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Abstract: It has been recognized for some time that, even for perfect conductors, the interaction
Casimir entropy, due to quantum/thermal fluctuations, can be negative. This result was not con-
sidered problematic because it was thought that the self-entropies of the bodies would cancel this
negative interaction entropy, yielding a total entropy that was positive. In fact, this cancellation seems
not to occur. The positive self-entropy of a perfectly conducting sphere does indeed just cancel the
negative interaction entropy of a system consisting of a perfectly conducting sphere and plate, but a
model with weaker coupling in general possesses a regime where negative self-entropy appears. The
physical meaning of this surprising result remains obscure. In this paper, we re-examine these issues,
using improved physical and mathematical techniques, partly based on the Abel–Plana formula,
and present numerical results for arbitrary temperatures and couplings, which exhibit the same
remarkable features.

Keywords: Casimir free energy; entropy; Abel–Plana formula

1. Introduction

It is ordinarily expected that entropies of closed systems should be positive. This
follows from the Boltzmann definition in terms of the number of microstates Ω, so the
entropy is given as S = kB ln Ω (kB is the Boltzmann constant). Quantum-mechanically,
in terms of the density operator ρ, the entropy is S = −kB Tr ρ ln ρ. However, there are
intriguing possibilities of negative entropy [1–5].

Here we are considering quantum-fluctuational or Casimir free energies and entropies.
For two parallel conducting plates possessing nonzero resistivity, the entropy correspond-
ing to the interaction free energy vanishes at zero temperature, as required by the Nernst
heat theorem (third law of thermodynamics). However, for sufficiently low temperatures,
compared to the inverse of the plate separation, a region of negative interaction entropy
emerges [6]. However, the expectation at that time was that the total entropy must be
positive. Negative Casimir interaction entropies also occurred without dissipation between
a sphere and a plane [7–10], both perfectly conducting, between two perfectly conducting
spheres [11,12], or between an atom and a “plasma-sphere” (see below) [13]. This was
systematically explored in the dipole regime [14,15].

However, indeed, it turned out that the sphere-plane problem was resolved by con-
sidering the self-entropy of the plate and the sphere separately. The former vanishes in
the perfectly conducting limit, but the latter is just such as to cancel the most negative
contribution of the interaction entropy [16,17]. The sphere–sphere entropy is then seen to
be clearly positive as well.

Going beyond the case of a perfectly conducting sphere has proved to be more subtle.
We carried out a systematic treatment for an imperfectly conducting sphere, modeled
by a δ-function sphere, or a “plasma-sphere,” described by the potential V = ε − 1 =
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λ(1 − r̂r̂) (in terms of polar coordinates based on the center of the sphere), where the
transversality condition is required by Maxwell’s equations. We take the coupling λ to be
frequency-dependent, according to the plasma model, λ = λ0/(ζ2a), where ζ = −iω is
the Euclidean frequency, and a is the radius of the sphere. The dimensionless coupling
constant λ0 is necessarily positive. In the limit of λ → ∞, we recover the entropy for a
perfectly conducting sphere first obtained by Balian and Duplantier [18]. However, for a
sufficiently weak coupling, even at high temperatures, we found that the entropy could turn
negative [19,20]. (The results found there largely agreed with those found subsequently by
Bordag and Kirsten [21,22].)

Since the transverse electric contribution to the entropy is always negative and presents
no difficulties in its evaluation, in this paper we concentrate on the transverse magnetic free
energy, FH . One feature of the analysis here is that we always subtract an infrared-sensitive,
but unphysical term, which we only subtracted in an ad hoc manner in Ref. [19]. The
most salient element of our new treatment, however, is the emphasis on the Abel–Plana
formula and the numerical computations based upon that formulation. In the next section,
we give the general formulas for this model and recast the result in Abel–Plana form,
which expresses the finite temperature-dependent part of the free energy in terms of a
mode sum over the phase of a quantity involving spherical Bessel functions. Afterwards,
in Section 3, we specialize to weak coupling, where the mode sum can be carried out
explicitly for the lowest-order term. The result agrees with that found in Ref. [19]. The
low-temperature limit is considered in Section 4; we extract coincident free energies using
both the Euclidean and the (real-frequency) Abel–Plana formulations. We briefly review the
previous result for high temperatures in Section 5. Finally, we present general numerical
results in Section 6, which, for coupling and temperature of order unity (in units of 1/a)
turn out to be remarkably similar to those found for low temperature. Further numerical
explorations have shown how the analytic asymptotic behaviors are realized. Concluding
remarks round out the paper.

In this paper, we adopt natural units, with h̄ = c = kB = 1.

2. Transverse Magnetic Free Energy of Plasma-Shell Sphere

We concentrate on the transverse-magnetic (TM) contribution to the free energy of a
δ-sphere, since the transverse electric (TE) part seems unambiguous and always yields a
negative contribution to the entropy. As derived in Ref. [19], the TM free energy is given by

FH =
T
2

∞

∑
n=−∞

einατ̃
∞

∑
l=1

(2l + 1)Pl(cos δ) ln
[

1− λ0
α|n|e′l(α|n|)s

′
l(α|n|)

α2n2 + µ̃2

]
, (1)

where τ̃ = τ/a → 0 is the dimensionless time-splitting regulator, δ → 0 is the angular
point-splitting regulator, and α = 2πaT, so that nα = aζn, where ζn is the Matsubara
frequency. Further, we have inserted an infrared regulator µ̃ = µa, modeled as a photon
mass. Here the modified Riccati–Bessel functions are

sl(x) =
√

πx
2

Il+1/2(x), el(x) =

√
2x
π

Kl+1/2(x). (2)

We might hope to eliminate the µ̃ regulator dependence, formally, by subtraction of an
unphysical coupling-independent term:

FH =
α

2πa

∞

∑
n=0

′ cos(nατ̃)
∞

∑
l=1

(2l + 1)Pl(cos δ)
(

ln
[
(nα)2 + µ̃2 − λ0 fH(l, nα)

]
− ln

[
(nα)2 + µ̃2

])
, (3)
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where the prime on the summation sign means that the n = 0 term is to be counted with
half weight, and we have abbreviated fH(l, x) = xe′l(x)s′l(x). The subtracted term was
evaluated in Ref. [19], because ∑∞

l=1(2l + 1)Pl(cos δ) = −1:

Fsub
H =

T
2

∞

∑
n=−∞

einατ̃ ln
[
n2α2 + µ̃2

]
= − 1

2τ
+ T ln

µ

T
. (4)

We discarded this term as unphysical (it makes no reference to the properties of the sphere)
frequently throughout ref. [19], although it was not done systematically. Now we propose
doing so. We can then recast the remainder of FH using the Abel–Plana formula, which
reads

∞

∑
n=0

′g(n) =
∫ ∞

0
dt g(t) + i

∫ ∞

0
dt

g(it)− g(−it)
e2πt − 1

. (5)

Applied to Equation (3) after the omission of the subtracted term (4), we see that the first
integral gives a contribution independent of T, which is the (divergent) zero-temperature
TM energy of the sphere [23]. We are here only concerned with the temperature-dependent
part, which we can rewrite as

∆FH = − 1
πa

∫ ∞

0

dx
e2πx/α − 1

∞

∑
l=1

(2l + 1) arg[−x2 − λ0 fH(l, ix)]. (6)

Here, we have dropped the regulators because this expression is finite.
The definition of the argument function is somewhat subtle. We choose it to be defined

by the usual arctangent,

arg(z) = arctan
(
=z
<z

)
, −π

2
< arctan y ≤ π

2
, (7)

which is discontinuous when <z passes through zero. This choice is necessary in order
to have a well-defined limit at zero temperature (see Section 4.2). It also guarantees that
the free energy vanishes for zero coupling, which would seem to be an obvious physical
requirement. Therefore, the argument appearing in Equation (6) is

arg[−x2 − λ0 fH(l, ix)] = arctan

(
λ0

π
2 J 2

ν (x)
−x2 + λ0

π
2 Jν(x)Yν(x)

)
, ν = l +

1
2

. (8)

The functions appearing here are, in terms of ordinary Bessel functions Jν and Yν,

Jν(x) = −
√

2x
π
[xjl(x)]′ = (ν− 1/2)Jν(x)− xJν−1(x), (9a)

Yν(x) = −
√

2x
π
[xyl(x)]′ = (ν− 1/2)Yν(x)− xYν−1(x), (9b)

jl and yl being the corresponding spherical Bessel functions.
The ultraviolet convergence of ∆FH in Equation (6) in x is assured by the exponential

factor, but the convergence in l requires further investigation. It is easily checked that

fH(l, ix) ∼ −ν

2
as l → ∞, (10)

so
arg[−x2 − λ0 fH(l, ix)]→ 0, as l → ∞. (11)
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3. Weak Coupling

With the above definition of the argument function, we can readily work out the weak
coupling expansion of the free energy. The leading term in λ0 is obtained from the first
term in the expansion of the arctangent, so

∆F(1)
H =

λ0

πa

∫ ∞

0

dx
x

1
e2πx/α − 1

∞

∑
l=1

(2l + 1)
(
[xjl(x)]′

)2. (12)

The sum on l can be carried out using the addition theorem for spherical Bessel functions

∞

∑
l=0

(2l + 1)jl(x)jl(y) =
sin(x− y)

x− y
. (13)

Thus, the l sum in Equation (12) is

lim
y→x

∂

∂x
∂

∂y
xy
[

sin(x− y)
x− y

− j0(x)j0(y)
]
= 1 +

x2

3
− cos2 x, (14)

since j0(x) = sin x
x . This yields the same result found in Ref. [19], Equation (5.34),

∆F(1)
H =

λ0

πa

∫ ∞

0

dx
x

1
e2πx/α − 1

(
sin2 x +

x2

3

)
=

λ0

4πa

[
ln
(

sinh α

α

)
+

α2

18

]
, (15)

found there both using the Abel–Plana (real frequency) and the Euclidean frequency
formulations.

4. Low Temperature
4.1. Euclidean Frequency Argument

Let us first write the subtracted free energy in the original point-splitting form:

∆FH =
T
2

∞

∑
n=−∞

eixτ̃
∞

∑
l=1

(2l + 1)Pl(cos δ) ln[x2 − λ0 fH(l, x)], (16)

where x = 2πnaT = nα. Thus, the low temperature limit corresponds to small x. Using
the small-argument expansion for the Bessel functions,

fH(l, x) ∼ − l(l + 1)
2l + 1

− 3 + 2l(l + 1)
(4l2 − 1)(2l + 3)

x2 + O(x4)− x2l+1
[
(−1)l2−2(l+1) (l + 1)2π

Γ(l + 3/2)2 + O(x2)

]
, x � 1, (17)

so it is seen that the leading odd term in x arises only from the l = 1 term, where

fH(1, x) ∼ −2
3
− 7

15
x2 +

4
9

x3 + O(x4), x � 1. (18)

Thus, the logarithm in the free energy is

ln[x2 − λ0 fH(1, x)] ∼ ln
2λ0

3
+

(
3

2λ0
+

7
10

)
x2 − 2

3
x3 + O(x4), x � 1. (19)

This is the same as Equation (6.12) of Ref. [19], except that the x2 in the logarithm there has
been removed by the subtraction.

The above analysis is relevant to the low temperature behavior because that may be
extracted by using the Euler–Maclaurin formula,

FH = T
∞

∑
n=0

′g(n) ∼ T
∫ ∞

0
dn g(n)− T

∞

∑
k=1

B2k
(2k)!

g(2k−1)(0). (20)
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Because of the subtraction, the expansion can be carried out around n = 0, since the
function is now analytic there. (in Ref. [19] we did the expansion around n = 1, and we
did, in fact, remove the Fsub

H term, Equation (4). See Equation (6.11) there.) The integral
term in Equation (20) is independent of T, so the leading contribution to the entropy comes
from the third derivative term, allowing us to immediately obtain, as before,

∆FH = − 2
15

(πa)3T4, aT �
√

λ0, 1. (21)

This is the well known strong-coupling low-temperature limit [18,19].
The above, of course, corresponds to a positive entropy. However, this analysis

presumed that aT was the smallest scale in the problem. On the other hand, we have

another parameter, ξ = α
√

3
2λ0

, which could be large if λ0 � α2. The analysis given in
Ref. [19] is unchanged and results in the formula

∆FH =

(
2λ0

3

)2 1
πa

[
ξ2

12
− ln ξ −<ψ

(
1 +

i
ξ

)]
, α� 1, ξ ∼ 1. (22)

Here, ψ is the digamma function. (An alternative derivation is given in Appendix A of
Ref. [20].) This function is plotted in Figure 3 of Ref. [19] and Figure 1 of Ref. [20] (see
Figure 1 here). Evidently, the entropy, the negative derivative of the free energy with
respect to temperature, becomes negative for sufficiently weak coupling (large ξ), as is seen
from the analytic limiting behavior:

ξ � 1 : ∆FH ∼
2
9

λ0πaT2,
√

λ0 � aT � 1. (23)

The TE contribution to the entropy is always negative, so the total entropy turns negative
for a sufficiently small coupling.

4.2. Abel–Plana Analysis

The derivation of the same result must be achievable directly from the Abel–Plana
form (6), since the Euler–Maclaurin formula is derivable from the Abel–Plana expression.
It is a bit subtle, because we have to worry about the appropriate branch of the phase, but
it is actually very simple.

First, we use Equation (17) with the replacement x by ix. (Again, the leading odd term
comes from l = 1.) This gives the predominant term in the phase, (x � 1, x2/λ0 ∼ 1)

arg
[

2
3

λ0 −
(

1 +
7

15
λ0

)
x2 + i

4
9

λ0x3
]
= arctan

 2
3 x3

1− 3x2

2λ0

. (24)

The TM free energy thus reads for low T

∆FH = −
(

2λ0

3

)2 1
πa

3ξ3

α3

∫ ∞

0
dz

1
e2πz/ξ − 1

arctan

 2
3

(
α
ξ

)3
z3

1− z2

 (25a)

→ −
(

2λ0

3

)2 2
πa

P
∫ ∞

0
dz

1
e2πz/ξ − 1

z3

1− z2 , α� 1. (25b)

These expressions require some explanation. For the first line, we remind the reader
that, because of our choice of the branch of the arctangent to be the usual one, there is
a discontinuity in the integrand at z = 1, but of course this is integrable. We need, for
stability, to evaluate the integral by taking a principal value there. In the second line, we
replaced arctan y by y, appropriate for small α, and the resulting singularity at z = 1 is
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integrated by taking a principal value. Thus, numerically, both forms exactly agree with
the previous Formula (22), as Figure 1 shows.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.04

-0.02

0.00

0.02

0.04

0.06

ξ

Δ
F
H

Figure 1. The TM free energy for low temperature in terms of ξ = α
√

3/(2λ0). Shown are the
coincident results for the Formula (22) and for Equation (25a) with two different values of α, α = 0.1
and α = 0.01. Plotted is the free energy apart from a factor of (2λ0/3)2/(πa). Although the slope is
negative (positive entropy) for small ξ (strong coupling), it is positive (negative entropy) for large
enough ξ (weak enough coupling).

The figure shows that, for sufficiently weak coupling, the low-temperature entropy
turns negative.

It is very easy (much easier than in Section 4.1) to extract the weak-coupling limit at
low temperature, ξ → ∞. The crucial observation is that (25b) receives contributions from
only large z ∼ ξ when the latter is large, so the last factor in the integrand is merely−z, and
the integral then gives the result (23) immediately. Note that the oddness of the arctangent
around z = 0 is crucial here; were there a discontinuity in the argument function at z = 0,
the T → 0 limit would not exist.

5. High Temperature

We showed in Refs. [19,20] that the leading behaviors for high temperature of the TM
free energy and entropy are

FH ∼
λ0

18
πaT2, SH = − ∂

∂T
FH ∼ −

λ0

18
α, α = 2πaT � 1, λ0. (26)

Again, it is remarkable that this is first-order in the coupling. This same behavior was
found in Ref. [21]. (If λ0 � 2πaT � 1, the entropy becomes positive [18].) Here, we have
made the universal subtraction of the term Fsub

H , but that should not alter the conclusion,
because that contribution to the entropy is subdominant at high temperature. (Indeed, we
dropped coupling-independent terms in Ref. [20].)

In Ref. [20], we worked out the leading high-temperature form for the free energy
starting from the Euclidean frequency expression (1) using the uniform asymptotic expan-
sions for the Riccati–Bessel functions and the Chowla–Selberg formula. Here, it seems to
be much harder to use the uniform asymptotics on the highly oscillatory real-frequency
Bessel functions appearing in the Abel–Plana expressions.

6. Numerical Analysis

In principle, it seems that the Abel–Plana Formula (6), which is finite, should be
directly evaluated to obtain the free energy for any temperature and coupling strength. (It
is not possible to do so starting from the Euclidean form (16), because this still contains
divergences.) The difficulty is that the phase (8) becomes an extremely oscillatory function
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for x > ν. Nevertheless, the sum and integral can be carried out for intermediate values of
λ0 and T with moderate computing resources.

In the numerical calculations, the behaviors of the phase in the vicinity of the sin-
gularities have to be carefully considered. When the coupling λ0 is small, contributions
to the free energy near these singularities are significant. Here, we have carried out the
evaluations with sufficient precision to achieve reliable results, limited only by available
hardware.

Figure 2a shows the TM free energy for different moderate values of λ0, as a function
of temperature.

0.0 0.2 0.4 0.6 0.8 1.0
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

TM
 fr

ee
 e

ne
rg

y 


F H

Temperature T

 0=0.5, a=1
 0=1.0, a=1
 0=2.0, a=1
 zero line

(a) Exact free energy.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.00

0.05

0.10

0.15

0.20

aT

Δ
F
H

(b) Low temperature free energy.

Figure 2. The TM free energy (in units of 1/a) computed from the exact Formula (6) (left panel) or the low-temperature
Formula (22) or (25b) (right panel) plotted as a function of aT for the same intermediate values of λ0, λ0 = 0.5, 1, and 2, in
increasing order on the right side of each figure. Although the low-temperature formula would not seem to be applicable
here, since the temperature is not particularly low, it gives results that are qualitatively identical to the exact free energy
seen in Figure 2a, with significant deviations apparent only at higher T.

What is truly remarkable is how similar these curves are to those given by the low-
temperature Formula (22), which, despite its apparent inapplicability, is shown in Figure 2b.
Apparently, then, the numerical results shown in Figure 2a still largely inhabit the low-
temperature regime. This is not, perhaps, so surprising, since the validity of the replacement
in Equation (25b) demands aT � 1, not α� 1.

In Figure 3a, we compare the computed TM free energy to the strong-coupling low-
temperature result (21). This is qualitatively very similar to that obtained by taking the
ratio of Equations (22) and (21), as seen in Figure 3b. Again, this demonstrates that the low
temperature description extends to quite large temperatures. To put this into perspective,
it might help to note that aT = 1 corresponds, at room temperature, to a sphere radius of
a = 8µm.

The weak-coupling regime for low temperature is explored in Figure 4a. The com-
parison here is with Equation (23). Of course, this agrees with that obtained from (22), as
demonstrated in Figure 4b.
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(a) Exact free energy.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

aT

R

(b) Low temperature free energy.
Figure 3. TM free energy relative to the strong-coupling low-temperature limit. The left panel shows the exact TM free
energy (6) as a function of temperature T (in units of 1/a) relative to the strong-coupling low-temperature limit (21),
for various values of the coupling λ0. For a very low temperature, the free energy agrees with the limit (21). The
nonmonotonicity is quite striking. The right panel shows the ratio R of Equation (22) to (21) as a function of aT. It is seen
that the general low-temperature expression (22) captures most of the behavior shown in Figure 3a. The different curves in
Figure 3b correspond to the same values of the coupling as in Figure 3a, namely, λ0 = 0.5 (blue, solid), λ0 = 1 (red, dotted),
and λ0 = 2 (black, dashed).

0.00 0.02 0.04 0.06 0.08 0.10
-0.2
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l 0
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T2 /9
)
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 l0=2x10-4, a=1
 l0=4x10-4, a=1

(a) Exact free energy.

0.00 0.02 0.04 0.06 0.08 0.10

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

aT

R

(b) Low-temperature free energy.

Figure 4. The behavior of the TM free energy for low temperatures (in units of 1/a), for even smaller values of the coupling,
relative to the limiting value for low temperature and very small λ0, Equation (23). The left panel shows the exact free
energy (6), while the same ratio R is plotted in the right panel, except that the TM free energy is computed from the general
low-temperature expression (22). The different curves are for the same values of λ0 as in Figure 4a: λ0 = 10−4 (blue, solid),
λ0 = 2× 10−4 (red, dotted), and λ0 = 4× 10−4 (black, dashed). The fact that FH turns negative for very small temperatures
reflects the limit (21).

The low-temperature regime for moderate couplings is explored in Figure 5a. Again,
this agrees with the low-temperature free energy (22), as shown in Figure 5b.

Finally, we compare in Figure 6 the exact free energy relative to Equation (15). We see
that the weak-coupling formula is recovered as the coupling goes to zero and that the ratio
tends to one as the temperature increases, consistent with Equation (26).
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(b) Low-temperature free energy.

Figure 5. The left panel shows the ratio of the exact TM free energy (6) to the strong-coupling, low-temperature limit (21) for
relatively low temperatures, as a function of λ0. The reversal of sign for low λ0 reflects the transition from the regime where
Equation (23) applies to the strong-coupling, low-temperature limit (21). The right panel shows the same ratio, except that,
instead of the exact free energy, the general low-temperature expression (22) is used for the same values of temperature. The
two graphs are nearly indistinguishable. In both panels, the different curves correspond to the temperatures aT = 2.5× 10−2,
5× 10−2, and 1× 10−1, from bottom to top on the right of each panel.
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Figure 6. The free energy (6) compared to the O(λ0) approximation (15). For small coupling, the
ratio approaches unity, and the curves become flatter as temperature increases, consistent with the
limiting form (26).

7. Conclusions

In this paper, we have re-examined the question of negative entropy for a spherical
plasma shell. We confirm the results first found in Ref. [19], using now a uniform sub-
traction of an irrelevant (infrared) divergent term, basing our re-analysis largely based
on the Abel–Plana representation of the free energy. Most interesting is that the leading
anomalous terms (those corresponding to negative entropy) are captured by the weak-
coupling limit, which we also re-derive here. In Figure 7, we show the weak coupling TM
free energy (15) compared to the low and high temperature limits, given in Equations (23)
and (26), respectively. The weak-coupling contribution to the entropy is always negative.
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Figure 7. The O(λ0) contribution to the free energy (blue, solid), given by Equation (15), with the
prefactor λ0/(πa) pulled out, compared to the limiting forms (23) (low temperature, black, dashed)
and (26) (high temperature, red, dotted).

Incidentally, it might be noted that we are not referring to the ubiquitous positive
entropy of the ambient blackbody radiation. This makes no reference to the properties of
the body and thus would appear to be irrelevant to our considerations.

Since the anomalous behavior seems concentrated in the O(λ0) term, one might be
tempted to argue that it should be subtracted from the free energy [24]. After all, at
zero temperature, such terms are frequently recognized as “tadpole” terms and are often
omitted as unphysical. Moreover, for a dielectric ball, at zero temperature, the “bulk
subtraction” also removes automatically the linear term in (ε− 1) [25]. Here, however,
such a subtraction would ruin the limit to strong coupling, which has been understood for
many years [18] (see, for example, Equation (21)). The analytic structure of the theory in
the coupling constant is rather rigid, so ad hoc subtractions are not allowed. This point was
made at the end of Ref. [19].

In any event, the anomalous behavior is not confined to weak coupling, as the numeri-
cal analysis summarized in Section 6 shows. Therefore, the occurrence of negative entropy
here is hard to deny. These remarkable findings may have profound implications for our
understanding of statistical mechanics and quantum field theory.
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