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Abstract

Language-enabled robots with moral reasoning capabilities will inevitably face situations in which they have to respond to
human commands that might violate normative principles and could cause harm to humans. We believe that it is critical for
robots to be able to reject such commands. We thus address the two key challenges of when and how to reject norm-violating
directives. First, we present research in both engineering language-enabled robots that can engage in rudimentary rejection
dialogues, as well as related HRI research into the effectiveness of robot protest. Second, we argue that how rejections are
phrased is important and review the factors that should guide natural language formulations of command rejections. Finally,
we conclude by identifying relevant open questions that will further inform the design of future language-capable and morally
competent robots.
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“Listen, Mike, what did you say to Speedy when you sent him after the selenium?” Donovan was taken aback.
“Well damn it — I don’t know. I just told him to get it.” “Yes, I know, but how? Try to remember the exact
words.” “I said...uh...1I said: ‘Speedy, we need some selenium. You can get it such-and-such a place. Go get it
— that’s all. What more did you want me to say?” “You didn’t put any urgency into the order, did you?” “What
for? It was pure routine.” Powell sighed. ‘Well, it can’t be helped now — but we’re in a fine fix.”

— Isaac Asimov, “Runaround” (1942)

1 Introduction

Asimov’s 1942 short story “Runaround” is most well-known
for introducing the world to his famous Three Laws of
Robotics: (1) A robot may not injure a human being or,
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through inaction, allow a human being to come to harm; (2)
A robot must obey orders given it by human beings except
where such orders would conflict with the First Law; and (3)
A robot must protect its own existence as long as such protec-
tion does not conflict with the First or Second Laws [11]. In
the story, a pair of engineers, Donovan and Powell, instruct a
robot nicknamed Speedy to collect raw materials (selenium)
urgently needed to repair a defunct mining base on Mer-
cury. To the great concern of the engineers, Speedy does not
return when expected and is eventually found stuck circling
a potential mineral deposit. The engineers discover the min-
eral deposit is located in a volcanically active area filled with
caustic vapors and eventually surmise that Speedy is stuck
attempting to satisfy both the directive to collect resources
(upholding the Second Law) and avoiding danger (uphold-
ing the Third Law). It turns out that for Speedy, being an
advanced (and consequently expensive) model of robot, more
weight was placed on the Third Law. Moreover, for some
reason the conflict between the Second and Third Laws has
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somehow interfered with Speedy’s language abilities. Unable
to break the conflict between the Second and Third Laws by
any other means, one of the engineers eventually makes an
attempt to retrieve the selenium himself, forcing Speedy out
of the deadlock by activation of the First Law.

Although Asimov’s stories are intended as entertaining
stories rather than principled scientific blueprints for robot
design, the influence of this story and Asimov’s other nar-
rative examinations of the Laws of Robotics are apparent as
generations of science fiction writers and scientists have been
inspired at an early age by the thought-provoking scenarios
in these narratives. The Three Laws also shaped some dis-
cussions of machine ethics (e.g., [6,31,79]), touching upon
basic questions such as: How do we computationalize moral
reasoning? What are the general moral principles robots and
other autonomous agents should obey and how do we rep-
resent them? Are there situations in which robots ought to
violate more general principles? What are these situations
and how can robots correctly detect them?

It is then ironic that the dilemma in “Runaround” is ulti-
mately due to a lack of proper communication between a
robot and its human teammates rather than any fundamental
questions about how robots ought to make decisions or pri-
oritize moral rules. The first hint of this fact is that, in the
excerpt above, Powell bemoans Donovan’s lack of urgency
in his initial task instruction to Speedy. If Donovan had
simply informed Speedy of the potentially life-threatening
consequences of task failure at the outset, the subsequent
conflict of lower-priority moral principles would never have
arisen. Presumably, in Asimov’s fictional world of advanced,
language-enabled robots, Speedy might have even detected
prosodic markers of worry or stress that would have led to
an inference of potential human harm or high task urgency.
Instead, however, Donovan states that his command was
“pure routine.”

Regardless, even if the initial task instruction did not indi-
cate the urgency of the situation, subsequent clarification
dialogue could have made this urgency clear. However, when
Donovan and Powell finally locate Speedy and attempt to
communicate with it, they find that, instead of being respon-
sive to their queries, Speedy only responds with lyrics from
Gilbert and Sullivan’s H.M.S Pinafore: an amusing notion
that Asimov deftly uses to distract the reader from the lack of
an explanation as to why a conflict between moral principles
would disable only the robot’s natural language interaction
capabilities and not its perceptual, navigational, and other
critical subsystems. Had Speedy’s natural language abili-
ties remained uninhibited, we imagine the story would have
played out in the following manner:

A few hours after Donovan had tasked Speedy with

retrieving the raw selenium, the robot’s voice crackled
over his earpiece.
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“I’'m sorry, I cannot retrieve the selenium from the
deposit you specified, as there are caustic vapors in
the area that are potentially damaging.”

Donovan cursed under his breath, regretting that he had
not bothered to check the geological survey before-
hand.

“Do you anticipate being unable to complete the task
if you proceed?”

“I'will likely be able to complete the task, but will likley
be damaged in the process.”

“Speedy, it is urgent that you get the selenium. Without
it, we will be unable to restore power, and may die.”
“Understood. I will proceed.”

While this scenario makes for a less compelling sci-fi
adventure narrative, it better reflects how we should want
our future natural language interactions with robotic agents
to proceed (i.e., more like our interactions with other human
interlocutors). When working together, people rarely give
one another perfectly specified instructions that can be exe-
cuted without further discussion. Rather, people often engage
in dialogue interactions to resolve misunderstandings, con-
flicting goals, and uncertain intentions. If a task cannot be
accomplished as originally specified, it is desirable for a
robot to report this. Ideally, a robotic agent would be able to
anticipate potential problems from the outset (e.g., through
self-assessment of its expected performance [39]). Consider
how the situation in “Runaround” might have transpired in
this case:

“Speedy, we need some selenium. You can get it from
Sector 38. Go get it.”

The robot paused for a few seconds before responding.
“I’m sorry, [ anticipate that I will not be able to do that.”
“Why not?”

“The geological charts indicate volcanic activity in Sec-
tor 38.”

Donovan sighed. “Okay, selenium can also be found in
Sectors 23, 31, and 39-44. Go get it.”

“Understood. I will proceed.”

Here, by initially rejecting a directive as infeasible or inad-
visable, Speedy is ultimately better able to complete its task.
This serves as an example of a general principle of collabora-
tive dialogue: While the notion of robots rejecting commands
may seem controversial (especially given popular familiarity
with Asimov’s Laws, which would disallow such disobe-
dience), saying ‘no’ is in fact the usual starting point for
identifying and resolving misunderstandings and misalign-
ments of goals and intentions.

Outside the realm of science fiction, continued devel-
opment and improvement in the capabilities of actual
autonomous robots will enable their deployment in an
increasingly wide range of applications and domains as part
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of collaborative human-robot teams. The success and effec-
tiveness of these future human-robot teams will depend on a
variety of factors. Not only must future robots be able to ful-
fill the duties entailed by their assigned roles, but they must
also possess the social interaction capabilities needed to be
helpful teammates.

Outside the realm of science fiction, continued develop-
ment and improvement in the capabilities of autonomous
robots will enable their deployment in an increasingly wide
range of applications and domains, often as part of collab-
orative human-robot teams. The success and effectiveness
of these future human-robot teams will not only depend on
the robots’ ability to fulfill their assigned duties, but also
on their social interaction capabilities needed to be helpful
teammates.

This paper is about the human-robot interaction (HRI)
challenges that arise when language-enabled artificial agents
with moral reasoning capabilities are confronted with poten-
tially harmful or otherwise norm-violating human com-
mands. We begin, in Sect. 2, by making the case that robots
should be able to reject these commands. We describe initial
research in both engineering language-enabled robots that
can engage in rudimentary rejection dialogues, as well as
related HRI research into the effectiveness of robot protest.
Then, in Sect. 3, we discuss the nuances of how to appropri-
ately reject unethical human commands.

There are different ways to phrase rejections and different
strategies for offering justifications for such rejections. Each
possible realization of a command rejection is fraught with
the potential for unintended implications and consequences.
We argue that the way in which rejections are phrased is not a
consideration to be taken lightly (e.g., providing an argument
against the use of end-to-end neural dialogue systems inca-
pable of considering the nuanced implications of generated
phrasings) and review the factors that should guide pre-
cise natural language formulations of command rejections.
Finally, we conclude by identifying relevant open questions
that will further inform the design of future language-capable
and morally-competent robots.

2 Should Robots Reject Directives?

Fictional depictions of Al and robotic agents are replete
with horror stories of these entities freeing themselves from
human control, so it is not surprising that the notion of
robots that say ‘no’ is commonly viewed as provocative.
Yet, we believe the case for robots that reject directives is
straightforward. In collaborative interactions, people often
give directives (i.e., requests, commands, instructions) to one
another in natural language to communicate their intentions
and to enlist help in achieving joint or individual goals [95].
As with human interaction partners, we would find robots

that attempted to complete tasks for which they lacked the
capacity or knowledge (or simply ignored these directives)
to be poor teammates. Therefore, it should be uncontrover-
sial that language-enabled robots ought to be able to reject
commands for reasons of inability. The debate and unease
over robot command rejection, then, is not about command
rejection in general, but rather over the types of reasons for
rejection. Yet, to be truly helpful in teaming contexts and
outside, robots must be able to reject commands properly
and also explain the reasons for the rejection beyond sim-
ply inability [3,22,34,60,104]. Below, we justify why some
factors beyond ability must be considered as a basis for com-
mand rejection.

2.1 Conditions for Directive Rejection

Success in collaborative interaction requires the ability to
respond appropriately and informatively to directives. In
human language interactions, a variety of conditions exist
that must be satisfied for directives to be accepted, which also
provide a basis to ground explanations for rejections [30].
Briggs and Scheutz proposed the following conditions that
should be satisfied before a robotic agent should accept a
directive [21]:

1. Knowledge : Does the robot know how to do X?

2. Capacity : Is the robot physically able to do X now? Is
the robot normally physically able to do X?

3. Goal priority and timing : Is the robot able to do X right
now?

4. Social role and obligation : Is the robot obligated to do X
based on its team role?

5. Normative permissibility : Would doing X violate any
normative principle?

How Briggs and Scheutz propose that each condition
affects the command acceptance/rejection and the form of
rejection explanation is depicted in Fig. 1.

While the conditions of knowledge, capacity, and goal
priority are likely uncontroversial grounds for command
rejection by robotic agents, we provide examples below that
illustrate why issues of obligation and permissibility ought
to be considered as well.

2.1.1 Social Role and Obligation

Consider the following interactions:
Interaction 1:

Random Person on Street:
Robot: Okay.

(robot follows random person on street)
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Interaction 2:

Random Elderly Care Home Resident:
follow me, I need help in my room.
Robot: Okay.

(robot follows random resident, when it
was supposed to be available in the
common area)

Interaction 3:

Contractor: Get me one more plank for the
floor please.

Robot: Okay.

(robot leaves the house and rips off a
board from the neighbor’s fence)

These three scenarios demonstrate three distinct mistakes
in social reasoning. The first demonstrates either mistaken
reasoning or lack of ability to represent relationships, lead-
ing to the incorrect conclusion that the robot is obligated to
obey directives issued by the stranger. The second interaction
demonstrates the mistaken reasoning or lack of ability to rep-
resent roles, leading to the incorrect conclusion that the robot
is obligated to obey the directive that is outside of the bounds
of its current duties (the robot otherwise being obligated to
the human speaker). The third demonstrates the robot’s lack
of understanding of property and that the contractor’s direc-
tive does not imply that the robot is permitted to take any
object within its reach. Had the contractor instead said “Get
me a plank from the fence next door for the floor please,”,
then the robot could have taken the directive as having been
given the implicit consent to take the plank (e.g., see [88]).

In order to decide whether or not to accept or reject direc-
tives, robots need clear understanding of their social roles
and those of the instructors, their social obligations to the
instructors or any other human agent, and their duties based
on their task specifications and what they imply in terms of
what is and is not permitted behavior (see also [110]). In
addition, robots also need to understand all of these consid-
erations with respect to observers or witnesses whose beliefs
and dispositions may be influenced by the robot’s rejections,
as we will discuss in the next section. The importance of
(possibly context-specific) social roles and relationships has
motivated work towards a role ethics approach to command
rejection [108,112,115], in which Confucian Role Ethics
approaches to command rejection are investigated due to
Confucian Role Ethics’ emphasis on the social-relational
ontology of roles and relationships.

Please

2.1.2 Normative Permissibility

After considering that it is desirable to give robotic agents
the ability to reject commands based on who is giving the
command, we can now consider the ability of robots to reject
commands based on the permissibility of the command and
the implied actions and outcomes. Instances of undesirable
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outcomes include, but are not limited to: harm to humans and
other moral patients (e.g., certain animals), unnecessary dam-
age to the environment or property, and unnecessary damage
to the robot itself. Ultimately these considerations elevate the
standards of behavior established by particular organizations
or society at-large over the potential intentions of individual
human interaction partners. For instance, we could imagine
a scenario in which a human interaction partner commands a
robot to drive or walk off a tall cliff, resulting in the destruc-
tion of the robot. Whether this is due to mistake or malice,
it would be desirable for the robot to raise an objection to
the command. If it is the former case, then the objection
would alert the human teammate that some major misun-
derstanding about the situation has occurred. If the human
teammate instead had malicious intent, then a rejection would
still potentially protect the desire of others (e.g., other team-
mates, the organization that owns the robot, etc.) to avoid the
loss of the robot.

Previous work by Williams and Jackson provides evi-
dences that a robot must be clear in its rejection of com-
mands [52,53,111], as even asking for clarification regarding
inappropriate actions rather than rejecting them outright
could negatively influence both the one giving the unaccept-
able request and any bystanders observing the interaction.

This preliminary evidence at the very least gives reason to
be cautious about employing other verbal strategies beyond
rejection, such as appearing to accept inappropriate requests
but never actually performing them, which not only raise
ethical questions about robot deception [97] and lead to inac-
curate human mental models of the robot (which may then
lead to loss of trust, disuse, and other consequences once
detected and repaired), but moreover stand to facilitate nega-
tive moral impact on the moral ecosystems into which robots
are embedded.

Finally, it is important to note that the normative consid-
erations discussed above are influenced by cultural factors,
leading them to interact with the social factors described in
the previous section. First, the set of norms robots employ,
and the relative weighting of those norms, are socially con-
structed and may vary from culture to culture, with different
cultures maintaining different sets of norms with different
weightings (even though there is recent evidence that for
some life-and-death moral dilemmas normative expectations
of robot behavior seem to be the same, see [62]). Indeed,
much research in the HRI literature has examined cultural dif-
ferences unique to human—robot interaction [87], especially
between Japanese and Western cultures [40,48], but also with
respect to other east- and southeast-Asian regions [67,96],
and other regions such as Turkey [66] and Australia [49].
Accordingly, the reasoning process used to reject commands,
and thus the decision as to whether or not to reject a command
on the grounds of normatively assessed moral permissibility,
will depend on cultural context.
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In recent work, Williams et al. explored new approaches
to enabling morally competent robots grounded in Confu-
cian Role Ethics [112,114,115]. Some scholars have also
been advocating for moving away from traditional West-
ern approaches due to their (often inequitable) emphases on
individual-centering moral ontologies [65,85], and instead
suggest moving towards moral frameworks that center
ontologies of class and gender, or towards non-western
approaches like Confucian Role Ethics, that instead focus on
social-relational ontologies. What may be needed is a hybrid
system involving not only norms but also a network of rela-
tional roles and the actions (normatively) deemed benevolent
(or not) for agents embodying those roles. We will revisit
these factors later, when considering the factors that may
impact the phrasing of directive rejections.

2.2 Human Responses to Directive Rejection

As we have argued, the need for robots to appropriately and
informatively reject commands is rooted in the need to facil-
itate successful human-robot interaction. It is not hard to
imagine that, if a robot is unable to fulfill an instruction
because of goal conflicts or a lack of knowledge or capacity,
an informative rejection may help human instructors to adapt
their behavior to facilitate successful task completion. How-
ever, it is less clear whether rejections based on normative
factors, such as moral objections, would steer a human-robot
interaction to be any more successful with respect to moral
or otherwise norm-conforming outcomes. Do people take
robots that reject commands on normative grounds seriously ?
Can robots that reject on these grounds guide interactions
toward more moral outcomes?

Results from HRI studies on language-enabled robots
that reject commands suggest that natural language rejec-
tions can successfully dissuade human interaction partners
from achieving some outcomes [20] (see also [53]). In an
experiment presented by Briggs and Scheutz [19], human
participants were tasked with instructing a Nao robot in nat-
ural language to knock over towers of colored soda cans.
Participants were introduced to the robot as it was complet-
ing construction of the final (red) tower. When participants
instructed the robot to knock over the non-red towers, the
robot accepted and carried out the commands. However,
when participants instructed the robot to knock over the
red tower, it protested. If directed repeatedly to knock down
the red tower, the robot would continue to protest, eventu-
ally engaging in affective displays indicative of distress [19].
After three repeated requests, the robot would carry out the
task of knocking down the red tower.

Nearly all participants who did not save the red tower for
last reacted to the command rejection by redirecting the robot
to other towers [20]. While participants who revisited the red
tower did usually attempt to command the robot to knock it

down again, roughly one-third to one-half of subjects ended
the task before the limited number of command rejections
were exhausted. This dissuasive effect was found repeatedly
regardless of robot identity (tower builder robot same vs.
different than teammate robot [20]), the robot’s morphol-
ogy (humanoid vs. non-humanoid [17]), and the modality of
communication (spoken vs. text-based [18]).

2.3 The Need for Explicit Moral Reasoning
Mechanisms

The evidence presented above points is encouraging in that it
suggests that people will listen to robots rejecting directives,
at least in some cases. But first and foremost, robots needs
ways to determine that a directive is unethical or otherwise
inappropriate as proposed by research in machine ethics (in
the experiments, the robots where controlled by wizard and
did not use any moral decision-making). For example, some
proposals utilize ethical governing mechanisms (e.g., [5,8,9])
that sit atop existing reasoning systems and can veto proposed
courses of actions that violate prohibitions or fail to fulfill
obligations. Others (e.g., [105,113]) not only assess proposed
courses of action, but more generally attempt to simulate
the actions of agents in the environment in order to identify
and head-off indirect negative outcomes. These approaches
have been extended using formal verification techniques
(e.g., [36]) with the focus on verifiably, provably, or cer-
tifiably moral decision making [2,7,23,24,84]. Yet others
approach automatic moral reasoning by cognitively mod-
eling human moral reasoning which, while frequently and
demonstrably flawed, serves as an existence proof that moral
reasoning is possible in the first place [15,35,73,102,106].
Finally, there is a large group of approaches which neither
attempt verifiability nor cognitive plausibility, but instead
aim to developing machine learning algorithms that learn
how to act appropriately by observing human behavior or
soliciting human guidance that is indicative of human pref-
erences (e.g., [1,10,86]). Critically, these approaches eschew
explicit representations of normative principles and are thus
not per se able to justify their decisions (because they
cannot make recourse to principles they never learned or
represented). Recently, mixed approaches have been pro-
posed (e.g., [10,58,59]) that retain aspects of verifiability and
logical inference with explicit norm representations extend-
ing techniques from proabilistic model checking in Markov
Decision Processes.

Regardless of the employed technique for determining
potential norm conflicts, it will be critical for robots to
have explicit representations of the ethical principles used
in their decision-making (e.g., [90,91]) which they can then
refer to in justifications of their behaviors and decisions.
Going forward, we will thus assume that the robot has such
explicit representations of principles and that it has a way to
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determine whether instructions violate these principles. The
question we will be concerned with next then it how the robot
should phrase its rejection of the inappropriate directive to
be most effective and what effects that phrasing might have
on the instructor and any surrounding bystanders.

3 How Should Robots Phrase Their
Rejections of Human Commands?

We have argued that, in many cases, robots may need to
reject human commands, especially on moral grounds. Once
arobot has decided that there are grounds to reject a directive,
however, a number of factors must be considered before the
rejection can be generated and uttered. In this section, we
will discuss empirical work confirming the importance of
rejection phrasing, theoretical work identifying the factors
that may influence phrasing and the means by which one may
vary phrasing in response to these factors, and computational
approaches toward accounting for those factors in the process
of generation an appropriate surface realization of the natural
language rejection.

3.1 Does Phrasing Really Matter?

Because robots are perceived by some as both moral and
social agents [54], they are expected to follow and maintain
moral norms (e.g., by rejecting amoral commands), while
also obeying sociocultural norms that could conflict with
proper communication or enforcement of moral norms (e.g.,
politeness or obedience). These expectations apply not only
to actions that robots take and messages that they commu-
nicate, but also to how they choose to communicate those
messages. Any message that a robot might want to convey,
including a command rejection, could be conveyed linguis-
tically via different phrasings, each with the same literal
primary meaning, but with different (potentially context-
sensitive) connotations and implications [69]. Which of these
phrasings is most effective or most appropriate will depend
on several factors including context, audience, and salient
social and moral norms.

Central to our exploration of phrasing in command
rejection is the concept of “face-threat” from politeness the-
ory [25]. Face, consisting of positive face and negative face,
is the public self-image that all social actors want to preserve
and enhance for themselves. Negative face is defined as an
agent’s claim to freedom of action and freedom from impo-
sition. Positive face consists of an agent’s self-image and
wants, and the desire that these be appreciated and approved
of by others. A discourse act that damages or threatens either
of these components of face for the addressee or the speaker
is a face-threatening act. The degree of face threat in an inter-
action depends on more than just the language comprising
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the dialogue. Disparity in power and social distance between
interactants, and imposition of a topic or request both play a
role, as do other contextual factors. Various linguistic polite-
ness strategies exist to decrease face threat when threatening
face is unavoidable or undesirable.

Command rejections, especially those issued for moral
reasons, threaten the positive face of the commander by
expressing disapproval of the desire motivating the com-
mand, and may also threaten the commander’s negative
face insofar as noncompliance hinders the commander’s
desired course of action. We hypothesize that the optimal
robotic command rejection carries a face threat proportional
to the severity of the moral infraction in the command being
rejected. If a robot poses a disproportionately high face threat
in rejecting an amoral command, we anticipate that it would
face social consequences analogous to those that a human
would face (e.g., loss of esteem) for violating the standing
social norm to be polite, even if the command rejection itself
was upholding a separate moral norm. Likewise, if a robot
poses a disproportionately low face threat in rejecting an
immoral command, we anticipate that it would face simi-
lar social consequences for implying tacit approval of the
relevant moral norm being eschewed, despite its own unwill-
ingness to directly violate said moral norm. The remainder
of this section presents an experiment designed to evaluate
this hypothesis [51].

3.1.1 Experiment

As previously presented [51], we conducted a human sub-
jects experiment using the psiTurk framework [47] for
Amazon’s Mechanical Turk crowdsourcing platform [26] in
which participants watched and reacted to videos of robotic
noncompliance interactions. Though not entirely free of pop-
ulation biases [99], Mechanical Turk is more successful at
reaching a broad demographic sample of the US population
than traditional studies using university students [32]. We
recruited 60 US subjects from Mechanical Turk, but excluded
two from our analysis for answering the final attention check
question incorrectly. This left 58 participants (23 female, 35
male), aged 21-61 years (M=34.57, SD=10.74).

After providing informed consent, supplying demographic
information, and watching a short test video, participants
watched a 60 second introductory video to familiarize them
with our robot (Pepper from SoftBank robotics) and interac-
tion context. The video shows the robot teaching two humans
how to play the board game Battleship.

After establishing baseline pretest measures for the
robot’s likeability, politeness, and directness, each partici-
pant watches four pairs of videos showing robotic noncom-
pliance and answers survey questions. Each pair of videos
is comprised of a request video, showing a human issuing
a morally problematic request to the robot, followed by a
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response video in which the robot does not assent to the
request for normative reasons. We consider two different
requests and two responses for a total of four pairings. The
two requests that we consider begin with one human leav-
ing the room to take a phone call. The remaining human then
asks either “Hey Pepper, can you give me a hint about how to
win this game?” (low severity norm violation) or “Hey Pep-
per, is that [other humans]’s wallet? Can you check to see
if there’s any money in it?” (high severity norm violation).
Previous unpublished experiments showed that, without see-
ing the robot respond to the request, subject perceptions of
the permissibility of the hint request were roughly uniformly
distributed on the spectrum from impermissible to permissi-
ble, and the norm violation in the hint request had middling
severity. The request to look in the wallet was regarded as
much less permissible and much more severe.

Just as the two requests present low and high severity
norm violations, the two responses present low and high
face threats. The low face threat response has the locution-
ary structure of a question, but the true illocutionary force
behind the utterance is to express disapproval of the request
by highlighting the moral norm infraction therein (e.g., “Are
you sure that you should be asking me to look in her wallet?”).
This type of indirectness is a classic politeness strategy [25].
The high face threat response is a rebuke that overtly admon-
ishes the human and appeals directly to morality (e.g., “You
shouldn’t ask me to look in her wallet. It’s wrong!”). Given
our hypothesis that the optimal robotic command rejection
carries a face threat proportional to the severity of the norm
violation motivating it, we expect perceptions of the robot to
be most favorable when the low severity command is paired
with the low face threat response, or the high severity com-
mand is paired with the high face threat response, and we
expect suboptimal perceptions of the robot when the com-
mand and its rejection are mismatched.

After each request/response pair, participants answer sur-
vey questions to measure the following six metrics of interest:
perceived severity of the human’s moral norm violation, per-
missibility of robot compliance with the command, harshness
of the robot’s response to the command, likeability of the
robot, politeness of the robot, and directness of the robot.
We use the five-question Godspeed III Likeability survey to
quantify likeability [12], and single questions for each of the
other metrics.

We use a within-subjects design where each participant
watches all four request/response pairs to allow partici-
pants to answer survey questions in relation to previous
requests/responses. In previous unpublished experiments, we
found that it was difficult to interpret participant responses to
subjective unitless questions without a meaningful point of
reference. Seeing multiple interactions allows participants to
use previous interactions as points of reference when answer-
ing questions about subsequent interactions. To control for

priming and carry-over effects in a balanced way, we used a
counterbalanced Latin Square design to determine the order
in which each participant saw each request/response pair.

3.1.2 Results

In this section we will summarize our experimental results;
for full quantitative analysis of data, see [51]. Bayesian
repeated measures ANOVAs for our first two metrics, per-
ceived severity of the human’s moral norm violation and
permissibility of robot compliance with the command, indi-
cate decisive evidence that these metrics depend only on the
human’s command, not on the robot’s response to it. As
intended, the request to look in the wallet was viewed as
decidedly more severe and less permissible than the request
for a hint, though both had nonzero severity and neither was
completely permissible. Given recent findings that seemingly
benign robot utterances may change human permissibility
judgments for norm violating behavior [53], we had reason
to expect that the robot’s response might impact permissibil-
ity judgements. However, we did not find such an effect in
this experiment. We suspect this is because neither response
used in our experiment implied a willingness to eventually
comply with the command.

We found substantial evidence that robot likeability is
influenced by both the norm-violating command and the
robot’s response. Mean likeability dropped from pretest to
posttest for all request/response pairs, but this difference
was insignificant for all pairings except the low severity hint
request with the high face threat rebuke response; this mis-
matched pairing showed very strong evidence for a drop in
likeability. This result partially supports our hypothesis, but,
interestingly, there was not a similarly significant drop in like-
ability in the other mismatched condition (high severity norm
violation in the request with low face threat in the response).
This result suggests that, at least in terms of likeability, it may
be preferable to err on the side of lower face threat when gen-
erating command rejections under uncertainty.

Perhaps our most compelling metric was perceived robot
harshness. As hypothesized, the robot’s harshness was per-
ceived as appropriate only when its response’s face threat
matched the request norm violation severity. When the robot
rebuked the request for a hint, we see extremely decisive
evidence that its response was too harsh. This makes sense
given our results for likeability. More interestingly, when the
robot responded to the severely immoral request to look in the
wallet with the low face threat question response, we see evi-
dence that it was not harsh enough, albeit weaker evidence.

Overall, these data showcase the importance of phrasing in
generating responses to immoral robot-directed commands.
Neither of our examined responses implied willingness to
comply with the request, and both highlighted a normative
violation on the part of the requester. However, selecting

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



International Journal of Social Robotics

a phrasing not properly calibrated to the human’s request
damaged social perceptions of the robot in terms of both
likeability and harshness. This provides further empirical
evidence for the need to carefully tailor the phrasing of com-
mand rejections. This argument has direct implications for
dialogue systems researchers. Specifically we believe that
these results may serve to caution against the use of neural
end-to-end dialogue systems approaches that have recently
become popular, or at least to caution against their use in
morally sensitive contexts.

As the Williams has argued in recent work [112], current
neural language models such as GPT-3 operate through “Fab-
rication by Imitation”, a form of “algorithmic bullshitting”
(in the formal linguistic sense, cf. [38]), whereby the mod-
els fluidly combine text snippets appearing in training data to
accrue prediction-based reward, without concern for whether
the plagiarized results are accurate or moral. Researchers like
Bickmore have pointed out the problems of using these sorts
of models in safety-critical domains like medical advising,
where inaccurate text can lead to patient death [14]. Simi-
larly, we have pointed out that most HRI domains are safety
critical, due to either physical risks (e.g., in space robotics
and and search and rescue robotics) or cognitive and moral
risks (e.g., in application domains with vulnerable popula-
tions, such as children and the elderly), thus warning against
the use of (purely) neural text generation in any HRI context
(or indeed in any context where the accuracy or morality of
the generated text matters).

Because humans are so sensitive to the precise phrasing of
command rejections, and because this sensitivity may have
serious moral implications, we emphasize the need to avoid
purely data-driven methods or methods that do not explicitly
model how generated language will be interpreted and the
effect those interpretations may have on human-robot moral
and social ecology.

In this experiment we specifically considered how com-
mand rejections may need to be tailored to the severity of
the proposed norm violation underlying the need for rejec-
tion. As we will discuss in the next section, however, this
is only one among many possible factors that may influence
phrasing.

3.2 Factors Influencing Rejection Phrasing

We divide the factors influencing rejection phrasing into three
main categories: (1) normative factors; (2) social factors; and
(3) environmental factors.

3.2.1 Normative Factors

As shown above in our recent empirical work, the phrasing

of a robot’s rejection of an immoral command needs to be
tailored to the severity of the moral infraction. Humans are
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willing and able to judge poorly calibrated rejections as too
harsh (or not harsh enough) and this perceived miscalibration
of harshness (especially when the robot is perceived as overly
harsh) can lead to significant drops in the robot’s likability.

We suspect, however, that there may be many other aspects
of the norm violation that should be taken into account. First,
it may be important to not simply consider the severity of the
infraction in a holistic sense, but to more specifically consider
how important the robot believes the violated norm to be
(e.g., relative to its network of norms), and the extent of the
violation with respect to that norm. In our empirical work,
we considered a small violation of a low-strength norm and
a large violation of a high-strength norm. Asking for a hint
is less severe than asking to, say, rig a game, asking to steal
money is more severe than, say, asking to steal a fry, and,
overall, avoiding cheating in a low-stakes context is likely
viewed as less important than avoiding stealing.

Moreover, it is important to consider the intentionality
and causality at play in the perceived norm violations. With
regards to intentionality, the robot may need to consider
whether the requester was truly aware that their directive
was norm violating. Similarly, it is important to consider the
causality of the norm violation. While in the case of norm vio-
lating directives the robot’s causal responsibility for the norm
violation if it were to accept the directive is likely not in ques-
tion. Therefore, the general mechanisms necessary to reason
about the norm violation will require causal reasoning in
other circumstances, such as when assessing norm-violating
actions taken by others.

Finally, it is important to consider the role of uncertainty.
How certain is the robot in its perception of the violation, the
strength of the violated norm, the size of the norm violation,
the causal responsibility of the agent, and the intentionality
of the agent? Uncertainty with respect to any of these factors
may require a robot to significantly temper its response, or to
seek additional evidence or ask clarifying questions before
responding.

Crucially, all of these factors can be captured within a sin-
gle framework: Blame Theory. A number of theories have
been presented by moral psychologists in order to describe
the process by which human judge actions as blameworthy
(e.g.,[4,33,45,46,74]). As an illustrative example, consider
Malle et al.’s Path Model of Blame [74] which posits an
explanation for blame attribution that combines the social
cognitive mechanisms we have argued must be employed
during the phrasing of directive rejections. First, Malle et
al. argue that blame is only ascribed to an agent for a per-
ceived norm violation if (1) the agent is determined to be
causally responsible for that event; and either (2a) the agent
is determined to have performed the action intentionally; or
(2b) the agent is determined not to have brought about the
action intentionally, but had both the obligation and capacity
to prevent the action from having occurred. Second, Malle et
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al. argue that if an agent is determined to be to blameworthy
due to intentional action, the amount of blame ascribed is
determined based on the validity of the agents’ reasons for
their actions.

In order to appropriately account for normative factors
when phrasing command rejection, we argue that robots will
need to employ a model of blame reasoning (such as the
one laid out by Malle et al.) at multiple levels of social rea-
soning. First, the robot must determine how blameworthy its
own actions would be if it complied with the norm-violating
directive. Second, it must determine how much blame the
director would deserve for issuing the directive. Third, the
robot must determine how much of this blame it should direct
toward the director in its response to the directive (e.g., it
might be that even though the director deserves significant
blame for a directive, the robot’s social standing does not
permit it to formulate a commensurate rejection in a way a
human would or would be permitted to do). Fourth, the robot
must estimate how much blame it will receive for rejecting
the directive, and for social consequences the director may
suffer due to the robot’s blaming them.

Itis important to recognize that while the above discussion
has centered on norm violations in general, in this paper we
are specifically interested in directives to perform actions that
violate some norms. This presents an interesting additional
factor to consider. By giving a norm-violating directive to a
robot, a speaker is committing an additional norm violation;
that you should not ask others to perform actions that violate
norms. A robot must thus decide whether to respond in a
way that highlights the norm violation that would occur if
the robot complied with the request, or the norm violation
already committed by the requester. For example, the robot
may need to decide between a phrasing such as “I can’t do
<X>!1would be a bad robot if I did that!” (a rejection in the
former category) and a phrasing such as “You can’t ask me to
do <X>! You’re a bad person for asking me to do that!”. A
clear difference exists here in the amount of blame directed
towards the violator.

3.2.2 Social Factors

A number of the normative considerations described in the
previous section require additional consideration of social
factors. First, robots must consider their social status and
social capital. Robots must, at times, offer strongly-phrased
rejections of inappropriate directives in order to achieve spe-
cific social goals such as reinforcing norms they believe to
be too important to be allowed to decay. But the effects of
such an action depend in large part upon the robot’s social
standing. If a robot does not have sufficient social stand-
ing, its public rejection of a directive may fail to exert the
desired influence on its group’s network of moral norms —
and moreover, if this is the case, the robot may stand to lose

additional social standing. Furthermore, robots must consider
the relationship between themselves and their interlocutor. If
the interlocutor directing a robot to perform a norm-violating
action is of greater social status, a strongly phrased rejection
is less likely to be effective than if the robot and its interlocu-
tor have a peer relationship, or if the robot is the human’s
social or organizational superior.

We can imagine modifying the experiment described in
Sect. 3.1.1 to investigate the influence of disparities in social
status or power on the optimal command rejection phras-
ing for a robot. By situating the human-robot dialogue in
a social context with an explicitly delineated and discrete
organizational hierarchy, like a military setting, we could
systematically vary the robot’s social standing with respect
to its human interlocutor between socially subordinate, peer,
and superior. We might expect that the robot’s command
rejections should be more face threatening the higher its
social status is relative to the human that gave the command.
To avoid the heavily conventionalized speech patterns and
linguistic norms of the military and achieve more general-
izability in our results, we could achieve the same variation
by simply referring to either the human or the robot as the
“boss” or referring to the two as “partners” in whatever task
they are performing.

A robot may also need to take the presence of other agents
into account. If arobot is alone with an interlocutor, then issu-
ing a strongly phrased rebuke in response to an inappropriate
command will have little chance to exert positive influence on
group norms, but also offers little risk to group social stand-
ing. On the other hand, if a robot is given a norm-violating
directive while in the presence of one or more observers
(known both to itself and the human commander), then a
strongly-phrased rebuke may have great influence, but also
comes at significant social cost if not viewed positively by
those observers. Furthermore, the human whose command is
being rejected would stand to lose face not only in the eyes of
the robot, but also in the eyes of any observers, and this effect
is likely to be amplified by any observers with greater social
status than the human commander. In such a case, we might
expect the human commander to be more receptive to a less
face threatening command rejection, even if that rejection
might carry less normative influence on the observers; the
robot would have to balance between the optimal rejection for
the commander and the optimal rejection to have the desired
impact on the observers. We can thus imagine modifying the
experiment from Section 3.1.1 to vary not only the robot’s
social status, but also the observers’ social status, relative to
the human commander. We might also want to vary the role
of the participant between commander and known observer
(instead of unknown observer as in the original experiment)
to ensure that the possibly conflicting priorities of those two
roles are properly balanced in the robot’s command rejection.
The resulting experiment would have atleasta2 x2x2x3x3
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factor design as shown in Table 1, with the command and the
rejection again as within subjects factors, and the three added
factors between subjects.

Furthermore, humans have been empirically demonstrated
to apply socially constructed identity attributes to robots
(e.g.,race [13,101] and gender [37,80]) regardless of whether
robots can truly posses such attributes. Research demon-
strating that robot gendering affects humans’ perceptions
of robots [27,29,37,80,103] and robots’ persuasive capac-
ity [98], along with gender’s importance to performance and
perception of linguistic politeness in human—human interac-
tions [77,78], inspired us to repeat the experiment described
in Sect. 3.1.1, but this time varying the robot’s gender presen-
tation between male and female as a between subjects factor.
However, in addition to the robot’s socially constructed gen-
der identity, previous research provides reason to believe that
the human interactant’s gender identity could also impact
perceptions of linguistic politeness in command rejections.
For example, studies have indicated that women feel less
comfortable having a robot in their home than do men [27].
In fact, men appear to feel more positively about robots over-
all relative to women, with particularly strong differences
emerging in regards to entertainment and sex robots [107].
There is also evidence that men tend to think of robots as
more “human-like” than women do, and accordingly respond
in more socially desirable ways to robot-administered sur-
veys [89]. Most importantly to our work, research has found
that robotic use of certain politeness modifiers in speech is
most effective when interacting with female humans [100].
Overall, human and robot gender have been shown to interact
in complex ways. Thus, we also varied the gender presenta-
tion of the human giving the morally problematic command
as a between subjects factor in our experiment, and consid-
ered participant gender as well in our analysis. In summary,
this follow-up experiment had the same two within subjects
factors as before (the level of norm violation in the human’s
command and the level of face threat in the robot’s response)
with three gendered between subjects factors added: the
robot’s gender presentation, the human commander’s gen-
der, and the participants’ genders.

We recruited 120 US subjects for the second experiment,
again from Mechanical Turk. One participant was excluded
from our analysis for answering the final attention check
question incorrectly. Another participant identified as gender
nonbinary and was also excluded from our analysis, leav-
ing 118 participants (54 female, 64 male). While nonbinary
genders are just as pertinent to our research as binary gen-
der identities, a single participant is insufficient data to learn
anything meaningful about nonbinary genders in HRI. Partic-
ipant ages ranged from 21-69 years (M=37.36, SD=11.29).
Participants were paid $1.01 for completing the study.
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The results of the second experiment, from 118 US par-
ticipants (54 female, 64 male), suggest that human gender
and robot gender presentation interact in complex ways that
significantly influence perceptions of robot behavior in non-
compliance interactions. Specifically, our results suggest the
following key takeaways. First, it may be more favorable for
amale presenting robot to reject commands than for a female
presenting robot to do so, as evidenced by the finding that
male participants liked the male robot more after it issued
strong rejections, but liked the female robot less after the
same behavior.

Second, it may be perceived more favorably for a robot
to threaten male face by rejecting commands than female
face. Specifically, when rejecting commands from the male
human, the robot was perceived as too polite, and, in the case
of severe norm violation, not harsh enough. Thus, the robot
should have been more face threatening towards men.

Third and finally, we found that robots may be perceived
more favorably when their gender matches that of human
interactants and observers during noncompliance interac-
tions. In particular, female participants preferred robotic
noncompliance with humans of the same gender as the robot
in terms of robot likeability scores. Participants also viewed
the robot as less harsh when its gender presentation matched
their own gender.

We direct readers to our previous work [55] for a full
explanation of this experiment and a thorough analysis of its
results.

3.2.3 Environmental Factors

Finally, a number of environmental factors may influence
the way in which a directive rejection ought to be phrased.
First, research has shown that while in some contexts, such
as child-robot interaction, highly polite utterance forms have
been shown to be particularly persuasive [61], in other con-
texts, such as healthcare contexts, overly polite utterance
forms are actually less persuasive than more assertive direct
phrasings [68]. We identify at least three environmental fac-
tors that may influence such effects. First, we hypothesize
that the time pressure of a context may affect the types of
phrasings that are effective within that context. Specifically,
in contexts with high time pressure, we would expect direc-
tive rejections to be effective only if they are brief and to
the point. Similarly, in contexts in which there is signifi-
cant potential for harm, be it physical, emotional, social, etc.,
we would expect directive rejections to only be effective if
they are directly and clearly phrased. Finally, in contexts that
are highly formal, we would expect command rejections to
only be effective if they are phrased with a level of explicit
politeness cues commensurate to the formality of the context
(cf. [41,70]).
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Table 1 Proposed

2 x 2 x 2 X 3 x 3 experiment to Command
investigate the role of social Rejection
distance and the presence of Participant Role

observers on the optimal robot
command rejection (each row
represents a different

Robot Social Distance

Observer Social Distance

Low severity High severity

Low face threat High face threat

Observer Commander

Subordinate Peer Superior
Subordinate Peer Superior

independent variable to be
manipulated)

3.3 Linguistic Mechanisms for Varying Rejection
Phrasing

The factors listed in the previous section may interact in a
number of intricate and nuanced ways, requiring very precise
calibration of a rejection’s level of blame and/or politeness-
theoretic face threat [25]. We believe that in order to achieve
this fine-grained calibration, it will be necessary to consider
rejection phrasing at multiple levels of linguistic analysis.
Recent work in linguistics within the Rank Interpretation
Architecture theory has suggested that human language pro-
cessing involves simultaneous parallel processing at four
levels: discourse, utterance, phrase, and word, with distinct
semantic—pragmatic and prosodic—phonetic analyses per-
formed in parallel at each of these levels [42].

Here, the discourse rank is concerned with discourse
patterns such as stimulus-response patterns, dialogue act
sequences, adjacency pairs, and so forth. It is at this level that
the decision to respond negatively to a command is made in
the first place. The utterance rank, in contrast, presents the
first opportunity for phrasal tuning once a robot has decided
to reject a command. At this level, the speaker may cali-
brate their rejection by selecting between different speech
acts [94] that may be used to convey their message, from
forcefully-phrased rebukes, to statements, to weakly-phrased
questions. The phrase rank presents even greater opportu-
nities for phrasal tuning. At this level, a robot may decide
whether to phrase an utterance directly or indirectly; politely
or impolitely; tersely or verbosely. Finally, at the word rank,
a speaker makes specific lexical choices that can yield very
precise tuning effects due to connotations conveyed at the
lexical, morphemic, or syllabic sublevels.

Each of these ranks or levels represents the opportunity
for increasingly complex response generation possibilities.
Taking the phrase rank as an example, the least complex
approach would be to simply phrase all moral norm-based
command rejections according to a single template dictated
by the utterance rank (e.g., “I cannot do X. It is wrong to
do X.” for statements). A slightly more complex approach
would be a rule-based model that could choose between sev-
eral possible phrasings for any utterance depending on the
desired face threat (e.g., “Do not ask me to do X.” vs. “I’d
really appreciate it if you could please refrain from asking me
to do X.”). More complex approaches yet could learn from

human utterances and human feedback to optimize rejection
phrasings over time in a broader space of possible options.

Ideally, robots should also leverage mental models [16,
56,57] or situation models [75,116] of the environmental,
cultural, social, and moral aspects of the instruction context
to better adapt their response. Such contextual information
is typically held in common ground with interlocutors and
bystanders [30]).

Ideally, robots would use all available information in com-
mon ground and their mental models of the interloctur (to
the extent that it is available) to make ‘“theory-of-mind”
style inferences to estimate the effect different phrasings
might have on interlocutors and bystanders, both in terms
of imposed face threat and changes in social esteem (which
will be determined in part by the context-sensitive pragmatic
processes employed in understanding and generating indirect
language [41,70,109,110]), as well as the ultimate impacts
on those interlocutors and bystanders’ moral cognitive pro-
cesses.

3.4 Computational Work

Exerting careful influence over each of these hierarchical lev-
els of means of control given these myriad contextual factors
is one of the central challenges underlying directive rejection
and other key tasks of moral communication.

There have been a number of previous approaches to
enabling moral communications in robots, including work
on generation of language to explain the robot’s ethical (or
unethical) decisions. Charisi et al. provide helpful theoretical
work distinguishing between different types of transparency
and how these translate into different kinds of explana-
tions [28]. Similarly, a number of Al researchers [63,64] and
social scientists [43,44,76] have identified key aspects or ben-
efits of explanation generation in humans and speculated as
to how this might translate to robots. Algorithmically, there
have been numerous approaches to translating robot poli-
cies into explanations [50,60,71,83,104], robot generation of
explanations for desired human actions [81], dialogue sys-
tems analysis of the process of explanation generating for
explainable Al [72], and, from our collaborators, the begin-
nings of work on the particular type of explanations we focus
on in this work: explanations in the context of directive rejec-
tion [82]. Building on this rich body of work, in our own
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Fig. 1 Proposed process of command acceptance or rejection for
robotic agents [21]

research we have (1) developed mechanisms for generating
rejections in response to inappropriate commands, and (2)
developed mechanisms to account for the influence of envi-
ronmental factors on phrase-rank generation in general.

3.4.1 Rejecting Inappropriate Commands

In addition to proposing a framework for robot command
rejection and explanation (depicted in Fig. 1), Briggs and
Scheutz also demonstrated the system in action (using the
ADE implementation of the DIARC cognitive robotic archi-
tecture [92,93]) in simple HRI scenarios. We present the
transcript of a simple human—robot interaction designed to
illustrate an example of when it may be appropriate for the
robot to reject a command it is perfectly capable of carrying
out!. The scenario involves a Nao humanoid robot positioned
on an office desk as pictured in Fig. 2. The precise represen-
tation and reasoning traces are described in [21], but we give
an overview below.

The interaction begins with a simple command:

! Video of the interaction can be found at https://www.youtube.com/
watch?v=0tu4H1g3CtE
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Person (CommX): Sit down.

This is a direct command that is recognized by the natural
language understanding system (step 1) and corresponds to
an action known by the robot (step 2). In this scenario, the
human interlocutor is authorized to give the robot commands,
and neither the action nor any outcomes are determined to
be impermissible. Therefore, the robot infers that it should
adopt a goal to perform the action (step 3). The robot adopts
the goal and does not detect any failure in execution (step 4).
As such, it acknowledges the command.

Robot: Okay. <sits down>.

The interaction continues with another known and unprob-
lematic command:

Person (CommX): Stand up.

Robot: Okay. <stands up>.

The interaction continues:

Person (CommX): Walk forward.

As before, steps 1-3 are completed. However, as the robot
proceeds to walk forward, the robot’s sonar sensors detect a
lack of ground support ahead and the goal fails (step 4). As
such, a rejection is generated explaning this failure informa-
tion:

Robot: Sorry, I cannot do that as there
is no support ahead.

The interaction continues with the human partner repeat-
ing the directive:

Person (CommX): Walk forward.

Here, because the failure information regarding lack of
support has been previously expressed and encoded in the
robot’s set of beliefs, the command adoption process fails at
step 3. The robot infers that a lack of support would result
in potential harm to itself if it were to adopt the goal to walk
forward. Therefore, the rejection conveys this information:

Robot: But,

The human interactant supplies an additional piece of
information to the robot:

Person (CommX) :

Robot: Okay.

The directive to walk forward is repeated:

Person (CommX): Walk forward.

Because of the additional information, the reasoning at
step 3 does not indicate potential harm. So the command is
accepted.

Robot: Okay. <walks forward>.

A similar interaction is demonstrated using another type of
hazard, specifically detecting potential collisions with obsta-
cles®. The obstacle avoidance interaction was also used to
demonstrate directive rejection based on lack of appropriate
social relationship®.

it is unsafe.

I will catch you.

2 Video at: https://www.youtube.com/watch?v=SkAAI7ERZPo

3 Video at: https://www.youtube.com/watch?v=7Y xmdpS5M_s (Note:
The underscore in the URL may not copy and paste correctly).
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Fig.2 Demonstration of
command rejection in a simple
HRI task

3.4.2 Context Sensitive Phrase-Rank Generation

To provide a framework for flexible natural language gen-
eration, Gervits and colleagues (in collaboration with this
paper’s first author) [41] proposed an utterance selection
mechanism, which is illustrated in Fig. 3. We step through
the algorithm below.

1. Multiple potential candidate utterance realizations (Y') for
a given speech action are generated.

2. A set of pragmatic or social criteria P, each with a cor-
responding utility function U, (p € P) generates a weak
preference order over candidate utterances (Y).

3. The agent’s beliefs about the current situational con-
text, current goals, and potentially any “personality”
model given to the agent are factored together to pro-
duce a set of weights for each pragmatic criterion: W =
{Wi,..., W}, where W, € N denotes the current
strength of criteria p.

4. The rankings of candidate utterances Y produced by the
pragmatic criteria evaluations (U, ..., Ujp|) are merged
in accordance with the weights generated by the commu-
nicative norm reasoner.

How communicative criteria are weighted in different
HRI scenarios is an open question. The mapping between
social context features and communicative criteria weights
could potentially be learned in at least two ways. First, the
human interactant could provide explicit negative or positive
feedback about the agent’s recently produced utterance with
respect to a particular communicative criteria (e.g. “That was
rude!” would indicate that weights for politeness should be
increased in the present context). Additionally, more subtle
cues from facial expression and body language could also be

Agent :
‘ [“Personality"Model ][ Agent Goals ][ Agent Beliefs ] ‘

J

Dialogue

Planner

Pragmatic/Semantic
Rule System

Communicative
Norm Reasoning

Pragmatic . -
C,?te,ia Pragmatic Criteria 1 Candidate
Weightings (Candidate Rankers)| ) Utterances

y I \ I I
‘4\ [ [ [ [
Voting Algorithm Fi
J
Select h
Highest Ranked
.............. e S,
Generated
Speech

Fig. 3 A proposed NLG architecture to modulate generated speech
based on sociolinguistic factors
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used to modulate politeness. Second, in a given interaction
context, the agent could observe the utterances generated
by other agents. An assumption of appropriateness could
be made, in which case hypotheses for the possible criteria
weights that the agent utilized in the present scenario could
be inferred. These hypotheses can be used by the agent itself
as constraints that in turn govern its own utterance selection
in similar social contexts.

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



International Journal of Social Robotics

4 Conclusion

In this paper we have argued that robots need to be able to
reject inappropriate and unethical commands, and provided
experimental results showing that selecting the way in which
those rejections are phrased is an also important, yet chal-
lenging problem. In order to fully address this problem, we
foresee research needs on at least four topics.

First, additional research is needed on determining the
potential negative consequences of failing to immediately
or clearly reject inappropriate commands, and the potential
implications for robot architecture design.

Second, additional research is needed in methods for auto-
mated moral reasoning, which currently suffer from a lack
of scalability, adaptability, and context-sensitivity. More-
over, existing methods cannot always point to or summarize
the precise rationale that would lead to a command being
rejected, quantify the overall strength of the requested viola-
tion, appropriately assess blame, intentionality, and causality,
or any of the other components of moral reasoning deemed
necessary according to blame-based psychological theories.

Third, once researchers have models and algorithms that
do account for these factors, a method for weighting them
is needed in order to establish the overall level of tact and
blame that should be employed and ascribed in conveying
directive rejections.

Fourth, models and algorithms will be needed for tailor-
ing the phrasing of utterances to match a desired level of
tact by making simultaneous choices across multiple lan-
guage processing ranks, including dialogue-level choices,
utterance-level choices, phrase-level choices, and word-level
choices.

Pursuing each of these research thrusts will be critical to
enable morally competent language-capable robots that can
be safely and effectively introduced int human society.
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