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Abstract Intervention strategies to enhance coral resi-
lience include manipulating associations with algal
endosymbionts. While hosting thermotolerant Durusdinium
trenchii can increase bleaching thresholds in Caribbean
coral adults, its effects remain largely unknown during
their early life stages. Here, we tested if Orbicella faveo-
lata recruits could establish symbiosis with D. trenchii
supplied by nearby “donor” colonies and examined the
resulting ecological trade-offs to evaluate early Symbio-
diniaceae manipulation as a scalable tool for reef restora-
tion. We exposed aposymbiotic recruits to 29 °C or 31 °C
and to fragments of Montastraea cavernosa (containing
Cladocopium 1TS2 type C3) or Siderastrea siderea (con-
taining D. trenchii). After 60 days, recruits reared with D.
trenchii donors hosted nearly three times more D. trenchii
than those with Cladocopium donors, suggesting that
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recruits can acquire Symbiodiniaceae from nearby corals of
different species. Temperature did not affect symbiont
identity. Next, donor colonies were removed and surviving
recruits were maintained for three months at ambient
temperatures, after which a subset was exposed to a 60-day
heat stress. Recruits previously reared at 31 °C survived
twice as long at 34 °C as those reared at 29 °C, suggesting
that pre-exposure to heat can prime recruits to withstand
future thermal stress. Furthermore, recruits hosting pri-
marily D. trenchii survived twice as long at 34 °C as those
hosting little or no D. trenchii. However, the proportion of
D. trenchii hosted was negatively correlated with polyp
size and symbiont density, indicating a trade-off between
growth (of both host and symbiont) and heat tolerance.
These findings suggest that, while donor colonies may be
effective sources for seeding coral recruits with thermo-
tolerant symbionts, practitioners will need to balance the
likely benefits and costs of these approaches when
designing restoration strategies.

Keywords Coral - Symbiosis - Recruits -
Symbiodiniaceae - Durusdinium trenchii - Orbicella
faveolata

Introduction

Scleractinian corals are ecosystem engineers, building reefs
that support one quarter of all marine biodiversity and
contributing billions of dollars to global economies annu-
ally through fisheries, tourism, and coastline protection
(Jones et al. 1994; Wells et al. 2006). However, coral reefs
are declining rapidly as multiple stressors outpace their
natural capacity to evolve and threaten the critical
ecosystem services they provide (Hughes and Connell
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1999; Hughes et al. 2003; Pandolfi et al. 2003; Wild et al.
2011). A major cause of recent decline is coral bleaching
(Hughes et al. 2017), a phenomenon wherein stressful
environmental conditions destabilize the partnership
between corals and Symbiodiniaceae, prompting ejection
of the algae by the coral hosts (Knowlton and Rohwer
2003; Weis 2008). However, some corals survive these
bleaching episodes, recovering or even maintaining their
symbioses while neighboring colonies perish (Baker et al.
2004; LaJeunesse et al. 2010; Cunning et al. 2016). One
factor contributing to this resilience is the type(s) of
Symbiodiniaceae hosted within the corals; when stressful
conditions subside, bleached corals can reacquire algae
(Jones and Yellowlees 1997; Boulotte et al. 2016; Cunning
et al. 2016). Termed “symbiont shuffling” (Baker 2003),
this process involves shifts in the relative abundance of
different symbiont types within the host, which can replace
the numerically dominant symbiont and alter the commu-
nity function (Buddemeier and Fautin 1993; Toller et al.
2001; Baker 2001; Stat et al. 2008).

Many members of the Symbiodiniaceae genus Durus-
dinium are particularly tolerant to thermal stress (Glynn
et al. 2001; Baker et al. 2004; Rowan 2004) and may prove
critical for the persistence of reefs. Most prevalent after
bleaching events or on reefs characterized by extreme or
highly variable conditions (Baker et al. 2004; Fabricius
et al. 2004; LaJeunesse et al. 2009, 2010), Durusdinium is
widely distributed (albeit at generally low abundance)
among locations and hosts worldwide (Silverstein et al.
2012). During recent marine heatwaves, corals hosting this
genus have maintained their symbioses while nearby
colonies bleached (Glynn et al. 2001; Baker et al. 2004;
LaJeunesse et al. 2009; Kemp et al. 2014), and many
bleached colonies have recovered with predominantly
Durusdinium, increasing the holobiont’s subsequent
bleaching threshold by ~ 1-2 °C (Berkelmans and van
Oppen 2006; Silverstein et al. 2015). Thus, symbiont
shuffling and relative increases in Durusdinium trenchii
represent mechanisms of rapid ecological acclimatization
and potential tools for researchers to enhance coral heat
tolerance (Baker et al. 2004; Silverstein et al. 2015; Cun-
ning et al. 2018; National Academies 2019).

However, despite its thermotolerance benefits, hosting
D. trenchii may be accompanied by physiological trade-
offs that impact whether symbiont shuffling is sustainable
at the ecosystem scale. Studies have found reduced calci-
fication, growth rates, lipid stores, and egg size in corals
hosting D. trenchii under non-stressful temperatures (Little
et al. 2004; Jones and Berkelmans 2011; Poquita-Du et al.
2020), suggesting that this symbiont may compromise
long-term reef recovery (Ortiz et al. 2013; Pettay et al.
2015). Consequently, we must consider the benefits and
costs of D. trenchii in the context of predicted stress
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exposure as we assess approaches to increase reef
resilience.

While laboratory studies have manipulated algal part-
ners in adult Caribbean corals to enhance stress tolerance
(Silverstein et al. 2015; Cunning et al. 2016, 2018), the
capacity of Caribbean coral juveniles to acquire D. trenchii
and the associated eco-physiological trade-offs are not well
understood. Many corals are broadcast spawners, begin-
ning life as aposymbiotic larvae that acquire Symbiodini-
aceae ‘“horizontally” from their environment (Coffroth
et al. 2006). Since a recruit’s algal partners influence fitness
(Mieog et al. 2009), early establishment of environmentally
appropriate symbioses may enhance survival (Chamber-
land et al. 2017; Quigley et al. 2017a). Various processes
may govern symbiont acquisition and selection during
early ontogeny (Little et al. 2004), but few studies have
tracked the biotic and abiotic factors shaping symbiotic
partnerships in young Caribbean corals. Indeed, Quigley
et al. (2018) urged that research be directed at optimizing
Symbiodiniaceae delivery to boost juvenile survival.

This study investigated whether temperature and/or
neighboring adult corals could enhance D. trenchii uptake
in juvenile Orbicella faveolata, an important reef-building
species listed as threatened under the Endangered Species
Act. First, we tested the hypothesis that elevated temper-
ature and/or proximity of D. trenchii “donor” colonies
increases D. trenchii abundance in recruits during sym-
biosis establishment. Next, we examined the physiological
trade-offs, such as polyp size and algal cell density, of
hosting D. trenchii. Finally, we tested if symbiont com-
munity and/or previous heat exposure impacted recruit
survival during a heat stress trial.

Methods
Larval rearing and settlement

This experiment utilized newly settled Orbicella faveolata
recruits collected as gametes during a spawning event six
days after the full moon in August 2018 from Horseshoe
Reef in Key Largo, FL (25.1388°N, 80.2950°W). At this
location, multiple O. faveolata colonies were previously
mapped, genotyped, and observed to spawn (Miller et al.
2018; Fisch et al. 2019). Gamete bundles were collected
from eight colonies in conical mesh nets with 50-mL Fal-
con tubes at the apices, then capped and brought to the
boat. Gametes from all parents were pooled in 2-L plastic
containers and diluted with filtered seawater (FSW) as
bundles broke apart to reach a sperm concentration
of ~ 10° cells/mL following Hagedorn et al. (2009).
Batches of mixed gametes were transported to a field lab-
oratory in Key Largo, FL, where larvae were maintained in
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FSW as they developed. Fresh FSW was provided and dead
larvae were removed several times daily.

Four days post-fertilization, ~ 4000 larvae were trans-
ported to an indoor laboratory at the Rosenstiel School of
Marine and Atmospheric Science, placed in one-micron
FSW, and supplied with 108 ceramic plugs (2.5 cm
diameter) to facilitate settlement. Plugs had one-mm
grooves in the top and were previously preconditioned at
Emerald Reef (near Miami, FL) for three weeks to develop
a “reef-like” biofilm (Hadfield 2011). After two days,
settlers were counted under a microscope. For standard-
ization, only recruits on the top face of plugs were tracked
and sampled for the subsequent experiment (n = 1,595).

Experiment 1: Symbiodiniaceae uptake

Plugs were distributed randomly into 12 new 2.5-gallon
aquaria, so that each contained nine plugs and approxi-
mately 133 settlers. Aquaria were supplied with one-mi-
cron FSW (to exclude Symbiodiniaceae cells) and
immersed in one of two 50-gallon seawater tanks to
maintain temperatures, held at 31 and 29 °C. The maxi-
mum monthly mean (MMM) temperature on Horseshoe
Reef is ~ 30 °C (according to Pathfinder 5.0 and Coral
Reef Watch—R. van Hooidonk, pers. comm.), so these
temperatures were within the scope of what recruits might
naturally experience. The 31 °C treatment was designed to
exert only mild heat stress on recruits without high mor-
tality. Light (150-300 pmol quanta m — 2 s — 1, mea-
sured by an Apogee Underwater Quantum PAR Meter MQ-
210) was maintained on a 12 h light-dark cycle using
400 W metal halide pendant lights (IceCap Inc., USA).
Irradiance and temperature were recorded with a HOBO
Pendant® data logger (Onset Computer Corporation
MX2202). One ~ 6 cm?® fragment of Siderastrea siderea
was placed into half of the aquaria at each temperature.
These fragments originated from a single colony and were
known to host > 95% D. trenchii. In each of the other
aquaria, we placed one ~ 6 cm” fragment of Montastraea
cavernosa hosting Cladocopium (exclusively ITS2 type
C3, confirmed by ITS2 amplicon sequencing [MiSeq])
(Hume et al. 2019). One 4 W submersible pump (VicTsing
CAAA3-HG16) was placed into each aquarium to dis-
tribute heat and symbiont cells. With two temperatures and
two symbiont sources, the experiment consisted of four
treatments conducted in triplicate (Fig. 1).

Recruits were maintained in their respective treatments
for 60 days. FSW was replaced every other day, and algae
were manually removed from plugs to prevent overgrowth
and/or competition with recruits. To minimize differences
in light and flow, positions of aquaria and plugs were
shuffled weekly.

Observation and tissue sampling

At least once per week, a dissecting microscope was used
to count the number of: (1) surviving recruits and (2)
recruits visibly infected with symbionts (Fig. 2a, b). When
infection was first observed in all aquaria (day 21) and
again after 60 days in their treatments, three to five recruits
from each aquarium were sacrificed using a razor blade
(Figs. 1, 2¢). To standardize sampling, only solitary polyps
not clumped with others were sacrificed (Fig. 2d). Sacri-
ficed recruits were placed in individual 1.5-mL microcen-
trifuge tubes with 200 pL. of 1% SDS + DNAB and
incubated at 65 °C for one hour. Genomic DNA was
extracted from SDS archives following modified organic
extraction methods (Rowan and Powers 1991; Baker and
Cunning 2016).

Growth and symbiont density

After 60 days, donor fragments were removed and aquaria
were reduced by 1 °C per day to reach 27 °C (the ambient
temperature of incoming seawater in Bear Cut, FL). After
this, temperature tracked local seasonal fluctuations,
eventually reaching 22 °C three months later (January
2019).

Five months (150 days) after settlement, a random
sample of recruits from each of the four original treatments
was photographed under a dissecting microscope with
QCapture Suite Plus. Only solitary polyps were pho-
tographed to maximize accuracy of area measurements
(Fig. 2d). ImagelJ was used to calculate recruit skeletal area
in mm” R was used to create generalized linear models
(GLMs) comparing recruit area by experimental treat-
ments. A subset of the photographed recruits was then
sacrificed to measure symbiont identity and density at the
time of growth measurements.

Experiment 2: Heat stress trial

To assess whether previous exposure to elevated temper-
ature and/or D. trenchii dominance increased tolerance to
future thermal stress, a subset of recruits were subjected to
heat stress in late January 2019 (day 150), three months
after the end of Experiment 1. Three recruits per aquarium
(nine per treatment) were sampled to characterize Sym-
biodiniaceae communities at the start of heat stress.
However, since sampling these small recruits required
sacrificing them, we could not directly sample Symbio-
diniaceae in recruits used in the heat stress trial. For
analysis, aquaria were therefore split into categories based
on the mean proportion of Durusdinium hosted on day 150
(“low” = < 0.25, “intermediate” = 0.25-0.75,
“high” = > 0.75).
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Plugs (n = 108) with recruits (n = 1,595)
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three months at ambient temperature with no
adults (day 150).

Subset of recruits (n = 66) exposed to heat
stress trial for 60 days. Survivorship and
symbiont infection were scored
throughout.

Fig. 1 Sequence of experimental treatments and sampling events described in this study

Two or three plugs from each aquarium were placed into
new aquaria with FSW, where temperature was increased
from 22 to 28 °C over six days, and then to 32 °C over
48 h. At this point, all recruits (n = 66) were infected with
symbionts. About half the recruits (n = 32) were pre-ex-
posed to mild heat stress (reared at 31 °C during
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Experiment 1), while the other half (n = 34) were naive to
heat stress (reared at 29 °C). Temperature was maintained
at 32 °C for ten days, then raised to 33 °C for ten days,
then raised to 34 °C for 40 days. Every two to five days,
recruits were scored as “healthy,” “pale,” “bleached,” or
“dead” using a fluorescence microscope. After 60 days, all
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Fig. 2 a Symbiodiniaceae
infection was scored visually,
aided by violet light filters to
view red chlorophyll
fluorescence in symbiont cells.
b A one-month-old Orbicella
faveolata recruit infected with
Symbiodiniaceae. ¢ Individual
recruits were sacrificed using a
razor blade. d Recruits circled
in green are examples of well-
separated polyps, which were
chosen for sampling. Recruits
circled in red are clumped
together without clear
separation, and were not chosen
for sampling

remaining living recruits were sacrificed for symbiont
community analysis. GLMs were created in R to test how
prior heat exposure and proportion Durusdinium impacted
survival and bleaching during heat stress.

Symbiodiniaceae identification and quantification

Quantitative PCR (qPCR) assays were used to identify
Symbiodiniaceae to genus level and quantify symbiont-to-
host (S:H) cell ratios for each recruit sampled. Since O.
faveolata commonly hosts members of Symbiodinium,
Breviolum, Cladocopium, and Durusdinium (Kemp et al.
2015), assays targeting specific actin loci for each genus
were performed using a QuantStudio 3 Real-Time PCR
Instrument (Applied Biosystems, USA). Assays for O.
faveolata, Symbiodinium, and Breviolum followed reac-
tions described in Cunning and Baker (2013), whereas
Cladocopium and Durusdinium assays were multiplexed as
described in Cunning et al. (2015). The StepOneR software
package in R was used to quality-filter assay results, cal-
culate relative abundance of each symbiont, and compute
S:H cell ratios. The Kaplan—Meier estimate was used to
calculate the fraction of surviving recruits in each treatment
over time (Goel et al. 2010). GLMs were created to com-
pare the effects of experimental treatments and their

interactions on survivorship, symbiont infection rates, algal
community composition, and S:H cell ratios.

Results
Experiment 1: Symbiodiniaceae uptake
Survivorship and Symbiodiniaceae infection

Recruit survivorship did not vary significantly among
treatments. In all treatments, the proportion of recruits
visibly infected with Symbiodiniaceae increased over time
(Fig. 3). Differences in proportion of infected recruits were
driven primarily by temperature (p < 0.0001) and to a
lesser extent by donor symbionts (p = 0.048). After
14 days, a significantly higher proportion of recruits reared
at 29 °C were infected with symbionts compared with
those reared at 31 °C, which were delayed in their infection
by ~ 5-20 days (Fig. 3). At 43 days at 31 °C, a signifi-
cantly higher proportion of recruits reared with D. trenchii
donors were visibly infected compared to those with
Cladocopium donors (p = 0.005).

@ Springer
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Fig. 3 Symbiodiniaceae infection in recruits varied with temperature
(p <0.0001) and symbiont treatments (p = 0.048). Error bars
represent = SEM

Symbiodiniaceae identity and abundance

Recruits in all treatments hosted Symbiodinium, Breviolum,
and Durusdinium, but Cladocopium was not detected. After
60 days, D. trenchii was dominant (> 90% of symbiont
community) or co-dominant (10-90% of community) in
58.3% of recruits. The proportion of D. trenchii in recruits
varied significantly with donor symbiont type but not with
temperature (Fig. 4). Recruits reared with D. trenchii
donors hosted higher proportions of D. trenchii
(48.3 &= 34.9%) than those reared near Cladocopium
donors (17.8 & 24.9%) (p = 0.03).

S:H cell ratios varied with symbiont community com-
position (Fig. 5) and showed significant interactions with
time (p = 0.046). For recruits < 150 days old, log S:H cell

1.00 b
B 31°C b
B 29°C
a

~ 075

S

=

£

Q

= 050

o

2

o

Q.

9

o

0.25

a

Cladocopium

D. trenchii

Donor symbiont type

Fig. 4 Proportion of Durusdinium trenchii in recruits reared near D.
trenchii donors and Cladocopium donors after 60 days
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ratio decreased with increasing proportion of Symbio-
dinium, while at 150 days the opposite trend was observed
(Fig. 5a). As proportion of Breviolum in recruits increased,
the log S:H cell ratio also increased (p < 0.001, Fig. 5b).
Conversely, as proportion of D. trenchii increased in
recruits, the log S:H cell ratio decreased (p < 0.001,
Fig. 5c¢).

Polyp area

After 5 months, polyp size varied significantly with Sym-
biodiniaceae communities. Mean polyp area increased with
proportion Breviolum (p = 0.005, Fig. 6b) and decreased
with increasing proportion of D. trenchii (p = 0.006)
(Fig. 6¢). There was no significant relationship between
polyp size and previous temperature treatment or propor-
tion of Symbiodinium (Fig. 6a).

Experiment 2: Heat stress trial

During the heat stress trial, both previous heat exposure
and symbiont community impacted survivorship. Recruits
previously reared at 31 °C survived over twice as long at
34 °C as those reared at 29 °C, independent of their sym-
bionts (p < 0.001) (Fig. 7a). In addition, recruits hosting
primarily D. trenchii at the start of heat stress survived over
twice as long at 34 °C as recruits with low proportions of
D. trenchii and 50% longer than recruits with intermediate
proportions of D. trenchii (p < 0.001) (Fig. 7b). Recruits
with high proportions of Symbiodinium and Breviolum
experienced reduced survivorship (Fig. S1). Survivorship
during heat exposure was positively correlated with pro-
portion of D. trenchii (p = 0.006), negatively correlated
with proportion of Symbiodinium (p = 0.022), and not
correlated with Breviolum.

Similarly, both previous temperature treatment and
Symbiodiniaceae communities influenced bleaching resis-
tance. During heat stress, recruits previously reared at
31 °C and/or hosting high proportions of D. trenchii
maintained symbiosis longer than those reared at 29 °C
and/or hosting intermediate or low proportions of D.
trenchii (Figs. S2, S3). At the end of the trial, the two
recruits scored as “pale” and “symbiotic” hosted only D.
trenchii. Symbiodiniaceae were not detected in the 13
“bleached” recruits (Figs. S2, S3).

Discussion

Manipulating symbiosis establishment in recruits

This study tested a novel, scalable approach for introducing
thermotolerant Durusdinium trenchii into coral hosts at a



Coral Reefs (2021) 40:867-879

873

Log S:H cell ratio

Fig. 5 Symbiodiniaceae density varies with community composition
in recruits. Log S:H cell ratio shows a no relationship with proportion
of Symbiodinium, b positive correlation with proportion of Breviolum
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(p < 0.001). Points were jittered to minimize overlap

Symbiodinium

Breviolum

D. trenchii

Proportion hosted after 5 months

0.6 a b c
&
£
£ 4
3 0.
5 i1 1
o
>
g 02 I@ 1 ¥ i1 it
C
®
> Adj. R?=0.014602 Adj. R?= 0.27354 Adj. R?= 0.26578

0 p =0.25931 p =0.0051269 p =0.0058198

0.00 025 050 075 1.00.00 025 050 0.75 1.00 0.00 025 050 075 1.00

Fig. 6 Correlation of polyp area with proportion of a Symbiodinium, b Breviolum, and ¢ D. trenchii. Each point represents the mean size of

polyps on one plug. Error bars represent == SEM. Points were jittered to prevent overlap

key stage in their life history. Our results indicate that
temperature and/or symbionts in neighboring colonies can
affect: (1) rates of infection in O. faveolata recruits, (2)
Symbiodiniaceae assemblages acquired during initial
symbiosis establishment, and (3) the future thermal toler-
ance of recruits.

In Experiment 1, temperature impacted the onset of
symbiosis while donor colonies influenced initial Sym-
biodiniaceae community composition. Infection was
delayed in recruits reared at 31 °C, suggesting that even
minimal heat exposure can slow algal acquisition in
recruits by ~ 5-20 days (Fig. 3). Abrego et al. (2012)
similarly found that Acropora tenuis and A. millepora

recruits at 31 °C acquired symbionts significantly later than
those at 28 °C. Delayed infection could prove detrimental,
particularly in the field, because juvenile corals rely on the
fixed carbon their endosymbionts provide to grow and
surpass size-escape thresholds (Doropoulos et al. 2012;
Chamberland et al. 2017). Although we hypothesized that
elevated temperature would favor acquisition of D. trenchii
(Cunning et al. 2015; Abrego et al. 2012), we found no
significant effect of temperature on the algal species hos-
ted, suggesting that availability outweighs temperature in
determining the dominant symbiont(s) in O. faveolata
recruits. However, it is also possible that 31 °C was not hot
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Fig. 7 Heat stress trial revealed highest survivorship in recruits
a previously reared at 31 °C and b hosting high proportions of D.
trenchii. In panel (a), red points indicate recruits reared at 31 °C and
blue points indicate those reared at 29 °C. In panel (b), orange points
indicate recruits hosting high proportions of D. trenchii at the start of

enough to favor D. trenchii acquisition in recruits from Key
Largo, FL.

In all treatments, recruits acquired Symbiodinium, Bre-
violum, and D. trenchii. This result is consistent with
studies of other coral species, which found that recruits can
initially host a variety of different algal partners (Coffroth
et al. 2001; Little et al. 2004; Mieog et al. 2009; Cumbo
et al. 2013, 2018). Field surveys have reported that O.
faveolata adults associate with Symbiodinium, Breviolum,
Cladocopium, and Durusdinium throughout their range and
even within the same colony (Rowan and Knowlton 1995;
Rowan et al. 1997; Kemp et al. 2015). In this study, the
presence of D. trenchii-dominated Siderastrea siderea
colonies enhanced the proportion of D. trenchii two- to
threefold in O. faveolata recruits. Nearby corals may
influence Symbiodiniaceae availability by discharging
algal cells that persist in the sediments and water column,
increasing the rate of acquisition by recruits (Coffroth et al.
2006; Nitschke et al. 2016; Ali et al. 2019). D. trenchii has
been shown to be highly infectious in aposymbiotic
recruits, although its abundance typically declines during
ontogeny (Abrego et al. 2009; Mcllroy and Coffroth 2017,
Pollock et al. 2017).

No recruits acquired detectable levels of Cladocopium,
including those in aquaria with M. cavernosa donors
hosting ITS2 type C3, which is considered “homologous”
(native) to O. faveolata in the Florida Keys (Kemp et al.
2015). Throughout its range, O. faveolata commonly hosts
C3, C7, and/or C12 in areas of low irradiance around a
colony’s base or deeper than 3 m (Rowan and Knowlton
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heat stress (> 0.75), green indicates intermediate proportions
(0.25-0.75), and purple indicates low proportions (< 0.25). Points
were jittered to minimize overlap. Lines indicate smoothed data
(method = “loess”), and shaded areas indicate = SEM

1995; Thornhill et al. 2009; Kemp et al. 2015; Hauff et al.
2016). Irradiance in our experiments (150-300 micromoles
quanta m — 2 s — 1) may have resembled a shallow reef
where Symbiodinium and Breviolum (particularly Brevio-
lum ITS2 type Bl) are preferred, preventing uptake of
Cladocopium (Rowan et al. 1997; Laleunesse 2002;
Thornhill et al. 2009). Furthermore, fewer recruits with
Cladocopium donors were infected after 43 days compared
to those with D. trenchii donors (Fig. 3b). Together, these
findings indicate a possible shortage of environmentally
appropriate symbionts in this treatment.

Since Symbiodinium and Breviolum were detected in
recruits but not in donors, these algae must have been
present at low density either in unsampled parts of donor
fragments, the FSW, or the biofilm on the settlement plugs.
As such, these algae were likely much less abundant than
Cladocopium and D. trenchii, which were presumably shed
by donors during the experiment to regulate symbiont
density in their tissues (Fitt et al. 2001). Therefore, the
differential acquisition of Symbiodinium and Breviolum
despite their relative scarcity suggests a degree of speci-
ficity in recruits under these conditions. Although Sym-
biodiniaceae communities in the parent colonies are
unknown, surveys have identified Breviolum (particularly
B1) as a dominant partner for O. faveolata in Florida
(Thornhill et al. 2009; Kemp et al. 2015), so it is not sur-
prising that recruits readily hosted Breviolum.
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Heat tolerance in O. faveolata recruits hosting D.
trenchii

Recruits reared at 31 °C survived significantly longer
during the subsequent heat stress trial than those reared at
29 °C, regardless of dominant symbiont type (Fig. 7a),
suggesting that pre-exposure to mild thermal stress may
increase a juvenile’s resilience against future, more severe
heat waves. It should be noted that in nature, coral recruits
are unlikely to experience heat stress at 5 months post-
settlement. Since most broadcast spawning corals are born
during the warmest time of year, they might more plausibly
face heat stress either prior to three months or one year
after settlement. However, our results show that recruits
can be preconditioned to heat, and that this effect may last
at least three months after heat exposure ends. Future
studies should test how long recruits retain thermal toler-
ance after pre-exposure.

Symbiodiniaceae community composition also impacted
survivorship under heat stress. Recruits that started the trial
with the highest proportion of D. trenchii (> 0.75) survived
significantly longer than recruits with low and intermediate
proportions of D. trenchii for a similar decline in sur-
vivorship (Fig. 7b). This agrees with previous studies
reporting increased heat tolerance and bleaching resistance
in adult O. faveolata hosting D. trenchii (Kemp et al. 2014;
Cunning et al. 2018; Manzello et al. 2018). Acroporid
juveniles from the Great Barrier Reef also survived better
under thermal stress when hosting D. trenchii compared
with other symbionts (Mieog et al. 2009; Abrego et al.
2012; Quigley et al. 2020; but see Abrego et al. 2008).
Together, these findings suggest that D. trenchii may
enhance coral survival during vulnerable early life stages in
the face marine heatwaves that can often coincide with, or
shortly follow, coral spawning events.

Although this study primarily focused D. trenchii, we
recognize that other Symbiodiniaceae taxa can potentially
increase the thermal tolerance of coral hosts (Abrego et al.
2008; Hume et al. 2015). However, D. trenchii has domi-
nated the literature in the Caribbean, and when present it
usually ranks most thermotolerant among symbionts in the
region (Swain et al. 2017), including in O. faveolata. As
such, given our study species and location, we targeted D.
trenchii for these experiments.

Trade-offs of hosting D. trenchii

Symbiodiniaceae cell density varied with algal community
composition in O. faveolata recruits. At all-time points, log
S:H cell ratio was negatively correlated with the proportion
of D. trenchii (Fig. 5c¢) and positively correlated with the
proportion of Breviolum (Fig. 5b). Fewer symbionts per
host cell could indicate slower colonization or proliferation

rates for D. trenchii, differences in cell size between
symbiont species (Jones and Yellowlees 1997; LaJeunesse
et al. 2018), or a host-regulated reduction in symbiont
density when hosting D. trenchii. This low cell S:H cell
ratio may also help explain the heat tolerance observed in
recruits hosting D. trenchii, since high Symbiodiniaceae
density can increase bleaching susceptibility (Cunning and
Baker 2013).

We observed a significant negative correlation between
the proportion of D. trenchii and polyp size after 5 months,
consistent with previous studies reporting reduced growth
in juvenile and adult corals hosting D. trenchii (Little et al.
2004; Cantin et al. 2009; Jones and Berkelmans 2010;
Pettay et al. 2015; but see Yuyama and Higuchi 2014;
Quigley et al. 2020). For instance, Little et al. (2004) found
that acroporid recruits infected with Cladocopium grew
2-3 times faster than those hosting Durusdinium. Under
ambient, non-stressful conditions, D. trenchii is less pho-
tochemically efficient than Breviolum and Cladocopium
(Cunning et al. 2018) and thus may have less photosynthate
available for the coral host. Although dominant Symbio-
diniaceae type explained up to 30% of variation in polyp
size after 5 months, algal communities detected at the time
of photographing and sampling provided only a “snapshot”
assessment and do not necessarily represent previous
communities that may have contributed to growth earlier in
ontogeny. However, due to their small size (< 1 mm in
diameter), it was impossible to sample a recruit’s symbiont
community without sacrificing it. Consequently, some of
the unexplained variation in polyp size could be due to
changes in symbiont communities over time. Algal density
could also impact growth, because fewer Symbiodiniaceae
cells in coral tissues may translate to less carbon produced
and delivered to the host. Thus, the smaller size of recruits
hosting D. trenchii may result from their low symbiont
density, and not necessarily from these symbionts being
individually stingy or “selfish” (Stat and Gates 2008).
However, our finding that recruits hosting predominantly
Breviolum were largest after five months contradicts a
study by Mcllroy et al. (2016) reporting significantly faster
growth in O. faveolata recruits harboring Symbiodinium
compared to Breviolum. This may be attributed to different
experimental conditions that favored Breviolum in the
present study.

Growth rates can help determine winners and losers in
coral reef ecosystems, which are highly competitive for
space and light. Like many organisms, corals attain some
refuge in size whereby predators and competitors are less
likely to harm larger individuals. Field studies of Pocillo-
pora damicornis and Siderastrea radians juveniles repor-
ted significant increases in survivorship with colony size
(Raymundo and Maypa 2004; Vermeij and Sandin 2008).
Combined with environmental stressors such as ocean
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acidification that already compromise coral growth
(Hoegh-Guldberg et al. 2007; Doropoulos et al. 2012),
hosting D. trenchii could further prolong the vulnerability
that comes with small size and prevent population recovery
(Ortiz et al. 2013). With these potential trade-offs, it will be
important to take many factors into account when assessing
the net risks versus benefits of D. trenchii in enhancing
coral restoration strategies.

Implications for reef restoration and resilience

In recent years, researchers, practitioners, and managers
have recognized the importance of sexually derived coral
stock to expanding the genetic diversity and spatial scale of
reef restoration efforts (Baums et al. 2019; Randall et al.
2020). However, strategies for maximizing the early post-
settlement survival of reared and outplanted juveniles need
to be advanced. Specifically, efforts to: (1) reduce the risk
of predation or competition, (2) promote early, beneficial
associations with Symbiodiniaceae, and (3) enhance stress
tolerance prior to outplanting can minimize juvenile mor-
tality and strengthen the impact of restoration efforts
(Quigley et al. 2018).

Since most reef-building corals spawn during the
warmest time of year, recruits are likely to experience heat
stress during their first few months of life, a threat that will
intensify with continued climate change. As such, boosting
the thermal resilience of new generations of corals should
be a priority of reef restoration efforts, and practitioners
concerned about bleaching risk may benefit by rearing
recruits near D. trenchii donors (in situ or ex situ) to
increase uptake of this algae. Even if it is replaced later by
a preferred symbiont (Abrego et al. 2009; Poland and
Coffroth 2017), D. trenchii may enable recruits to resist
heat stress during their critical first months on the reef.
However, some species appear to be relatively inflexible
during initial algal uptake, favoring specific symbionts
(Weis et al. 2001; Quigley et al. 2017b). Manipulating
these juveniles to host D. frenchii may not be feasible.
Similarly, the relative benefit of hosting D. trenchii likely
varies among species (Cunning et al. 2018). Therefore,
restoration practitioners should test how D. trenchii
impacts the particular coral(s) they work with before
incorporating it into their efforts.

Given its associated physiological trade-offs, there is a
risk that D. trenchii may reduce corals’ competitive ability
and prolong recovery following disturbances (Ortiz et al.
2013). Nevertheless, since a majority of the world’s reefs
are projected to experience annual severe bleaching by
mid-century (van Hooidonk et al. 2014), coral persistence
may soon depend more on heat tolerance than growth.
Under elevated temperature, D. trenchii confers a photo-
chemical advantage to its hosts and relative growth trade-
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offs may decrease or even disappear at progressively
higher temperatures (Cunning et al. 2015, 2018). Thus,
under a “new normal” of repeated or chronic heat stress,
D. trenchii may increase coral survival without compro-
mising growth relative to other symbiont genera. Stake-
holders should therefore consider climate projections when
deciding if D. trenchii may help or harm the reefs they
manage in the long-term.

Going forward, it will be important to determine whe-
ther recruits can be primed with D. trenchii in-situ as part
of existing restoration pipelines. Without the constraints of
laboratory space, field methods to boost D. trenchii uptake
could help practitioners rear large numbers of thermally
tolerant coral juveniles for outplanting. However, even if
D. trenchii proves advantageous during thermal anomalies,
it may be lost from corals over time in the absence of heat
stress (Thornhill et al. 2006; LalJeunesse et al. 2009).
Therefore, future studies should examine the longevity of
manipulated symbiont communities in outplanted recruits,
and identify conditions that promote D. trenchii dominance
and maintain its benefits for hosts.

Finally, our finding that nearby colonies enhance D.
trenchii uptake in recruits may inform the potential for
symbiont community feedbacks within and between gen-
erations. While it was historically present at low abun-
dances in some corals and locations, D. trenchii has rarely
served as the dominant, preferred symbiont (e.g., LaJe-
unesse 2002) unless colonies experienced environmental
stress or extremes (Baker et al. 2004; Fabricius et al. 2004;
Kennedy et al. 2015; Silverstein et al. 2015). However,
warming oceans and recurring bleaching events may favor
D. trenchii at the ecosystem level, because it colonizes
newly settled recruits and adults recovering from bleaching
(Nitschke et al. 2016; Boulotte et al. 2016), and colonies
that cannot shift to environmentally appropriate partner-
ships perish (LaJeunesse et al. 2010; Grottoli et al. 2014).

It remains uncertain whether the proliferation of D.
trenchii on coral reefs will promote resilience or hinder
recovery. As studies continue to disentangle the relation-
ships between Symbiodiniaceae identity, coral physiology,
and environmental variability, we can begin to predict
context-dependent trade-offs within the coral holobiont and
use our findings to inform reef restoration. If early infection
with D. trenchii increases thermal tolerance in coral juve-
niles without severely compromising other aspects of fit-
ness, practitioners may choose to rear them near D.
trenchii-dominated adult colonies, boosting their resilience
before outplanting them onto the reef.
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