surface
Stokes problem are presented only in very recent papers [4, 30, 33, 5]. The authors of
[4] present an analysis of the lowest-order Brezzi-Douglas-Marini H(div)-conforming
finite element. The surface Stokes problem is discretized using unfitted stabilized
P,—-P; elements in [30], and the trace FEM with Po—P; bulk elements has been
considered in [33]. Both papers [30, 33] give a full convergence analysis, but assume
exact numerical integration over the surface. In [5] a convergence analysis of a surface
finite element based on the vorticity—stream function variables is presented. In none
of these papers on an unfitted FEM for surface Stokes-type systems error bounds
including geometric consistency estimates are derived.

We consider a mixed trace FEM for the surface Stokes in pressure-velocity vari-
ables on a given smooth surface I' without boundary. In the trace FEM, polynomial
functions defined on an ambient (bulk) mesh are used to set up trial and test spaces
[32, 31]. For these bulk finite element spaces we shall consider the generalized Taylor—
Hood elements (Py—Px_1, k > 2, elements on tetrahedra), which is known to be
inf-sup stable in the bulk. To ensure that the geometric error is consistent with the
polynomial interpolation error, we employ a parametric version [24, 14] of the trace
finite elements. A penalty method is used to (approximately) satisfy the tangentiality
constraint. To approximate the tangential gradient and handle covariant derivatives,
the method exploits the embedding of T' in R? and makes use of tangential differential
calculus. This allows us to avoid the use of intrinsic variables on a surface and makes
implementation of the numerical method relatively straightforward.

The paper presents a stability and convergence analysis, which accounts for both
interpolation and geometric errors. The analysis is not straightforward, since the
uniform (with the respect of the surface position in the background mesh) inf-sup
stability of trace spaces does not follow in any direct way from the stability of the
bulk mixed elements. By quantifying geometric errors and extending results from [33],
we prove such an inf-sup stability condition for Py—P;_1 elements, for arbitry k > 2.
With the help of the stability result and geometric consistency estimates derived for a
vector-Laplace problem in [22] we further derive FE error estimates in a surface energy
norm. The error bound that we derive is optimal with respect to A and uniform with
respect to the position of the surface approximation I'j, in a background mesh.

Summarizing, the main contributions of this paper are: 1. we extend the analysis
from [33] (for k = 2) to higher order Taylor-Hood elements (k > 2); 2. we prove
stability and optimal order error estimates including the effect of geometric errors.

2



Results of extensive numerical experiments with the parametric unfitted finite element
that we analyze in this paper are given in [21]. These results confirm the optimal
convergence orders of the trace generalized Taylor-Hood elements. We give a further
numerical assessment of the entire approach in terms of eigenvalue computations and
an application with a surface Navier—Stokes equations with a high Reynolds number.

The remainder of the paper is organized as follows. In section 2 we recall some
basics of tangential differential calculus and formulate the surface Stokes system, our
problem of interest. In section 3 parametric trace finite element spaces are explained
together with there properties necessary for further analysis. The finite element dis-
cretization of the surface Stokes system is given in section 4. Its well-posedness is
analyzed in section 5. In the subsection 5.1 we prove one of our key results concern-
ing inf-sup stability of the velocity—pressure FE spaces. We proceed with the error
analysis in section 6. It includes a complete quantification of the geometric error,
which makes it rather technical. Section 7 contains resuts of numerical experiments
illustrating certain properties of the method.

2. Surface Stokes problem. Consider a smooth hypersurface I' C R?, which
is connected, closed and compact. We further assume the implicit representation of
I" as the zero level of a smooth level set function ¢: Us — R, i.e.

F={zeQ|¢(x)=0} and |Vo(z)|>co>0

for all  in Uy, a tubular §-neighborhood of I'. We assume § > 0 to be sufficiently
small such that for any = € Us the following quantities are well defined: d(z) the
smooth signed distance function to I', negative in the interior of T'; n(x) = Vd(z),
the extension of the outward normal vector on I'; H(z) = V?2d(z), the Weingarten
map; P(z) := I — n(x)n(z)7, the orthogonal projection onto the tangential plane;
and p(z) = x — d(x)n(z), the closest point mapping from Us on T'.

We associate any scalar or vector function g on I with its normal extension in Us
defined as ¢°(z) := g(p(x)), € Us. The Sobolev norms of the normal extension g°
on any e-neighborhood, O, = {z € R? | |d(z)| < €}, 0 < € < § are estimated by the
corresponding norms on I' [37] as

e 1 m
ID"g% 200y S €2 llgllagm@y  forall g € H™(T), |u| < m. (2.1)

We shall skip the superscript and use the same notation for a function and its ex-
tension, if no confusion arises. For a scalar field v, a vector field u on I'" and tensor
field A : T' — R™*™, one then can define the surface gradient, divergence, covariant
gradient, the surface rate-of-strain tensor (see [16]):

1
Vry =PVy, divpu =tr(PVu), Vru=P(Vu)P, E(u):= 3 (Vru+ Viu),
and the surface divergence operator divpA := (divr(el A), ..., divr(efA))T.
The surface Stokes problem reads: For a given force vector f € L2(T')3, with
f-n =0, and a source term g € L*("), with [, gds = 0, solve

—Pdivp(E(u)) +u+Vrp="*f on I,

divru=g on T,
3
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for a tangential velocity field u: I' — R3 u-n = 0, and surface pressure p: I' = R
with fF pds = 0. We added the zero order term to avoid technical details related to
the kernel of the strain tensor E (the so-called Killing vector fields).

For the weak formulation of (2.2), we need the surface Sobolev space

V= HYD)?,  with [lulfn ) = /F lu(s)[3 + [IVu(s)|3 ds, (2.3)

and the subspace of tangential vector fields, Vr := {u €V |u-n=0}. For the
orthogonal decomposition of v € V into a tangential and a normal part, we use the
notation: v = vy +vyn, with vp = Pv and vy = v-n. For u,v € V and ¢ € L?(I)
consider the bilinear forms

a(u,v) := / E(u): E(v)ds+ / u-vds, b(u,q):= 7/ qgdivruds,
r r r
and the following weak formulation of (2.2): Find (u,p) € V¢ x L3(T) such that
a(u,v) +b(v,p) = (f,v)r2qy forallve Vy,
b(u,q) = (=¢,q)r2r) for all g € L*(T).

The bilinear form a(-, -) is continuous on V, and hence on V. The ellipticity of a(-, -)
on Vr follows from the following surface Korn inequality that holds if I" is C? smooth
(cf., (4.8) in [20]): There exists a constant cx > 0 such that

(©)

||U-HL2(I‘) + HE(u)||L2(F) > CKHu”Hl(F) for allu € V. (2.4)

The bilinear form b(-, -) is continuous on V x L3(T') and satisfies the following inf-sup
condition (Lemma 4.2 in [20]): There exists a constant ¢g > 0 such that estimate

inf sup bv. p) > co, (2.5)

per3() vevy [VIaim)lpllezm)

holds. Hence, the weak formulation (C) is a well-posed problem. Its unique solution
is denoted by (u*, p*).

3. Parametric finite element spaces for high order surface approxima-
tion. Let {7}n>0 be a family of shape regular tetrahedral triangulations of a polyg-
onal domain  C R? that contains the surface I'. By th we denote the standard
finite element space of continuous piecewise polynomials of degree k. Denote by I*
the nodal interpolation operator from C(Q) to V}*. In the original trace FEM intro-
duced in [32] and analyzed for higher order elements in [37], one uses the traces of
functions from V¥ on I';, ~ T to define trial and test FE spaces. For a higher order
finite element method, geometrical consistency order dictates that I'j, should be a
sufficiently accurate approximation of I". The latter poses the challenge of efficient
numerical integration over the surface I'j,, which is often defined implicitly, e.g. as
the zero level set of a higher order polynomial. We avoid this difficulty by using the
parametric trace FE approach as in [14, 21], which we outline below.

Consider a FE level set function ¢y, € th approximating ¢ in the following sense:

k+1—1
jr%%,xh‘ﬁbh*wwlm(TﬁUJ) <ch , 0<I<k+1, (3.1)
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is satisfied. Here, | - |yy1,00(pnp,) denotes the usual semi-norm on the Sobolev space
Whee (T NUs) and the constant ¢ depends on ¢ but is independent of h. The zero level
set of ¢ implicitly characterizes an approximation of the interface, i.e. for £k > 2 no
parametrization of this set is available for integration purposes. An easy to compute
piecewise-planar approximation of I" is provided by ¢A5h =1'¢p:

= {z e Q| ¢n(x) = 0}.

Using I''™ alone, however, limits the accuracy to second order. Hence one constructs a
transformation of the bulk mesh in Q} = int(UTeT}{T), TY ={T € T, | TN £ 0},
with the help of an explicit mapping ©j parameterized by a finite element function,
ie., Oy € (th\92)3' The mapping ©, is such that T is mapped approximately to
T; see [14, 24] for how O, is constructed. Hence, the parametric mapping 0, indeed
yields a higher order, yet computable, surface approximation

Ty i= 041" = {a | 4(6;" (@) = 0} .
In [25] it is shown that under reasonable smoothness assumptions the estimate
dist(T',, T) < A+ (3.2)

holds. Here and further in the paper we write A < B to state that there exists a
constant ¢ > 0, which is independent of the mesh parameter h and the position of
I' in the background mesh, such that the inequality A < ¢B holds. We denote the
transformed cut mesh domain by Qf := ©5,(02}) and apply to V}* the transformation
Oy, resulting in the parametric spaces (defined on Qg)

Viie = {Uh o (On)7" | vn € V;fmg} . Vie=(Vi'e)®.

We recall some well-known approximation results from the literature [14]. The
parametric interpolation I15: C(Q5) — V}ﬁ@ is defined by (I&v) 0 ©) = I*(v 0 ©y),
with I* the standard nodal interpolation in V;*. We have the following optimal
interpolation error bound for 0 <[ < k + 1:

HUﬁIéU”Hl(G;L(T)) S hk+1il||’UHHk+1(@h(T)) for all v € HkJrl(@h(T)),T S 77L (33)
For I'p :=T'), N O (T), we also need the following trace inequality [17]:
lolZ2w,) S B 020,y + PIVUIL2 0,y forve HY(OW(T)),  (34)

The inequality remains true with T and 7" in place of ', and ©,,(T).

The following approximation result for trace spaces is proved by standard argu-
ments (cf. [14]), based on (3.3), (3.4) and (2.1) with € = h.

LEMMA 3.1. For the space V,{f@ we have the approximation property

min  (|[v° = vnll L2, + PRIV = 0n)llr2,)) < [1v° = 180 22(r,)
’L)hGth(_)

RV~ T2y S W ol vss ey for all v e HFH(T),
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The next lemma, taken from [14], gives an approximation error for the normal
approximation ny, which is easy to compute and used in our FE formulation below.
LEMMA 3.2. For T € T, and any x € T define

V(ZASMT
nlin(T) e —" nh(e(x)) =
[V on izl
Restricted to surface approzimations the vector fields ny, and ny, are normals on T
and Iy, respectively. Moreover, [n, — /Lo or) S hE holds.

DOy (x)" Ty (T)
DO ()~ Tnyin(T) |2

We also define the lifting u! of a function u defined on I', by u!(p(z)) = u(z) for x €
Ty, and u!(z) = u!(p(x)) for x € Us. The following equivalences are well known (see
[11, 21]) for w € HY(T}) and v € H*(T',)? and we shall frequently use these

w2,y = W'l r2 ), IV, wlizer,) = Vw2,

IvIlL2,) = VYl L2y IVV'Phll L2, = [VV'P 2.

A norm on H'(T',)? is defined using the component-wise lifting by

lal3 e,y = / Ju(s)[ + [Vl (s)Py(s)]3 ds,

h
with P, =1 — nhn{. Finally, we need the following spaces

3
Viegn = {v € HY Q) | tr|p,v € H'(Tp)} > V,{i@, Viegh == (Vieg,n)

and the “discrete” covariant gradient for u € V,¢gp, Vr,u:=P,VuPy,.

4. Higher order trace finite element methods. Based on the parametric
finite element spaces Vﬁ’@ and th,@ we consider for k > 2 the Pp—P;_1 pair of
parametric trace Taylor—Hood elements:

U, =V, Qn:=Vy'g' NL(Th).

Note that the polynomial degrees, k and k — 1, for the velocity and pressure approx-
imation are different, but both spaces Uy and @ use the same parametric mapping
based on polynomials of degree k. Since the pressure approximation uses H'! finite
element functions we can use the integration by parts b(urp,p) = fr u- Vrpds, and
replace I" by I', in the definition of the FE bilinear form. Furthermore, recalling
the identity F(ur) = E(u) — uyH for u = ur + uyn on I', we define the discrete
rate-of-strain tensor by

1
Ep(u) = i(vphu + Vi, u) — (u-n,)Hy,.

We introduce the following FE variants of the bilinear forms a(-,-), b(P-,-) and the
penalty form k(-,-):

ah(u, V) = / Eh(u) : Eh(V) dsy, +/ Ppu-Ppvdsy,
'y T

bn(u,q) ::/ u-Vr,qdsp, kp(u,v) ::77/ (u-np)(v-ng)dsy.
Tn Tn
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The bilinear form kj(-,-) is used to enforce (approximately) the condition u-n =
0. The normal vector used in this bilinear form, and the curvature tensor Hj are
approximations of the exact normal and the exact Weingarten mapping, respectively.
The reason that we introduce yet another normal approximation ny is the following.
From an error analysis of the vector-Laplace problem in [18, 21] it follows that for
obtaining optimal order estimates the normal approximation n; used in the penalty
term has to be more accurate than the normal approximation ny. We assume

In— 0yl pee(r,) S A and |H = Hy||peo(r,) S PF7

Since the trace FEM is a geometrically unfitted FE method, we need a stabilization
that eliminates instabilities caused by small cuts. For this we use the so-called “normal
derivative volume stabilization”, known from the literature [7, 14]:

sn(a,v) = Pu/Q

The choice of the stabilization parameters p,, p, will be discussed below; see (4.2).

(Vunyg) - (Vvng)dz, 3i(p,q) = pp/ (np, - Vp)(np - Vq) dx.

T T
) Q(—)

For a suitable (sufficiently accurate) extension of the data f and g to T',, denoted by
f;, and gy, the finite element method reads: Find (uy, pp) € Uy X Qp, such that

Ah(uh,vh) + bh(vhyph) = (f;“vh)Lz(ph) for all v, € Uy,
B (FEM)
br(Un, qn) — 3u(Pn, an) = (—9n, qn)L2(ry) for all gn € Qn,
where Ay (u,v) := ap(u,v) + sp(u, v) + kp(u, v).
In the error analysis below we use the following natural norms
[l = An(w,w),  lpl3, = Ipller,) + pollnn - VolZ2or)- (4.1)

We address the choice of the stabilization parameters p,,, p, and the penalty parameter
n. The analysis of optimal order error bounds for vector-Laplace problem in [22] is
restricted to p, ~ h~!, n ~ h=2. Moreover, experiments discussed in [21] indicate
that the choice p, =~ h does not allow optimal order error bounds. The stability
analysis of trace Po—P; Taylor-Hood elements in [33] suggests that p, ~ h is the
optimal choice. Therefore, in the remainder we restrict the stabilization parameters
to

pu=h"t, py~h, n~hTZ (4.2)

5. Well-posedness of discretizations. Before we analyze the properties of the
finite element bilinear forms we recall a lemma ([14, Lemma 7.8] ) which shows that
for finite element functions the L2-norm in the neighborhood 2§ can be controlled
by the L?-norm on I';, and the L?-norm of the normal derivative on Qg.

LEMMA 5.1. For all k € N, k > 1, the following inequality holds:

||UhH%2(Qg)) S hllvalZe(p,) +h* (o - VUhHiz(Qg) for all vy, € Viig. (5.1)
The result remains true if Qf, T'y, and V,f’@ are replaced by O}, T and th, respec-

tively.



We formulate a few corollaries that are useful in the remainder. The following
results are obtained by application of (5.1), (3.4) and standard FE inverse inequalities:

1
lgnll 25y = h# llanllar ~ for all an € Ve, (5.2)
1
IVallzzony = A2 [vallzz@,) + AIVVRDL| L2y for all vy, € Vie (5.3)
Using (3.4) and (5.1) we also obtain the surface inverse inequality

_ 1 -
IVanllz,y S b~ Hanl 2w+ 2 l0n-Vanllpz@r) = b~ Hanlla, an € Vile, (5:4)
and the vector analog

IVVallze ) S b HIvallae,) + hi%HVthhHLQ(Q{_))» vi €V} o (5.5)

LEMMA 5.2. The following continuity and coercivity estimates hold:

Ap(u,v) < [aflallvila,  bn(u,q) S lallallllar, V0, v € Viegn, g € Viegn, (5.6)

h_1||uhH%2(Qg) < Ap(up,up), Huh||?{1(ph) S Ap(up,up) Yuy, € V}Ii’@. (5.7)

Proof. The estimates in (5.6) follow from the Cauchy-Schwarz inequality. The
first result in (5.7) follows from (5.3):

An(un,un) > anllZar,) + pullVunna 7z gr) 2 2 Il 7 qr -

The second result in (5.7) is proven in Lemma 5.16 in [22]. O

The following inf-sup condition is crucial for the well-posedness and error analysis
of our FE formulations: There exists ¢g > 0 independent of h and the position of I';,
in the mesh such that

br, (Vi qn ~ 1
collanlln < sup L@l oot v, e . (5.8)

vr€U ”VhHA
Below we denote this condition by “inf-sup condtion for T'y”.
From the fact that A(-,-) defines a scalar product on Uy, cf. Lemma 5.2, and the
inf-sup condition (5.8) for by (+,-) on Uy, x @y, it follows that problem (FEM) has a
unique solution.

5.1. Analysis of inf-sup condition for I';,. In [33], an inf-sup condition as
in (5.8) was shown to hold (only) for k = 2 and assuming exact integration of traces
over I', i.e. T'y, =T'. Below we show that the arguments can be extended to include
the effect of geometric errors and to k£ > 2. The analysis of the effect of geometric
errors on the stability properties of the trace Taylor—-Hood pair, which has not been
addressed in the literature so far, although rather technical, has a clear structure.
This strucure is as follows. In the next section we derive an integration by part
perturbation result for the bilinear form b,(-,-). Using this result we then show,
in section 5.1.2 that the inf-sup condition for I'j, follows from the analogous inf-sup
condition for '™, In section 5.1.3 we derive, using the inf-sup property of the bilinear
form b(-, -) for the pair Vo x LZ(T), an equivalent formulation of the inf-sup condition
for Tlin (“Verfiirth’s trick”). Finally, using results from [33] a proof for k > 2 of this
equivalent formulation of the inf-sup condition for I'" is presented (section 5.1.4).
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5.1.1. Integration by parts over I';,. On the smooth closed surface I' the
partial integration rule b(v,q) = *frquVFV ds = frv Vrqds, for v.e Vp, q €
HY(I"), holds. If T is replaced by I';, or I''" and we consider velocity fields that are
not necessarily tangential, extra terms arise due to jumps of co-normal vectors over
edges. Denote by &, the collection of all edges in I'y,. Let E € &, be the common
edge of two surface segments I'p+, I'p— C 'y, and 1/,;", v, are the corresponding unit
co-normals, i.e. 1/;r is normal to E and tangential for I'r+. Integration by parts over

each smooth surface patch I'r =T'), N O(T'), leads to

/ AN Vl"hquh
'y

:—/ gdivr, vdsp + Z/ v -np)qdive, n, ds + Z/Vh vlgdl, (5.9)
Fh

TeTr Ee€&,

for functions v, ¢ that are sufficiently smooth on each of the patches. An analogous
formula holds with T'j, replaced by I''™. Below, in Lemma 5.4 we derive a bound for
the perturbation terms. As a preliminary result we derive trace results for L2-norms
on the set of edges &.
LEMMA 5.3. The following trace inequalities hold:
_1
||qhHL2(5h) Sh72|qullar for all gn € V}ﬁ@, (5.10)
St
Villze) S B 2 lIValla for all vi, € Vi 6. (5.11)

Proof. Take F € &, and let I'r € T, be a corresponding segment of which E is
an edge. Let W be a side of the transformed tetrahedron ©p(T) such that E C W.
We apply (3.4) and a standard FE inverse inequality to obtain

lqnl? dl S h™Hanl| 72wy + hllan? < h a2
/E 12(w) (W) 12(W) (5.12)

S B anlZ 20, () + llanl e, )y S P2l 320, () -

Summing over all edges and applying (5.1) completes the proof for (5.10). With very
similar arguments, using (5.3), one obtains the result (5.11). O

For v, € V¥ q; € V,f_l, we introduce the analogous A-norm and M-norm cor-
responding to the I'™ mesh:

th||,24 = HVI‘H“Vh||%2(F1in) + ||VhH%2(F1m) + 77||nlin : Vh”%z’(rlin) + pullvvhnlinH%z(Ql};)a
lanlls = llanllZzouy + ppllmin - Vanl 72 qr)-
LEMMA 5.4. The following estimates hold:

/ vh~Vthhdsh+/ gdivr, vdsy| < h||lvellallanlar, (5.13)
T'n 'y
for all vy, € Uy, q € Qp,
/ Vi, - Viingp dsp + / q divrin vdsy ,S h% ||Vh||A||Qh||M7 (514)
Flin Flin
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for all vy, € V,’i, qn € th_l.
Proof. We use the identity (5.9). For the second term on the right-hand side in
(5.9) we use max [ dive,npllpee @y S 1, Inp — Bpllpe@r,) S hy, 7~ h™2 and the
TeT,

definition of the A and M norms to get

/ (i - m)an dive,my ds| < [va - ol g2y lanll 2oy
TeTr I'r
€T,

S (e - Ball2,) + Alvallze,)) lanllae S Rlvallallgnllas-

The same holds for T''" instead of I';,. We now consider the third term on the right-
hand side in (5.9). For the surface approximation I', we have |[v;]| < h* with k > 2,
and thus with [vp, - vi] = v, - V] we get, using Lemma 5.3,

Z /E[l/h-Vh]qh dl

FEe&y

S P2 Ivallzaenllanllce e < AlIvallalianllar-

Combining these results, we obtain the estimate (5.13). Finally we consider the third
term on the right-hand side in (5.9) for the case T, which requires a more subtle
treatment because we only have |[13]| < h. From Lemma 3.5 in [29] we have (with &,
the set of edges in ''"):

1Pl (e, S b2 (5.15)
Given E € &, we split
[h - vi] = wn)vi = [vn] - P v + [va] - nyf (v ),

where Pfirn and nfirn is the projector and normal to I''® from one (arbitrary chosen)

side of the edge E. Using [Py, — P| < A, |[va]] S h and (5.15), we get

|[vn] - Piuval = [(P, = P)[va] + Plva]) - vi| S h*|vi| on E, (5.16)
and also
|[vn] -, (Vi - )| S hlva gL (5.17)

Using (5.16), (5.17) and the same arguments as in (5.12) we get

Z /E[l/h-vh]qhdl

FEe&y

_1
S (P2 Ivallzeeen + 1vn - minllzzan) ) 2™ lanllar— (5.18)

We can approximate the piecewise constant vector ny, by nj, € V}L such that ||nj, —
Ny~ @ry S h and [[VAp|[peory < 1. Using this, triangle inequalities, (5.1) and
(5.5) we get
Ve - minllz2@ry S Ve - Ballp2ory + Allvallz2@r)
1 3
S h2{|[va - i e piny + 2 || Va | L2 i) + A V'V || L2 @r) S Rl[Valla-

Using this bound and the estimate (5.11) in (5.18) completes the proof of (5.14). O
10



5.1.2. Inf-sup condition for I';, follows from inf-sup condition for I''".
LEMMA 5.5. Take k > 2. For h > 0 sufficiently small, (5.8) follows from

f in Vh * Vl"lin dh dsh
lanllz2riny $ sup L

+h | Vanl 2oy Yan € Vi
vhEVE [Vl "

(5.19)

Proof. For (up,rn) € Uy X Qp, we transform back to the piecewise polynomial
functions: w, = vj, 0 (0,)7 Y, v, € VF, 1, = g 0 @;1, qn € V,f_l. Using |1 —
det(D®y)| < h? (change in surface measure) it follows that [gn| 2y ~ |74 llL2(r,)
holds. Using the change of variables, ||min — 14|z~ qr) < h, a finite element inverse
inequality and (5.2), we estimate

[0iin - Vanl 2oy S [mn - Vsl L2 an) + el Vrnl g2 arn)
N (5.20)
S mn - Vel p2any + ch? {|rnlar

Hence we get |\qnllar < ||7nllar and with the same arguments ||rp||ar S |lqnl|ar- Using
I — DOlloo S By ||Piin — Prl| S h and a discrete Korn inequality [22, Lemma 5.16]

~

[Vl g1 riiny S [[V]|a we obtain
[unlla S lvhlla- (5.21)

Thanks to (5.13) we get

bh(uh,rh) = / uy - thTh dSh Z —/ Th dinhuh dSh — ch||uh||A||rh||M.
T r

h

Note that
divpinvy, = tI‘(Plinvthhn) = tr(PlinD@ZVuh (¢} G)hPlin) = diVFh u, o6, + F,

with |E| < h||Vu||. Using this and the discrete Korn’s inequality yields
/F rp dive, uy, ds, = /F qndivruavy, dsy, + En,  |Ex| S hllug|allrs | a-
h
Using (5.14) and (5.21) we thus obtain
ban,) = = [ andivesavidsi, = chlfanlLal o
> /F“n Vi - Viingn dsy — ch? Vil allgnllar = chllan|allalla

1
> / Vh 'VFliHthSh*ChQHVh”AHThHM-
Flin

Using this, (5.19) and (5.20) yields

b(ap, T 1 2 1
Irnllar = lgular < sup 2B TR) L 3 / -Vl |+ hErala
u, €U, HuhHA r

2,

b(up,r
< sup M+h% / lny, - Vry|? +h%||7‘h||M-
u, €Uy ||llh||A Qg)

Hence, for h > 0 sufficiently small (5.8) holds. O
11
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5.1.3. Reformulation of inf-sup condition for I''. We use a standard tech-
nique (Verfurth’s trick) to derive a more convenient formulation of (5.19). In this
derivation the inf-sup property (2.5) of the continuous problem is used. There are
some technical issues to deal with, because (2.5) holds for T and (5.19) is formulated
with the approximation I'™ of I'. We introduce [|gx ||} ), := ETGT,}" hT”VQhH%?(Ty

LEMMA 5.6. Take k > 2. The inf-sup condition for '™ (5.19) is equivalent to

in V - Vrtin ds
lguln g sup Jom Y Vomgnds, ) in - Vanllp2ap) ¥ an € Vi (5.22)
Y vheve Vil "

Proof. From a finite element inverse inequality and (5.1) we get

1

2 _1
(X neliVanlZer)) " 0 Hlanl oy
TeTY

1 —
5 HQhHLQ(F““) + h2 ”Illin . VQhHLz(QE) for all qn € V}f 1.

Hence, (5.19) implies (5.22).

We now derive (5.22) = (5.19). Consider ¢, € V;"! and ¢f, € H*(I), the lifting
of g5, from Tli" to I'. Thanks to the inf-sup property for the continuous problem, there
exists v € Vg such that

/FV Vrogyds = [lgyll7z2y and (Vg S lanllzeey S lanllzz@my.  (5.23)

We consider v¢ € H*(O,(T)), a normal extension of v off the surface to a neigh-
borhood O (T) of width O(h) such that QF C 0, (T). Take vy, = I,(v®) € V32,
where I, : H(O,(I"))® — V3 is the Clément interpolation operator. By standard
arguments (see, e.g., [37]) based on stability and approximation properties of Ij,(v¢),
one gets

Ivalh = [Tn(vO)II%
SRV iny + B2 A (V) - 0™ 122 iy + h71||V(Ih(Ve))nlm||2Lz(Qg)
34) < Z R (v ey + A2 1 (Tn(v) = vE) - 0™ 132 pim
TeTr
+h72ve - (0 — 0)[|72 (piiny

> b IV ey B2 A IT() = Vel ey
= TeTy

IV oy + 572 D hrlIn(v©) = v [y
TeTr

Z hEl‘lve”%{l(w(T)) + ||Ve\|%2(r1in) < hil”"eHiIl(QI’:) + HV||2L2(F)
TeT,

(3.4)

A

A

@) S IVIEn @) S lanllz g
(5.24)
12



Using the trace inequality (3.4) and approximation properties of v, = Ij,(v®) one
gets

||Ve — Vh”LQ(l"lin) S h||VHH1(F)~ (525)

We now consider the splitting

/ Vi, - Viingp dsp, = / v® Vg dsp + / (Vh — Ve) - Vriingp dsp,. (526)
Tlin Tlin

Tlin

The second term can be estimated using (5.25) and (5.23):

S llanll L2y llgnll1,n-

/ (Vh - Ve) . vr‘linqh dsh
T'lin

For lifting the first term from T to I we use transformation rules, cf., e.g., [9]:

Vringn(z) = Pi(I — dH)Vrgy, (p(x)), e, (5.27)
T
nn;. .
Vg (p(z) = (I = dH) " (1 = =)V, gu(2), @ €T (5.28)
lin

The result (5.28) implies

IVra, ()2 iny S Ve, anllzeiny S B anll1,n-

We treat the first term in (5.26) using perturbation arguments:

[ v Venandsn = [ v P )Tl (00)) dsy
F]n

Tlin

= / PP, Pve. quﬁ(p(-)) dsy, — /1 dHP,, v - qufl(p(-)) dsy,
Tlin rlin

> /1_ PP, Pv® - Vg, (p(-)) dsp — cl|d]| poo qrim) [V ]|t 0y h ™ llgnll1.m
Flll

> [ PPAPYE Vg o) dsn — V] lan
Fln

— [ Ve O ds [ (PPLP =PIV Vegh (o)) dsh — chllvlmn e s s
Fln

Tlin

> [V g o) dsn = vl o lanl
Flﬂ

- / V- Vg ds + / (it — 1)v - Vgl ds — chl|vl| s oy llanln
T I

2 /FV - Vrgy ds = chllvllm oy lanllin = laallZa o) = chllvim e llanln

Z (L= &)\ qnll72rumy = eIVl oyllanllin
21— 6h)||QhHL2(r“n) (||Qh||L2(F““) - Ch||<1h||1,h)-

Take h > 0 sufficiently small such that 1 — ¢h > 0. Dividing both sides of the above
chain by ||vx||4 and using (5.24) yields

f in Vh * VI‘linqh dSh
lanllz2iny — ellanlli,n S sup L
vheVE valla
13
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From (5.22) and (5.29) we have

in Vi * VFHH qr dSh
||qh||L2(Flin) S sup fplm \
vLEVE Ivalla

1
+ h2 ||n11n : V(I}LHL?(QE) )

hence, (5.19) holds. O

5.1.4. The inf-sup condition for I'® holds for k > 2. In [33] the alternative
inf-sup condition (5.22) was proved for Po—P; elements with the original smooth
surface I' instead of its approximation I''™. In this section we use arguments from
that paper and analyze the inf-sup condition for ', We extend the analysis presented
in [33] in the sense that we show that the inf-sup condition (5.22) (hence (5.19)) holds
for all k > 2.

For this analysis, as in [33], we derive a further condition that is equivalent to
(5.22), in which the norm on the left-hand side in (5.22) is replaced by a weaker one
where ZTeThp is replaced by ZTGTTEg with 7;£g C T}F a subset of “regular elements.”
We define the set of regular elements as those T € T, for which the area of the
intersection 'y = '™ N T is not less than é7h2 with some suitably chosen (cf. [33])
threshold parameter ¢ > 0:

Toe ={T €T, : [I'7|>érhy}. (5.30)

We define a corresponding seminorm on th_lz
1

lalres = (- hrllValda)

TeTL

reg

The result in the following lemma is derived in [33, Corollary 4.3] for the case of
the exact surface I'. With very small modifications all arguments also apply if I is
replaced by ',

LEMMA 5.7. For h > 0 sufficiently small the following holds:

lanl3 i S 1913 reg + B lmiin - Varl72or),  for all gn € Vi

From this result and Lemma 5.6 we immediately obtain the following corollary.
COROLLARY 5.8. The inf-sup condition for TH" (5.19) is equivalent to the follow-
mng one:

< fF“r‘ Vi - VI"liuqh dsh
[1reg S sUp

vheVE valla

llan +he ([, - V(IhHL?(Qg) Van € VT (5.31)
We finally state the main stability result.

THEOREM 5.9. Take k > 2. For h > 0 sufficiently small the inf-sup condition
for THn (5.19) holds.

Proof. We show that condition (5.31) is satisfied. Denote by &cg the set of all
edges of tetrahedra from 7;£g. Let tg be a vector connecting the two endpoints of
E € & and tg == tg/|tg|. For each edge E let ¢ be the quadratic nodal finite
element function corresponding to the midpoint of E. For g € th_l, we define

v(x) = Z hiop(x) [ts - Ve(x)|ts. (5.32)
E€E eqg
14



This vector function is continuous on €2 and its components are piecewise polynomials
of degree k, hence v € V’;; holds. Using 0 < ¢p < 1inT € ’7?, we obtain with
Ip=T"NT,

V vrllnq)LQ(FT) = (V Pthq)LQ (T'r)

-/ Z Woe Punte - Val ds+ [ 37 Wpor (Phte - Va)(Puste - V) ds
I'r gpee,,

I'r E€&eg
>3 /F Z hy,0p [Pints - Vq[*ds — = / > hhoe|Phte - Vg’ ds
T BE€Ereq T Begyeg
1

25 |3 HeowPute VaPds— 5 [ 3 hhinu- Vol ds

T Begyey 't peg(r)
> 2 Z h%¢05 |Pinte - Va|?> ds — 3h3||nyy, - VQHL?(FT)

I'r E€&eg

/ Y hpér [Pinte - Val* ds — erhr o - Valfe (). (5.33)

Iz E€& eg

For the last inequality we used the local trace inequality (3.4) and a standard inverse
estimate applied to the piecewise polynomial ny;, - Vgq. Hence, for every T € 7? we
have

(v, Vring) 220y + cihr |0y - V(]|\2L2(T) > 0. (5.34)

We now restrict to T' € ’7;I;g and estimate the first term in (5.33). Corresponding to
I'r = D" NT we define a so-called base face Fy of T as that face of T with unit normal
closest to the unit normal nj;, on I'r. Using shape regularity of 7T, a transformation
to the unit tetrahedron, equivalence of norms and (5.30) it follows (cf. [33] for precise
derivation) that there exists a surface segment I'7 with the following properties:

I'rcTp, [Tp|2h% ¢5>C>0 onlyp forall EC Fr. (5.35)

where the constant C > 0 is independent of A and of how I'r intersects T'. Note that
for a polynomial p of a fixed degree, we have

Ipllzzwry S PN,y and [VPIZ2er) S I Vol ) +RIVEpIZa ey (5-36)

To show the first estimate one may use standard arguments by inscribing a 2-ball
of radius ~ h in fT, superscribing a 2-ball of radius ~ h around I'p, applying a
mapping to a reference superscribed unit 2-ball and using equivalence of norms in this
reference domain. By a similar argument one shows the second inequality. Concerning
the latter we note that with the unit 3-ball denoted by Bs and the planar segment
P := Bsn{xs = 0} the functional p — H%”LQ(BS) +]| 68;’1 + 5= a“ 2l 2(p) defines a norm
on the space of non-constant polynomials of a fixed degree.

Using the first estimate from (5.36) and (5.35) we estimate the first term in (5.33)

15



as follows:

/ > hEéE Puinte - ValPds 2 b3 > ¢E|Pints - Vg|* ds
Iy

T E€Erog EcpPp /LT
Zh%« Z - ng\PhntE~Vq|2dth2T Z ‘/~ |PhntE~Vq|2 ds
EcFkp LT EcFp/TT
Zhi Y / |Pints - Vg|?ds.
EcFkp LT

Due to the construction of the base face Fr we have that |ny, - ng,.| is uniformly
bounded away from zero. This implies that for any z € R? we have > ECFy |Plinte -
2> = Y pep, [te - Pinz|* 2 |Pinz|®. Using this and the second inequality in (5.36)
we get

J

S HhoelPunts - Vo ds 2 13 [

|Plian|2 ds = h%/ |V1"1inq|2 ds
T E€&reg I'r

I'r
Z bVl ey — brlnim - Val 7z
2 hol|VallZz iy — brln- V|7 — b2 VallZs -

Substituting this in (5.33) we obtain for T' € TL,:

reg*
(v, Vring) 20y + ¢hel[oin - Val|72 ) 2 bl Vall7z (- (5.37)

Combining this with (5.34) and summing over T' € 7,1 yields

/1. A\ v1"1i‘“quh + Cthlin . v‘]”%ﬁ(gl}:) 2 ||q ircg (538)
[lin s

We use the following elementary observation: For positive numbers «, 3,9 the in-
equality o+ 32 > ¢d? implies o+ B(8 + &) > min{co, 1}6(8+ ) and thus ﬁ +8>
min{cg, 1}. Therefore, estimate (5.38) implies

fl“lin A\ vFlir‘quh
Lreg + 1% |0y - Vallz@r)

+h? | - Vall r2iory 2 llalles- (5.39)

lq

It remains to estimate ||v||4. Straightforward estimates (cf. details in [33]) yield

||vr‘1inv||%2(l"lin) + ||V||%2(F1in) ,S ||Q||ih7

7]||Il11n : V||%2(F1m) =~ h_2||nlin : V”%’z(rlin) f/ ”(J”?,hv

pullVV 1111n||%2(9£) = hilnvvnlinuiqgg) Sl ?,h~

This yields ||[v][a < |lq|

1,h, and using Lemma, 5.7 we get
1
||V||A S; ”‘ZHLng +h2 ||nlin : Vq||L2(Ql;) .

Combining this with (5.39) completes the proof. O
16



6. Error analysis. As usual, the discretization error analysis is based on a
Strang type Lemma which bounds the discretization error in terms of an approxima-
tion error and a consistency error. We define the bilinear form

An((w,p), (v,q)) == An(u,v) + bp (v, p) + bu(u,q) — 3n(p, q), (6.1)

for (w,p), (v,q) € Vyeg,h X Vieg,n. Stability of the discrete problem (FEM), uniformly
in h and the position of T' in the triangulation, in the product norm || - |4 X || - ||as
follows from the inf-sup property (5.8). Hence, for A (,-) it holds,

sup An((an,pn), (Vi,qn)) > (|

1
5 1 lun %+ llpsllig) (6.2)
vran)€UnXQu - ([[vallg + llgnll5,)

for all (up,pn) € Up x Qp. This and the continuity of the A;, form yield the following
Strang’s-type Lemma. Here and in the remainder we use that the solution (u,p) €
Vr x L(T) of (C) is sufficiently regular, in particular (u,p) € Vyeg.n X Viegn-

LEMMA 6.1 (Strang’s Lemma). Let (u,p) € Vo x L3(T) be the unique solution of
problem (C) and (up,pr) € Up X Qp the unique solution of the finite element problem
(FEM) . The following discretization error bound holds:

o = anlla 4 I —pallar S wmin (= valla + 6 - anllan)
(Vi,an)€URXQn
A (€, p°), (v, —(fy,v + s
b ap ) (00) - B+ Gma)ieal gy
(Vh:qn) EURX QR (th”i + HQhH?\/I)Z

The following lemma deals with the approximation error bounds in the norms
that occur in the Strang lemma above. A proof can be found in [21, Lemma 5.10].

LEMMA 6.2 (Approximation bounds). For u € H**(T')% and p € H*(T) the
following approximation error bounds hold:

. e e _ < hk , : . 6.4
oo (=il 1 = ) S B (Rl + i) - 64

6.1. Consistency error analysis. The goal of this section is to provide an
estimate of the consistency term on the right-hand side of (6.3). We will use results
obtained for a vector-Laplace problem in [21]. The variatonal formulation of that
vector-Laplace problem results in a bilinear form that is the same as the Ap(,-)
bilinear form, which is part of A(-,-) in (6.1).

6.1.1. Preliminaries. We start with results concerning the transformation of
the integrals between I'' and I',. Using that the gradient of the closest point projection
is given by Vp = P — dH, one computes for v € H*(T') and z € T},

Vr,uf(z) = BT (2)Vru(p(z)), with B =B(z):=P(I - dH)P},. (6.5)

The following properties of B are known in the literature [18]:
17



LEMMA 6.3. For z € T, and B = B(x) as above, the map B is invertible on the
range of P for h small enough, i.e. there is B~': range(P(x)) — range(Py(z)) such
that BB~! = P, B™'B = Py, and we have for u € H'(T'), x € T'y,

Vru(p(z)) = P(2)B~" () Vr, u(2).
Furthermore, the following estimates hold:
”BHLOC(Fh) + ”PhBilP”L‘x’(Fh) S 1,
PPy, — Bllz=(r,) + [PyP = P,B P,y S hFH

For the surface measures on I' and T'y, the identity dT' = |B|dI'y holds, with |B| =
|det(B)|, and we have the estimates

11— [Blllzoersy S P Bz ST 1Bl e, S L
Applying Lemma 6.3 yields, for u € H(T),
Vrd (p(x)) = P(z)B~ " (2)Vr,u(z), € Th.

Similar useful transformation results for vector-valued functions are given in the fol-
lowing corollary from [21]:
COROLLARY 6.4. Foru € HY(T)? and v € HY(T';)? we have
(VuP)® = VuP = Vu‘P,B™'P  on T},
(VV'P)" = Vv'P = Vv'P,B™'P  onTy,.

6.1.2. Consistency error bounds. We are now prepared to estimate the last
term on the right-hand side of (6.3). We introduce further notation. We define, for
V,W € Vreg,ha q € Vieg,n:

G(v,w) = ap(v,w) — a(Pv!,Pw') + 55, (v, W) + kn(v,w),
Gp(v,q) :=bp(v,q) — b(Pvl,ql), Gy(w) = (f, wl)Lz(p) — (fr, W) L2(r )
Gg(q) == (gn, Q) r2ry) — (gaql)L2(F)~

Let (u,p) € Vr x L3(T) be the unique solution of problem (C) and (v, gn) € Uy x Q.
The consistency term in (6.3) can be written as

Ar((a®,0%), (v, qn)) — (Bus Vi) L2, + (9hs @n) L2 (0
= Ap(u®,vp) + bp(vh, p°) + bu(u®, qn) — 3n(p% an) — (Fn, va)L2(ry) + (9ns an) 2(r))
+ (£,v}) 2y — (9,43, 22(r) — a(w, Pv},) — b(Pv},, p) — b(u, qj,)
=0
= G(u®,vi) + Go(vh, p°) + Gp(u®, qn) — 3n(p%, qn) + G (vi) + Gylqn).

(6.6)

In [21, Lemma 5.15, 5.18] several G-terms in (6.6) have already been analyzed. We
collect these results in the following lemma.

LEMMA 6.5. Let f, and gy, be approzimations of £ and g such that |||B|f¢ —

fullcz,) < WHIEN L2y and [[Blg® — gnllzaer,) S 4 glleeqry. For the unique
18



solution (u,p) € Vp x L(T) of problem (C) and for all (vp,qn) € Up x Qp the
following holds:
G(®,va)| S h*allayvallas 1300 an)| S BE (el ey lanllar,
G Vi)l S B E 2y IVallzen,  1Go(an)l S B*FHlgllre oy lanlizar,)-

The two terms left to be analyzed are Gy(vp,p®) and Gp(u®,qp), which result
from geometric inconsistencies due to the difference in the bilinear forms b(-,-) and
bn(-,+). A bound for Gy(vp,p®) can be easily derived using Lemma 6.3. For the term
Gy(u®, qp), however, we need to locally apply Green’s formula.

LEMMA 6.6. Let (u,p) € Vg x L3(T') be the unique solution of (C) and assume
that (u,p) € H3(T')® x HY(T'). Then for all (v, qn) € Uy x Qy the following holds:

|Go(vi, p°)| S RVl allplla oy, 1Go(a®, an)l S BEallzzer) lanllar- (6.7)

Proof. For the first estimate we use Lemma 6.3 and get
|Gy (Vi )] = [0 (Vi p°) = B(PVE, p)| = |(Vis Vi, 0) L2 (0) — (IBIVa, (VD)) L2 ()|
= |(Vh, Pn = P)Vr,p°)2(r,) + (Vi, PPy V1, ) 121,
— (vi, PB™Py VY, p%) 2, + (1 = IB))va, PB™"Vr, p%) 21, |
S (IPh = Pllzse(ry) + PPy = PB Pyl e () + 11 = Bl zoe (o)) IVall 2o 12l ey
< WVl allpll -

We now consider the second estimate in (6.7). We use Green’s formula and Lemma 6.3,
and thus obtain, with &, and v}, as in section 5.1.1:

Gb(uey Qh) = bh(uea Qh) - b(Pu7 qz)
= Z (ueaVFth)m(rT) — (u, quz)L%F)

TeTy
= Y —(divr, (Pau®),qn)r2we) + D, (] 0% an) 2
rerr o=t (6.8)

+ (diVl"LL(];L)LQ(F)
= Z —(divr, (Phue)vqh)Lz(FT) + Z ([vn] - ueth)L2(E)

TEThF Ee&y
+ (IB[(divru)®, qn)r2(r,,)-
Note that divr, (Ppu®) = divp,u® — (u® - np)tr(Vr,np) on I'r and (divpu)® =

tr((PVu®P)¢) = tr(PVu‘P,B~!P) on I';, (by Lemma 6.3) holds. Hence, we have
|IB|(divru)® — divr, u®
= |B|tr(PVu‘P,B~'P) — tr(P,Vu°P;)
= (|B| — Dtr(PVu‘P,B 'P) + tr(PVu‘P,B'P) — tr((P), — P)Vu‘P},)
+ tr(PVu°P,(P — P},)) — tr(PVu‘P,P)
= (|B| - tr(PVu*P,B~'P) + tr(PVu®(P,B~'P — P, P))

— tr((Ph — P)VuePh) + tr(PVuePh(P — Ph))
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Therefore, using Lemma 6.3 we obtain for the sum of the first and last term on the
right-hand side of equation (6.8)

| S0 —(dive, (Pau®), an) ey + (BI(diveu)*, au) o, )
TeT,

= ‘ Z ( — (diVFhue;Qh)LQ(FT) + (|B|(diVFu)e,qh)L2(pT)
TeTY

+ ((u® - 1mp)tr(Vrp,mp), ‘Jh)LZ(FT))‘

S |(IBI(divpw)® — dive,u®, gn) 2ol + Y 1(( - (0 —10))te(Vr,ma), gn) 20|
TeTr

S (1= Bz, + IPeB'P = PP roo(r,) + [Ph — Pllzee ) lull ooy llanl

+ Y g = nflpe @ 0l 22 llgnllz2 e
TeTF

< Wl ey llanllv + Z REa Nl oo llanll 2 o)
TeTr

< Ml gy llan o

For the second term on the right-hand side of equation (6.8) we need a bound on the
jump in the conormals across the edges E. Such a bound is derived in [29, Lemma 3.5]
for the case of a piecewise planar surface approximation. The arguments immediately
extend to the higher order surface approximation I'j, resulting in the estimate

IPwalllcoseny S h?.
Using (3.4) and arguments similar to (5.12) we get
_ 1
a2 S P HU N 2i0n) S P72 a2 @)
Using these estimates and the result (5.10) we obtain

> (vl an) 2 ey S 1Pl (e,
Eeé&y

|2 lanlizcen) S P2 Hull g llanllar,

which completes the proof for the second estimate in (6.7). O

Applying Lemma 6.5 and 6.6 results in the following bounds for the consistency
erTors.

LEMMA 6.7. Let (u,p) € Vp x L3(T) be the unique solution of problem (C)
and assume that (u,p) € H*(T')® x HY(T'). We further assume that the data errors

satisfy |||BIf¢ — fullr2r,) < RFHIE L2y and IIBlg® — gnllzz@,) < ¥ lglloz .
The following holds:

sup |Ah((ue,pe)7 (Vha Qh)) - (fhvvh)L2(Fh) + (gha qh)LQ(Fh)
1
SR (vl + lanl3,)?

S (||u||H2(F) + ||P||H1(r)) + RFT (||f||L2(r) + ||9||L2(r)) . (6.9)
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6.2. Finite element error bound. We combine the Strang-Lemma 6.1 and
the bounds for the approximation error and the consistency error to obtain a bound
for the discretization error in the energy norm.

THEOREM 6.8. Let (u,p) € Vr x LZ(T) be the unique solution of problem (C) and
assume that (u,p) € H?(I')? x HY(T). Let (up,prn) € Uy, x Qp be the unique solution
of the discrete problem (FEM) with parameters as in (4.2). We further assume that
the data errors satisfy |||B|f¢ — £, r2(r,) S W TH[E] L2y and [[|IBlg® — gnllrzr,) S
R gl L2ry. Then the following error bound holds:

[u® —unlla + [Ip° = pullar S h* <||u\\Hk+1(r) + HPHHk(r))

(6.10)
+ B (I L2y + 9l o) -

7. Numerical experiments. Results of numerical experiments (for different
surfaces I') that confirm the optimal order of convergence of the trace Taylor—Hood
finite method for £ = 2 and k = 3 are presented in [21]. These results show optimal
convergence behavior, not only in the energy norm but also in the L?-norm. In that
paper, one can also find numerical results for an inconsistent variant of the method in
which an approximation Hj, of the Weingarten mapping is not needed. In [33] results
of a numerical experiment with £ = 2 are presented which illustrate that without the
pressure normal stabilization term, i.e., using p, = 0, the trace Taylor-Hood pair is
not inf-sup stable. Below we present results of two further numerical experiments. In
Section 7.1 we numerically confirm the inf-sup stability of the trace Taylor-Hood pair
U, x Qy, for k = 2,3,4,5. The results show that the (best) inf-sup constant is (in
this k range) essentially independent of k. In Section 7.2 we apply our method to the
Kelvin-Helmholtz instability problem, which illustrates the potential of the method.

7.1. Inf-sup constant. We consider the Stokes problem on the unit sphere,
characterized as the zero level of the distance function ¢(z) = /2% + 23 + 23 — 1,
x = (71,22, 73)T. The discretizaton (FEM) is implemented in NGSolve [1] with the
surface embedded in a domain Q = (fg, %)3, a coarsest mesh-size of hg = 0.5 and
several uniform refinements (only of tetrahedra intersected by the surface). We use
parameter values p, = h™', p, = h, n = h™2. The resulting discrete saddle point

problem and its pressure Schur complement are of the form

T
A [A B

_ —1npT
B —c]’ S =BA~!'BT 4 C.

Let M be the symmetric positive definite matrix corresponding to the scalar product
that induces the norm || - ||as used in the pressure space Qp, cf. (4.1). We consider
the generalized eigenvalue problem

Sp = AMp.

The smallest strictly positive eigenvalue, denoted by A = Ay, is related to the best

possible inf-sup constant in (5.8) through 3¢ < Apin < 2¢3. For the computation of

the eigenvalues we use SciPy [2]. Further details concerning this eigenvalue compu-

tation are given in [33]. In Table 7.1 we show computed Ap;, values for several grid
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refinements and polynomial degree k = 2,...,5. (Due to computational limitations
the last entries in the fifth and sixth column are not included).

P-P | PP | P3P | Pi- P | Ps—P,
0.84227 | 0.98940 | 0.98996 | 0.98999 | 0.99045
0.73001 | 0.98312 | 0.98247 | 0.98346 | 0.98534
0.65410 | 0.97322 | 0.97363 | 0.97583 | 0.97798
0.52795 | 0.96089 | 0.96563 | 0.96595 | 0.96923
0.39170 | 0.94002 | 0.93990 | 0.93486 —
0.27037 | 0.94585 | 0.94670 -

S O W N e~

Table 7.1: Smallest strictly positive eigenvalue Ay .

As predicted by the theoretical analysis, the eigenvalue A, remains bounded
away from zero as the grid is refined. We also observe that \.;, remains essentially
constant if one increases k. This robustness property does not follow from our analysis.
In the second column of the table we show the result for the P;—P; pair of trace finite
element spaces (with P; approximation of the surface). The results indicate that, as
expected, this pair is not inf-sup stable if we use (only) the normal derivative pressure
stabilization §p,(-,-). If one uses an additional Brezzi-Pitkaranta type stabilization
this pair becomes inf-sup stable, as is shown in [30].

7.2. Kelvin—Helmholtz instability on a sphere. To demonstrate the perfor-
mance of the method under more general circumstances not covered by the presented
analysis, we further consider a classical problem of the Kelvin—Helmholtz instability
in a mixing layer of isothermal incompressible viscous flow at high Reynolds number.
For a detailed discussion of the problem in a 2D periodic square, which can be seen
as a planar analogue of our setup, we refer to [41] and the references therein. There
are almost no numerical studies of Kelvin—Helmholtz instability for surface fluids;
examples of a cylinder and a sphere are treated in [23], where a higher order H (div)-
conforming finite element method is applied on triangulated surfaces. We follow that
paper to design our numerical experiment.

For I' = S? | let ¢ and ( to be renormalized azimuthal and polar coordinates,
respectively: —1/2 < &,¢ < 1/2. The corresponding directions are e¢ := Vr&/||Vré||
and e := Vr(/||Vr(||. Consider the initial velocity field

ug(¢, ¢) = tanh(2¢/d) r(C) e + ¢ curlp 1,

V(€ C) = e~ (¢/80)? (aa cos(mq mE&) + ap, cos(my C)), (7.1
where r is the distance from I' to the z-axis. We take §y = 0.05 (for |z| = o
the velocity field is close to a rigid body rotation around the z-axis), ¢, = 1072
(perturbation parameter), and a, = 1, m, = 16, a;, = 0.1, m; = 20 (perturbation
magnitudes and frequencies). Note that ug is tangential by construction, up - n = 0.
The initial velocity field is illustrated in Figure 7.1.
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Fig. 7.1: Left: Initial velocity field ug from (7.1). Right: The initial vorticity, curlr ug,
in the strip |z| < 2dp. We see that the initial perturbation consists of 8 vortices
squeezed around equator.

Compared to the surface Stokes problem (2.2), the surface Navier—Stokes equa-
tions considered in this experiment are time-dependent and include inertia terms:

du
P— —2vPdivp(F(u))+ Vrp =0,
az vr(E(u)) rp (7.2)
dinu = 0,
where 9% = 24 4 (. V)u is the material derivative. For the unit sphere and initial

condition such that [Jul| ey ~ 1, we have a Reynolds number Re ~ v~'§y. In our
numerical tests we set v = %10’5, resulting in Re = 10

We note that equations (7.2) follows by tangential projection of a fluid system
governing the evolution of a viscous material layer under the assumption of vanishing
radial motions; see [20]. The operator P94
tive. One checks the identity P‘é—‘t‘ = %—‘t‘ + (Vru)u for a tangential vector field u,

which we further use in the finite element formulation.

can be seen as covariant material deriva-

We outline the discretization approach used for the simulation of this surface
Navier—Stokes problem. The trace Po—P; Taylor-Hood finite element method as
described in this paper, cf. (FEM), is applied for the spatial discretization. Dis-
cretization parameters were chosen as p, = h, p, = h=1, and n = h™2, cf. (4.2).
We use the BDF2 scheme to approximate %—‘t‘ and linearize the inertia term at t" as
(Vru(t"))u(t™) = (Vru(t™))w, where w is the linear extrapolation of velocity fields
from two previous time nodes, t"~! and ¢"~2. The grad-div stabilization term [28],
Y [pn tr E(u) tr E(v) ds with v = 1, is added to the finite element formulation to better
enforce divergence free condition. This stabilization also facilitates the construction of
preconditioners for the resulting algebraic systems [19]. No further stabilizing terms,
e.g., of streamline diffusion type, were included in the method, since the computed
solution does not reveal any spurious modes.

The method is implemented in the DROPS package [10]. For this series of exper-
iments, an initial triangulation 7, was build by dividing Q = (—%, §)3 into 2% cubes
and further splitting each cube into 6 tetrahedra with hy = % Further, the mesh is
refined only close to the surface, and ¢ € N denotes the level of refinement so that
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he = 2,

Fig. Snapshots of surface vorticity wp, = curlp, up,
for te {0,2.5,5,6.25, 10,12.5,15,20}, h=2.6 x 1072, Click any picture for a
full animation.

wlut

We perform numerical simulations for mesh levels £ = 4,5,6. The DROPS pack-
age currently does not support parametric elements, so for a sufficiently accurate
numerical integration we use a piecewise linear approximation of I';, with my levels of
local refinement, where my = 2, ms = 4, mg = 8; see section 6.3 in [33] for further
details. The time interval is fixed to be [0,20]. We use uniform time stepping with
At =1/16, 1/32 and 1/64 for mesh levels 4,5 and 6, respectively.

Figure 7.2 shows several snapshots of the surface vorticity, wy, = curlpuy, com-
puted on the finest mesh level 6. The trace Po—P; finite element method that we
use reproduces qualitatively correct flow dynamics that follows the well known pat-
tern of the planar Kelvin—Helmholtz instability development: we see the initial vor-
tices formation in the layer followed by pairing and self-organization into two large
counter-rotating vortices. Conservation of the initial zero angular momentum pre-
vents further pairing. The two remaining vortices should decay for t — +oo due to
energy dissipation.

We next assess the method by monitoring the energy dissipation of the computed
solutions on three subsequent levels. To have a better insight into the expected
behaviour, we note that the initial velocity ug is L2-orthogonal to all rigid tangential
motions of T', functions from E = {v € V¢ : E(v) = 0}. It is straightforward to
check that a velocity field u that solving (7.2) preserves this orthogonality condition
for all ¢ > 0 and hence it satisfies the following Korn inequality:

[ullz2ry < Cx (D) [E()]|L2(r)- (7.3)

For the total kinetic energy £(t) = %||u(~,t)||%2(r), testing (7.2) with v = u and
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applying (7.3) leads to the following identity and a corresponding energy bound:

d&(t) 9 4y dvt
— = =2v||E(u(t < ———=E&(t = £(t) <&(0 —— ]
T = IO <~ E0 = £0) < €0~
We outline an approach for estimating the Korn constant Ck (I'). The best value of
this constant is obtained if Ck (I')~2 is the smallest strictly positive eigenvalue of the
diffusion operator —P divp(E(-)) restricted to the space of tangential divergence free
vector fields, cf. (7.3). We have the following relation between this surface diffusion

operator and the Hodge-de Rham operator A (see, eq. (3.18) in [20]):
—2Pdivp(E(v)) = Afv —2Kv, forv € Vy, s.t. divpv =0, (7.4)

where K is the Gauss curvature (K = 1 for I' = S2). The eigenvalues of AH for the
unit sphere are given by A\, (AH) = k(k+1), k =1,2,..., [8, p.349]. The tangential
rigid motions are eigenfunctions corresponding to A;. Hence, we estimate:

IEMV)IZry $(Affv —2Kv,v)

Cx(D) 2= inf -2 E0 _ g
\Zli,\;?,i]g Hv||%2(r) 2?\)?\«[;}3 ”VH%Q(F)
L(AHv —2Kv,v 1
S o 28T _ ) _ Z(o(AF) —2) =2,
veEVr/E HVHL"’(F) 9

resulting in C(I')? < 3'. Substituting this in the above estimate for the kinetic

energy, we arrive at the bound

E(t) < E(0)exp (—8vt) = E(0)exp (—4-107°¢). (7.5)
® i =1.04x10" h=521x10"2 & h=26x10"2
3.70[% ' '

g 365

§ 3.60F h — @ —

e 1.04x10~" [ 3.96 x 10

g 3% 5.21x 1072 | 9.96 x 10~*

23500 2.6x1072 | 3.44 x 107*

Fig. 7.3: Left: Numerical kinetic energies &,(t) = %||uh(-,t)||%2(rh) as functions of

time for £ = 4,5,6 (straight lines) and corresponding exponential fitting (dashed
lines). Right: Values of the exponent « in the fitting function C exp(—at).

In Figure 7.3 we show the kinetic energy plots for the computed solutions together
with exponential fitting. There are two obvious reasons for the computed energy to

IResults of numerical experiments (not included), strongly suggest that Cg (T')? = % forI' = S2.
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decay faster than the upper estimate (7.5) suggests: the presence of numerical diffusion
and the persistence of higher harmonics in the true solution. On the finest mesh the
numerical solution looses about 0.5% of kinetic energy up to the point when the
solution is dominated by two counter-rotating vortices. This compares well to results

computed with a higher order method in [41] for the planar case with Re = 10%.

Acknowledgment. The authors Th. Jankuhn and A. Reusken wish to thank

the German Research Foundation (DFG) for financial support within the Research
Unit “Vector- and tensor valued surface PDEs” (FOR 3013) with project no. RE
1461/11-1. M.O. and A.Zh. were partially supported by NSF through the Division
of Mathematical Sciences grants 1717516 and 2011444.

(12]
13]

[14]

[15]

[16]

(17]

18]

(19]

REFERENCES

Netgen/NGSolve. https://ngsolve.org/.

SciPy. https://www.scipy.org/.

M. ARROYO AND A. DESIMONE, Relazation dynamics of fluid membranes, Phys. Rev. E, 79
(2009), p. 031915.

A. BoniTO, A. DEMLOW, AND M. LICHT, A divergence-conforming finite element method for
the surface Stokes equation, Preprint arXiv:1908.11460, (2019).

P. BRANDNER AND A. REUSKEN, Finite element error analysis of surface Stokes equations in
stream function formulation, Preprint arXiv:1910.09221, (2019).

H. BRENNER, Interfacial transport processes and rheology, Elsevier, 2013.

E. BurMmaN, P. HaNSBO, M. G. LARSON, AND A. MASSING, Cut finite element methods for
partial differential equations on embedded manifolds of arbitrary codimensions, ESAIM:
Mathematical Modelling and Numerical Analysis, 52 (2018), pp. 2247-2282.

B. Cuow, S.-C. CHU, D. GLICKENSTEIN, C. GUENTHER, J. ISENBERG, T. IVEY, D. KNOPF,
P. Lu, F. Luo, AND L. N1, The Ricci flow: techniques and applications. Part IV: Long-
time solutions and related topics, American Mathematical Society, 2007.

A. DEMLOW AND G. DzIUK, An adaptive finite element method for the Laplace-Beltrami oper-
ator on implicitly defined surfaces, SIAM J. Numer. Anal., 45 (2007), pp. 421-442.

DROPS package. http://wuw.igpm.rwth-aachen.de/DROPS/.

G. Dz1UK, Finite elements for the Beltrami operator on arbitrary surfaces, in Partial differential
equations and calculus of variations, S. Hildebrandt and R. Leis, eds., vol. 1357 of Lecture
Notes in Mathematics, Springer, 1988, pp. 142-155.

T.-P. FrIES, Higher-order surface FEM for incompressible Navier-Stokes flows on manifolds,
International Journal for Numerical Methods in Fluids, 88 (2018), pp. 55-78.

G. G. FULLER AND J. VERMANT, Complex fluid-fluid interfaces: rheology and structure, Annual
review of chemical and biomolecular engineering, 3 (2012), pp. 519-543.

J. GRANDE, C. LEHRENFELD, AND A. REUSKEN, Analysis of a high-order trace finite element
method for PDEs on level set surfaces, SIAM Journal on Numerical Analysis, 56 (2018),
pPp. 228-255.

B. Gross, N. TrAsk, P. KUBERRY, AND P. ATZBERGER, Meshfree methods on manifolds for hy-
drodynamic flows on curved surfaces: A generalized moving least-squares (gmls) approach,
Preprint arXiv:1905.10469, (2019).

M. E. GURTIN AND A. I. MURDOCH, A continuum theory of elastic material surfaces, Archive
for Rational Mechanics and Analysis, 57 (1975), pp. 291-323.

A. HANSBO AND P. HANSBO, An unfitted finite element method, based on Nitsche’s method, for
elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 191 (2002), pp. 5537—
5552.

P. HAaNsBO, M. G. LARSON, AND K. LARSSON, Analysis of finite element methods for vector
Laplacians on surfaces, IMA J. Numer. Anal., (2019).

T. HEISTER AND G. RAPIN, Efficient augmented Lagrangian-type preconditioning for the Os-
een problem using Grad-Div stabilization, International Journal for Numerical Methods in

26



Fluids, 71 (2013), pp. 118-134.

[20] T. JANKUHN, M. A. OLSHANSKII, AND A. REUSKEN, Incompressible fluid problems on embed-
ded surfaces: Modeling and variational formulations, Interfaces and Free Boundaries, 20
(2018), pp. 353-377.

[21] T. JANKUHN AND A. REUSKEN, Higher order trace finite element methods for the surface Stokes
equation, Preprint arXiv:1909.08327, (2019).

[22] ———, Trace finite element methods for surface vector-Laplace equations, Preprint
arXiv:1904.12494. Accepted for publication in IMA J. Numer. Anal., (2019).

[23] P. L. LEDERER, C. LEHRENFELD, AND J. SCHOBERL, Divergence-free tangential finite element
methods for incompressible flows on surfaces, Preprint arXiv:1909.06229, (2019).

[24] C. LEHRENFELD, High order unfitted finite element methods on level set domains using isopara-
metric mappings, Computer Methods in Applied Mechanics and Engineering, 300 (2016),
pp. 716-733.

[25] C. LEHRENFELD AND A. REUSKEN, Analysis of a high-order unfitted finite element method for
elliptic interface problems, IMA J. of Numer. Anal., 38 (2017), pp. 1351-1387.

[26] 1. NITSCHKE, S. REUTHER, AND A. VoiGaT, Hydrodynamic interactions in polar liquid crystals
on evolving surfaces, Physical Review Fluids, 4 (2019), p. 044002.

[27] 1. NITSCHKE, A. VOIGT, AND J. WENSCH, A finite element approach to incompressible two-phase
flow on manifolds, Journal of Fluid Mechanics, 708 (2012), pp. 418-438.

[28] M. OLSHANSKII AND A. REUSKEN, Grad-diwv stablilization for Stokes equations, Mathematics of
Computation, 73 (2004), pp. 1699-1718.

[29] M. OrLsHANSKII, A. REUSKEN, AND X.XU, A stabilized finite element method for advection-
diffusion equations on surfaces, IMA J Numer. Anal., 34 (2014), pp. 732-758.

[30] M. A. OLsHANSKII, A. QUAINI, A. REUSKEN, AND V. YUSHUTIN, A finite element method for
the surface Stokes problem, SIAM Journal on Scientific Computing, 40 (2018), pp. A2492—
A2518.

[31] M. A. OLSHANSKII AND A. REUSKEN, Trace finite element methods for PDEs on surfaces,
in Geometrically Unfitted Finite Element Methods and Applications, S. P. A. Bordas,
E. Burman, M. G. Larson, and M. A. Olshanskii, eds., Cham, 2017, Springer International
Publishing, pp. 211-258.

[32] M. A. OLSHANSKII, A. REUSKEN, AND J. GRANDE, A finite element method for elliptic equations
on surfaces, STAM J. Numer. Anal., 47 (2009), pp. 3339-3358.

[33] M. A. OLSHANSKII, A. REUSKEN, AND A. ZHILIAKOV, Inf-sup stability of the trace Po-Pi Taylor—
Hood elements for surface PDEs, Preprint arXiv:1909.02990, (2019).

[34] M. A. OLSHANSKII AND V. YUSHUTIN, A penalty finite element method for a fluid system posed
on embedded surface, Journal of Mathematical Fluid Mechanics, 21 (2019), p. 14.

[35] M. RaHIMI, A. DESIMONE, AND M. ARROYO, Curved fluid membranes behave laterally as ef-
fective viscoelastic media, Soft Matter, 9 (2013), pp. 11033-11045.

[36] P. RANGAMANI, A. AGRAWAL, K. K. MANDADAPU, G. OSTER, AND D. J. STEIGMANN, Inter-
action between surface shape and intra-surface viscous flow on lipid membranes, Biome-
chanics and modeling in mechanobiology, (2013), pp. 1-13.

[37] A. REUSKEN, Analysis of trace finite element methods for surface partial differential equations,
IMA J. Numer. Anal., 35 (2015), pp. 1568-1590.

[38] , Stream function formulation of surface Stokes equations, IMA J. Numer. Anal., (2018).

[39] S. REUTHER AND A. VOIGT, Solving the incompressible surface Navier-Stokes equation by sur-
face finite elements, Physics of Fluids, 30 (2018), p. 012107.

[40] A. SaHU, Y. OMAR, R. SAUER, AND K. MANDADAPU, Arbitrary Lagrangian—FEulerian finite
element method for curved and deforming surfaces, J. Comp. Phys., 407:109253 (2020).

[41] P. W. SCHROEDER, V. JOHN, P. L. LEDERER, C. LEHRENFELD, G. LUBE, AND J. SCHOBERL,
On reference solutions and the sensitivity of the 2D Kelvin—Helmholtz instability problem,
Computers & Mathematics with Applications, 77 (2019), pp. 1010-1028.

[42] L. ScrIVEN, Dynamics of a fluid interface equation of motion for Newtonian surface fluids,
Chemical Engineering Science, 12 (1960), pp. 98-108.

[43] J. C. SLATTERY, L. SAGis, AND E.-S. OH, Interfacial transport phenomena, Springer Science
& Business Media, 2007.

[44] A. TORRES-SANCHEZ, D. MILLAN, AND M. ARROYO, Modelling fluid deformable surfaces with
an emphasis on biological interfaces, Journal of Fluid Mechanics, 872 (2019), pp. 218-271.

27



[45] A. TORRES-SANCHEZ, D. SANTOS-OLIVAN, AND M. ARROYO, Approzimation of tensor fields on
surfaces of arbitrary topology based on local Monge parametrizations, arXiv:1904.06390,
(2019).

28



