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There is genetic heterogeneity within all microbial populations. 
Genetic polymorphisms rapidly arise through de novo muta-
tion, and variant frequencies change over time due to drift, 

selection or linked selection. It is estimated that billions to trillions 
of bacterial genetic mutations are generated de novo every day in 
the microbiome of an individual adult human1, and these differ-
ences can be clinically relevant. For example, just three point muta-
tions can confer antibiotic resistance in Enterobacteriaceae2. Early 
approaches for studying genetic variation in microbial populations 
involved isolating a multitude of cells from the same population and 
performing phenotypic analysis and/or genome sequencing. More 
recent efforts have used genome-resolved metagenomic analysis, 
which involves extracting and sequencing DNA directly from the 
environment and using computational tools to assemble and bin 
the resulting DNA sequences into genomes in silico. Although 
complete haplotypes within a population cannot be precisely deter-
mined with short-read sequencing (due to the inability to associate 
variant loci across the genome), this technique allows simultane-
ous analysis of all taxa in microbial communities, identification of 
genetic variants and their frequencies in their constituent species 
and measurement of the overall heterogeneity within these popula-
tions. Metagenomic analysis has been used to reveal fine-scale evo-
lutionary mechanisms3–5, dynamics6–12 and strain-level metabolic 
variation that could contribute to strain selection1,13.

Many fundamental questions in human microbiome research 
relate to the transmission of microbial populations between indi-
viduals, including how we are seeded by microbes early in life14–16. 
However, intra-population diversity (genetic variation within a 

population) presents challenges for such analyses. Sequence com-
parisons are usually performed by aligning consensus genomes 
assembled from different samples1,17 or by modifying a reference 
genome using mapped reads and comparing it with the same 
sequence that has been modified by reads from another sample18–21 
(Supplementary Fig. 1). These methods represent each population 
based on the most common alleles, which can lead to erroneous 
results. For example, if sample 1 contains a single-nucleotide vari-
ant (SNV) A at 20% frequency and T (the consensus choice) at 
80% frequency, and sample 2 has A at 100% frequency, compar-
ing the consensus genome of both samples will fail to identify the 
variant shared by both populations. Furthermore, alleles at inter-
mediate frequencies (for example, 30–70%) can be stochastically 
detected above or below 50% due to random sampling, resulting in 
chimeric consensus sequences. As natural microbial populations 
can have many polymorphic sites, genomic comparison methods 
that consider the genetic diversity are needed, as are standardized 
methods that are easy to use and that are applicable to all metage-
nomic studies.

Here we present inStrain, a program that profiles population 
microdiversity from metagenomic short-read alignments and per-
forms microdiversity-aware genomic comparisons. This includes 
calculating nucleotide diversity and linkage disequilibrium, identi-
fying SNVs (including nonsynonymous and synonymous variants) 
and reporting accurate coverage depth and breadth. We demon-
strate that inStrain performs strain-level comparisons with higher 
accuracy and sensitivity than leading tools. To demonstrate the 
value of inStrain for microbiome studies, we apply inStrain to a large  
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collection of previously sequenced infant fecal microbiomes to 
reveal patterns of microbiome microdiversity and strain sharing 
among infants born in the same neonatal intensive care unit (NICU) 
over a period of 5 years. inStrain is available as an open-source 
Python program on GitHub (https://github.com/MrOlm/inStrain) 
and documentation is available both in the supplementary materials 
(Supplementary Software Manual 1) and online at https://instrain.
readthedocs.io/en/latest/.

Results
inStrain measures population-level diversity from metagenomic 
data. inStrain profiles the microdiversity of any DNA sequence 
dataset that consists of paired short reads that are mapped to a 
genome assembled from a metagenome or from a cultured isolate. 
Functionality can be broken into three major steps:

Step 1. Read filtering. To increase the likelihood that mapped 
read pairs originate from organisms belonging to the same popu-
lation, a series of filters are applied. For each read pair aligned to 
the reference genome (de  novo assembled from the same sample 
or a genome from another source) the mapQ score, average nucle-
otide identity (ANI) of the pair to the reference genome and the 
insert size between aligned reads are calculated. Read pairs that do 
not pass adjustable quality cutoffs are removed, as are all unpaired 
reads. The exclusive use of pairs doubles the number of bases used 
to calculate the read ANI and mapQ score, increasing their accu-
racy and substantially increasing the span of genome analyzed. 
This reduces mismapping at repeat regions or regions conserved in 
multiple genomes. Other software tools, such as StrainPhlAn and 
MetaPhlAn18,22, treat pairs of reads as separate observations and 
can assign each read pair to a different population, contrary to the 
strong expectation from Illumina sequencing protocols that a pair 
originates from a single DNA molecule.

Step 2. Calculation of nucleotide diversity, SNVs and linkage. For 
each gene, scaffold and/or genome, inStrain calculates the mean, 
median and standard deviation of the depth of coverage (number 
of reads per base pair), breadth of coverage (percentage of refer-
ence base pairs covered by at least one read), expected breadth of 
coverage (given the average depth of coverage, the breadth of cover-
age that would be expected if reads were evenly spread across the 
genome) and average nucleotide diversity (π; ref. 23) of all base pairs 
with at least 5× coverage (Fig. 1a). We chose 5× as the default mini-
mum because it is the lowest coverage at which minor alleles under 
50% frequency can be reliably detected (Supplementary Fig. 2), and 
this value can be adjusted by the user. Both bialllelic and multial-
lelic SNVs and their frequencies are identified and annotated at 
positions where phred30 quality-filtered reads differ from the refer-
ence genome and at positions where multiple bases are simultane-
ously detected at levels above the expected sequencing error rate. 
SNVs are classified as synonymous, nonsynonymous or intergenic 
based on gene annotations, and linkage disequilibrium is calculated 
between SNVs that are connected by at least 20 read pairs.

Step 3. Generation of tables and figures. Tables are generated that 
describe how many reads were removed by each filter described in 
Step 1 and enumerate all metrics described in Step 2. Figures are 
generated for each genome to document SNV allele frequencies, 
genome-wide nucleotide diversity and patterns of linkage disequi-
librium, and to report other findings (Fig. 1b–f). All data generated 
during an inStrain run are stored in a space-efficient manner and 
can be used to quickly re-generate plots and tables with different 
parameters.

Microdiversity-aware ANI calculations (popANI) increase accu-
racy of strain discrimination. Most existing strain-comparison 
pipelines compare microbes in different samples based on their con-
sensus genomes. In contrast, inStrain considers both major and minor 
alleles during genomic comparison. This microdiversity-aware ANI 

metric is referred to as ‘popANI’ (population-level ANI), and it is 
reported alongside consensus-based ANI (‘conANI’). Both metrics 
are calculated in a pairwise manner for samples that have been pro-
filed using the methods described above. First, all positions of the 
genome at or above a minimum coverage threshold in both samples 
(5× by default) are identified. Only these positions are considered 
in the popANI and conANI calculations. Second, the number of 
positions that differ in allelic composition between the samples is 
enumerated. For conANI, if the consensus base differs between the 
two samples a substitution is called. For popANI, a substitution is 
called at a site only if both samples share no alleles (either major or 
minor) (Fig. 2a). This consideration of shared minor alleles greatly 
increases the accuracy of population-level comparisons (Fig. 2) with 
the following limitations: (1) genomic positions within a read length 
of scaffold ends have reduced accuracy due to difficulties with read 
mapping (Supplementary Fig. 3); (2) sequencing depth must be suf-
ficient to detect minor alleles for them to be considered in popANI 
calculations (Supplementary Fig. 2); and (3) the number of distinct 
genotypes shared between samples is not enumerated; for each pair 
of samples that a reference genome is present in, a single popANI 
value is calculated.

We benchmarked inStrain’s strain comparison method against 
three existing common tools: dRep, which calculates genome-wide 
ANI17; StrainPhlAn18, which aligns short reads to a marker gene 
database (0.3% of the genome in the case of Escherichia coli) and 
compares the consensus maker genes in multiple samples; and 
MIDAS19, which aligns short reads to a reference genome database 
and compares the single-nucleotide substitutions (SNSs) identi-
fied in each sample. We first compared the ability of each method 
to report the ANI between genomes with a known number of in 
silico mutations (Fig. 2b). All four methods performed well on 
this test, which does not consider microdiversity, although dRep, 
inStrain and MIDAS had lower errors in the ANI calculation than 
StrainPhlAn overall (0.00001%, 0.002%, 0.006% and 0.03%, respec-
tively; average discrepancy between the true and calculated ANI). 
This is likely because dRep, inStrain and MIDAS compare positions 
from across the entire genome (99.99998%, 99.7% and 85.8% of the 
genome, respectively) and StrainPhlAn does not.

We next used each tool to compare metagenomes derived from 
defined bacterial communities. The ZymoBIOMICS Microbial 
Community Standard, which contains cells from eight bacterial 
species at defined abundances, was divided into three aliquots and 
subjected to DNA extraction, library preparation and metagenomic 
sequencing. Each strain comparison tool was then used to compare 
bacterial species in each sample with each other in a pairwise man-
ner (Fig. 2c). As all genomic comparisons originate from the same 
defined community of microbes, each tool should report 100% ANI 
for all genomic comparisons. Deviations from this ideal represent 
either errors in sequence alignment or the presence of microdiver-
sity that is likely present because cultures have been maintained in 
the laboratory. MIDAS, dRep, StrainPhlAn and inStrain reported 
average ANI values of 99.97%, 99.98%, 99.990% and 99.999998%, 
respectively, with inStrain reporting average popANI values of 100% 
for 23 of the 24 comparisons and 99.99996% for one comparison. 
The difference in performance arises because the Zymo cultures 
contain nonfixed nucleotide variants that inStrain uses to con-
firm population overlap but that confuse the consensus sequences 
reported by dRep, StrainPhlAn and MIDAS.

We used the Zymo data to establish a threshold for the detection 
of ‘same’ versus ‘different’ strains. The thresholds for MIDAS, dRep, 
StrainPhlAn and inStrain, calculated based on the lowest average ANI 
across all 24 sequence comparisons, were 99.92% ANI, 99.94% ANI, 
99.97% ANI and 99.99996% ANI, respectively. Thus, inStrain can 
be used for detection of identical microbial strains with a stringency 
that is substantially higher than the other tools. Using the previously 
reported rate of 0.9 SNSs accumulated per genome per year in the gut 
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microbiome of healthy human adults1, in this test MIDAS is able to 
discriminate between strains that have diverged for at least 3,771 years, 
dRep for 2,528 years, StrainPhlAn for 1,307 years and inStrain for 
2.2 years (Supplementary Table 1). Stringent thresholds are useful for 
strain tracking, as strains that have diverged for hundreds to thou-
sands of years are clearly not linked by a recent transmission event.

The Zymo data were also used to assess the ability of inStrain 
to detect and compare organisms in the absence of sample-specific 
reference genomes. By mapping reads to all 4,644 representative 

genomes in the Unified Human Gastrointestinal Genome (UHGG) 
collection24, inStrain detected the eight bacterial taxa known to be 
present in each of the three Zymo metagenomes. When using the 
recommended 50% genome breadth cutoff, these were the only eight 
taxa detected in each case with inStrain. MIDAS and Metaphlan2 
detected 15 and 11 taxa in addition to the true community members, 
respectively, yet neither tool reports genome breadth or any other 
metric to filter out these erroneous results (besides relative abun-
dance, which limits the ability to detect genuine low-abundance 
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Fig. 1 | inStrain measures population-level diversity from metagenomic data. a, Examples of metagenomic reads (gray boxes) mapping to genomic 
regions with low and high nucleotide diversity. Mismatches to the reference genome are represented by small colored marks on the reads, and the 
reference genome is represented below the reads. b–f, Examples of figures automatically generated by inStrain. b, SNV density, coverage and nucleotide 
diversity across a bacteriophage genome. Spikes in nucleotide diversity and SNV density do not correspond with increased coverage, indicating that the 
signals are not due to read mismapping. Positions with nucleotide diversity and no SNV density are those where diversity exists but is not high enough 
to call an SNV. c, Metrics of SNV linkage (r2 and D′; see Methods) versus distance between SNVs; linkage decay (as shown here) is a common signal of 
recombination. d, Distribution of the major allele frequencies of biallelic SNVs (the Site Frequency Spectrum). Alleles with major frequencies below 50% 
are the result of multiallelic sites. The lack of distinct puncta suggests that more than a few distinct strains are present. e, Breadth of coverage (blue line), 
coverage depth (red line) and expected breadth of coverage given the depth of coverage (dotted blue line) versus the minimum ANI of mapped reads. 
Coverage depth continues to increase while breadth plateaus, suggesting that all regions of the reference genome are not present in the reads being 
mapped. f, Distribution of read pair ANI levels when mapped to a reference genome; this plot suggests that the reference genome is >1% different than 
the mapped reads.
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taxa) (Supplementary Table 2). The UHGG reference genomes 
had between 93.9% and 99.6% ANI to the organisms present in the 
Zymo samples. inStrain comparisons based on these genomes were 
still highly accurate (average 99.9998% ANI, lowest 99.9995% ANI, 
limit of detection 32.2 years) (Supplementary Table 1), highlighting 
that inStrain can be used with reference genomes from databases 
when sample-specific reference genomes cannot be assembled.

To compare the ability of the four methods to detect strains 
shared by twin premature infants, the microbiomes of six infants 
were processed according to the best recommended practice for 
each of the four tools. We then compared the number of strains 
found to be shared by twins and nontwins over a range of ANI 
thresholds. All methods identified significantly more strain sharing 
among twin pairs than pairs of unrelated infants, as expected, and 
inStrain remained sensitive at substantially higher ANI thresholds 
than any of the other tools (Fig. 2d). We attribute the reduced ability 
of StrainPhlAn and MIDAS to identify shared strains to their reli-
ance on consensus-based ANI measurements. We know that micro-
biomes can contain multiple coexisting strains, and when two or 
more strains of a species are in a sample at similar abundance levels 
it can lead to pileups of reads from multiple strains and chimeric 
sequences. The popANI metric is designed to account for this com-
plexity. In combination, the reduced ability of previously available 
tools to detect truly shared strains and their inability to perform 
with the precision needed to use high ANI thresholds limit their 
utility for strain tracking.

Finally, we re-analyzed a previously generated dataset to com-
pare data from inStrain with data from isolate-based sequenc-
ing1. We focused on individual S01, from which (1) 123 colonies 
of Bacteroides fragilis were isolated and sequenced from nine fecal 
samples collected over 2 years; and (2) metagenomic sequencing of 
the same fecal samples resulted in detection of a B. fragilis genome 
at 34× coverage (metagenomic data from all samples were ana-
lyzed together to increase sequencing depth). 2,477 biallelic muta-
tions were identified among isolate genomes (mutations present in 
20%–80% of genomes), 8,164 biallelic mutations were identified 
by inStrain analysis of metagenomic data and 903 were identified 
by both methods (Supplementary Table 3). If the isolate-detected 
mutations are considered ground truth (although in reality these 
may suffer from cultivation biases), inStrain performed with 36.5% 
sensitivity (percentage of isolate biallelic mutations identified by 
inStrain) and 99.8% specificity (percentage of genomic loci correctly 
identified as not having a biallelic mutation). While the results of the 
methods were broadly consistent, the discrepancies between them 
may be due to shifting allele frequencies in the B. fragilis population 
during the 2 years that sampling occurred, as the isolate genomes 
were sampled evenly from all samples but most metagenomic reads 
came from the two samples where B. fragilis was most abundant.

Siblings share significantly more microbial strains at birth than 
unrelated infant pairs. We next applied inStrain to 1,163 fecal 
metagenomes from 160 premature infants born into the same 

ba

dc

–

–

–

–

–

–

–

–

Sample 1 allele

S
am

pl
e 

2 
al

le
le

99.0 99.5 100.0

Actual ANI (%)

99.0

99.5

100.0

C
al

cu
la

te
d 

A
N

I (
%

)
99.000 99.900 99.990 99.999 100.000

ANI threshold (%)

0

10

20

30

40

S
ha

re
d 

st
ra

in
s

99.90

99.92

99.94

99.96

99.98

100.00

A
N

I (
%

)

conANI substitution* + popANI substitution – no substitution

+*

+*

*

* *

*

*

*

StrainPhlan
inStrain

dRep
MIDAS

MIDAS dRep StrainPhlan inStrain

Staphylococcus aureus

Enterococcus faecalis

Bacillus subtilis
Listeria monocytogenes

Escherichia coli
Salmonella enterica
Pseudomonas aeruginosa

Lactobacillus fermentum

StrainPhlAn
dRep

inStrain

MIDAS

Twin pairs
Nontwin pairs

A

G

Major: G
Minor: A

Major: A
Minor: G

A G
Major: G
Minor: A

Major: A
Minor: G

Fig. 2 | inStrain accurately discriminates between closely related strains. a, Table demonstrating the circumstances under which conANI and popANI 
substitutions will be called. ConANI substitutions are called whenever the consensus base differs, and popANI substitutions are only called when there 
is no allelic overlap between samples. b, Synthetic mutations were introduced to a reference genome of E. coli obtained from RefSeq to generate variant 
genomes with specific ANI differences from the reference genome, and four tools were used to compare the variant genomes with the reference genome. 
dRep, inStrain and MIDAS consistently reported accurate ANI values, while StrainPhlAn was inaccurate by a median of 0.03% ANI. c, A mock community 
of bacterial cells was sequenced in biological triplicate and compared using four tools. inStrain performed best in correctly identifying that the genomes 
were identical in all three samples. d, The fecal microbiomes of three sets of twins were compared using each of the four tools, and the number of bacterial 
genomes with ANI values above a range of thresholds is plotted for pairs of twins (which are expected to share more strains) and pairs of unrelated 
infants. inStrain remained sensitive at higher ANI thresholds than the other three tools.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


ArticlesNaTure BIoTeCHnoloGy

All Unique
0

50

100

150

200

250

3,800

Li
nk

s

Unrelated pairs
Sibling pairs

a

d e f

b c

Bacteria Phage Plasmid
0

0.2

0.4

0.6

Bacteria Phage Plasmid
0

0.2

0.4

0.6

Unrelated infants

Twin/triplet pairs

**** **** ****

Fraternal twins/triplets

Identical twins/triplets

0 5 10 15

0

0.1

0.2

0.3

R 2 = 0.83; P = 2.0 × 10–6

Difference in gestational age (weeks)

A
ve

ra
ge

 s
ha

re
d 

ba
ct

er
ia

 (
n)

Strains colonizing 
≥1 infant

Strains colonizing
≥5 infants

Strains colonizing
≥10 infants

Strains colonizing 
≥20 infants

OtherStaphylococcus epidermidis Enterococcus faecalisClostridium sp.

Bifidobacterium breve Pseudomonas aeruginosa Staphylococcus sp. M0480

Clostridioides difficile

Staphylococcus warneri

F
ra

ct
io

n 
of

 s
ha

re
d 

st
ra

in
s

(J
ac

ca
rd

 s
im

ila
rit

y)

F
ra

ct
io

n 
of

 s
ha

re
d 

st
ra

in
s

(J
ac

ca
rd

 s
im

ila
rit

y)

g

Fig. 3 | Siblings share significantly more microbial strains at birth than unrelated infants. a,b, A link is drawn for each strain shared between pairs of 
infants (represented by rectangles along the circumferences). Links between sibling pairs are drawn in red; links between unrelated infants are drawn in 
gray. Diagrams are made displaying all strains (a) and only strains that are uniquely in two and only two infants (b). c, Enumeration of links drawn in a and 
b. d, Twin and triplet pairs (n = 38) share significantly more strains of bacteria (P = 1.1 × 10−22), phages (P = 5.5 × 10−26) and plasmids (P = 9.8 × 10−16) than 
unrelated pairs (n = 12,842). e, Identical twin pairs (n = 6) do not share significantly more strains of bacteria (P = 0.87), phages (P = 0.88) or plasmids 
(P = 0.93) than fraternal twin pairs (n = 32); P values for d and e from two-sided Wilcoxon rank-sum test; ****P < 1 × 10−15. f, Infants born more closely 
in gestational age share significantly more bacterial strains. g, Most strains colonize only a single infant, but some strains colonize many more. For each 
minimum number of infants colonized, a box is drawn for each strain that colonizes at least that many infants. Boxes are colored based on the species 
identity of each strain. Data in d and e are represented as boxplots where the middle line is the median, the lower and upper box segments correspond 
to the first and third quartiles, the upper whisker extends from the hinge to the largest value no further than 1.5 × IQR from the hinge (where IQR is the 
interquartile range) and the lower whisker extends from the hinge to the smallest value at most 1.5 × IQR from the hinge, while data beyond the end of the 
whiskers are outlying points that are not depicted.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


Articles NaTure BIoTeCHnoloGy

NICU25. The dataset includes samples from six individual sampling 
campaigns, and involved the enrollment of 6 sets of monozygotic 
twins (MZ; identical), 20 sets of dizygotic twins (DZ; fraternal) and 
3 sets of trizygotic (TZ) triplets, and over 8,000 de novo genomes 
from bacteria, bacteriophage and plasmid colonists. Organisms that 
may have been introduced through contamination were removed 
based on their presence in sequenced negative controls, each 
genome set was dereplicated at 98% ANI to form ‘subspecies’ groups 
and representative genomes from each subspecies were combined 
into a single mapping database consisting of 2,266 genomes to 
reduce multi-mapped reads (Supplementary Fig. 4). All metage-
nomes were mapped to this dereplicated genome set and inStrain 
was used to profile the microdiversity of each mapping. In all cases 
where a subspecies was detected in multiple infants with over 50% 
breadth of coverage, inStrain was used to compare strains.

A threshold of 99.999% popANI was chosen as the threshold 
to define bacterial, bacteriophage and plasmid strains as being the 
same ‘strain’ based on the Zymo experiment (Fig. 2c) and on analy-
sis of comparisons between subspecies present in the same infant 
over time (based on the assumption that strain genotypes from sam-
ples collected within days or weeks of each other typically represent 
the same strain) (Supplementary Fig. 5). Thus, to be classified as the 
same strain, two populations must have no fixed differences within 
this margin of error. Of the 109,731 comparisons made, 4,103 (gray 
lines in Fig. 3a) indicated that infants shared bacterial strains. Of 
these, 268 cases revealed sharing between pairs of siblings (despite 
sibling pair comparisons comprising only 0.3% of all comparisons; 
red lines in Fig. 3a). Further, the majority of bacterial strains that 
were identified in two and only two infants were shared between 
sibling pairs (Fig. 3b,c). Similar patterns were identified for bacte-
riophage and plasmid colonists (Supplementary Table 4).

The majority of bacterial strains (specific definition of ‘strain’ 
provided above) identified in this study were detected in only a 
single infant (1,818 of 3,044 strains). The most frequently colo-
nizing strain (Staphylococcus epidermidis 158.2.ba_7) was identi-
fied in samples from 49 of the 160 infants. Six of the seven other 
most frequently colonizing species were also Firmicutes, and 

many are known for their role in nosocomial infections, including 
Clostridioides difficile and Enterococcus faecalis. Pseudomonas aeru-
ginosa, a frequently colonizing Proteobacterium, is also implicated 
in nosocomial infections. Twelve strains colonized more than ten 
infants, including five strains of S. epidermidis, three strains of E. 
faecalis, two strains of C. difficile and one strain each of P. aeruginosa 
and Clostridium sp. (Fig. 3g). These frequently encountered strains 
may have specific adaptations that enable them to survive in the 
NICU. Alternatively, they may be acquired from healthcare workers 
that commonly interact with these infants.

Overall, siblings shared significantly more strains of bacteria, 
bacteriophages and plasmids than unrelated infant pairs (Fig. 3d). 
However, among siblings, MZ twins shared no more strains than 
DZ twins and TZ triplets (Fig. 3e). Infants born at more chrono-
logically similar times shared significantly more strains of bacte-
riophages and plasmids, supporting the role of the hospital room 
environment in shaping initial bacteriophage and plasmid strain 
acquisition (Supplementary Fig. 6). Infants born with similar gesta-
tional ages and birth weights also shared significantly more strains 
of bacteria, bacteriophages and plasmids than those with different 
ages and weights (Fig. 3f and Supplementary Fig. 6). In combina-
tion, the results point to the roles of infant physiology, sibling status 
and calendar date of birth (that is, similar date of residence in the 
NICU) in strain acquisition.

Nucleotide diversity of the premature infant microbiome. Over 
the sampling time-series in this study (generally the first few 
months of life) we detected an average of 17.8 ± 0.7 subspecies of 
bacteria, 26.9 ± 1.5 subspecies of bacteriophages and 7.4 ± 0.3 sub-
species of plasmids per infant (mean ± s.e.m.; colonization defined 
as detection of genome at ≥5× depth coverage across ≥50% of the 
genome) (Supplementary Table 5). As the 160 infants were sampled 
over six different campaigns, each using a unique combination of 
library preparation methodology, Illumina machine for sequenc-
ing and institutional sequencing center, we first tested for effects 
related to sampling campaign. Infants of the same campaign were 
not more likely to share strains (Supplementary Fig. 6), but mea-
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sured nucleotide diversity among colonists varied significantly 
between the six different sampling campaigns, primarily driven 
by differences in library preparation methodology and the DNA 
sequencing machine used (Supplementary Fig. 7). This is likely due 
to differences in the read error profiles associated with the sequenc-
ing platforms26. Notably, bacterial nucleotide diversity was not 
associated with sequencing depth in any campaign (Supplementary 
Fig. 7d). We thus analyzed each cohort separately for relationships 
between microdiversity and infant metadata, allowing us to validate 
the consistency of inStrain when run using different sequencing 
methodologies.

Bacteria had significantly higher nucleotide diversity than 
plasmids and phages in four of six campaigns, whereas plas-
mids had the lowest nucleotide diversity in four of six campaigns 
(Supplementary Fig. 7). Relative to other bacteria, Proteobacteria 
had significantly higher and Firmicutes significantly lower nucleo-
tide diversity in three of six and in four of six campaigns, respec-
tively (Supplementary Table 4). Approximately 75% of premature 
infants were born via cesarean section (118 of 160), and their bacte-
rial colonists had significantly higher nucleotide diversity than vagi-
nally delivered infants in the NIH4 and Sloan2 cohorts and overall 
(Fig. 4a). This effect was particularly striking for Klebsiella (Fig. 4b), 
and the difference in Klebsiella microdiversity remained signifi-
cant even when excluding infants in the NIH4 and Sloan2 cohorts 
(Supplementary Fig. 7).

Finally, we performed a statistical test to identify genes with 
significantly different microdiversity than other genes in the 
genome (Table 1). Genes with significantly lower microdiversity 
include housekeeping genes such as ribosomal protein S16 in bac-
teria and ParB in bacteriophage (where it maintains circular lyso-
gens27), as well as genes with more interesting functions, including a 
plasmid-encoded polymyxin resistance protein, which is predicted 
to confer resistance to polymyxin antibiotics28, and bacteriophage 

λ head decoration protein D, which stabilizes the expansion of the 
capsid after genome packaging29. Among the genes with signifi-
cantly higher microdiversity than the average gene are a bacteri-
ally encoded gene with an immunoglobulin domain (which can be 
involved in cell adhesion and invasion30) and a bacteriophage gene 
encoding tail fibers (which are often involved in host cell recogni-
tion31). Interestingly, both the immunoglobulin domain protein and 
tail fiber protein are involved in host interaction.

Tracking specific genetic variants within and between popu-
lations. To investigate the relationship between the diversity of a 
population within a single infant (intra-infant diversity) and the 
diversity of populations of the same subspecies in multiple different 
infants (inter-infant diversity), we performed a detailed analysis of 
an E. faecalis bacteriophage (subspecies 482_10.ph) that was pres-
ent at high coverage depth (>20×) and breadth of coverage (>80%) 
in 44 infants in our cohort (Supplementary Table 5). We identified 
410 loci with SNSs fixed between infants, 679 loci with SNVs with 
multiple alleles in the same infant and 1,062 loci where both were 
observed (Fig. 5d). Intra-infant SNVs that were also observed as 
inter-infant SNSs could be ascribed to mixing of variants that are 
found alone in other individuals, and were thus excluded from fur-
ther analysis to focus on intra-infant SNVs that presumably arose 
via de novo mutation. Of the intra-infant SNVs, 18% were found 
to be polymorphic in at least three different infants, indicating an 
overlap in variants across infants (Supplementary Table 6). Genomic 
regions and genes with a substantial number of intra-infant SNVs 
had correspondingly more inter-infant substitutions (Fig. 5a,b).

Seven of the 51 genes annotated on the E. faecalis bacterio-
phage genome had dN/dS ratios over 0.5, including five proteins 
of unknown function, a DnaB replication initiation homolog and a 
predicted distal tail gene (Fig. 5a,c). The predicted distal tail gene, 
which might play a role in host specificity, was also found to have an 

Table 1 | Genes with significantly higher or lower microdiversity than the rest of the genome

Type Taxonomy Gene ID Q value Pfam Description

Low microdiversity

 Bacteria E. faecalis 23754 7.93 × 10−20 PF00886.18 Ribosomal protein S16

S. epidermidis 16419 9.51 × 10−15 PF02597.19 ThiS family

K. pneumoniae 15325 4.33 × 10−10 PF02617.16 ATP-dependent Clp protease adapter protein 
ClpS

 Phage Escherichia 223 9.39 × 10−06 PF08775.9 ParB family

E. coli 205 0.00011027 PF02924.13 Bacteriophage λ head decoration protein D

Phietavirus 334 0.00018497 PF00692.18 dUTPase

 Plasmid Bacilli 0 0.00013818 PF02388.15 FemAB family

K. aerogenes 281 0.00034062 PF11183.7 Polymyxin resistance protein PmrD

S. epidermidis 290 0.00043106 PF01479.24 S4 domain

High microdiversity

 Bacteria S. epidermidis 15627 6.23 × 10−43 PF05345.11 Putative immunoglobulin domain

K. pneumoniae 15332 2.38 × 10−34 PF00465.18 Iron-containing alcohol dehydrogenase

E. faecalis 23792 4.03 × 10−32 PF13731.5 WxL domain surface cell wall-binding

 Phage Escherichia 226 1.25 × 10−13 PF03400.12 IS1 transposase

E. coli 243 6.41 × 10−12 PF03406.12 Phage tail fiber repeat

E. faecalis 293 1.18 × 10−08 PF01183.19 Glycosyl hydrolases family 25

 Plasmid Unknown 358 1.95 × 10−28 PF00665.25 Integrase core domain

Bacilli 11 4.84 × 10−25 PF03432.13 Relaxase/mobilization nuclease domain

Clostridium 374 9.71 × 10−14 PF02782.15 FGGY family of carbohydrate kinases, 
C-terminal domain
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intra-infant pN/pS ratio of 0 (6 synonymous SNVs and 0 nonsyn-
onymous SNVs), possibly indicating selection for variation between 
but not within individual populations. Multiple small hypothetical 
proteins also had high dN/dS ratios, one of which was only present 
in ~50% of infants (Fig. 5c). The relaxed purifying selection indi-
cated by high dN/dS ratios and the variable presence of these genes 
may indicate an accessory or vestigial function, although adaptation 
can also be a driver of increased dN/dS ratios in some contexts.

Discussion
inStrain is an integrated and versatile program for profiling the 
microdiversity of organisms from metagenomic data. Its ability to 
perform microdiversity-aware genomic comparisons offers several 
advantages over existing pipelines, including the consideration of 
major and minor alleles, thus accounting for the presence of coex-
isting strains. Because it uses sample-assembled genomes and full 
paired-read information there is greatly increased confidence that 
reads are aligned correctly, which improves the high-resolution 
comparisons being made based on entire genomes. Many of these 
capabilities have been successfully implemented individually in pre-
vious studies15,19,32–35. However, their simultaneous integration into 
a well-documented and easy-to-use pipeline allows substantially 
more rigorous detection of near-identical strains than the existing 
commonly used pipelines (Fig. 2) used in recent high-profile pub-
lications to quantify the ecologically critical process of microbiome 
transmission14,36. The method substantially increases the stringency 
of evidence for strain sharing and thus identification of the factors 
that determine the extent to which this occurs.

Twin studies have previously been used to elucidate relation-
ships between host genetics and human microbiome composition, 
with the basic premise being that because twins are reared together 
and share similar environments, increased microbiome similarity  

between MZ twins compared with DZ twins can be ascribed to 
genetic effects37. Although studies of adult twins have consistently 
found some microbial taxa to be more commonly identified in MZ 
than DZ twins38–41, diet and lifestyle preferences have also been 
shown to be more similar in MZ twins than DZ twins42–44, presenting 
potential for confounding effects. In contrast with earlier studies, all 
subjects in the current study were housed in the same NICU for the 
entirety of the sampling time. Our findings, based on demonstrably 
robust methods, indicate that MZ twins shared no more strains of 
bacteria, bacteriophages or plasmids than DZ twins. This points to 
a minimal role of human genetics in early-life strain colonization.

Initial colonists are believed to have an outsized role in micro-
biome development45,46. The hospitalized premature infants in this 
study were all given prophylactic antibiotics immediately after 
birth and were housed in isolettes that maintained separation from 
other infants, and ~75% were born by cesarean section. These fac-
tors likely limited their exposure to microbes from the mother, 
other family members and the external home environment. The 
patterns of strain sharing among infants in this study suggest the 
importance of the following: (1) Family-specific sources. Strains 
present in two and only two infants were significantly more likely 
to be shared between siblings (Fig. 3), highlighting the role of 
strain sources such as shared visitors and/or parents in infant colo-
nization. (2) The hospital environment. Nonsibling infants born 
at similar times chronologically shared more strains of bacterio-
phages and plasmids than those born further apart, indicating that 
the local hospital microbiome plays a role in strain acquisition. 
The identification of strains of ESKAPE (Enterococcus faecium, 
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter bau-
mannii, Pseudomonas aeruginosa and Enterobacter spp.) patho-
gens (known for their antibiotic resistance and ability to cause 
nosocomial infections) colonizing large numbers of infants further 
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points to the hospital room as an important source of initial strains. 
These highly colonizing strains may have been dispersed in part 
by healthcare workers who interact with many infants. (3) Infant 
physiology. Infants with similar physiological properties such as 
gestational age and birth weight shared significantly more strains, 
potentially due to differences in the development of the human 
immune system, the development of the physical gut environment, 
clinical treatment or nutrition (for example, formula feeding versus 
breast milk). (4) Unique sources. The majority of strains identified 
were found in only a single infant, demonstrating that even in a 
highly cleaned environment such as the NICU, initial microbiota 
acquisition is a largely individualized process.

It is difficult to distinguish microbiome diversity that is evolved 
in  situ from that introduced by immigration1,9. In this study of 
newborn infants we found evidence that initial bacterial microdi-
versity can be related to mode of acquisition; Klebsiella had higher 
levels of nucleotide diversity in infants born via cesarean section 
than those born vaginally, suggesting that there is a more abun-
dant and/or diverse pool of Klebsiella strains in the operating room 
(where Enterobacteriaceae have previously been identified47) than 
in the maternal microbiome. The general increase in nucleotide 
diversity and dN/dS ratios of genes involved in cell–cell interac-
tions compared with other functions indicates that these genes are 
likely under diversifying selection. Identification of housekeeping 
genes with lower-than-average nucleotide diversity demonstrates 
the utility of inStrain for identifying genes under purifying selec-
tion (Table 1).

By reporting and classifying all gene variants, inStrain enables 
locus-specific analyses of the genetic differences within and between 
populations. Further, as inStrain also does not rely upon reference 
databases or conserved bacterial marker genes, it is capable of track-
ing genetic variation in bacteriophages and plasmids. For example, 
applying inStrain to a highly prevalent E. faecalis bacteriophage 
confirmed a relationship between the diversity within individual 
infants and the subspecies diversity overall, and identified specific 
genes with divergent dN/dS ratios and variable presence (Fig. 5). 
Specifically, we found evidence that nonsynonymous changes in a 
tail fiber gene are purged within infants (possibly to maintain infec-
tivity), yet selected for between infants (suggestive of variation in 
bacterial host immunity).

Diversity is a hallmark of stable and healthy human microbi-
omes48–50. While microbial diversity is typically measured by quan-
tifying the number and evenness of microbial species or genera 
present in a sample, the detected microbial taxa represent larger 
populations of cells with within-population genetic heterogene-
ity. Microdiversity may increase the likelihood of harboring a fit 
genotype as conditions change. Alternatively, an overall wider gene 
variant pool may reflect adaptation to spatial variation in local 
environmental conditions. inStrain allows scientists to easily mea-
sure and analyze population microdiversity. In existing and future 
metagenomic sequencing-based projects, there is the potential to 
improve our understanding of relationships between microbial 
population diversity and resilience, stability and population-level 
phenotypes, and to track ecologically relevant processes such as 
strain migration and in situ evolution.
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Methods
inStrain implementation. inStrain is an open-source Python package for 
analysis of genomes for population comparisons, reporting of gene coverage and 
breadth, SNV calling with gene localization and synonymous/nonsynonymous 
identification, and calculation of population genetics parameters including 
nucleotide diversity and linkage disequilibrium. It is implemented as a set of 
interrelated modules, the basic functionality of which are described below. Full 
documentation is available online (https://instrain.readthedocs.io) and provided in 
Supplementary Software Manual 1.

Dependencies. inStrain requires Samtools52 for interacting with .bam and .sam 
files, Prodigal53 for annotating open reading frames (ORFs) and a number of 
publicly available Python modules that are bundled and automatically installed 
with inStrain for statistical analysis, efficient data storage and figure generation 
(including Pandas54, SciPy55, Numpy56, Matplotlib57 and Seaborn58). All other 
functions are implemented natively in Python.

Program input. The required input to inStrain is (1) a nucleotide sequence or a 
set of nucleotide sequences in fasta format, and (2) a mapping file in .sam or .bam 
format52 documenting where reads align to the nucleotide sequence. The fasta 
file can be a set of genomes assembled from a sample of interest, a set of reference 
genomes acquired from an online database or a single genome sequence of interest. 
The mapping file can be created using any number of publicly available programs, 
allowing the user flexibility in how the mapping should be performed given the 
study design and specific type of reads that were sequenced (Illumina, PacBio, 
nanopore and so on).

Read filtering. When calling SNVs in a metagenomic context, it is most important 
to consider whether mapped reads truly belong to the population of interest. 
Careful filtering of reads in the .bam file is performed to reduce the probability 
of reads being erroneously mapped. (1) All unpaired reads are removed by 
default, and filters are applied to pairs of reads in combination. This behavior 
can be modified by the user to specify a privileged set of reads that do not need 
to be paired (such as long reads or merged reads), or to retain all reads and treat 
unpaired reads as pairs. (2) Paired reads must be mapped in the proper orientation 
within an expected insert size. The minimum insert distance can be adjusted by the 
user, and the maximum insert distance is a user-specified multiple of the median 
insert distance (3 by default). For example, if pairs have a median insert size of 
500 bp, by default all pairs with insert sizes over 1,500 bp will be excluded. (3) Pairs 
must have a user-defined minimum mapQ score. MapQ scores represent both the 
number of mismatches in the read mapping and how unique that mapping is (that 
is, whether the read maps equally well to multiple genomic locations). The read 
in the pair with the higher mapQ is used for the pair. (4) Pairs must be above a 
user-defined minimum nucleotide identity value. For example, if reads in a pair are 
100 bp each, and each read has a single mismatch, the ANI of that pair would be 
0.99. Only reads that pass this set of four filters are used in the following analysis.

Calculating coverage and nucleotide diversity. The coverage of (number of reads 
aligned to) each position in the provided nucleotide sequence file is calculated 
using Samtools52. This information is used to calculate the following for each 
genome, scaffold and gene in the input nucleotide sequence file: (1) average 
coverage; (2) median coverage; (3) standard deviation of coverage; (4) number 
of bases with 0 coverage; (5) breadth of coverage (the fraction of bases that are 
covered by at least a single read); (6) minCov breadth of coverage (the fraction 
of bases that are covered by at least the number of reads required to call an SNV, 
which is 5 by default); and (7) expected breadth of coverage. Given the calculated 
average coverage value, the expected breadth of coverage is the breadth that would 
be expected if reads were evenly distributed along the genome. It is calculated 
based on the empirically determined function expected breadth = 1 − e0.883 × coverage. If 
the breadth is substantially lower than the expected breadth, it indicates that reads 
are mapping only to a specific region of the scaffold (for example, a transposon, 
prophage or other mobile element).

The nucleotide diversity (π; ref. 23) of each position is calculated using the 
formula nucleotide diversity = 1 − [(number of ‘A’ bases/total bases)2 + (number of 
‘C’ bases/total bases)2 + (number of ‘T’ bases/total bases)2 + (number of ‘G’ bases/
total bases)2]. This information is used to calculate the average nucleotide diversity 
and median nucleotide diversity for each genome, scaffold and gene in the input 
nucleotide sequence file.

Identifying SNVs and linkage. SNVs are identified on filtered reads based on 
three criteria. (1) There must be at least a user-defined minimum number of 
reads mapping to the position. By default this is 5. (2) More than a user-defined 
percentage of reads must have a variant base at that position. By default this is 5%. 
(3) The number of reads with the variant base must be higher than a null model 
given the coverage of the base. The null model describes the probability that the 
number of true reads that support a variant base could be due to random mutation 
error, assuming Phred Q30 score (probability of an incorrect base call 1 in 1,000) 
for each base. The null model can be adjusted to account for technologies with 
different sequencing error rates, and the false discovery rate given the null model 

can be adjusted as well (by default it is set at 1 × 10−6, or one false-positive SNV in 
a million).

All SNVs are further classified based on the number of alleles and the reference 
base at the SNV position. Reference SNVs are positions where a single allele 
is present in the reads, and the allele is different from the input sequence base. 
Biallelic SNVs are positions where there are two alleles present in the reads at a 
position. Multiallelic SNVs are positions where there are more than two alleles 
present. Population SNVs are positions where the reference base is not one of the 
detected alleles, regardless of the number of alleles detected. SNVs are further 
classified as nonsynonymous (the SNV causes an amino acid change), synonymous 
(the SNV does not cause an amino acid change) or intergenic (the SNV is not in an 
ORF) based on user-provided ORFs.

Metrics of linkage disequilibrium are calculated between pairs of SNV locations 
that are both present on a user-defined number of read pairs (20 by default). Only 
pairwise biallelic haplotypes are examined, and additional alleles are ignored. r2 
and Dʹ are calculated using all available reads as described previously59, and also 
calculated using a rarefied number of reads to account for how differences in 
coverage between sites may impact these metrics.

Reporting and storing results. A number of output datatables are created after 
all calculations are complete. These include (1) scaffold_info.tsv, which lists 
the coverage, breadth, nucleotide diversity, number of identified SNVs and 
other related metrics for each sequence in the input nucleotide sequence; (2) 
mapping_info.tsv, which lists the number of reads that pass and fail each of the 
read-filtering steps described above on a sequence-by-sequence basis; (3) SNVs.
tsv, which lists the location, reference base counts, variant base counts, number of 
alleles and other information about each identified SNV; (4) linkage.tsv, which lists 
the r2, Dʹ, distance, position and other information about each pair of SNVs linked 
by a sufficient number of read pairs; (5) gene_info.tsv, which lists the coverage, 
nucleotide diversity and related metrics for each ORF; and (6) genome_info.tsv, 
which lists the metrics described in scaffold_info.tsv on a genome level (rather 
than a scaffold level). Finally, inStrain uses this information to generate a number 
of figures, examples of which are shown in Fig. 1.

In addition to the tables described above, a large amount of auxiliary data is 
generated and stored upon completion of inStrain. This includes base-by-base 
coverage and nucleotide diversity of each location, graphs generated during 
calculation of linkage and the lengths of all input nucleotide sequences. This 
information is stored in a directory structure called an ‘inStrain profile’, and can be 
programmatically accessed using the provided API. It also allows future operations 
to be rapidly run on an existing inStrain project.

Comparing inStrain profiles. inStrain performs strain-level comparisons by 
comparing inStrain profile objects that were created by mapping different sets of 
reads with the same nucleotide sequence(s). These comparisons are performed 
in a pairwise manner and follow a series of four steps. (1) All positions in which 
both inStrain profiles have at least the minimum coverage to call SNVs (5 by 
default) are identified. The percentage of bases that fit this criteria (referred 
to as ‘compared_bases_count’) is reported as ‘percent_genome_compared’, 
representing the percentage of the sequence that will be compared in the 
following steps. (2) Each position identified in step 1 is classified following the 
logic depicted in Fig. 2a as ‘no SNV’, ‘consensus SNV’ or ‘population SNV’. If 
both samples have no SNVs called at a position, or if both samples have the same 
major allele at a position, ‘no SNV’ is called. If samples have different major 
alleles, a ‘consensus SNV’ is called. If samples share no alleles at a position, major 
or minor, a ‘population SNV’ is called. (3) ConANI is calculated as (1 − number 
of consensus SNVs)/‘compared_bases_count’ (calculated in step 1), and popANI 
is calculated as (1 − number of population SNVs)/‘compared_bases_count’. (4) 
Datatables are made listing the metrics calculated above on a scaffold-by-scaffold 
level as well as on a genome-by-genome level. Dendrograms visualizing the 
strain-level relationships between groups of genomes are also generated using 
Seaborn and Matplotlib.

Benchmarking inStrain. Synthetic comparisons (Fig. 2b) were performed by 
using SNP Mutator60 to introduce a known number of mutations into a reference 
genome (E. coli strain SQ88; RefSeq accession number GCF_000988385.1) and 
comparing the mutated genomes with the original reference genome. For dRep, 
mutated genomes were compared with the reference genome using dRep on 
default settings. For inStrain, MIDAS and StrainPhlAn, Illumina reads were 
simulated for all genomes at 20× coverage using pIRS61. For inStrain, synthetic 
reads were mapped back to the reference genome using Bowtie 2 (ref. 62), profiled 
using ‘inStrain profile’ under default settings, and compared using ‘inStrain 
compare’ under default settings. For StrainPhlAn, synthetic reads were profiled 
with Metaphlan2 (ref. 22), resulting marker genes were aligned using StrainPhlAn 
and the ANI of resulting nucleotide alignments was calculated using the class 
‘Bio.Phylo.TreeConstruction.DistanceCalculator(‘identity’)’ from the BioPython 
Python package63. Raw values from this analysis are available in Supplementary 
Table 1. For MIDAS, synthetic reads were provided to the program directly using 
the ‘run_midas.py species’ command, and compared using the ‘run_midas.
py snps’ command. The ANI of the resulting comparisons was calculated as 
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‘(mean(sample1_bases, sample2_bases) − count_either)/mean(sample1_bases, 
sample2_bases)’.

To measure the impact of genome fragmentation on inStrain, we used the 
GCF_000988385.1 genome with mutations introduced to 1 in 100 bases (see above 
paragraph for how this was made). We generated four versions of this genome 
made up of scaffolds of length 1 kbp, 10 kbp, 100 kbp or 1 Mbp, and evaluated the 
ability of ‘inStrain profile’ to detect the known mutations (Supplementary Fig. 3).

Isolate-based comparisons (Fig. 2c) were performed based on the 
ZymoBIOMICS Microbial Community Standards product (catalog no. D6300). 
Three samples were prepared from aliquots of this mixture of cells in which DNA 
extraction, library preparation, and in silico sequence trimming and analysis 
were performed separately. For dRep, reads from each sample were assembled 
independently using IDBA-UD64, binned into genomes based off of alignment to 
the provided reference genomes (https://s3.amazonaws.com/zymo-files/BioPool/
ZymoBIOMICS.STD.refseq.v2.zip) using nucmer65 and compared using dRep 
on default settings. For StrainPhlAn, reads from Zymo samples were profiled 
with Metaphlan2, resulting marker genes were aligned using StrainPhlAn and 
the ANI of resulting nucleotide alignments was calculated as described above. 
For MIDAS, reads from Zymo samples were provided to MIDAS directly and the 
ANI of sample comparisons was calculated as described above. For inStrain, reads 
from Zymo samples were aligned to the provided reference genomes using Bowtie 
2, profiled using ‘inStrain profile’ under default settings and compared using 
‘inStrain compare’ under default settings. ‘popANI’ values were used for inStrain. 
Eukaryotic genomes were excluded from this analysis, and raw values are available 
in Supplementary Table 1. To evaluate inStrain when using genomes from public 
databases, all reference genomes from the UHGG collection were downloaded and 
concatenated into a single .fasta file. Reads from the Zymo sample were mapped 
against this database and processed with inStrain as described above. The ability 
of each method to detect genomes was assessed using all Zymo reads concatenated 
together, and raw values are available in Supplementary Table 2.

Twin-based comparisons (Fig. 2d) were performed on three randomly chosen 
sets of twins that were sequenced during a previous study25. For StrainPhlAn, 
all reads sequenced from each infant were concatenated and profiled using 
Metaphlan2 and compared using StrainPhlAn, and the ANI of resulting nucleotide 
alignments was calculated as described above. For MIDAS, all reads sequenced 
from each infant were concatenated and profiled with MIDAS, and the ANI of 
species profiled in multiple infants was calculated as described above. For dRep, all 
dereplicated bacterial genomes assembled and binned from each infant (available 
from ref. 25) were compared in a pairwise manner using dRep under default 
settings. For inStrain, strain sharing from these six infants was determined using 
the methods described below. ANI values from all compared genomes and the 
number of genomes shared at a number of ANI thresholds are available for all 
three methods in Supplementary Table 1.

To compare the biallelic mutations identified by isolate-based sequencing 
with those identified by metagenomic inStrain analysis, we downloaded all 
metagenomes and isolate genomes from individual S01 using the Sequence Read 
Archive (SRA) links provided in ref. 1. We only considered the nine fecal samples 
for which metagenomic and isolate sequencing data were available. Read files 
were validated using SRA-tools ‘vdb-validate’, singleton reads were removed and 
reads were trimmed using ‘repair.sh’ and ‘bbduk.sh’ from BBTools66, and reads 
were mapped to the B. fragilis reference genome (NC_003228.3) using Bowtie 2. 
Mapping files from all metagenomes were merged using samtools, and inStrain 
was run on the resulting .bam files and all isolate .bam files with default settings. 
Biallelic positions among isolate genomes were defined as those where inStrain 
identified a particular consensus base in at least 24 (20%) but no more than 98 
(80%) of the 123 isolate genomes. Biallelic positions for the metagenome sample 
were defined as those where inStrain reported ‘allele_count = 2’ in the output table. 
All SNVs identified in this analysis are available in Supplementary Table 3.

To determine the sequencing coverage needed to detect minor alleles with 
95% probability (Supplementary Fig. 2), we used binomial statistics and the null 
model described above (which establishes the minimum number of observations 
to detect an allele beyond levels expected by Phred Q30 Illumina errors). For each 
allele frequency (AF) between 5% and 50% (5%, 6%, 7% and so on), we iterated 
over each coverage value (c) between 1× and 150× and used the null model to 
determine the minimum number of reads (n) needed to detect an allele of AF 
frequency and c coverage. We used the ‘scipy.stats.binom’ package55 to determine 
the probability of observing n minor alleles, given c observations and an AF 
probability of observing a minor allele. We used this information to determine the 
minimum coverage needed to detect minor alleles of each frequency with a 95% 
probability, and used the package ‘scipy.optimize.curve_fit’ to fit an exponential 
curve using nonlinear least-squares fitting (Supplementary Fig. 2).

Calling, detection and profiling of subspecies of bacteria, bacteriophages and 
plasmids. Genomes of bacteria, bacteriophages, plasmids and eukaryotes were 
previously binned from the infants in this study, as described previously25, and 
downloaded from the link https://doi.org/10.6084/m9.figshare.c.4740080.v1. To 
generate a single genome set, all bacterial genomes were compared with each other 
using dRep version 2.2.0 under default settings, all bacteriophage genomes were 
compared with each other using the command ‘dRep dereplicate --S_algorithm 

ANImf -nc .5 -l 10000 -N50W 0 -sizeW 1 --noQualityFiltering --clusterAlg 
single’ and all plasmid genomes were compared with each other using the same 
command as bacteriophages. Genomes with ANI ≥ 98% were classified as the same 
subspecies, and the genome with the highest score (as determined by dRep) was 
chosen as the representative genome from each subspecies. Bacteriophage and 
plasmid scaffolds with taxonomic classifications specifying ‘Eukarya’ were marked 
as ‘likely human’ and excluded from further analysis. Information about subspecies 
is available in Supplementary Table 5.

Reads from each individual fecal sample, reads from each infant concatenated 
together (referred to as ‘coReads’) and reads from all negative extraction control 
samples concatenated together were mapped to all representative subspecies 
genomes concatenated together using Bowtie 2 with default settings. ‘inStrain 
profile’ was run on all resulting mapping files with default settings. Detection 
of a subspecies in a sample was defined as that genome being present with ≥0.5 
minCov breadth (meaning that at least half of the bases in the genome were 
covered by at least 5 reads). Mappings from coReads were used for all analyses 
unless otherwise specified. Subspecies detected in the negative extraction 
control sample, and genomes detected significantly more often in one of the six 
individual sampling campaigns, were marked ‘likely contaminant’ and excluded 
from further analysis. Information on subspecies abundance is available in 
Supplementary Table 5.

Identification of strains and associations with metadata. Strain-level 
comparisons were performed between subspecies detected in multiple samples 
from the same infant over time-series sampling, and strain-level comparisons 
were performed between subspecies detected in the coReads of multiple infants. 
For within-infant subspecies comparisons, all subspecies detected in multiple 
individual samples from an infant (as described above) were compared using 
‘inStrain compare’. Raw values are available in Supplementary Table 4. For 
between-infant subspecies comparisons, subspecies that were detected in coRead 
samples from multiple infants (or the coRead sample consisting of all negative 
extraction controls) were compared using ‘inStrain compare’ with default settings. 
A distance matrix was then created for each subspecies based on popANI values, 
and this matrix was used to cluster subspecies into a number of individual strains 
using ‘average’ hierarchical clustering with a threshold of 99.999% ANI with the 
scipy cluster package55. Strains that were present in the reads from the negative 
extraction control, and strains from subspecies that were filtered out using the 
methods described above, were removed from further analysis. Raw comparison 
values and strain identities are available in Supplementary Table 4.

The number of strains shared between infants was visualized in Fig. 3a,b 
using Circos67. The strain-level Jaccard distance between infants was calculated 
according to the formula Jaccard similarity = number of strains shared by both 
infants/number of strains present in either infant. P values for Jaccard similarity 
are based on the two-tailed Wilcoxon rank-sum statistic between all twin pairs and 
all nontwin pairs, as calculated using the Python module scipy.stats.ranksums55. 
Associations between the number of strains shared between infants and their 
differences in birth day, birth weight and gestational age were determined by first 
binning the metadata variable into windows of size 20 (birth weight, gestational 
age) or 1 (gestational age) and calculating the average number of strains shared 
between infants within that window. Siblings were excluded from this analysis. 
P values and R2 values are based on linear least-squares regression, with the 
two-sided P value reported for a hypothesis test whose null hypothesis is that the 
slope is zero (calculated using the Python module scipy.stats.linregress).

Nucleotide diversity analysis. The coReads inStrain analysis described above 
resulted in a total of 8,336 subspecies/infant pairs in which a subspecies genome 
was detected at 5× coverage across at least 50% of the genome (Supplementary 
Fig. 4). The two-tailed Wilcoxon rank-sum statistic (as implemented in Scipy55) 
was used to compare the nucleotide diversity of different sets of genomes and to 
generate P values (Fig. 4 and Supplementary Figs. 6 and 7).

Gene-based nucleotide analysis. inStrain was used on default settings to profile 
genes for all detected subspecies in individual samples and coReads, using 
gene annotations provided by Prodigal53 run in metagenome mode on original 
assemblies. Genes with significantly different coverage and/or nucleotide diversity 
than the rest of genes on the genome were identified using data from coReads 
profiling of subspecies. For each genome present in at least three infants, the 
coverage/nucleotide diversity of each gene on the genome across all infants in 
which the subspecies was present was compared with the coverage/nucleotide 
diversity of all other genes on the genome across all infants in which the subspecies 
was present using the Wilcoxon rank-sum statistic (as implemented in Scipy). P 
values were corrected to Q values to account for multiple hypothesis testing using 
Benjamini–Hochberg P value correction51. Genes were annotated based on Pfam 
database hidden Markov models68. For display in Table 1, only genes with Pfam 
annotations that did not include the words ‘uncharacterized’ or ‘unknown’ in the 
description were retained, all genes with significant differences in coverage (in 
addition to nucleotide diversity) were excluded and a maximum of one gene from 
each taxonomic annotation was allowed for inclusion in each quadrant of high/low 
microdiversity and organism type.
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Tracking specific nucleotide variants. E. faecalis bacteriophage subspecies 
482_10.ph was identified with at least 80% breadth of coverage and 20× 
coverage depth in the coReads of 44 infants. ORFs were called using Prodigal 
in metagenome mode, and genes were annotated using USEARCH to search 
against the UniRef100 database. Gene categories (tail-associated, structural 
and so on) were assigned based on manual inspection of the resulting database 
hits. The gene map presented in Fig. 5a was generated using the Python module 
‘dna_features_viewer’.

Biallelic SNVs (intra-infant variants) were identified based on the results 
of ‘inStrain profile_genes’, where the resulting ‘SNV_mutation_types’ table was 
subset to SNVs with an allele_count of 2. Substitutions (inter-infant variants) were 
identified from the ‘SNVs’ table resulting from the operation ‘inStrain profile’, 
where the table was subset to SNVs with an allele_count of 1. The number of 
genomic locations where an SNV was identified in at least one infant, where a 
substitution was identified in at least one infant and where both were identified 
in at least one infant was displayed in a waffle plot using the Python module 
‘PyWaffle’.

Synonymous and nonsynonymous variants were identified using inStrain, and 
the total numbers of synonymous and nonsynonymous sites in each gene were 
determined using methods from the script ‘dnds_from_drep.py’69. dN/dS was 
calculated using the formula ((nonsynonymous substitutions/nonsynonymous 
sites)/(synonymous substitutions/synonymous sites)), and pN/pS was calculated 
using the formula ((nonsynonymous SNVs/nonsynonymous sites)/(synonymous 
SNVs/synonymous sites)). The number of substitutions per kbp and the number of 
SNVs per kbp were calculated by dividing the total number of substitutions/SNVs 
identified in each gene in all infants by the sum of the length of the gene times the 
masked breadth (the percentage of the gene with at least 5× coverage; the coverage 
required to call an SNV) of the gene for each infant the gene was identified in. 
Genes with a minCov breadth ≥50% were defined as being present, and the gene 
deletion frequency was calculated as the percentage of infants where the gene was 
not present.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the paper and 
its supplementary information files. Reads from infant samples are available under 
BioProject PRJNA294605 (SRA studies SRP052967, SRP114966 and SRP012558; 
and SRA accessions SRR5405607 to SRR5406014), reads from Zymo samples are 
available under BioProject PRJNA648136 and de novo assembled genomes are 
available at https://doi.org/10.6084/m9.figshare.c.4740080.v1.

Code availability
inStrain is available as an open-source Python program on GitHub (https://github.
com/MrOlm/inStrain) and documentation is online at https://instrain.readthedocs.
io/en/latest/.
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