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Abstract

Salient segmentation is a critical step in biomedical image analysis, aiming to cut out regions that are
most interesting to humans. Recently, supervised methods have achieved promising results in biomedi-
cal areas, but they depend on annotated training data sets, which requires labor and proficiency in related
background knowledge. In contrast, unsupervised learning makes data-driven decisions by obtaining
insights directly from the data themselves. In this paper, we propose a completely unsupervised self-
aware network based on pre-training and attentional backpropagation for biomedical salient segmenta-
tion, named as PUB-SalNet. Firstly, we aggregate a new biomedical data set from several simulated
Cellular Electron Cryo-Tomography (CECT) data sets featuring rich salient objects, different SNR set-
tings and various resolutions, which is called SalSeg-CECT. Based on the SalSeg-CECT data set, we then
pre-train a model specially designed for biomedical tasks as a backbone module to initialize network pa-
rameters. Next, we present a U-SalNet network to learn to selectively attend to salient objects. It includes
two types of attention modules to facilitate learning saliency through global contrast and local similarity.
Lastly, we jointly refine the salient regions together with feature representations from U-SalNet, with the
parameters updated by self-aware attentional backpropagation. We apply PUB-SalNet for analysis of 2D
simulated and real images and achieve state-of-the-art performance on simulated biomedical data sets.
Furthermore, our proposed PUB-SalNet can be easily extended to 3D images. The experimental results
on the 2d and 3d data sets also demonstrate the generalization ability and robustness of our method.

Unsupervised learning; Saliency segmentation; Biomedical image processing; Pre-trained methods

1 Introduction

Biomedical image segmentation has drawn attention due to its widespread applications in computer-
aided diagnosis and intelligent medical programs [1], among which salient segmentation refers to pixel-
level annotation for regions of interest (e.g. organelle, substructures, and lesions) on biomedical images
(e.g. Cellular Electron Cryo-Tomography (CECT) 3D images, Computed Tomography (CT) and Mag-
netic Resonance Imaging (MRI)). An example of semantic segmentation [2] and salient segmentation



with unsupervised methods on CECT images is shown in Figure. 1. We discover that traditional seg-
mentation cannot handle CECT images properly due to heterogeneous salient objects, various SNR and
low resolution of the data set, while salient segmentation can efficiently and effectively capture objects of
interest to people and mask off irrelevant regions. However, accurate salient segmentation is challenging
due to different shapes and sizes of the region of interest and diversity of images produced by various
biomedical imaging devices.

Original Image Semantic Segmentation  Salient Segmentation

Figure 1: An unsupervised example of semantic segmentation and salient segmentation on CECT images.

Recently, current salient segmentation methods on biomedical images [3] mostly use improved con-
volutional neural networks (CNN5s) and its variants, which rely on supervised learning that require labor-
intensive annotation of large data sets by experts. Furthermore, such methods are strictly limited by the
quality of data sets. They are vulnerable to problems of model generalization and extensibility when
facing adversarial training. In contrast, unsupervised learning not only derives insights directly from the
data but also uses them to make data-driven decisions. It is more practical and robust for some complex
tasks in biomedical areas, such as saliency detection and image segmentation. Therefore, it is crucial to
work out an effective unsupervised salient segmentation method for biomedical images.

However, in recent years few works have looked into unsupervised salient segmentation on biomed-
ical images due to the complexity of biological structures. [4] systematically reviewed current unsuper-
vised models for biomedical image segmentation. More recently, a unified unsupervised approach based
on clustering and deep representation learning was designed by [5]. [6] proposed a teacher-student un-
supervised learning system. The teacher performs unsupervised object discovery and at the same time,
multiple students with various network architectures are trained to ensure a better diversity. These meth-
ods are either based on clustering with posterior selection or dependant on carefully optimized network
hyper-parameters, which indicates that they are in need of human interference and are not completely
unsupervised.

In this paper, we propose the PUB-SalNet, which is a completely unsupervised network based on
pre-training and attentional backpropagation. In order to build a high-performance automatic biomedical
salient segmentation model to improve computer-aided diagnosis and other biomedical image analyzing
tasks, we design a processing pipeline with three major modules: 1). A pre-training method specially
designed for biomedical images; 2). The U-SalNet model, which selectively attends to salient objects via
fusing two attention mechanisms into U-Net; 3). An unsupervised self-aware backpropagation method
based on superpixels, which iteratively updates the parameters of U-SalNet. Through extensive exper-
iments, we demonstrate that the proposed PUB-SalNet outperforms all existing unsupervised methods
and achieves state-of-the-art performance on the simulated biomedical data sets. Furthermore, PUB-
SalNet can also be easily extended to 3D images. The experimental results on 2d and 3d biomedical
data sets show generalization ability and robustness of the proposed method. Our main contributions are
summarized as follows:

e We propose a novel PUB-SalNet model for biomedical salient segmentation, which is a completely
unsupervised method based on pre-training and attentional backpropagation.

o We aggregate a new biomedical data set called SalSeg-CECT, featuring rich salient objects, dif-



ferent SNR settings and various resolutions, which also serves for pre-training and fine-tuning for
other complex biomedical tasks.

e Extensive experiments show that the proposed PUB-SalNet achieves state-of-the-art performance
and can be easily extended to 3D images, demonstrating generalization ability and robustness of
our method.

The rest of the paper is organized as follows. We review related works in the next section. In
Section 3 we describe the PUB-SalNet and the completed processing pipeline for salient segmentation.
Quantitative and qualitative experiments are discussed in detail in Section 4. Lastly, in Section 5 we
conclude our method and future works.

2 Related Work

2.1 Pre-trained methods in biomedical images

Many works have shown that the pre-training method along with adequate fine-tuning is superior to
training from scratch, also being less dependent on the size of the training set [7]. However, in the
biomedical area, it is extremely challenging to build an effective pre-trained model due to the difficulty
of data acquisition and annotation by experts. Only a few pre-trained models are related to biomedical
images, among which the most famous is [8]’s MedicalNet. They collect data from some medical chal-
lenges and build the 3DSeg-8 data set with diverse modalities to train MedicalNet, and then transfer it
to other segmentation and classification tasks and achieve state-of-the-art performance. But their work
is demanding of high-quality medical images with various scan regions, target organs, and pathologies,
which is not applicable to cellular image analysis. With recent breakthroughs in CECT 3D imaging tech-
nology [9], it is now possible for researchers to deeply look into and comprehend the macromolecular
structure of the cell, which is more meaningful to biomedical fundamental studies. In order to solve the
challenges above, we present a pre-trained model intended for biomedical images featuring a low SNR,
low resolution and rich salient objects.
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Figure 2: The overview framework of our proposed method. The processing pipeline consists of three
main steps: (a). Pre-training on the SalSeg-CECT data set; (b). Prediction using the U-SalNet model;
(c). Unsupervised attentional backpropagation iterating on single images. The Enc and stands for the
encoder and decoder. The ), (<) and ) denotes the global attention mechanism, local attention mechanism
and convolutional decoding, respectively.



2.2 Unsupervised biomedical image segmentation

Unsupervised segmentation for biomedical images is very promising yet challenging. [10] concate-
nates two fully convolutional networks together into an autoencoder. The encoder produces a k-way
pixel-wise prediction while the decoder reconstructs the image. Both the normalized cutting loss of the
segmentation map and the reconstruction error are jointly minimized during training. However, we find
the training very difficult to converge due to the inappropriate combination of the loss functions. [11]
proposes an unsupervised skin lesion segmentation method to combine color and brightness saliency
maps into enhanced fusion saliency. Although it shows good results on dermoscopy images, it relies
too much on coloring and contrast information and cannot effectively perform salient segmentation on
grey-scale images (such as CECT). [2] optimizes the pixel labels using a common CNN network while
their parameters are iteratively updated by gradient descent to unify labels within a superpixel. However,
their model is trained every time on a natural image and displays randomness in predictions. It cannot
utilize knowledge from a large training set. Also, it does not work well when applied to noisy biomedical
images. In order to solve these problems and adapt to salient segmentation on biomedical images, we
load weights pre-trained on an assembled biomedical data set and present the U-SalNet model to extract
significant features.

2.3 Salient segmentation

Current salient segmentation methods on biomedical images treat the problem as a binary (namely salient
and non-salient) segmentation task, identifying the label (foreground or background) of pixels. Recently,
[12] proposes an attention gate (AG) model to focus on significant targets for medical image analysis.
Through AG, the model can ignore the background in images while mark out the salient objects mean-
ingful to the medical segmentation task. Specifically, AG extracts local information from a denser layer
in the decoder and then uses it as a gating signal for the current layer to combine low-level features
from the encoder network with the decoded features. However, it does not explicitly make use of global
interference when producing attention maps, resulting in their saliency maps ignoring global contrast
mechanisms. Different from their work, our proposed U-SalNet model applies both global and local
self-attention to better integrate saliency information.
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(b) Local Attention

Figure 3: The architecture of our U-SalNet model. (a) Global Attention and (b) Local Attention corresponds
to X and () from Figure. 2(b), respectively. GA and LA stands for Global Attention and Local Attention.
Conv means the convolution operation. € stands for weighted summation over the feature map.



3 PUB-SalNet

In this section, we describe our proposed PUB-SalNet. The goal of our work is to build a high-
performance automatic salient segmentation model appropriate for biomedical tasks without ground-
truth labels to improve computer-aided diagnosis. To reach this target, we design a processing pipeline
with three major steps, as shown in Figure. 2. In the first step, we aggregate a new biomedical data set
called SalSeg-CECT. We then pre-train a deep feature extraction model specially designed for biomed-
ical images, which can be used as a backbone module to initialize model parameters and to boost other
tasks without data annotations. In the second step, we present the U-SalNet model on the basis of the
U-Net architecture to learn to selectively attend to salient segmentation objects. The network includes
global attention and local attention to facilitate learning saliency through global contrast and local sim-
ilarity. In the last step, we jointly refine the salient regions together with feature representations from
U-SalNet, with the parameters updated by unsupervised attentional backpropagation. Details of each
step are explained in the following sections.

3.1 Pre-training method

Inspired by [8]’s work, we aggregate a large data set from several simulated CECT data sets with rich
salient objects, different SNR settings and various resolutions, which is called SalSeg-CECT and will be
described in Section 4. Based on the SalSeg-CECT data set, we then pre-train a model specially designed
for biomedical images, as is shown in the red dashed-line box in Figure. 2(a). Our goal is to learn robust
feature representations which can benefit training on biomedical data by utilizing a pre-trained network
on the SalSeg-CECT data set. In this work, for deep feature extraction on biomedical data sets, we adopt
the common encoder-decoder architecture to train our backbones of the network. Particularly, we choose
the U-Net model as the basic structure on 2D images, and the V-Net for 3D volumes. The significant
differences of SalSeg-CECT images from natural images come from the low SNR, limited tilt projection
range (the missing wedge effect) and crowded nature of intracellular structures. Therefore, our pre-
trained method is different from the current common pre-trained models. To the best of our knowledge,
we are the first to pre-train a model on biomedical CECT data.

3.2 U-SalNet architecture

Our U-SalNet model includes two attentional mechanisms: global attention and local attention, which
are integrated into the U-Net architecture, as is shown in the purple dashed-line box in Figure. 2(b). U-
SalNet aims to selectively segment salient objects from the background by generating an attention map
at each pixel. We apply the two modes of attention to refining salient regions in biomedical images. The
detailed U-SalNet architecture is shown in Figure. 3. We first upsample each level of feature maps in the
decoder branch and concatenate them with their corresponding levels of features in the encoder branch.
After concatenating the outputs from encoder and decoder, we get a feature map I' € RE*W*H 4q the
input to the attention module, where C, W, H denote the channels, width, and height, respectively.

For global attention, as is shown in Figure. 3(a). To generate attention over the whole feature map I"
for each pixel, we first apply four ReNet models[13] to sweep across a feature volume both horizontally
and vertically along two directions to concentrate global information. Next, a convolution operation is
performed to transform this feature map to D¢ channels, where Dg = W x H. At the same time,
the feature vector " at each pixel (w, h) is normalized via softmax to obtain global attention weights
®w:h as is shown in Equation (1). Here 7,5 € {1,..., Dg}.

In order to generate the global attention feature I',4, as is shown in Equation (2) and (3), the features
at all locations in the whole feature map I' are summed with weights according to CID;JJ’h. @;”’h refers to
the salient correlation between the object pixel (w, h) and the pixel at the i*"* location (w;, h;). Conv; €
R is the Conv feature at (w;, h;) in I'. T'44 has the same size with T".

For the local attention, as is shown in Figure. 3(b), we consider a local feature cube [wh ¢
RW'>*H'C centered at (w,h) with width W’ and height H'. &' is derived from convolution layers
with a reception field of W’ x H' in the original feature map for each location. Similar to global atten-
tion, the features in I'"**** are weightedly summed by ®"**" to construct I',,,,, as is shown in Equation
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It’s worth noticing that although our attention mechanism is similar to [14]’s work, they only consider
the serial combination of global and local attention. Our U-SalNet focuses more on fusing two attention
modules through convolutional decoding. In addition, their model adopts deep supervision, as is shown
in Equation (5), where y; denotes the true saliency map and y,, is the predicted saliency map. Also, their
experiments are all based on natural images and do not apply to biomedical images. On the contrary, our
proposed U-SalNet architecture not only applies to complex biomedical images featuring a low SNR, low
resolution and rich salient objects but also achieves complete unsupervision. We will further describe
the unsupervised attentional backpropagation algorithm in the next section.

3.3 Unsupervised backpropagation

The proposed unsupervised backpropagation algorithm is shown in Algorithm 1. For the salient segmen-
tation task, we consider two aspects: 1) predicting salient objects through current network parameters;
2) training network parameters through current salient predictions. Accordingly, we can obtain salient
regions by a forward pass through the neural network and use gradient descent to optimize the backward
pass of the network at the same time. In order to update the parameters, we adopt stochastic gradient
descent (SGD) with momentum to backpropagate results of the cross-entropy loss calculated between
outputs of the model {Y,'} and the refined salient object labels {y, }. In the backpropagation step, we use
the SLIC algorithm [15] implemented in scipy for the Get Superpixzels method. {y.,} is unified within
every superpixel in an image, which is obtained through voting of labels inside a single superpixel and
taking the majority of labels as the result. Different from [2]’s work, their prediction results are random
and often fails on biomedical images. For solving these problems, our network parameters are initialized
with the pre-trained method mentioned above. Furthermore, two attentional modules of the U-SalNet
are combined to further refine the results, which achieves self-awareness. Finally, the forward-backward
process is iterated I times to generate the final prediction of salient objects {y,}. The probabilities
{Y;'} was trained in a self-supervised manner using {y,,}. The orange dashed-line box in Figure. 2(c)
illustrates the proposed algorithm to train our U-SalNet model.

4 Experiments

4.1 Datasets setting

Our SalSeg-CECT data set includes 36,000 2D and 72,000 3D CECT images, which are generated with
4 levels of SNR (0.1, 0.5, 1.0 and 1.5), various resolutions and missing wedge effects. The procedure
of simulation uses the same simulator as in [24], which simulates tomographic images by imitating the
actual tomography reconstruction process using macromolecular complexes of known densities. For 2D



Algorithm 1 Unsupervised Backpropagation Algorithm

Require: Original biomedical image
Ensure: Salient segmentation results
1: (W, b) = Init() // Initialize backbone parameters
2. (Wb, nClass) = Init() // Initialize classifier parameters
3: {Sp}HE | = GetSuperpizels({pn})_;)
4: for iter =1 — I do

5 if nClass > 2 then

6: {F N = GetFeatures({p,}N_,, {W,b})
7: {GA}YN_, = Global Attention({F,}Y_,)

8 {LAN_| = Local Attention({ F,}_,)

o0 VN = (WI(GA@ LA + VI,

10: {Y)}N_| = BatchNorm({Y,, })_,)

11: {yn})_; = {argmax Y, }V_, //predict salient labels
12: forp=1— Pdo

13: Ymax = argmax|yn|nes,

14: Y = Ymax fOr n € S,

15: end for

16: L = CrossEntropyLoss({Y,, v, })_,)

17: {W,b},{W' b’} = Update(L)

18: end if

19: end for

images, tomograms are sliced into grayscale images in 3 dimensions with resulting width and height of
200 pixels. Our augmentation includes random flipping and cropping. For 3D images, tomograms are
segmented into volumes of 64 x 64 x 64 and their values normalized before being fed into models. The
test set is generated independently with macromolecular complexes different from the training set with
SNR = 0.5 and SNR = 1.5. To verify the ability of generalization of PUB-SalNet, we also apply it to the
ISBI data set [25] and visualize our results in Figure. 6.

4.2 Implementation Details

All our networks are implemented with PyTorch. 3 NVIDIA GTX 1080 Ti GPU with 11GB GPU mem-
ory each are used for pre-training and testing. In the pre-training step, we choose batch size = 4 for
both 2D and 3D settings. For 2D, we use the SGD optimizer with learning rate=0.01, momentum=0.9
and weight decay = 0.0005. While for 3D, the learning rate is 1e~> and momentum is 0.99. In case of
memory explosion, we apply global attention twice followed by local attention three times and a convo-
lutional decoding layer in the decoder of U-SalNet. The default number and compactness of superpixels
are 10000 and 100. The maximum number of backpropagation iterations is set to 1000. The label of the
majority of pixels is regarded as “non-salient”. The initial number of classes to be decreased is set to 100
as default. If the algorithm does not converge to 2 classes of labels after 1000 iterations, all the labels
except for the non-salient type will be counted as “’salient”.

4.3 Evaluation Metrics

To compare the quantitative results generated by different methods, here we use four popular metrics to
evaluate our model against other unsupervised methods.

Region Similarity F'. To measure the similarity of matching regions from two salient segmentation
maps, F'is defined as:



Data set SNR=0.5 SNR=1.5

Method Metric | F E s e F E s

Itti [16] 0.1277 0.4759 0.3811 0.4445 0.1206 0.6396 0.4639 0.4781
LC[17] 0.1626 0.3277 0.4466 0.4846 0.1463 0.4615 0.4369 0.5022
SR [18] 0.1340 0.2535 0.3020 0.4406 0.1316 0.3439 0.2911 0.4423
1G [19] 0.2843 0.1713 0.4775 0.4262 0.2978 0.1848 0.4739 0.4322
SIG [20] 0.2623 0.2647 0.4959 0.4781 0.2310 0.3387 0.5134 0.5177
VA [21] 0.2843 0.1713 0.4775 0.4262 0.2978 0.1848 0.4739 0.4322
SVA [20] 0.2625 0.2647 0.4957 0.4779 0.2305 0.3414 0.5129 0.5186
VBP [22] 0.1295 0.3049 0.4033 0.4527 0.1224 0.4588 0.4053 0.4717
SalGAN [23] 0.1427 0.1984 0.3126 0.4411 0.1585 0.2367 0.4090 0.4629
PUB-SalNet 0.0914 0.6573 0.7036 0.6494 0.0762 0.7426 0.7522 0.7209
Improvement 128.43% 1 38.12% 141.88% 134.01% 136.82% 116.10% 146.51% 1 39.00%

Table 1: Comparison of performance of ten unsupervised methods with four metrics on the simulated
biomedical test sets. € stands for Mean Absolute Error (MAE), F' for region similarity, £ for the enhanced
alignment measure, and S for structural similarity. Lower is better for €, and higher is better for the other
three metrics. The results are calculated according to Equation (6), (7), (8). The best performance of each
metric is in bold and the second best is underlined. The improvements of our PUB-SalNet over the best of
other methods in relative percentage is shown in the last row.

Data set SNR=0.5 SNR=1.5

Moted Metric | F E S e F E s

B 0.1461 0.1628 0.3692 0.4230 | 0.1433 0.1628 0.3960 0.4223
U+B 0.2870 0.1628 0.4834 0.3585 | 0.2677 0.1628 0.5130 0.3693
P+B 0.1063 0.5631 0.5906 0.5661 | 0.0949 0.6551 0.5947 0.5979
P+U 0.1104 0.6214 0.6306 0.6506 | 0.0973 0.7544 0.7465 0.7617
P+U+B 0.0914 0.6573 0.7036 0.6494 | 0.0762 0.7426 0.7522 0.7209

Table 2:

Quantitative comparisons between different combination of modules from our PUB-SalNet model.

B stands for a single unsupervised backpropagation module; U+B stands for U-SalNet architecture with B;
P+B means B based on the pre-training method; P+U means U-SalNet based on the pre-training method,
note that this is actually not an unsupervised method; P+U+B is our proposed PUB-SalNet.

F=

(1+ %) Precision x Recall

(32Precision + Recall

where 32 = 0.3 to balance between recall and precision.
Pixel-wise Accuracy ¢. F' does not consider true negative saliency predictions. We define the
normalized ([0, 1]) mean absolute error (MAE) between predicted salient segmentation maps and ground

truth masks as:

1 W H
g = WXHZZ||M(x’y)_G(x’y)H

r=1y=1

where W and H are the width and height of images, respectively.
Enhanced Alignment Measure E. Proposed by [26], using the enhanced alignment matrix ¢ s
to measure the two properties (pixel-level matching and image-level statistics) of a binary map, E is

defined as:

Qrv =
w

w h
DI INCR)
r=1y=1

(6)

)

®)




SNR = 1.5

Figure 4: Qualitative visual results of ten unsupervised methods on the simulated biomedical data set with
SNR = 0.5 and 1.5. GT stands for ground truth images, PUB is PUB-SalNet, and the other nine methods are
referenced in Table 1.

Data set SNR=0.5 SNR=1.5

Method

Metric | F E S c r E S

PUB-SalNet-B20 | 0.0984 0.6347 0.6964 0.6428 | 0.0793 0.7239 0.7447 0.7124
PUB-SalNet-B40 | 0.0961 0.6396 0.6945 0.6443 | 0.0766 0.7318 0.7320 0.7107
PUB-SalNet-B60 | 0.0945 0.6437 0.6710 0.6358 | 0.0774 0.7218 0.7294 0.7032
PUB-SalNet-B80 | 0.0943 0.6543 0.7221 0.6598 | 0.0783 0.7327 0.7340 0.7065
PUB-SalNet-B100 | 0.0914 0.6573 0.7036 0.6494 | 0.0762 0.7426 0.7522 0.7209

Table 3:

The quantitative comparison of parameter sensitivity analysis under four metrics. ¢, F', F and S

are the same as Table 1. For PUB-SalNet-BX, X stands for the initial number of classes to be decreased, as
is in Function Init() parameter in Algorithm 1.

where h and w are the height and width of the map, respectively.
Structural Similarity S. S proposed by [27] evaluates the structural similarity by considering both

regions and objects. Since saliency of potential spacial structures is crucial to biomedical images, we
additionally use S to comprehensively evaluate the structural similarity of biomedical images.

4.4 Quantitative Evaluation

Table 1, Table 2 and Table 3 show quantitative evaluation results on the simulated biomedical test set,
which we will detailedly discuss in the following three subsections.

4.4.1 Comparison with state-of-the-art

As is shown in Table 1, we compare our PUB-SalNet model to 9 other state-of-the-art unsupervised
methods. We demonstrate through experimental results that our proposed PUB-SalNet outperforms all
existing unsupervised methods with a great margin (such as 46.51% for E-Measure on SN R = 1.5 and
41.88% on SN R = 0.5) and achieves new state-of-the-art performance.

4.4.2 Ablation Study

To demonstrate the effectiveness of the proposed PUB-SalNet model, we compare quantitative results
of different combinations of modules from our method, as is shown in Table 2. B stands for back-
propagation from [2]’s work, which serves as our baseline because it is a classic unsupervised image
segmentation method using deep learning. The experimental results in Table 2 shows that three parts
of our PUB-SalNet functions together and are all indispensable. It is even competitive compared to the
supervised method.



(a) Original Image (b) Ground Truth

Figure 5: Visualization of 3D salient segmentation by PUB-SalNet on a 3D subvolume of size 64 x 64 x 64
from the CECT test set. The pictures are obtained using UCSF Chimera, which displays the isosurface of
the 4 corresponding 3D images. (d) demonstrates that the predicted salient region greatly overlaps with the
ground truth macro-molecular structure.

Original Image Ground Truth

Figure 6: Case study of 2D salient segmentation by PUB-SalNet and the B module on the ISBI Challenge
[25].



Data set ISBI 2017 Skin
Metric

Method c F B

B 0.3136 0.3378 0.4140

P+U+B 0.3498 0.3378 0.4674

Table 4: The performance comparison of the strong baseline model (B, for backpropagation only) and our
proposed PUB-SalNet under three metrics on the ISBI Challenge [25]. €, F' and E are the same as in Table
1. The best performance of each metric is in bold.

4.4.3 Parameter Sensitivity Analysis

In order to demonstrate the robustness of our proposed model, we also construct an experiment of pa-
rameter sensitivity analysis. The quantitative comparison under four metrics is shown in Table 3. Our
experiments show a deviation within 1%-3% on the evaluation of the four metrics, which indicates that
the parameters of our model have little influence to salient segmentation results.

4.5 Qualitative Evaluation

Figure 4 demonstrates the saliency maps predicted by nine unsupervised saliency detection methods on
our testing data set with SNR = 0.5 and SNR = 1.5. Traditional algorithms sometimes are able
to detect multiple salient objects due to their superior capabilities of capturing low-level contrasts of
features. When facing grayscale biomedical data sets with low SNR, deep learning methods are not
as promising as we expected, which highlights blurry regions with richer contextual information. The
performance of PUB-SalNet outperforms all other unsupervised methods on salient segmentation. We
also present our results on the 3D CECT test set in Figure 5, which proves the generalization ability of
our model. Our model is capable of detecting salient objects under various settings and can be effectively
extended to 3D image processing tasks.

4.6 Case Study on the ISBI Challenge

A case study of 2D salient segmentation by PUB-SalNet and the B module on ISBI 2017 Challenge on
Skin Leision Analysis[25] is shown in Figure 6. To the best of our knowledge, we are the first to conduct
unsupervised salient segmentation on the ISBI challenge. Comparison of the strong baseline model (B,
for backpropagation only) and our proposed PUB-SalNet under three metrics is shown in Table 4. B
module outperforms P+U+B by predicting shapes and edges with more accuracy. However, with the
lack of global features, it falsely captures small differences in color within a piece of illness. It can
also be easily perturbed by impurities or foreign matters, as is shown in the first two examples. P+U+B
can produce smoother results, although sometimes fails to match the target in shape. P+U+B benefits
from abundant semantic information and produces better results in the last two rows, while B focuses on
wrong patches of color and cannot detect saliency on a global scale.

5 Conclusion

In this paper, we propose a completely unsupervised self-aware network based on pre-training and at-
tentional backpropagation for biomedical salient segmentation, namely PUB-SalNet. The experimental
results on the 2D and 3D data also display the generalization ability and robustness of our method. In
the future, we will integrate our salient segmentation method into other complex biomedical tasks, such
as biomedical image registration and quantification of uncertainty in segmentation.
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