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Abstract

Let X be a product of smooth projective curves over a finite unramified extension k
of Q,. Suppose that the Albanese variety of X has good reduction and that X has a
k-rational point. We propose the following conjecture. The kernel of the Albanese map
CH(X)? — Alby (k) is p-divisible. When p is an odd prime, we prove this conjecture
for a large family of products of elliptic curves and certain principal homogeneous
spaces of abelian varieties. Using this, we provide some evidence for a local-to-global
conjecture for zero-cycles of Colliot-Thélene and Sansuc (Duke Math J 48(2):421-
447, 1981), and Kato and Saito (Contemporary Mathematics, vol. 55:255-331, 1986).
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1 Introduction

Let X be a smooth, projective, and geometrically connected variety over a field k. We
consider the group CHy(X) of zero cycles on X modulo rational equivalence. This
group is a direct generalization of the Picard group Pic(C) of a curve C, and as such

it inherits many of its properties. Namely, there is a degree map, CH(X) it 7,
whose kernel will be denoted by F!(X). Moreover, there is a generalization of the
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Abel-Jacobi map,

FlLx) 2 Alby (k).

called the Albanese map of X, where Alby is the dual abelian variety to the Picard
variety of X. When X has a k-rational point, the degree map is surjective. When & is
algebraically closed it follows by Roitman’s theorem that the Albanese map is also
surjective [37], but this is not always true over arbitrary fields, except in some special
cases. Some examples when surjectivity holds include K 3 surfaces and geometrically
rationally connected varieties (in these cases surjectivity holds trivially since Alby =
0), and products of curves all having a k-rational point [20,36]. Coming to the question
of injectivity, unlike the case of curves when the map alby is always injective, in higher
dimensions the situation is rather chaotic and the map alby has often a very significant
kernel, which we will denote by F 2(X). Mumford [33] was the first to find examples
of surfaces over C with enormous F?, in particular not finitely generated. The key
feature of these examples was the positive geometric genus, p,(X) > 0.

When £ is a finite extension over its prime field, the expectations for the structure
of F2(X) are on the other extreme, predicting that F 2(X) is rather small. When k is
a finite field, F%(X) is indeed finite and its structure can be understood by geometric
class field theory [22,26]. When k& is a number field, that is, a finite extension of QQ, we
have fascinating conjectures due to Beilinson and Bloch. Namely, Beilinson predicts
[1] that F?(X®;Q) = 0, which would imply that F 2(X) is a torsion group, while
Bloch [2] expects that the group CH(X) is a finitely generated abelian group. The
two conjectures combined suggest that F2(X) should be finite. Apart from curves
for which the above conjectures follow by the Mordell-Weil theorem, there is some
evidence for surfaces with p¢(X) = 0 by the work of Colliot-Thélene and Raskind
[6] and Salberger [39], and for the self-product E x E of an elliptic curve E over QQ by
the work of Langer and Saito [29], and Langer and Raskind [28]. Namely, for all these
classes of surfaces it has been shown that the torsion subgroup of F2(X) is finite.

The intermediate case of a p-adic field k is rather interesting, as it features similar-
ities with both C and Q. In this case the group F2(X) is conjectured by Raskind and
Spiess to have the following structure.

Conjecture 1.1 (Raskind, Spiess [36, Conjecture 3.5.4]) Let X be a smooth projective
variety over a finite extension of the p-adic field Q. The Albanese kernel F 2(X) is
the direct sum of a divisible group and a finite group.

This conjecture was inspired by earlier considerations of Colliot-Thélene [4, Conjec-
ture 1.4(d, e, f)]. A celebrated result in this direction is due to Saito and Sato [38],
who proved a weaker form of Conjecture 1.1, namely that the group F'(X) is the
direct sum of a finite group and a group divisible by any integer m coprime to p. The
full conjecture has been verified in very limited cases including rationally connected
varieties with good reduction [27, Theorem 5] (those in fact satisfy F 2(X ) =0)and
certain products of curves, [36, Theorem 1.1], [14, Theorem 1.2]. Moreover, for ratio-
nally connected varieties with semistable reduction and abelian varieties with good
ordinary reduction it has been established that the group F2(X) is the direct sum of
a divisible group and a torsion group (cf. [27, Corollary 9] and [13, Theorem 1.1]
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respectively). We also refer to [34] for a list of results on CH( for quadric fibrations
over various types of fields, including number fields.

When X has good reduction, it follows by [38, Theorem 0.3, Corollary 0.10] and
[22, Theorem 1] that the group F!(X) is [-divisible for every prime [ # p. For the
classes of varieties for which Conjecture 1.1 has been verified, this is also true for

the group F2(X). It is natural therefore to ask if the same holds for the “p”-part, a
question which only makes sense for the group F2(X).

Question 1.2 Suppose that the variety X has good reduction and that Conjecture 1.1
holds for X. Is the group F2(X) p-divisible?

The answer is no in general. In fact all the known results [ 14,16,36,52] indicate that the
group F2(X)/p is nontrivial when k is ramified enough. The purpose of this article is
to investigate what happens when k is unramified over Q,,. We expect that in this case
Question 1.2 should have an affirmative answer, at least for certain classes of varieties,
including some cases of bad reduction. This expectation is strongly motivated by
certain local-to-global expectations for zero-cycles, which will be discussed in more
detail in Sect. 1.1. We suggest the following conjecture.

Conjecture 1.3 Suppose that k is a finite unramified extension of Q. Let X =
C1x --- xC, be a product of smooth projective curves over k such that for i =
1,...,r, Ci(k) # D. Suppose we are in one of the following two situations:

(a) The Jacobian variety J; of C; has good reduction, fori = 1,...,r.
(b) The Jacobian variety J; of C; has split multiplicative reduction, fori = 1,...,r,
that is, C; is a Mumford curve over k.

Then, the kernel of the Albanese map F*(X) is p-divisible.

Our first significant evidence for the situation (a) of the above conjecture is the fol-
lowing theorem, which constitutes the main result of this article.

Theorem 1.4 (cf. Theorem 4.5) Let X = E| X E; be a product of two elliptic curves
over a finite unramified extension k of Q, with good reduction, where p is an odd
prime. Suppose that one of the curves has good ordinary reduction. Then, the Albanese
kernel F2(X) is p-divisible.

We note that Conjecture 1.1 has already been established for such products by joint
work of the first author with Isabel Leal [14, Theorem 1.2]. Moreover, using easy
descent arguments, and related work of Takao Yamazaki [52], we verify Conjecture
1.3 in the following additional cases, including the situation (b) of Conjecture 1.3.

Corollary 1.5 (cf. Corollaries 4.10, 4.11, and 4.13) Let k be a finite unramified exten-
sion of Qp, with p is odd. Then, Conjecture 1.3 is true for each of the following classes
of varieties:

(a) An abelian variety A such that there is an isogeny A 2 Ei{x --- X E, of degree
coprime to p, where E; are elliptic curves over k with good reduction with at most
one having good supersingular reduction.

(b) A principal homogeneous space X of an abelian variety A, such that X Qi L ~
A ®y L for some finite extension L /k of degree coprime to p and with A as in (a).
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(¢c) A product X = C1x --- x C, of Mumford curves over k.

Our current techniques work well only for odd primes p. However, we have no sig-
nificant reason to exclude p = 2 from Conjecture 1.3. When X = E| x E> with both
curves having good supersingular reduction we only obtain a partial result, which we
will state in Sect. 1.2. Before doing that, we would like to discuss some connections
of Conjecture 1.3 with certain local-to-global expectations.

1.1 Local-to-global approximations for zero-cycles

For a smooth projective geometrically connected variety X over a number field F, it
is customary to consider the diagonal embedding X (F) < X (AF) to the set of adelic
points, X (Ar) = [[,cq X (Fy), where € is the set of places in F. When X (F) # @,
the question that arises is whether X satisfies weak approximation, that is, whether
X(F) is dense in X (A ). The Brauer group Br(X) of X is known to often obstruct
Weak Approximation (cf. [35,44]). Namely, it gives rise to an intermediate closed
subset, X (F) C X(Ap)B"™® < X(Af), which is often properly contained in X (A ).
This obstruction is called Brauer—Manin obstruction to Weak Approximation.

Although this obstruction cannot always explain the failure of Weak Approximation
for points, its zero-cycles counterparts are conjectured to explain all phenomena. We
are particularly interested in the following conjecture.

Conjecture 1.6 ([7, Section 4], [23, Section 7], see also [4, Conjecture 1.5(c)] and
[50, Conjecture (Eg)]) Let X be a smooth projective geometrically connected variety
over a number field F. The following complex is exact:

1(ir_nFl(X)/n N l(ir_nFA(X)/n — Hom(Br(X)/Br(F), Q/7Z).

n

Here, the adelic Chow group F A(X ) is essentially [[,cq ; FY(X®F F,) with a small
contribution from the infinite real places, where €2 s is the set of all finite places in F'.
For a precise definition see Sect. 5.

Conjecture 1.6 was originally suggested by Colliot-Thélene and Sansuc [7] for
geometrically rational varieties built upon some evidence. It was later extended to
general varieties by Kato and Saito [22]. However, to this day the only evidence we
have for this conjecture is for several classes of rationally connected varieties, starting
with the work of Colliot-Théléne, Sansuc and Swinnerton-Dyer on Chatelet surfaces
[8,9], and continued by multiple authors (cf. [51] for a great survey article). There is
some recent partial evidence for K 3 surfaces by work of leronymou [18], which is the
only known result for varieties with positive geometric genus.

We are interested to see whether the above conjecture has any chance of being true
for a product X = C; x C> of two curves over F having an F-rational point. In what
follows we do a quantitative analysis of this problem. In this case the Albanese variety
Alby is just the product Jj x J> of the Jacobian varieties of C, C3, and it follows by
a result of Raskind and Spiess [36, Corollary 2.4.1] that we have a decomposition

CHo(X) = Z@ Albx (F)® F*(X) = Z® J,(F) ® J»(F) ® F*(X).
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If we assume the finiteness of the Tate—Shafarevich group of J; x J, then verifying
Conjecture 1.6 is reduced to proving that the following complex is exact (cf. Proposi-
tion 5.4):

1(i£1F2(X)/n N Lir_nFi(X)/n — Hom(Br(X)/Br;(X), Q/Z), (1.1)

where Bri(X) = ker (Br(X) — Br(X®pF)) is the algebraic Brauer group, and
the quotient Br(X)/Bri(X) is the transcendental Brauer group of X. By a result of
Skorobogatov and Zarhin [46] the quotient Br (X)/Br(X) is finite for such a product
of curves X defined over a number field. At the same time, the Beilinson—Bloch
conjectures predict that the group F2(X) is finite, and should therefore coincide with
1(11_‘[1 2 F2(X)/n. As a conclusion, for Conjecture 1.6 to be compatible with the global

expectations, the adelic Albanese kernel l(in n Fﬁ (X)/n must also be finite. Conjecture
1.3 when combined with Conjecture 1.1 and [36, Theorem 3.5] imply this finiteness,
suggesting that the group 1<1r_n nF K (X) /1" vanishes, for all rational primes / lying below
unramified places of F of good reduction. Theorem 1.4 yields the following corollary,
which is precisely of that flavor.

Corollary 1.7 (cf. Corollary 5.7) Let X = E| x E be the product of two elliptic curves
over a number field F. Assume that for i = 1, 2 the elliptic curve E; has potentially
good reduction at all finite places of F. There is an infinite set T of rational primes
such that [[,cq [ lier 1(&1 ZWF2(X®p F,)/I" = 0. In particular, the result holds when

fori = 1,2 the elliptic curve E; ®Q@ has complex multiplication by the ring of
integers of a quadratic imaginary field K;.

Unfortunately, the complement of 7 may be infinite, because in order to use Theorem
1.4, we need to exclude the rational primes below all places of bad reduction, all
ramified places, and all places where both curves have good supersingular reduction,
and the latter subset is infinite. In the present article we can only treat the case of
potentially good reduction. We hope that in a future paper we will explore higher
ramification cases and primes of bad multiplicative reduction, where it is very likely
that global zero-cycles need to be constructed.

Remark 1.8 One could suggest extending Conjecture 1.3 to K3 surfaces, as most of
the above analysis carries over to that case. Namely, in this case the groups F'(X)
and F?(X) coincide, which allows once again to reduce Conjecture 1.6 to proving
exactness of (1.1). Additionally, the quotient Br(X)/Bri(X) is finite [45, Theorem
1.2]. Our methods do not provide any information for those at the moment. However,
if one could verify Conjecture 1.3 for K 3 surfaces, this would strengthen very signifi-
cantly the recent result of leronymou [18, Theorem 1.2], which could potentially lead
to a full proof of Conjecture 1.6 for K3 surfaces. Another interesting case to consider
is surfaces with p¢(X) = 0, which are not rationally connected. These are known to
have finite Albanese kernel ([6], see also [4, Théoréeme 2.2]).
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1.2 Outline of the method and additional results

The key tool to prove Theorem 1.4 is the use of the Somekawa K -group K (k; E1, E»)
attached to E, E;. This group is a quotient of the group @L/k finite E1(L) ® E2(L),
and it is a generalization of the Milnor K-group Kévl (k) of k. For a finite extension
L/k and points a¢; € E;(L), the image of a tensor ¢ ®a; inside K (k; Ey, E») is
denoted as a symbol {ay, a2} /. Raskind and Spiess [36] proved an isomorphism,
p: F2(X) => K (k; E1, E»). As an example, if (x, ) € X (k) is a k-rational point,
then p sends the zero-cycle [x, y] — [x, 0] — [0, y] 4 [0, 0] € F?(X) to the symbol
{x, Ysk-

Some limited cases of Theorem 1.4 were obtained in [14] for good ordinary reduc-
tion, but the arguments were very ad hoc. In the current article, we develop a uniform
method to prove p-divisibility of K (k; E1, E2). Our method roughly involves the
following main steps:

Step 1: (cf. Theorem 4.4) We show that the K-group K (k; E, E»)/p is generated by
symbols of the form {x, y}i« for (x, y) € X (k).

Step 2: (cf. Theorem 4.5) We prove that all symbols of the form {x, y}x/ are p-
divisible.

The,lgey to prove both steps is to consider the extension L = k(fl [pl, Ez[p]),
where E; is the formal group of E;, and study the restriction map

resy /k
K (k; Ev, E2)/p —— K(L; E1, E2)/p.

We may reduce to the case when the extension L /k is of degree coprime to p, in
which case resy s« is injective. The advantage of looking at the restriction is that under
the reduction assumptions of Theorem 1.4, we have a complete understanding of the
group K (L; Eq, E»)/ p; namely it is isomorphic to (Z/pZ)" for some O < r < 2.
When both curves have good supersingular reduction, Step 2 still holds. It is much
harder to establish Step 1 however. In this case we obtain the following partial result.

Theorem 1.9 (cf. Theorems 4.6, 4.9) Let k be a finite unramified extension of Q. Let
X = E X E be the self product of an elliptic curve over k with good supersingular
reduction. Let L = k(E[p]). Then all symbols of the form {a, b}p x and {a, b}ii
vanish in K (k; E, E)/p.

In order to give some content to Theorem 1.9, we note that in all other cases it has
been established by previous work of Isabel Leal and the authors [14,16] that the
group K (L; Ey, Ez)/ p is generated by symbols {x, y}. /. defined over L. We expect
the same to be true in the case of two elliptic curves with good supersingular reduction,
and then Theorem 1.9 would imply p-divisibility. However, this case appears to be
much harder, and at the moment we do not have a good way to control all finite
extensions.
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1.3 Notation

For a variety X over a field £ and an extension L /k, we will denote by X1 := X ®; L
the base change to L. For an abelian group A and an integer n > 1, we will denote by
A[n] and A/n the n-torsion and n-cotorsion respectively. For a field k we will denote
by Gy := Gal(k/k) the absolute Galois group of k. Moreover, for a G;-module M we
will denote by H' (k, M) the Galois cohomology groups of M, fori > 0.

2 Background

In this section we review some necessary background. We start with the definitions of
Mackey functors and Somekawa K -groups. Throughout this section, £ will be a field
with characteristic 0.

2.1 Mackey functors

Following [36, (3.2)], we introduce Mackey functors and their product. For properties
of Mackey functors, see also [19,20].

Definition 2.1 A Mackey functor M (over k) is a presheaf of abelian groups in the
category of étale k-schemes equipped with push-forward maps f,: M(X) — M(Y)

for finite morphisms X Ly , satisfying the following properties:

(1) M(X1uXp) =M(X1)DM(X>,), for étale k-schemes X1, X».
(i) If Y’ Y is a finite morphism and

X 5. x

d )

(N

is a Cartesian diagram, then the induced diagram

M(X) LN M(X)
f,*T T -
MI) -2~ M(Y)

commutes.

Property (i) implies that a Mackey functor M is fully determined by its value on
Spec(K) where K is a finite field extension of k. We will denote by M(K) :=
M(Spec K).
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Notation 2.2 For finite field extensions k C K C L, the map j,: M(L) — M(K)
induced by the projection Spec(L) -> Spec(K) will be denoted by N /K ML) —
M(K) and will be referred to as the norm. Similarly, the induced pull-back map
J* i M(K) — M(L) will be denoted by res; /g : M(K) — M(L) and will be referred
to as the restriction.

The category of Mackey functors over k is abelian ([21, p. 5], [36, p. 14]) with a tensor
product defined by Kahn in [19], whose definition we review below.

Definition 2.3 For Mackey functors M, N, their Mackey product M @N is defined as
follows. For a finite field extension k'/k,

MON)(K) = ( D M(K)®ZN(K)) /®p),

K /k': finite

where (PF) is the subgroup generated by elements of the following form. For a tower
of finite extensions ¥’ ¢ K C L,

(PF1) Npjgk(x)®y —x®resy/x(y) € (PF), for elements x € M(L), y € N(K).
(PF2) x @ Nk (y) —resp/k (x)®@y € (PF), for elements x € M(K), y € N(L).

These relations are referred in the literature as projection formula.

For x € M(K),y € N(K) the image of x®y in MQN)(k) is traditionally
denoted as a symbol {x, y} /x. Moreover, for a finite extension F'/k" the norm map
N is given by

Npjr: MON)(F) — (MN) (k)
{x, yik/p = {x, yikw-

In other words, N/ ({x, y}k/F) = {x, Y}k &> for x € M(K), y € N(K).

Remark 2.4 Using the symbolic notation, the projection formula (PF), can be rewritten
as

{NL/k (X)), Yk = {x,respy kDo,

@2.1)
{x, Nk DYk e = {resp/k (x), yio i

Example 2.5 (1) Let G be a commutative algebraic group over k. Then G induces a
Mackey functor by defining G(K) := G(Spec K) for K /k finite.

(2) Let M be a Mackey functor and n € N be a positive integer. We define a Mackey
functor M/n as follows: (M/n)(K) := M(K)/n.

(3) Forevery integer n > 1 and any finite extension K /k, in an unpublished work due
to Kahn, we have an isomorphism

M
<Gm®Gm>(K) ~ K5 (K)’
n n
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where KévI(K) is the Milnor K-group of K (cf. [36, Remark 4.2.5 (b)]). When k
is a finite extension of the p-adic field Q,, this follows also from [36, Lemma
4.2.1].

The restriction map

Suppose k C K C L is a tower of finite extensions of k. In the following sections we
are going to use extensively the restriction map

resy /g : MAON)(K) — (MRN)(L).

We review its definition here. Let F'/K be a finite extension. There is an isomorphism
of L-algebras, FQg L =~ ]_[:-’:1 A;,where foreachi € {1, ..., n}, A; is an Artin local
ring of length ¢; over L with residue field L;. Let x € M(F), y € N(F). Then, we
define

n

resp/k ({x, y}F/x) = Z eifresy,/r(x), resLi/F()’)}Li/D
i=1

The following lemma gives a more concrete description of resy /x in some special
cases.

Lemma 2.6 (1) Suppose L/k is a finite extension and x € M(k), y € N(k). Then
resp/x({x, Yie) = {x, y}L/L.

(2) Suppose L/k is a finite Galois extension and x € M(L), y € N(L). Let G =
Gal(L/k). Then,

res/x({x, YYo/k) = resp (N ({x, yiL/L)) = Z glx, yiL/L.
geG

Proof The assertion (1) follows immediately, since we have an isomorphism k ®jy L
~ L. Hence, in this case we haven = 1, L; = L and ¢; = 1.

To prove (2), note that since L /k is Galois, itis the splitting field of some polynomial
f(x) € k[x] sothat L >~ k[x]/(f(x)). By taking aroot @ € L of f(x), we have

n

k[x] L[x] L[x]
L L = L = ~ —_— = Ll"
Bl = oy &L= Gy = [1

geg X T 8@)

where for each i € {1, ..., n} there is an isomorphism g: L; —> L given by some
g €G. O

Remark 2.7 Let M be a Mackey functor over k. Suppose that we have an equality

Npjkoresy gk = [L: K], for every finite extension L/K, e.g. M is given by a com-
mutative algebraic group (cf. Example 2.5(1)). The equality implies that for every
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prime number p coprime to [L : K], the restriction map (M/p)(K) M M/p)(L)
N,
is injective, while the norm (M/p)(L) Bl (M/ p)(K) is surjective.

Remark 2.8 (The vanishing trick) In the following sections we are going to prove the
vanishing of certain Mackey products of the form (IM/p @ N/ p) (k), where p is a prime
number. A usual strategy to show that a symbol {a, b}k € (M/p @N/p)(k) vanishes
is to consider a finite extension k’/k over which there exists an element a’ € M (k') with
pa’ = resyy(a). If b = Nyyp(b'), for some b' € N(k'), then the projection formula
(2.1) yields an equality

{a, by = {a, Ny i = {reseyi(a), bV = Ny ({pa’, b Yepe) = 0.

This trick was used in [49, Proposition 4.3] and refined in the context of Mackey
functors by Kahn in [20].

Notation 2.9 Let G be a commutative algebraic group over k and a € G(k). For
every n > 1 the multiplication-by-n map G(k) — G(k) is surjective. Suppose that
G[n] = G(k)[n] C G(k). We will denote by k(%a) the smallest finite extension k’
of k over which there exists an element a’ € G (k’) such that na = a’. The assumption
G[n] C G(k) implies that this is a Galois extension.

2.2 Somekawa K-group

For semi-abelian varieties G1, . . ., G, over k the Somekawa K -group K (k; G1, ..., G;)
attached to G, ..., G, is a quotient of the Mackey product (G|® --- @ G,)(k) (see
[47] for the precise definition). Although our statements will often concern the K -group
K (k; Gy, ..., G}),all our computations will be at the level of Mackey products, hence
we omit the definition of K (k; G1, ..., G,). We only highlight the following facts:

e Forevery K /k finite there is asurjection, (G1® - - - ® G, )(K) - K(K; Gy, ..., G}).

e When G| = --- = G, = G, there is an isomorphism K (k; Gy, ..., G,) =~
KM(k) with the Milnor K -group of k (cf. [47]).

e The elements of K (k; G, ..., G,) will also be denoted as linear combinations
of symbols of the form {xi, ..., x,}k /k, where K /k is some finite extension and

xi € Gi(K)fori=1,...,r.
e The Somekawa K-group K (k; G, ..., G,) inherits all the properties of the
Mackey product (G1® - -- ® G,)(k) discussed in the previous subsection.

2.3 Galois symbol map

Let G be a semi-abelian variety over k and p be a prime number. Since we assumed that
the field k has characteristic zero, for any finite extension K /k the Kummer sequence

0— G[p] » GK) 2 GXE) >0
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is a short exact sequence of G g-modules and hence it induces a connecting homo-
morphism
86: G(K)/p = H'(K.GIp)). 2.2)

which is often called the Kummer map.

Definition 2.10 (cf. [47, Proposition 1.5]) Let G, G, be semi-abelian varieties over k
and p be a prime. By considering G, G as Mackey functors (as in Example 2.5 (1)),
the Galois symbol map

sp1 (G1®Ga) (k) /p — H*(k, G1[p]®Ga[p])

is defined by the cup product and the corestriction as follows:

sp({x, Y i) = Corg i (86, (x) U 86, (»)).

For semi-abelian varieties G1, G2 over k, itis known that the Galois symbol s, defined
above factors through the Somekawa K -group K (k; G1, G2)/p [47, Proposition 1.5].
The induced homomorphism K (k; G1, G2)/p — H2(k, G, [P1® G2[p]) will also
be denoted by s,. In particular, when G; = G2 = G, we have the following
commutative diagram:

(Gn®Gu)(k)/p —— KM(k)/p
l - (2.3)
H2(k, u$%),

where the map g, KM(k)/p — H?(k, u§?) is the classical Galois symbol, which
is an isomorphism by the Merkurjev/Suslin theorem [31] (for the isomorphism
GGy (k)/p ~ K%’I(k)/p see Example 2.5(3)). Now, we suppose , C k*.
In this case the map g, sends the symbol {x, y};/x to the central simple algebra
(x, y)p. From [49, Proposition 4.3], we have the following equivalences:

ke =0in (Gu@®Gm)(k)/p & (x,y)p =0 & x € N (k). (2.4)

where k1 = k(¢/y). Note that the last implication <= follows from the same argument
as in Remark 2.8.

2.4 Relation to zero-cycles

Let X be a smooth projective variety over k. We consider the Chow group of zero-
cycles, CHy(X). Recall that this group has a filtration

CHo(X) D F{(X) D F*(X) D 0,
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where F1(X) := ker (deg: CHy(X) — Z) is the kernel of the degree map, and F2(X)
.= ker (alby: F'(X)— Alby(k)) is the kernel of the Albanese map. When X =
C1 x --+ x C, is aproduct of smooth projective, geometrically connected curves over
k such that C; (k) # @ fori =1, ..., r, the Albanese kernel F/ 2(X) has been related
to the Somekawa K -group attached to the Jacobian varieties Ji, ..., J. of Cy, ..., C;,
by Raskind and Spiess. Namely, we have the following theorem.

Theorem 2.11 ([36, Theorem 2.2, Corollary 2.4.1]) For X = C; x - -+ x C, as above
there is a canonical isomorphism,

CHo(X) = Z& P P Kk 0.

1<v<rl<i<ig<<iy <r

Since each curve C; has a k-rational point, we have CHy(X) ~ Z&® F 1(X). Hence,
we have

Flyy = P P Kk 0.

1<v<rl <ig<ip<<iy <1

Since we have K (k; J;) ~ J; (k) and the Albanese map alby : F!(X) — Albx (k) =
J1(k)& - - - @ J, (k) is surjective, we obtain

)= P ] Kk Jiy, ... Ji) (2.5)

2<v<dl <iy<ir<<iy < d

when r > 2. In particular, when X = C; x C», we have an isomorphism F 2(X ) =
K (k; J1, J»), which has the following explicit description. Fix base points xg € C(k),
yo € Ca(k). Let x € C1(L), y € Ca(L) where L/k is some finite extension. Let
wr/k: X — X be the projection. Then

Lk« ([x, 1 = [x, Yol — [x0, y] + [x0, yol) = {x — x0, ¥y — yo}rk-

3 Preliminary computations

Convention 3.1 From now on we assume that & is a finite extension of the p-adic field
Qp with absolute ramification index ey, where p is an odd prime. We will denote by
Ok the ring of integers of k, my the maximal ideal of Oy and F its residue field. For
a finite extension k’/k, we will denote by vy the discrete valuation of k¥ that extends
the one of k, and by I,/ the residue field of k”. We also denote by O ,f, =U ,?/ the group
of units in Oy and U,i, =1+ mi/ fori > 1 the higher unit groups.

In this section we will obtain some essential information about the Mackey functor

E/p (cf. Example 2.5(2)) for an elliptic curve E over k, and we will discuss some
necessary ramification theory.
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3.1 Formal groups

Let F be a formal group law (which is commutative of dimension one) over Og.
The group F(my) associated to F' is denoted by F'(k). The group F (k) has a natural
filtration given by Fi (k) = F (mk) fori > 1.Let¢: F — F’be anisogeny of formal
groups over O which is given by a formal power series ¢(T) = a1 T + a2 T + -

in O¢[T]. We define a filtration on F’(k)/¢ (F (k)) by

) Fli (k)
! F' (k F'(k F(k -_— 3.1
= 1m (F" (k) > F'(k)/$ (F (k))) = SEW) N FIE) (3.1
for i > 1. Recall that the height of ¢ is defined to be the positive integer n such that
o(T) = 1//(T” ) mod my, for some ¥ € Ok[T] whose leading coefficient is a unit in
Ok. The structure of these graded pieces are known as follows.

Proposition 3.2 ([25, Lemma 2.1.4]) Assume that the isogeny ¢: F — F’ which
is given by the power series ¢(T) = a1T + a>rT? + - - has height 1 and F[¢] :=
ker(¢) C F (k). Putting t(¢) = vi(ay) and to(¢) = t(¢)/(p — 1), we have

(@) If 1 <i < pto(¢) and i is coprime to p, then 8,6/3”rl ~ F” (k)/F”“(k) ~T
d) If 1 <i < pto(¢p) and i is divisible by p, then 3’ /3”‘l

(© If i = pio(¢), then 3} /&' ~ 7/ p.

(d) If i > pto(), then 3‘ =0.

The above isomorphisms are induced by the standard isomorphism F' (k)/F"*1 (k)
—=> T as in [41, IV.2, Proposition 6] and they depend on the choice of a uniformizer
i of k.

A typical example of a height 1 isogeny is the multiplication [p]: Gm — G by p
on the multipligative group G,,. This isogeny is given by the power series [p](T) =
pT +--- and G,,[ p] = i p, the group of p-throots of “unity. In particular, 7([p]) = ek
is the absolute ramification index of k. The filtration G’ (k) = Uj, defines a filtration
on k*/p = k*/(k*)P by

U = Im(U,i—>kX/p) for i > 0.
Applylng Proposition 3.2 to [p]: @ — @m, the structure of the graded quotients
U,/U; Uit is summarized as follows.
Lemma 3.3 Assume 1, C k. Set eg(k) = ex/(p — 1) (which is an integer).

(@) If 0<i < peo(k) and i is coprime to p, then U’ /ﬁH'l ~ Fy.

(b) If 0<i < peo(k) and i is divisible by p, then Uf,C/U"H =1

(© If i = peo(k), then Ut /U ~ 7/ p.

(d) If i > peo(k), then ch =1

For the remaining of this subsection we assume that ¢: F — F’ is a height 1 isogeny

with F[¢] C F(k). For a point x € F'(k), let k' := k(¢ '(x)) be the smallest
extension of k over which there exists a point y € F (k") such that ¢(y) = x. Under
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our assumptions this is a finite Galois extension of k of degree p (cf. Lemma 3.4
below). Let G = Gal (k’/k) be the Galois group of k’/k. Consider the ramification
filtration (G*), > —1 in the upper numbering of G [41, IV.3]. Then there is an integer
s, called the jump of G, such that G* = G, for every A < s and G* = 1, for every
A > s [41, V.3, Theorem]. The ramification of the extension k’/k is described in the
following lemma due to Kawachi.

Lemma 3.4 ([25, Lemma 2.1.5]) For a height 1 isogeny ¢: F — F/ with Fl¢] C
F(k), and x € Hk \HH'1 the ramification of the extension k' = k(¢~ (x)) /k is known
as follows:

(a) If 1 <i < pty(), then k'/k is a totally ramified extension of degree p with the
Jump in the ramification filtration of G := Gal (k'/k) occurring at s = pto(¢) — i.
(b) Ifi = pto(p), then k'/k is an unramified extension of degree p.

Note that Proposition 3.2 implies that Lemma 3.4 covers all possible cases. Next
we further assume that p, C k*. The short exact sequences of Gy-modules 1 —

wp — k* L k> land0 — Flp] > F > F/ > 0 give rise to connecting
homomorphisms (Kummer maps, cf. (2.2))

K/p —> H'(k,up), and F'(k)/¢p(F (k) = H'(k, F[$]).

After fixing an isomorphism F[¢] = i, of (trivial) G¢-modules, we get noncanonical
homomorphisms

fiF'()/¢(F(k) < H'(k, F[$]) =~ H' (k, 1) <— k*/p.
In fact, the induced map is compatible with filtrations and the following theorem holds.

Theorem 3.5 ([25, Theorem 2.1.6]) The map f: F'(k)/¢(F (k)) — k*/p satisfies
f(az) _ vf(tfo(k)—lo(dJ)Hi
foranyi > 1, where ey(k) = er/(p — 1) and ty(¢p) is defined in Proposition 3.2.

We close this subsection by defining a Mackey functor by the higher unit groups U

Definition 3.6 Leti > 0. We define the sub-Mackey functor U’, of G,/ p as follows.

If L is a finite extension of k, then U (L) := ”(L/ k) . For a finite extension F'/L, the
norm N, and restriction maps resg,, are 1nduced by the ones on G,

3.2 Elliptic curves
Let E be an elliptic curve over k with good reduction. Let € be the Néron model of E,

Wthh is an abelian scheme over Spec(Oy). Let E := & ®0, [F be the reduction of E,
and E be the formal group of E. We have a short exact sequence of abelian groups,

0— E(my) - Ek) - EF) — 0, (3.2)
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where r: E(k) — E(F) is the reduction map. This induces a short exact sequence of
Mackey functors, R R
0—- E— E— [E/E]— 0, 3.3)

where E is the Mackey functor given by K E(K) = E(mK), and [E/E] isa
Mackey functor defined by L — E(IFz). For a finite extension L/K, the restriction

resy /K [E/E](K) — E/E](L) is the usual restriction, E(Fgx) —— L/K EFp),

. . e(L/K)-Np/k
while the norm Np /k : [E/E](L) — [E/E](K) is the map EF;,) ——~5

E(Fg). The fact that [E/ E ] is a Mackey functor has been shown by Raskind and
Spiess [36, p. 15].

From now on we w1ll drop the notation [p]: E k) — E (k) and Wlll denote it
simply by p: E(k) - E (k). Recalhng\ from Sect. 3.1, the group E(k) E(mk) has
a natural filtration given by E' (k) :== E (mk) fori > 1.

Definition 3.7 Following (3.1), we define a filtration on E(k)/p = E(k)/pﬁ(k) by

_ E®
T pEG(R)NEi(k)’

In the case when E [p] C E(k), we can decompose E/p using the Mackey functors
Gy /p and U (cf. Definition 3.6). This decomposition depends on the reduction type
of E, which we review in the following two subsections.

3.3 Elliptic curves with good ordinary reduction

We first consider the case when E has good ordinary reduction; that is, E is an
ordinary elliptic curve over F. In this case the Gx-module E[ p] has a one-dimensional
G-invariant submodule. Namely, we have the connected-étale short exact sequence
of Gi-modules

0 — E[pl° — E[p] — E[p]® — 0, (3.4)

where E[p]°:= E [p] are the [ p]-torsion points of the formal group E of E. For more
details on the connected-étale exact sequence we refer to [48, Section 8]. After a finite
unramified extension k’/k the short exact sequence (3.4) becomes

0— wup— Elpl— Z/p — 0. 3.5)

This follows because after base change to the maximal unramified extension k""" of
k the formal group E™ becomes isomorphic to the multiplicative group Gum (cf. [30,
Lemma 4.27]). As the multiplication p: E — E has height 1, Theorem 3.5 now leads
to the following proposition.

Proposition 3.8 ([25, Theorem 2.1.6], see also [14, Proposition 3.12]) Let E be an
elliptic curve over k with good ordinary reduction, and E be its formal group. Assume
that E[p) C E(k) and w, C k*. Then, we have an isomorphism f: E(k)/p —=>
U]i ~ Ug, which satisfies f(D};) = U}; fori>1
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Assume we are in the situation of Proposition 3.8. In particular, i, C k* and after
a finite unramified extension (3.5) holds. Next we consider the short exact sequence
(3.2) and apply the right exact functor ®z7Z/ p. Using Proposition 3.8 we get an exact
sequence of I ,-vector spaces,

70 L Edy/p -2 E@®)/p — 0.

The map j is not always injective. Namely, there is a unitu € O, /O ,f P known as the
Serre—Tate parameter of E, that generates the kernel. For more details see [14, Section
3.1]. All we need in this article is that there is an exact sequence of Mackey functors,

U° - E/p — [E/E]/p — 0,
where U°, [E/ E ] are the Mackey functors defined previously.

3.4 Elliptic curves with good supersingular reduction

Lastly, we consider the case when E has good supersingular reduction. This means
that the elliptic curve E has no p-torsion, and hence we get a surjection of Mackey
functors,

E/pL E/p—o. (3.6)

For the rest of this subsection we assume that E[p] C E(k).Leteg(k) = ;jl . Suppose

Y0, y1 are two generators of E| [pl = Z/p®Z/p such that

v (yo) = max {v(y):y € E[pl, y #0).

From now on we will denote (k) := vk (yo). We have a decomposition of Mackey
functors (see [16, Proof of Theorem 4.1]),

E/p ~ TPeo®—oh) g Tro®) 3.7

where UPo®)—10k) Tpiok) gre Mackey functors defined as in Definition 3.6. We
recall how this decomposition is obtained. The main reference for what follows is [25].

Consider the isogenous elliptic curve E':= E/{yo) and the isogeny E % E ’, and its
dual, E'% E, which are both defined over k. As [p] = <130¢1 E — E has height 2,

these isogenies correspond to isogenies of formal groups, ELE " E' % E , which
are both of height 1. We have a splitting short exact sequence of IF ,-vector spaces,

— E'(k) i) E®) = VE(k) — 0, (3.8)
GE®) T HER)
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where ¢ is just the projection. By [17, Corollary 2.3], we have #o(¢) = f9(k). From
[25, Theorem 3.2.6 (2)], we have isomorphisms

E'(k) _ E'®k)
P(E(k) ~ ¢(E(k)))

7P (eo(k)—10 (k) ~ Up(eo(k) 1o(k)+1
k k s

=
f

where the middle isomorphism f follows from Theorem 3.5, and the last one follows
from Lemma 3.3 (b). It is clear that the dual isogeny q3 identifies E with the quotient
E'/{¢(y1)). By [17, Corollary 2.3] again, we have t0(¢) = vk (¢ (y1)). The leadmg
coefficientof [p] = ¢og equalsto p so that 7 (¢)+1(¢) = e and hence 19 (k) +19(¢) =

eo (k). Then the same theorem [25, Theorem 3.2.6 (2)] gives an isomorphism,

E (k) Ek) =~ greo®—n@)+1 _ prowH

~

PE'(k)  PE'(k) f

Behavior with respect to the filtration of the formal group
. . . i E (k) . ..
Notation 3.9 Consider the filtration D = SFOnE©’ i > 1 (cf. Definition 3.7). We

" i __E® E' (k) ;
define additionally &} := ST ONED and Sk SEONED’ fori > 1.

Note that since the isogenies ¢, dv) are of height 1, Proposition 3.2 applies for the
quotients J /3”‘Irl Sk/9’+l.

Remark 3.10 Itis clear that the map £: D ,i —- 7 ,1 preserves the filtration. The follow-
ing lemma gives a complete description of the quotients D}; / D;fl fori > 1.

Lemma3.11 Let i > 1 be an integer. Suppose that we have ey(k) — to(k) = pto(k).
Then the following are true for the quotient D ¥/ DH'

@ Ifi < p(eg(k) — to(k)) and (i, p) = 1, then ¢ induces an isomorphism,
/®z+1 ‘{}Hk/?lé_l—l ~F.

Moreover, both quotients are isomorphic to £ (k)/ E i+v1 (k).
(b) Ifi < p(eg(k)—ty(k))andi = pj, forsome j > 1, then ¢ induces anisomorphism,

¢:6l/9/T = Di/DiF.

Moreover, we have an isomorphismF ~ E/ (k)/f’j+1(k) ~ D;{/D;{H if(j, p) =
1.
(¢) Ifi = p(eg(k) —to(k)), then we have a short exact sequence of I ,-vector spaces,

Szo(k)*to(k) é D}f(c’o(k)—lo(k)) . gylf(eo(k)—lo(k))

0= Go®n®r Dot gpem-om@i O
k k k
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eq (k)—1q (k) 3«17(00(/() 19 (k)
; ; k ~
Moreover, we have isomorphisms, ST = 5/7(80(/0 owT = Z/p.
k

() Ifi > p(eo(k) — to(k)), then Di = 0.

Proof All the parts will follow from Proposition 3.2 and [17, Lemma 2.6]. For the
first claim Proposition 3.2(a) gives an isomorphism, J//F,/ ™ ~ F. At the same
time, we have a surjective map of finite dimensional [F ,-vector spaces, Di e/ D”l N
Fi/F i+1' 5 0. Moreover, the projection E' (k) — D /D’+1 induces a surjection
E'(k)/ET (k) — D}(/‘D;(H — 0. Since the quotient E' (k)/E! ™! (k) is isomorphic
to [ [43, Chapter 1V, Proposition 3.2], the claim follows.

For the second claim, the proof of [25, Lemma 2.1 4(1)] shows an isomorphism
1/, =5 Di DI+ induced by ¢. 1f p 1 j, then F ~ E"J (k) /E"i+' (k) ~ G/ /I
by Proposition 3.2 (a).

Next, suppose i = p(eq(k) — to(k)). The isomorphisms

gzo(k)—to(k) ?[J(ffo(k) 10(k))

G0+ = Srp(eo(k) woit = 2L/p

follow by Proposition 3.2 (c). The short exact sequence follows easily by the short

exact sequence 0 — G % DI 5 F1 5 0, after restricting to DY “0® 00,
Finally, claim (d) follows by Proposition 3.2 (d). O

3.5 Computing ramification jumps

In the remaining two subsections we focus on the following special case. We con-
sider an elliptic curve E with good supersingular reduction over a finite unramified
extension k/Q,, that is, e, = 1. In this situation, for the mod p Galois representation

p: Gal(k/k) — Aut(E[p]) ~ GLy(F,),

the image of the inertia subgroup by p is known to be cyclic of order p* — 1 [40,
Proposition 12]. This implies that

e the extension L := k(E[p])/k corresponding to the kernel of p has ramification
index ep /x = p2 — 1, and
o the inertia subgroup of Gal(L /k) is cyclic.

Lemma 3.12 For every non-zero x € E[p], we have vy (x) = 1.

Proof Since the valuation of the p-th coefficient, ap, of multiplication by p in the
formal group E satisfies vi(ap) > pe/(p +1) = p/(p + 1), we have vy (x) =
eL/k p2—1 = 1 (cf. [24, Theorem 3.10.7]). O

From (3.7), we obtain a decomposition,
E(L)/p UP(e(J(L) tO(L))@ UPI()(L) UP +1691]PJF1 (39)
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since tp(L) = max{vp (x):0 #x € E[p]} =landey(L) = p+ 1.

Next we make a simplifying assumption that the extension L = k(E[p])/k is totally
ramified of degree p*> — 1. We consider the restriction

2
-1
resy /i @,1 — D[L’ ,

which is an injective map of IF ,-vector spaces, since [L : k] is coprime to p (cf. Remark
2.7). Let x € '.D,i. We will identify x with its image, res /i (x). We are interested in
obtaining concrete information about the ramification of the finite Galois extension
L (%x) This will be achieved in Lemma 3.15, but we first need some reminders from
Kummer theory.

Let F/k be an arbitrary finite extension such that u, C F*.Leta € F*/p =
F>/(F*)P. Consider the Kummer extension F| = F({/a). Let G = Gal(F;/F) be
the Galois group of Fy/F. In this setting, Lemma 3.4 now reads as follows:

Lemma3.13 Leta € F*/p. Consider the Galois extension F| = F(¥/a).

(@ Ifa e U"F\ﬁ’;l, for some 0 <i < peog(F), then F1/F is a totally ramified
extension of degree p with the jump at s = peo(F) —i.

(b) Ifa € ﬁ;eO(F)\ﬁgeO(F)H, then the extension F1/F is unramified extension of
degree p.

Next, consider the Herbrand ¥ r, ,r function defined as follows:

X, x <8

VrF(x) = {

s+ px—s), x>s.

We will need the following facts about the norm map N, /r.
Proposition 3.14 (cf. [41, V.3, Corollaries 2 & 3])

(1) Foreveryinteger1 <i < s,thenormmap Np, /F : le — F* induces asurjection

; .
Up, Nryr Up

-0
i+1 i+1 :
Up, Uy

(2) For every integer i > s, the norm map induces a surjection

[ N, Fi/F .
UfFl/F(l) 1/ UIF 50
1
We now come back to the element x € D}C considered before the Kummer theory

2— . .
aside. We think of the element x as lying in Di ! under the restriction map. The
following lemma gives us how x decomposes under the decomposition (3.9). We note
that this lemma is a key computation that will be used several times in the next section.
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Lemma3.15 Ler x € D}(. Consider the finite extension Ly = L(%x).

(1) Suppose x € ‘D,ﬁ \D,%. Under the decomposition (3.9) the image of x in E(L)/p =

Di can be written as (xg, x1) with xg € Ufzﬂ) and x| € U€+p2_1 \ﬁiﬂjz. In
particular, we have a tower of finite extensions Lo D Ly D L, with L1 D L
unramified and Lo D L totally ramified of degree p. The jump in the ramification
filtration of Gal(Lo/L1) happens at s = 1.

(2) Suppose x € Di. Then, Lo = L.

Efoof In what follows we will denote by & the addition law given by the formal group
E1 . Moreover, we will fix 7, 7r;, uniformizer elements of k, L respectively.

We first prove (2). If x € @i, then vz (x) > 2(p* — 1), and hence its image in DIL

2_
lies in Di(p D Since 2(p? — 1) > p2, the claim (2) follows by Lemma 3.11(d),
2

since ﬂ)i(p “D_o.

We next prove (1). Following the notation from (3.8), for every finite extension
L'/k we have a splitting short exact sequence of IF ,-vector spaces,

ENLy ¢ E'L) . EYL)
— — — — ——
d(EN(L)) P G(E'V(L))

We can therefore decompose the image of x in E YLypasx = é(wo) @ w;, where
wy is the class of some wy € E’I(L) mod q)(fl (L)) and w; is the class of some
w; € E! (L) mod JS(E’] (L)). Note that the same decomposition holds also over any
finite extension L’/L. This implies that there exists an element y € E'(L’) such that
x = py if and only if there exist elements zy € EY(L') and 7] € E''(L') such that
wy = ¢(z0) and W] = qvﬁ(z"]). This means that the extension L(%x) is precisely the
compositum of the extensions L; = L(¢~ (@o)) and Ly = L(¢~(@)) (for this
notation see paragraph preceding Lemma 3.4).

Next we analyze the extensions L1, L. We start with L1 = L(¢_1(1ﬁo)) and we
claim that the extension Lj/L is unramified. It is enough to show that we are in
the set-up of Lemma 3.4 (b), which we apply for the height 1 isogeny ¢ : E— E.
Recall from the discussion in Sect. 3.4 and Lemma 3.12 that we have an equality
to(¢) = t9(L) = 1. Thus, it suffices to show that vy (wg) > p. Since x is the restriction
of an element from D} \ D7, vy (x) = p? — 1. This yields v (¢(Wo)) = p* — 1. Let

be such that & € E" (L) \ E"*1(L). Since é is a height 1 isogeny, it follows that
vL($(i0)) = pi

(cf. [17, Lemma 2.2]). In particular, it is divisible by p. Combining the two relations,
we conclude that i = vy (Wg) > p as required. Next consider the isomorphism

E/l (L)
¢(EL(L))

~ 2
>~ 1
= Ut
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and let xq be the image of wq under this isomorphism. The above computation together
—2
with Theorem 3.5 give us that xo € U} 7.
Next we consider the extension L2 = L(¢ L(@1)), and let Z; € E (L2) be such
that ¢(Z}) = ;. We apply Lemma 3.4 (a) for the height 1 isogeny é: E' — E. By

the discussion in Sect. 3.4 it follows that
t0(@) = eo(L) —to(L) = p+1—1=p.

Thus, in order to show that we are in the set-up of Lemma 3.4 (a), it is enough to
verify that vy (w;) < p% which follows directly by the previous paragraph and the
equality vy (x) = p> — 1. We conclude that the extension L»/L is totally ramified
of degree p and Lemma 3.4 (a) gives that the jump of the ramification filtration of
Gal(Ly/L) occurs at s = pt0(¢) (p — 1). Moreover, if x| is the image of w;
under the isomorphism E (L) /qvb(E (L) ~ U ZH, then Theorem 3.5 implies that
X e UL NTr,

We conclude the proof by noticing that the extensions Li/L, Ly/L are totally
disjoint, one being unramified and the other totally ramified of degree p. Thus,
for the compositum L(%x) = Ly-L, we have an isomorphism Gal(L{L,/L{) ~
Gal(L,/L). O

3.6 Galois action on graded quotients

We close this section with a technical computation that will be used in the proofs
of Theorems 4.4 and 4.9. We continue working in the set-up of Sect. 3.5. Namely,
E is an elliptic curve over a finite unramified extension k of @, and the extension
L = k(E[p])/k is totally ramified of degree [L : k] = e(L/k) = p> — 1. We want to
understand how the Galois group Gal(L/k) acts on the graded quotients DiL / D’LH.
This will be achieved in Lemma 3.17. Before that we start with a preliminary discussion
about tame extensions and formal groups.

Suppose k/Q),, is finite and L /k is a totally ramified extension of degree coprime to
p (that is, L /k is a tame extension). Fix a uniformizer 7 of L. Let Gy = Gal(L /k) be
the Galois group. Because L /k is tame, G is cyclic [41, IV.2, Corollary 1]. Let o be
a generator of Go. We have an injection, f: Gy < UE /U Ll given by ¢ +— @
Since there is an isomorphism U? JUL ~ F}, f identifies G with a subgroup of
F;.Setu = o(n)/n € F}. The following lemma shows how o acts on the quotient
Ul JUT ~TF;, wheni > 1

Lemma3.16 Leti > 1. Then o induces an automorphism, o : U; /U"H — UL/U’L+1,
which is given by multiplication by u'.

Proof Since U ’L / U};H ~ [y, and L/k is totally ramified, the map o is an [ -linear
map, o: F;, — [, and hence it is given by multiplication by a non-zero scalar
c € FJ. We will show that ¢ = u'. For every i > 1, we have an isomorphism of
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groups,

Ui Guml) _ Gum)) ()
e

U£+l - G (ml+l) (ml-'rl) - (T[i+1),

(cf. [43, Chapter 1V, Proposition 3.2]). It is immediate that the isomorphism is G-
equivariant. Thus, it is enough to see how & acts on the quotient (ﬂ(’f—;)l) But this is
immediate, since

. , o\ . . .
7t o(rh) = (T) at=u'n',

and the class of 7' corresponds to 1 under the 1somorphlsm

(7‘[’*1) - ]FL o
Note that there was nothing special about the multiplicative group in Lemma 3.16.
Namely, according to [43, Chapter IV, Proposition 3.2], if J is any formal group over
Ok, then for each i > 1 the map F(mk)/ff(m”]) — G (mk)/(Ga(m ) induced by
the identity map on sets is an isomorphism of groups. Thus, if L /k is a tame extension,
then the induced map o : ?(mL)/S’(m’H) — ff"(mL)/ff"(m"H) which is obviously
Go-equivariant, is given by scalar multiplication by ! = (o (r) /7)".

We are now going to apply this to our elliptic curve E satisfying the assumptions of
the beginning of this subsection. If Gy = Gal(L/k) = (o), then ¢ induces a [F -linear
automorphism

7 EV(L)/E2(L) 2% ENL)/E*(L)

of exact order p> — 1. In fact, the Galois group G permutes the p-torsion points.
Next we see how the Go-action behaves under the decomposition (3.9). Following
the notation of Sect. 3.4 we may take E' = E /{yo), where yq is some fixed torsion
point. Consider the isogenous elliptic curve E’® = E /(o (yo)) and the isogenies

E; %5 E° E° X5 E;.ltis clear that we have an equality ¢” = ocogoo ™. We
therefore get a commutative diagram,

E'(L)/¢(EL(L)) ——~ EL(L)/p —— EL(L)/$(E'(L))

T A

E(L)/¢° (EL(L)) — Er(L)/p —— EL(L)/$° (E" (L)).

Combining this diagram with the information in Lemma 3.11 we obtain the following
lemma.

Lemma 3.17 Consider the decomposition Ey (L)/p =~ Up 1 EBUfH given in (3.9).
Let o be the generator of Gy = Gal(L/k). Then
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2. 2,
[t - Ufﬂ

; _ ) . 7
(1) Foreach j € {1,..., p — 1}, o induces an automorphism ﬁ{zﬂ'“ U‘L’L“M
given by multiplication by Pl

(2) Foreachi € {1,..., p*> — 1} which is coprime to p, o induces an automorphism
Up+z = Up+z

W — W given by multiplication by u'.
L

Proof This follows directly by Lemma 3.11. Namely, to prove (1) note that, for each

j e {l,..., p— 1} which is coprime to p, we have a commutative diagram of iso-
morphisms,

22 ~ —~ . —~ . b ~pi ~i
UZ +j/UZ +j+1 = E/](L)/E/]+1(L) ¢ Ef/(L)/EI/j/JFl(L)

i g I

Ty Oy e B () Ey L) T B W/ EP T L),

where the leftmost vertical map is obtained by the diagram. Since the rightmost vertical
map is given by multiplication by @/, the claim follows.

Similarly, to prove (2) note that foreachi € {1, ..., p*—1} we have a commutative
diagram of isomorphisms,

Ei(L)/EiN (L) — =g gt = gt it

| : ]

EL(L)/ B (L) T (30, j(oyitt Z gt it

where ¥} = E} (L)/(E} (L) N $(E'(L))), (F7); = E} (L)/(E} (L) N ¢°(E (L)),
and the rightmost vertical map is obtained by the diagram. Since the leftmost vertical
map is given by multiplication by %", the claim follows. O

Remark 3.18 We note that the various isomorphisms in Lemmas 3.16 and 3.17 are not
canonical; namely they depend on the choice of a uniformizer element 7 of L.

4 Main results

In this section we give proofs for Theorems 1.4 and 1.9. All our statements will be in
terms of the Mackey product (E| ® E3)(k), and the Somekawa K -group K (k; E1, E»).
Using the identification of the latter with the Albanese kernel F/ 2(E; x E2) (cf. (2.11)),
the corresponding statements for zero-cycles will follow. We start with some prelim-
inary lemmas.
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Lemma 4.1 Let E1, E> be elliptic curves with good reduction over a finite extension
k of Qp. Then, we have a surjection of Mackey functors,

E\®E, E\QE;
— —
p P

Proof We have an exact sequence of Mackey functors,
E/p— Ei/p — [Ei/Eil/p — 0.

Applying the right exact functor ® E;/p, we obtain an exact sequence of Mackey
functors,

Ei/p®Ex/p — E1/p®Ex/p — [E1/E\l/p®Ex/p — O.

We claim that [E1/E|]/p® Ez/p = 0, thatis ((E1/E1]/p® E2/ p)(K) = 0, for any
finite extension K /k. To see this, let {x, y}r/k € ([El/El]/p®E2/p)(K) where
F/K is some finite extension, x € [Ei/E](F)/p and y € E»(F)/p. Recall that
[El/El (F) = E|(Fp). Let x’ € E{(FF) be a point such that x = px’. Then x’ is
defined over some finite extension F//Fr. Let F’/F be a finite unramified extension
with Fp = T’ (cf. [41, 1.6]). Since the elliptic curve E; has good reduction, [30,

Ny
Cororally 4.4] gives that the norm map E»(F') BLILN E>(F) is surjective. Thus, we
can find y’ € E»(F’) such that y = Npy £ (y). The projection formula (2.1) yields (cf.
Remark 2.8),

{x, ytr/k = {x, NeyrD}r/k
= Npyr({x, Y'Y ryr) = Neyr({px' Y'Y ey ) = 0.
We conclude that there is a surjection of Mackey functors,

E1/p®Eax/p — E1/pQEa/p — 0.

With a similar argument, by applying the right exact functor E| /p® to the exact
sequence (3.3) for E» we obtain an exact sequence of Mackey functors,

E\/p®Ex/p — Ei/p®Es/p — Ei/p®IE2/Eal/p — 0.
We claim that El/p® [Ez/fz]/p = 0. The argument is exactly the same as before,
noting that if F//F is a finite unramified extension, then the norm map on formal
~ Npr ~
groups, Ej(mgr) I E1(mF) is surjective (cf. [15, Proposition 3.1]). m|
Notation4.2 For X = E;x E; we will denote by Symby (k) the subgroup of

(E1® E2)(k) generated by symbols of the form {x, y};/x. Moreover, let Symb y (k) be
the image of Symby (k) in (E1® E2)(k)/p.
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Lemma4.3 Let Ey, E> be elliptic curves over a finite extension k of Q. Assume that
at least one of the curves has good reduction. Let k'/k be a finite unramified extension.
Then,

(1) We have an inclusion Symby (k) C Ny (Symby (k") in (E1Q E>)(k)/p..
(2) Ifthe group (E1® E») (k) is p-divisible, then so is (E1® E») (k).

Proof Without loss of generality, assume that £ has good reduction. To prove (1), let
{a, b}r/k € Symby (k). Because k'/k is unramified, and E; has good reduction, the

Ny/
norm map E{ (k') LY E1(k) is surjective [30, Cororally 4.4]. Thus, we may find
a’ € Ey(k') such that a = Ny (a’). This yields equalities,

{a, bk = {Nwp(a), bk = {a’, by = Nip({a', bliyi)-

To prove (2), assume that (E{® E») (k') is p-divisible. Let {a, bYrie (E1QE2)(k)/p,
where F /k is some finite extension. Consider the extension F'= F-k’. Then F'/F is

Npy
unramified, and hence the norm E; (F’) BLLN E1(F) is surjective. Thus there exists
somea’ € E1(F') suchthata = Ngyr(a’). The projection formula yields (cf. Remark
2.8),

{a,bYrjk = {Npyr(d), bYp i
={a, by = Npe({d, by pyir) = 0 € (E1Q E2)(k)/ p,

and hence (E1Q E»)(k)/p = 0. m]

4.1 Proof of Theorem 1.4

As already mentioned in the introduction, the proof of this theorem will be split up into
two steps. Let k be a finite unramified extension of Q,, and let £, E be elliptic curves
over k with good reduction. Put X = E; x E>. Suppose that E; has good ordinary
reduction. In the following, we consider the following two cases:

(ord) E; has good ordinary reduction,

(ssing) E» has good supersingular reduction.

We can consider the smallest extension L /k such that the following are true:
o L D K(E[pl, E2lp)).

e If the curve E; has good ordinary reduction, then the_ G L—modllle E;r[p] fits into
a short exact sequence of the form (3.5), and hence E;[p] C E; (Fr).

The above assumptions imply that L O k(up) and that L fits into a tower of finite
extensions
kck'cL 4.1

with k’/k unramified and L /k’ totally ramified of degree coprime to p. More precisely,
Sects. 3.3-3.5 imply the following:

e In case (ord), then L/k has ramification index p — 1, and hence eg(L) = 1.
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e In case (ssing), then L /k has ramification index p? — 1, and hence eg(L) = p+1.

Theorem 4.4 Let L/k'/k be the tower of extensions as in (4.1). Then, we have an
equality Symka, (k) = (E1® E3)(K')/ p.

Proof For simplicity we assume that the extension L /k is totally ramified, and hence
k = k’. We need to show that the group (E|® E»)(k)/p is generated by symbols of

N,
the form {a, b}, k. Since [L : k] is coprime to p, the norm map (E1®E>)(L)/p LK
(E1® E»)(k)/ p is surjective. It is enough therefore to show that the image of the norm
lies in Symby (k).

ClaimA Symby (L) = (E1® E2)(L)/p. That is, the group (E1® E2)(L)/p is gen-
erated by symbols of the form {x, y}r,r, withx € E1(L), y € Ea(L).

This claim follows easily by the computations in [16] as follows: Using Lemma 4.1,
the problem is reduced to showing that the Mackey product (E1/p® E>/p)(L) is

generated by symbols of the form {x, y}.,r, with x € E{(L), y € E2(L). We have
the following subcases:

e In case (ord), Proposition 3.8 gives for i = 1,2 an isomorphism E;/p ~ U° of
Mackey functors over L. This implies an isomorphism of abelian groups,

(E1/p®Ex/p)(L) ~ (U°@U°)(L).

e Incase (ssing), (3.9) gives an isomorphism E, /p = TP’ @UP of Mackey functors
over L, and [16, Lemma 3.3] gives,

(E1/p®Ea/p)(L) = QU )(L)& T’ ®T’)(L).
The argument discussed in [16, Proposition 3.11] gives that these Mackey products

(U°®U7)(L) are generated by symbols defined over L. Thus, Claim A holds.
By [16, Theorem 3.6], for each j < peo(L), the composition

@ QT (L) > GCu®Gu)(L)/p —> HAL, u&) =7/ p,

is bijective, where ¢ is induced by the maps U’ < G,,/p, and s p is the Galois symbol
map (cf. (2.3)). By (2.4), for a symbol {x, y}.,z in (U°®@U/)(L)

{x, y}1/1 generates U°QU)L) < «x¢ Nip, (L), 4.2)

where L1 = L(g/y).

Claim B Suppose we are in case (ord). Then, the Mackey product (E1® E)(L)/p is
generated by symbols of the form {x, y} ;. with either x € E1(k), or y € Ex(k).
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It is enough to show that the group (E1/p ® Ez/p)(L) (U0®UO)(L) is generated
by a symbol {x,y}r/L withx € Eq(k). Take any x € E! 1)\ E? { (k). Then its restric-
tion in E; (L) lies in Ef AN Ef(L). In particular, we can view x as an element of
ﬁi_l \Uf. The extension L| = L({/x)/L is totally ramified extension of degree p
with the jump at s = peg(L) — (p — 1) = 1 (cf. Lemma 3.13 (a)). Then the isomor-
phism Uy /Ny, /L (Ur,) >~ LX/NLI(LIX) of order p (cf. [41, V.3, Corollary 7]) gives
us that there exists some y € Uy such that y ¢ Ny,,.(UL,). By (4.2), the symbol
J— _O o~ o~

{x, y}L,L generates the group (U0®U L) = (E1/p®E2/p)(L).

The above computation guarantees that in case (ord), (E1® E3)(k)/p coincides
with Symby (k). For, find elements {x;, y;}./. € (E1® E2)(L)/p that generate this
group and are such thatx; € Eq(k). Then Ny, ({x;, y;i}L/L) generate (E1® E2)(L)/p.
But the projection formula yields,

NrpUxi, yitesn) = {xi, Noj i)}k € Symby (k).

This completes the proof in case (ord).

Lastly, we consider case (ssing), namely, £1 has good ordinary and E» has good
supersingular reduction (hence eg(L) = p + 1). In this case we have a commutative
diagram with exact rows and surjective vertical maps,

T°@UP)(L)® U°®UP) (L) — (E\® Ez)(L)/p — 0
NL/k\L NL/k

(E1/p®Ea/p)(k) —— (E1® E2)(k)/p — 0.

Wlth a similar ar argument as in case (ord) we can show that the subgroup (ﬁo ®UP)(L)
of (El/p®E2/p)(L) is generated by a symbol {x, y}. /. with y € E2 (k). Namely,
lety e E )\ o 5 (k). Then by Lemma 3.15(1) the i 1mage of y in E»(L)/p decom-
poses as (yo, y1), with yp € Uﬁ *P and y, € Uiﬂ’ \U€+p . Since the extension
L(g/y1)/L is totally ramified of degree p (cf. Lemma 3.13 (a)), by [41, V.3, Corollary
7] we can find some x € ﬁ% such that {x, y1}r;. # 0 € (U'QUP)(L). View-
ing x as an element of E{(L)/p, we have that {x, y};,. generates the subgroup
U°QUP)(L) C (El /P® Ez/p)(L). Notice that such an argument will not work for
the other subgroup of (E 1/p® Ez /p) (L).ANamely, no matter which symbol {x, y}.,r
we take with either x € Ej(k)/p or y € E»(k)/p, the coordinate {x, (yo, 1)}/ will
always vanish. For, if y € Ex (k) / p this follows immediately from Lemma 3.15. On
the other hand, if x € E| 1(k)/p, then x € E; EP- (L) /p- An easy computation shows
that for y = (yg, y1) € EQ(L)/p, and L' = L(m, it follows that x € Npyp (L™).
We suggest the following claim instead.

J— J— N, ~ o~
Claim C The norm map (U°@TUP" (L) —5 (E\/p® Ex/ p)(k) is zero.

To prove this claim let {a, b}, ;. be a generator of U°®UP')(L) ~ 7/p. For
notational simplicity we will identify this symbol with its image, {a, (b, )}L/L €
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(El/p@) Eg/p)(L). We will show Ny ({a, b}r,1) = 0. Since the restriction resy /i
is injective, it suffices to show

ress i (NLjx(la, byryL)) = 0 € @°@TP’)(L).

We first obtain some information about the generator {a, b} L.

As noted in (4.2), the symbol {a, b}, is a generator of (Uo®ﬁ”2)(L) if and
only if a ¢ NLI/L(LIX), where L1 = L(\”/E). Suppose that a € UiL\UiL+1, and
be ﬁzzﬂ \ﬁ{zﬂﬂ. By [16, Lemma 3.4 (ii)] we may assume that i is coprime to
p,i < p2 +pand 1 <j < p, otherwise {a, b} ;. # 0, and hence {a, b}, is
not a generator of (UO(X)ﬁpz)(L). Moreover, by [41, V.3, Corollary 7] we obtain the
following equivalence:

{a,b), #0 < i+p’+j=peo(L)=p*°+p < i+j=p.

Let Gp = Gal(L/k). Note that L = k(fz[p]), and hence Gy is a cyclic group of order
p2 — 1 (see Sect. 3.5 for details). Let o be a generator of Gg. Then Lemma 2.6 yields,

p*-2

resy/k(Npjx({a, bYr/L)) = Z o"({a,b}r/L).
r=0

SetV = (U0®ﬁ1’2)(L). Using the previous remarks, the symbol {a, b}, /. is in the

R — 2
image of the symbol map U, @ U? ' — V defined by x ® y > {x, y},z. This map

PR 2 s 2
factors through U’ /U @UY ™ /U7 7 inducing a symbol map

— — 20 —p2a
LT Tl T Sy 4.3)

—_ —_ 2
In fact, for any x € U ,V € UZ + withl +1'= p+ Lsp({x, y}o/n) =, y)p =0
by [17, Lemma 3.4] as [ + p> +1' = p> 4+ p + 1 > peo(L). This implies
[ — _ 2 — 2

{x,y}r;L = 0. Let o be the endomorphism of U’L/U’L‘H(X)UIL’ +J/U"Z I+ induced
by o. Fix a uniformizer 77, of L. Then Lemma 3.17 yields the following equality in
—_ — 2 — 2

UL U Ul ot

i pi
F@obh) =5@e(h) = (—G;”L)) a® <6§:L>> b=u'a@u’b,
L L

where u = o () /7y, € FZ Note that since o has exact order p? — 1,  lies in the
(possibly smaller) field I ,>. The next claim is that we have an equality, uaQuf’b =

u'tPIa®b. This follows by Lemma 3.3. Namely, we have isomorphisms UiL /U’ZH

_ 2 s — 2 — — _ 2 s — 2
~ Fy, and UY 7707 H1 ~ F,. Thus, the group UL U Ul ot AR
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becomes an Fz-vector space by defining for ¢ € F; and x®y € U! /U Ut'e
P S+j ottt
ury /UL

)

¢-XOY = (V)@Y = @ (cY).
We conclude that o acts as follows:
F@®ab)=u"trab.

Since i + j = p, and both i, j are coprime to p, we have 1 < j < p — 1, and hence
pj < p* — p. This gives

i+pi<p’—p+p—1=p*—1.

In order for the inequality to become an equality weneed both j = p—1landi = p—1.
But this is not true, since i + j = p. Thus, i 4+ pj < p> — 1. Setv =u'*P/ ¢ F.
The above inequality implies that v # 1. At the same time Pl = 1, which means

that v is a root of the polynomial f(x) = P24 pxtle F2[x]. We
then can compute,

pr-2 p-—2
Y G @®b) = <Z >a®b 0 in UL /U QU +f/U” it
r=0 r=0

Then (4.3) yields a vanishing resy x (Np x({a, b}r/1)) = 0, which completes the
proof. O
The next theorem completes the proof of Theorem 1.4.

Theorem 4.5 Let k be a finite unramified extension of Q,. Let Ey, Ey be elliptic
curves over k with good reduction. Assume that E| has good ordinary reduction.
Then, the Mackey product (E1Q E2) (k) is p-divisible. In particular, the same holds
for K (k; Eq1, E7).

Proof Using Lemma 4.3 (2), we may assume k = k', where k’/k is as in (4.1). By
Theorem 4.4, it is enough to show the vanishing of Symby (k). Notice that throughout
the proof of Theorem 4.4, we used the Mackey product (E; ® E 2) (k)/ p-1tis therefore
enough to show that {a, b}k/k =0, foreverya € E1 (k)/pand b € Ez (k)/p Consider
the finite extension L /k as in (4.1), which is totally ramified of degree p> — 1 or p — 1,
depending on whether the curve E; has good supersingular reduction or not.

Case (ord): When both elliptic curves have good ordinary reduction. In this case
we have eo(L) = 1. We consider the restriction map, (El®fz)(k)/p Nl
(E1® E2)(L)/ p. Since the extension L /k is of degree coprime to p, resy /i is injec-
tive. It is therefore enough to show that resy /x ({a, b}k/k) {a,b}r;L =0, for every
ae El(k)/p and b € Ez(k)/p Using the identification E (L)/p ~ UO fori =1,2

(Proposition 3.8), we will show {a, b}, ;L = 0in U°QUY(L). Using the vanishing
N _
trick (2.8), it is enough to show that b € Im(U%l LN UY) for Ly = L({/a). Since
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ace El (k), its restriction in El (L) lies in Ep_l (L), and the same holds for b. Thus in
order to calculate the symbol {a, b}r,1., we may view a, b as units in Uy ur~ C U; UY. We
distinguish the following two cases First,if vg (a) = 1, thatis,a € E! (k)\ (k) then
its restriction over L lies in U i \U {. In this case Lemma 3.13 (a) gives us that Li/L
is a totally ramified degree p extension and its Galois group Gal(L/L) has jump in
its ramification filtration at s = peg(L) — p+1 = 1. Since b € Ui_l, andp—1>s,
Proposition 3.14(2) gives a surjection ﬁ%l(p_l) — ﬁ[L’_l, where ¥ = Y, /1. Since
Ufl(p_l) C U(,ll and E»(L))/p ~ U%l, we conclude that b is in the image of the
norm map, and hence {a, b}1,;, = 0. Second, if vx(a) > 1, then its restriction over L
lies in ﬁ'L) C Ug. In this case the extension L /L is unramified (cf. Lemma 3.13 (b)),

N,

and hence the norm map Uy, el Uy is surjective. This completes the proof for
the case of two elliptic curves with good ordinary reduction.

Case (ssing): When E, has good supersingular reduction. In this case we have
[L:k] = p> — 1, and ep(L) = p + 1. The argument is analogous to the previ-
ous case. Namely, let {a, b}r/x € (E1® E32)(k)/p. Since the extension L/k is of
degree coprime to p, in order to show that {a, bjx;x = O, it is enough to show
that {a, b}r;r = 0. Since b € Ex(k), v.(b) > p*> — 1. Let F = L(%b). We will
show that a € NF/L(El(F)/p). Lemma 3.15 allows us to reduce to the case when

2 2

b e Eg 1(L) \ Eg (L). Then Lemma 3.15 (1) gives us that b decomposes as (bg, b1)
under the decomposition (3.9), the extension Fy = L({/bp) is unramified over L,
while the extension F1 = L({/b1)/L is totally ramified of degree p and the jump in
the ramification filtration of Gal (L({/b1)/L) happens at s = 1. We may write,

{a,b}r/L = {a, (bo, D}r/L +{a, (1,b1)}r/L.

We claim that both these symbols are zero. The first one vanishes, since the norm

N
map E;(Fp) ot g 1(L) is surjective. For the second symbol, we can identify the

restriction of a over L with a unita € U} o . Since p> — 1 > s = 1, Proposition
3.14 gives us that a € NFI/L(F ), and hencea € NFI/L(El(Fl)/p) O

4.2 The case of two elliptic curves with good supersingular reduction

In this subsection we focus on the only case which is not covered in Theorem 1.4;
namely when X = E; x E» is a product of two elliptic curves with good supersingular
reduction. This case appears to be much harder than all others, and we can only obtain
a partial result. Our first computation shows that a weaker form of Theorem 4.5 is still
true in this case.

Theorem 4.6 Let X = E| x E» be a product of two elliptic curves with good supersin-
gular reduction over an unramified extension k of Q. Then, we have Symby (k) = 0.

Proof The proof is very analogous to Theorem 4.5. Consider the finite extension
L = k(E1[p]l, E2[p]). Using Lemma 4.3 we may assume that L /k is totally ramified.
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Since fori = 1, 2 the extension k; := k(E;[p])/k is totally ramified of degree p2 -1,
L /k is a tamely ramified extension of degree e(p2 —1),wheree = [L : k1] = [L :k2].

It follows by (3.6), that once again it suffices to show the vanishing of every symbol
{a, b € (E1®E2)(k)/p Let {a, b}k € (E1®E2)(k)/p We will ShOW that
{a,b}r/1 = 0. Decompose a = (ap, ay) € El(kl)/p, and b = (bg, b1) € Ez(kz)/p
by identifying

Ei ki)/p ~ Ul’(éo(k i)—to(k; ))$Uﬁt0(k i) Ul? ® UI?

From Lemma 3.15, we may assume that v (a) = vk (b) = 1 and we have
TP Fp2p—1\ 770+
a()GUk1 and aleUkl \Uk1 ,
2 2yl —p2
boe UL ™ and by e UL PN\TL TP
By restricting them to L, we obtain

a = (ap,ar), b= (bo,by1)

2 (1) (2 ] o
with ag, by € UeL(p TP and ay, by € Ue(p tp 1)\Ue(p *P) in the decomposition

Ei (L)/p =~ UZ(EO(L)_IO(L))EB UptO(L) Ueﬁ @ U . This in turn gives,

{a, b}/ = {(ao, 1), (bo, D}/ + {(1, a1), (bo, D}/
+{(ao, 1), (1, b))}y + {1, a1), (1, b1)} /L

Since the extensions L (&/ap), and L (¥/bg) are unramified over L, the first three symbols
vanish. It remains to show {(1, a1), (1, b1)}L;L = O. Con51der the finite extension
L1 = L(¥/b1). We need to show that (1,a;) € NLI/L(El(Ll)/p) By the same
reason, we may assume that L;/L is ramified. Lemma 3.13 gives us that L{/L is
totally ramified of degree p with jump at s = peg(L) —i = e(p*> + p) — i for some
e(p*+ p—1)<i < e(p? + p). In particular, we have 0 < s < e. Considering the
decomposition

Ei(L1)/p =~ up GBU

Ney/L

it is enough to show that a; € Im(ﬁeL —SUL).Bye(p> +p—1) > exs,

Proposition 3.14 gives us a surjection

5&@(;} +p—1y) Nyt ﬁe(p +=D _, 0.

_ 2, 2
In order for (1, ay) to be a norm, we need to verify that U w(e(p =) - U, ep . This
follows from ¥ (e(p> + p — D)) ze(p>+p — 1) > ep> Here the first 1nequa11ty

follows from the definition of the Herbrand function. O
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In order to extend Theorem 1.4 to this case, we would need an analog of Theo-
rem 4.4. The problem is that in this case we do not know how large the K-group
K(L; E1, Ep)/p is. Let us focus for simplicity on the case of a self-product X =
E x E. It follows by [17, Proposition 3.6] that the image of the Galois symbol
(E/pQE/p)(L) N H?*(L, E[p]® E[p]) is isomorphic to Z/ p. In all other reduc-
tion cases this map is an isomorphism [16,36,52].

Question 4.7 Isthemap (E/pQ E/p)(L) 2 H?*(L, E[p]® E[p]) injective when E
has good supersingular reduction?

It is very likely that Question 4.7 has a negative answer. At least the Mackey product
(E/p®E/p)(L) ~ (UP ®Up2)(L) does not seem to give enough relations that
guarantee injectivity. A weaker question is whether the analog of Claim A in the proof
of Theorem 4.4 is true in this case.

Question 4.8 Is the K-group K(L; E1, E2)/p generated by symbols of the form
{a,b}r/L, witha € E{(L),b € E>(L)?

The next theorem provides some indication that if Question 4.8 has an affirmative
answer, then Theorem 4.4 can indeed be extended to this case.

Theorem 4.9 Let k be a finite unramified extension of Q,. Suppose X = E x E is
the self-product of an elliptic curve over k with good supersingular reduction. Let
L = k(E[p]). Then, for every a,b € E(L)/p, we have

Npj(a, byrjL) ={a, bl =0

in the Mackey product (E Q@ E)(k)/ p.

Proof The proof will be along the lines of Claim C in the proof of Theorem 4.4. With the
usual argument we may assume that the extension L = k(E [p])/k is totally ramified
of degree p> — 1 with cyclic Galois group. By Lemma 4.1 and (3.6) it is enough to
prove that for every a, b € E(L)/p, it holds Ny x({a, b}r;1) = O, and since resy /i
is injective, th1s is equlvalent to proving that resy /x (N Jk ({a,b}r/1)) =0.

Set W = (E/p®E/p)(L) Recall that the group E(L)/p has a filtration {@’ }
given by Di = Ei (L)/(pE(L) NE! (L)), fori > 1. This induces a filtration on W as
follows. For every ¢ > 1 the symbol maps define

Fil' (W) = Z Im (D) @ D' — W).

n+m=t

Claim A Proving respjxoNp = 0 is equivalent to proving that if {a,b}r;1 €
Fil'(W) for some t > 1, then resy k(N jx({a, b} 1)) € Fil 'L (w).

The direction (=) is clear. To prove (<), fixa, b € E(L)/p. Assume that {a, b}, /1 €
Fil' (W) for some ¢ > 1. Since by assumption resy /x (N1 /x({a, b}1/1)) € Fil'T1(W),
we may write resy /x (N /x({a, b} /1)) in the form, ZZN=1 {ai, b} L, for some N > 1
and some ¢; € DY, by € D' withn +m >t + 1. We claim that {a, b}, x = 0 if and
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only if Zf\;l {ar, b1}/ = 0. To see this note that the element Zf\;l {ar, by} 1k can be
rewritten as,

N N
Z {ar, ik = Nk (Z {a, bl}L/L>
=1 1=1

= Ny (resp({a, b)) = (p* — Dia, by k.

Since p> — 1 = —1 (mod p), the claim follows. Using the above argument allows us
to reduce to proving that {a, b}rx = 0, whenever {a, b}r,L € Fil’*1(W). At this
point we can continue inductively. The process is guaranteed to terminate in finitely
many steps, since Lemma 3.11 (d) implies that Fi12p2(W) =0.

From now we focus on proving the implication,

{a,byr; € Fil'"(W) = resp(Npjx({a,br 1)) € Fil' ™ (W).

Let Go = Gal(L/k) = (o) be the Galois group of L/k. Then for all a, b € E(L)/p
we have,

P2
res.k(Nox(fa, byry) = Y o ({a, bYrw).
r=0
Suppose that a € DiL \DiL+l, and b € Di\@{“, for some i, j € {1, ..., p*} with

i + j = t. Note that if either i or j is equal to p% then Lemmas 3.11 and 3.15

imply that the extension Ly = L(%b) is unramified over L. Using the surjectivity
N
of the norm, E(Lg) Lol Ei(L), we immediately get that {a, b}, ;L = 0. We

may therefore reduce to the case when i, j € {1,..., p2 — 1}. Consider the quotient
Fil!(W)/ Fil'*1 (W) and the well-defined map,

D /DI @DI /DI 5 Fil' (W) Fil L (W).

Denote by @ ® b the image of a ® b in @’L/D’[H ® D{/D{+l. Moreover, let o be the
endomorphism induced by o,

5: Dy /D @D} /D) - D /D @D /DT

Fix a uniformizer 77 of L and setu = o () /7L € ]F;z. Then Lemmas 3.16 and
3.17(2) yield an equality,

@by =u'a®u’b.
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Similarly to the proof of Claim C in Theorem 4.4, the tensor product Di / DiLH ®

. e .
D]L / D]L+ becomes an [F; -vector space, and hence we can rewrite,
c@®b)=u'ta®b.

When i + j is not divisible by p? — 1, we may proceed exactly as in the proof of Claim
C in Theorem 4.4 to deduce that

p’=2 P2
> a@sh = (L @iy Jas =0,
r=0 r=0

and hence resy/x (N ({a, b} L)) € Fil’*!(W). It remains to consider the cases
when i 4 j is a multiple of p> — 1. Since 2 < i + j < 2p* — 2, the only multiples of
p? — 1in that range are p> — 1 and 2p> — 2. We consider each case separately.
Case 1: Suppose that i + j = 2p?> — 2. This is only possible if i = j = p> — 1. In
this case we can prove that {a, b}, ;. = 0, imitating the proof of Theorem 4.6.
Case2.1: Supposethati+j = p?>—1andbothi, j are coprime to p. Using (3.9) we can
—2 J—
decompose a = (ag, a1), and b = (bo, b1) with ag, by € U7 *and ay, by € Uﬁ“.
Then Lemma 3.11 gives us that a; € ﬁ{ﬂ \U{JHH, by € U{ﬂ \ﬁiﬂﬂ, while
—2 — 2 4
ap € UV by € u? *, for some 1, ' such that pr > i, and pt’' > j. Notice that the
symbols {(1, a1), (bo, D}Lsk, {(ao, 1), (1, b1)} 1k and {(ao, 1), (bo, 1)}k vanish due
to previous considerations in the proof. It remains to show that {(1, a), (1, b1)}r/k =
0. In fact, we claim that {(1, a1), (1, b1)}L;. = 0. We consider the finite extensions
Ly = L(/ay), and Ly = L({/by), both of which are totally ramified of degree p
over L. Using the usual vanishing trick (see Remark 2.8), it is enough to establish the
following claim.

Claim B The assumption i + j = p*> — 1 forces one of the elements to be a norm. That
is, either (1,a1) € Np,yL(E(L2)/p), or (1,b1) € NL,;L(E(L1)/p).
To prove Claim B, we need to show that either a; lies in the image of the norm map

77p2 Mo/l —p o . —p? Nyt —p
UL2 —— U}, or by lies in the image of UL. —— U, .Let Gy = Gal(L/L),

G, = Gal(L,/L) be the Galois groups of L, L> respectively. Then the jump in the
ramification filtration of G (resp. of Gy) occurs at sy = p> + p — (p+i) = p> — i
(resp. at sy = p* — j). Observe that since i + j = p> — 1, it follows that,

pHi=p’4+p—l—j>p’—j=p+i>sn.

Since the computation is symmetric, we also get p + j > s1. Then Proposition 3.14
yields,

Vi (p+i)=ss+pp+i—s)=p>—j+pp+i—p>+))
=p’—j+plp—D=2p"—p—j.
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A symmetric computation yields ¥z,,.(p + j) = 2 p?> — p —i. In order to prove
Claim B, we must show that at least one of 7,/ (p + i) and Y1,/ (p + j) is larger
than p2 Assume to contradiction that YrL(p+j)< p? and Yr,L(p+i)<p
Adding these inequalities yields,

2p2 —p—jH2pt—p—i<2pt = 2p* —2p<i+
— 2p>—2p<p’—1 = (p—1><0

which is a contradiction. We conclude that either ¥,/ (p +1) > pz, or ¥p,/L(p+
j) > p% which respectively give that (1,a;) € Np,/L(E(L2)/p), or (1,b1) €
NrL(E(L1)/p).

Case 2.2: Suppose that i + j = p? — 1 and one of the integers i, j is divisible
by p. Without loss of generality, assume that i = pl, for some 1 </ < p. We

—p2 J—

decompose a = (ag, a1), b = (bo, by) with ag, by € UY *oand ay, by € UZH.
—p2 —p2 — ;

Lemma 3.17 and [25, Lemma 2.1.4] yield that ag € U? T\TU? 7+ 4y e TP,

while by € ﬁ{ﬂ \ﬁiﬂ i Finally, by € ﬁ{zH for some ¢ such that pt > j. The
symbols {(1, a1), (bo, D}k, {(1, a1), (1, b1)} Lk and {(ao, 1), (bo, 1)} Lk vanish due
to earlier considerations in this proof. It remains to show that {(ao, 1), (1, b1)}rx = 0.
We proceed similarly to Case 2.1, to show {(ag, 1), (1, b1)};. = 0. Consider the finite
extension L3 = L({/ag), which is totally ramified of degree p over L. It is enough to
establish the following claim.

Claim C The assumption i + j = p*> — 1 forces the element (1, by) € E(L)/p to be
a norm, namely (1, b1) € Ny, (E(L)/p).

To prove Claim C we need to show that by lies in the image of the norm U, gt U

Let Gz = Gal(L3/L) be the Ga101s group of L3/L. The jump in the ram1ﬁcat1on
filtration of G3 occurs at s3 = p> 4+ p — (p?> + 1) = p — L. It is then clear that
p + j > s3, and hence we can compute ¥ ,,1 (p + j) as follows:

Yiyyn(p+j)=ss+plp+j—s3)=p—Il+pp+j—p+D
=p—Il+p(+Dh)=p—1+pj+pl

Using that i + j = p?> — 1, and hence pl + j = p? — 1, the last equality can be
rewritten as,

Yigy(p+j)=p—l+pj+p*—1—j=p*+p+(p-1j—1-1

We want to prove that ¥y /1 (p + j) > p2 Equivalently, (p — 1)j + p —[ > 1. But

this is clear, since [ < p and j > 1. We conclude that b; € Im (Up RN ), as

required. o
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4.3 Extensions

We close this section by giving some easy extensions of Theorem 4.5.

Corollary 4.10 Let k be a finite unramified extension of Q, and E1, . . ., E, be elliptic
curves over k with good reduction. Assume that at most one of the curves has good
supersingular reduction. Let X = E1 x - -+ x E,. Then, the Albanese kernel F*(X)
is p-divisible.

Proof Using the relation of FZ(X) with the Somekawa K -groups given in (2.5), we
are reduced to proving that the K-group K (k; E;,, ..., E;)) is p-divisible, for every
2<vgrand 1 <iy < ip < --+ < i, <r. Itis enough to show that the Mackey
product (E;, /p®--- Q E;,/p)(k) = 0. Note that Theorem 4.5 implies that this is true
when v = 2. The general case follows by the fact that the product ® in the category
of Mackey functors is associative. O

The following corollary follows by an easy descent argument.

Corollary 4.11 Let k be a finite unramified extension of Qp. Let X be a principal
homogeneous space of an abelian variety A, such that X; ~ Ay for some finite
extension L[k of degree coprime to p. Suppose additionally that there is an isogeny
AL E1x --- X E, of degree coprime to p, where E; are elliptic curves over k
satisfying the assumptions of Corollary 4.10. Then, the groups F*(A) and F*(X) are
p-divisible.

Proof We first show that the Albanese kernel F2(A) is p-divisible. Suppose that the

isogeny A R 1 X --+ X E, has degree n. Let ¢V> be the dual isogeny. These induce
push-forward maps,

F2(A)/p 25 F2(E x - x E,)/p LN F2(A)/p,

with ¢,0¢, = n. Since by assumption n is coprime to p, multiplication by # is
injective on F2(A)/p. At the same time F?(E; x --- x E,)/p = 0 by the previous
corollary. We conclude that 2(A)is p-divisible.

Next suppose that X is a principal homogeneous space of A such that X; ~ A for
some finite extension L /k of degree m which is coprime to p. Consider the projection

X1 2 X, which induces a push-forward, F2(X1)/p 2 F%2(X)/p,and a pull-back
F2(X)/p & F*2(Xp)/p, satisfying g,og* = m. By the previous case we have
F2(X1)/p ~ F?(A)/p = 0, which forces g* to vanish. Since g* is also injective, the
claim follows. O

Proposition4.12 Let k be a finite unramified extension of Q,. Let Ay and Ay be
abelian varieties over k. For each i = 1,2, we assume that the connected component
of the special fiber of the Néron model of A; is a split torus. Then, (A1 ® Aj)(k) is
p-divisible.
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Proof From the assumption on A;, there exists a split torus 7; =~ (Gf‘,?g" over k with
g = dim A; and a free abelian subgroup L; C T; (k) such that T; (k") /L; >~ A; (k") for
any finite extension k’/k. This gives surjections of Mackey functors 7;/p — A;/p,
which induce a surjection

(T/p®T2/p)(k) — (A1/p®Az/p)(k) — O

(cf. [52, Remark 4.2 (2)]). As the tori 77 and 7 split, we have

(T1/p@T2/p)k) = (Gu/p @G/ p) (k) F$182 = (K2 (k) / p) #8182 = 0,

where the last equality follows from [11, Chapter IX, Proposition 4.2]. This shows
that (A1/p®Aax/p)(k) = 0. O

Recall that the Jacobian variety of a Mumford curve satisfies the assumption in the
above proposition. Using the associativity of the Mackey products as in the proof of
Corollary 4.10, we obtain the following corollary.

Corollary 4.13 Let k be a finite unramified extension of Q. Let X = Cy x --- x C, be
a product of Mumford curves over k. Then, the Albanese kernel F*(X) is p-divisible.

5 Local-to-global results

In this last section we focus on the local-to-global Conjecture 1.6, which constitutes
one of the main motivations of this article.

Notation 5.1 For a Z-module M we will denote by M =lim, M /n the completion of
M. Let F be a number field, that is, a finite extension of Q. We will denote by 2, f
and Q4 the set of all places, all finite places and all infinite places of F respectively.

5.1 The Brauer group

Let X be a smooth projective and geometrically connected variety over F. The Brauer
group Br(X) = Hézt(X, G,n) of X has a filtration,

Br(X) D Br(X) D Bro(X),
induced by the Hochschild—Serre spectral sequence

H'(F, HL.(X7,Gw)) = Hy ™ (X, Gp).
The two subgroups are defined as follows; Bro(X) := Im(Br(F) — Br(X)), and
Br(X) := ker (Br(X) — Br(X%)). The latter is usually referred in the literature as the
algebraic Brauer group, while the quotient Br (X)) /Br | (X) is called the transcendental
Brauer group. When X is an abelian variety, a K3 surface [45, Theorem 1.1], or a
product of curves [46, Theorem B] over a number field, the transcendental Brauer
group is finite.
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5.2 The Brauer-Manin pairing

For each place v of F, put X, = XF,. Suppose v is a finite place of F. There is a
pairing,

(-, -)v: CHo(X,) xBr(X,) — Br(Fy) ~ Q/Z,

known as the Brauer—Manin pairing, which is defined using evaluation at closed points,
and the invariant map of local class field theory, inv, : Br(F,) => Q/Z. Precisely, for
each closed point P € X, and o € Br(X,), the pull-back of « along the closed point
P — X, is denoted by a(P) € Br(F,(P)), where F,,(P) is the residue field of P.
The paring above is defined by (P, a), := Corp,(p)/F,(c(P)). In a similar manner,
one can define a Brauer—Manin pairing for every real place v of F,

(-, )o: CHo(Xy) x Br(Xy) — Br(F,) ~ Z/2Z — Q/Z.

Note that in this case the subgroup nfv/Fv*(CHo(Xv ®vav)) of CHy(Xy) is con-

. . . .. TFy/Fy . L
tained in the left kernel of this pairing, where Xz L X s the projection.

Definition-Notation 5.2 The adelic Chow group of X is defined as

CHoa(X) = [ | CHo(X,).
veQ

where for every finite place v of F, we have an equality CHy(X,) = CHy(X,), while

for every infinite place v, CHo(X,) = - (%HO((};” YW In a similar way, we
Fo/Fyx 0\ApFy 'y

define the adelic group F A(X ) = HveQ F1(X,) of zero-cycles of degree zero, and

the adelic Albanese kernel, FK(X ) = [lyea F(X v) (cf. Sect. 2.4 for the definition
of the filtration).

Notice that for every infinite complex place v we have an equality, CHo(X,) = 0.
The local pairings induce a global pairing,

(-, ) CHoA(X) xBr(X) - Q/Z,

defined by ((zy)v, &) = >, (zv, t*())y, Where * is the pull-back of ¢ X, - X. We

note that, if v is a real place, then [4, Théoreme 1.3] gives us that the group F(X v)
is isomorphic to a finite number of copies of Z/27Z.
The short exact sequence of global class field theory,

0 — Br(F) — @D Br(F,) L™ 9/Z = 0,

vEQR
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implies that the group CHy(X) lies in the left kernel of (-, -), thus giving rise to a
complex,

CHo(X) -2 CHy A(X) — Hom(Br(X), Q/Z).

Behavior with respect to filtrations

Under the Brauer—Manin pairing, the filtration CHo(X) > FY(X) D F*(X) D 0
is compatible with the filtration Br(X) D Br;(X) D Bro(X) of the Brauer group.
Namely, restricting the map CHg A (X) — Hom(Br(X), Q/Z) to FA(X), it factors
through

FA(X) — Hom (Br(X)/Bro(X), Q/Z) — Hom(Br(X), Q/Z).
Similarly, restricting the latter to Fi(X ), it factors through,

Br(X)
Bri(X)

F3(X) — Hom( ,Q/Z) < Hom (Br(X), Q/Z).

This compatibility follows by considering the local pairings, CHo(X,) —
Hom (Br(X,), Q/7Z) and using local Tate duality. For a proof of this compatibility
we refer to [52, Proof of Proposition 3.1] and [12, Proof of Theorem 6.9].

5.3 The conjecture

We are interested in the following conjecture.

Conjecture 5.3 ([7, Section 4], [23, Section 7], [4, Conjecture 1.5(c)] and [50, Con-
jecture (Eg)]) Let X be a smooth projective geometrically connected variety over a
number field F. The following complex is exact:

FI(X) 2> FL(X) — Hom(Br(X)/Bro(X), Q/2), 5.1)

where FA(X) is the group defined in 5.2.

When E is an elliptic curve, it is a theorem of Cassels [3] that Conjecture 5.3 is true, if
the Tate—Shafarevich group of E contains no nonzero divisible element; in particular, it
is true if it is finite. This result has been generalized by Colliot-Thélene [5, paragraphe
3] to all curves, assuming that the Tate—Shafarevich group of their Jacobian contains no
nonzero divisible element. We next consider what happens for a product X = C; x Ca
of two curves over F.

Proposition5.4 Let X = Cyx Cy be a product of smooth projective curves over a
number field F. Let Alby = J| X J> be the Albanese variety of X, where J1, Jp are
the Jacobian varieties of C1, Ca respectively. Assume that X contains a k-rational
point and that the Tate—Shafarevich group of Albx contains no nonzero divisible
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element. Then the exactness of (5.1) can be reduced to the exactness of the following
complex:
Br(X)

Bri(X)

F2(X) 2 FI(X) — Hom( ,Q/Z). (5.2)

Proof 1t follows by [36, Corollary 2.4.1] that we have a direct sum decomposition,
F'(X) = J1(F)® 12 (F)® F(X),

and the same holds over F,, for every place v of F. This decomposition passes to the
completions. Thus, proving exactness of (5.1) amounts to proving exactness of (5.2)
and exactness of the following complex:

Albx (F) > ] Albx, (F,) — Hom (Bri(X)/Bro(X), Q/Z).  (53)

veQ

It follows directly by the Hochshchild—Serre spectral sequence,
Ey = H'(F, H (X, Gp)) = H (X, Gy),

that we have a surjection HY(F, Pic(X%)) — Bri(X)/Bro(X) — 0. Namely,
HY(F, Pic(X%)) = E;’l, while the quotient Br(X)/Bro(X) is precisely the graded
piece grl(Ez) = gri(Br(X)) = Eég)]. Note that the differential dzl’1 : E;’l — ES’O
vanishes, since ES‘O = H3(F, F*) = 0. This is a byproduct of global class field

theory (cf. [35, Remark 6.7.10]). Thus, we get a surjection E;’l — Eéc‘,l — 0.
This induces an injection on the dual groups, 0 — Hom (Br|(X)/Bro(X), Q/Z) —
Hom (H!(F, Pic(X%)), Q/Z). Moreover, there is a map Hom (H'(F, Pic(X7)), Q/Z)
— Hom(H(F, PicO(Xf)), Q/7Z) induced by the short exact sequence of G p-modu-
les,

0 — Pic’(X7) — Pic(X7) — NS(XF) — 0.

The variety Pic’(X) is the dual abelian variety to Alby. Since the latter is equal to the
product Ji x Jo, it is self dual. We conclude that the exactness of (5.3) follows by the
exactness of the following complex:

Alby (F) 2> T Albx, (F,) 2> Hom(H'(F, Albx), Q/Z).

veQ

Here the map S: ]_[UEQ Almv) — Hom (H!(F, Alby), Q/7Z) is obtained by all
the local isomorphisms Alby, (F,) ~ Hom (HY(F,, Alby,), Q/Z) induced by local
Tate duality (cf. [32, I. Corollary 3.4]) and composing it with the map

[ | Hom(H' (F,. Alby,), Q/Z) 20, Hom(H'(F, Alby). Q/Z).

veER
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The fact that the map ) is well-defined follows by [32, I. Lemma 6.3]. This complex
is known to be exact under the assumption on the Tate—Shafarevich group of Alby
(cf. [32,11. 5.6 (b)]). O

5.4 Elliptic curves with potentially good reduction

In this section we consider a product X = E|x E» of two elliptic curves over F.
We assume that for i = 1, 2 the elliptic curve E; has potentially good reduction at
all finite places of F. It is known that an elliptic curve over F has potentially good
reduction if and only if its j-invariant is integral [43, Chapter VII, Proposition 5.5]. An
important class of elliptic curves with this property are elliptic curves with complex
multiplication ([10, p.225] and [42, Theorem 7], see also [43, Chapter VII, Exercise
7.10]).

Suppose that vy, .. ., v, are all the places of bad reduction of X. Then, there exists
some finite extension L,, of Fy, such that X7, has good reduction. We set n; :=
[Lv,-: F v,-]-

Lemma5.5 Leti € {l,...,r}. Let p be a prime number such that v; {p and p is
coprime to ni. Then the Albanese kernel F(X v;) s p-divisible.

TLy; [ Fy; TLy; [ Fy; *

Proof Consider the projection X L, — Xy;, and let CHy(X L”i)

ﬂzu,-/Fu,-
CHy(Xy,), and CHy(X,;) ——> CH()(XLUi) be the induced push-forward and

pull-back maps respectively. Since X L,, has good reduction and v; 1 p, it follows by

[38, Corollary 0.10] that the Albanese kernel F 2(X Lv,-) is p-divisible. Moreover, the
endomorphism

FX(Xy) m F2(Xy)
—>
p )4

can be factored as n; = my, /F, « Oﬂzv JFy Since we assumed that p does not divide
1 1 i Ul'

n;, this forces the multiplication by n; to be injective modulo p. At the same time the
map 7, /F, « is the zero map. We conclude that the group F2(X v;)/p vanishes. O

Definition 5.6 Let S be the set of rational primes consisting of:

e all the primes p such that v; | p for some 1 <i <r,

e all the prime divisors of [];_, n;,

e all the primes p such that both E1, E> have good supersingular reduction at v for
some place v € Qy that lies above p,

e all the ramified primes in the extension F/Q, and

e p=2.

Moreover, let Ts be the set of all integers whose prime divisors do not belong to S,
namely

Ts={n>1:ptn, forall p € S}.
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The following corollary follows directly from Theorem 4.4.

Corollary 5.7 Let X = E| x E3 be the product of two elliptic curves over F. Assume
that fori = 1, 2 the elliptic curve E; has potentially good reduction at all finite places
of F. Then, we have

F2(X
[] lim FX)
< n
veQ nely
In particular, the following complex is exact:
L FAX) A . FA(X,) e Br(X)
lim —>1_[l(lnT—>Hom —.,Q/7Z ).

<«
nels n veQ neTs Bri(X)

Proof Fix v € Q and n € Ts. We will show that the group E(Xv) is n-divisible.
It is enough to show that ﬁ(Xv) is p-divisible, for each prime divisor p of n. By
definition of the set Ts, we have p ¢ S.

Case 1: Suppose v € Q4 is a real place of F. By our assumption, p is odd. Since
FX(X,) = (Z/27)%, for some s > 0 [4, Théorem 1.3], we conclude that F2(X,) is
p-divisible.

Case 2: Suppose v € Qy and v{p. If X, has good reduction, then F%(X,) is p-
divisible [38, Corollary 0.10]. If X, has bad reduction, then it follows by Lemma 5.5
that F2(X,) is p-divisible.

Case 3: Suppose v € Qf and v | p. By p ¢ §, the surface X, has good reduction.
Moreover, the extension F, /Q, is unramified, and at least one of the curves Ey,, E2,

over F, has good ordinary reduction. It then follows by Theorem 4.5 that the group
F%(X,) is p-divisible. o

Example 5.8 Consider the product X = E| x E; of the elliptic curves given by the
Weierstrass equations y> = x3 + x and y? = x> 4 1 respectively. The curve E| ®Q@
has complex multiplication by Z[i], while E» ®@@ has complex multiplication by
Z|w], where w is a primitive third of unity. Then Corollary 5.7 in this case reads as
follows: for every prime p > 5 such that p # 11 mod 12, the group 1<£n nFi(X)/p” =
0.

Acknowledgements We are very grateful to Professor Jean-Louis Colliot-Thélene for very useful sugges-
tions and advice regarding mainly the local-to-global part of the paper. We would also like to heartily thank
Professors Kazuya Kato, Shuji Saito and Takao Yamazaki for showing interest in our paper and for useful
discussions and suggestions. Moreover, we are truly thankful to the referees, whose suggestions helped
improve significantly this article.

References

1. Beilinson, A.A.: Higher regulators and values of L-functions. In: Gamkrelidze, R. (ed.) Current Prob-
lems in Mathematics, vol. 24, pp. 181-238. Itogi Nauki i Tekhniki Akademii Nauk SSSR, Moscow
(1984) (in Russian)

@ Springer



Divisibility results for zero-cycles

10.

11.

12.
13.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. Bloch, S.: Algebraic cycles and values of L-functions. J. Reine Angew. Math. 350, 94—-108 (1984)
. Cassels, J.W.S.: Arithmetic on curves of genus 1. VIL The dual exact sequence. J. Reine Angew. Math.

216, 150-158 (1964)

. Colliot-Thélene, J.-L.: L’arithmétique du groupe de Chow des zéro-cycles. J. Théor. Nombres Bordx.

7(1), 51-73 (1995)

. Colliot-Thélene, J.-L.: Conjectures de type local-global sur I’image des groupes de Chow dans la coho-

mologie étale. In: Raskind, W., Weibel, C. (eds.) Algebraic K -theory (Seattle, WA, 1997). Proceedings
of Symposia in Pure Mathematics, vol. 67, pp. 1-12. American Mathematical Society, Providence
(1999)

. Colliot-Thélene, J.-L., Raskind, W.: Groupe de Chow de codimension deux de variétés définies sur un

corps de nombres: un théoréme de finitude pour la torsion. Invent. Math. 105(2), 221-245 (1991)

. Colliot-Thélene, J.-L., Sansuc, J.-J.: On the Chow groups of certain rational surfaces: a sequel to a

paper of S. Bloch. Duke Math. J. 48(2), 421-447 (1981)

. Colliot-Théleéne, J.-L., Sansuc, J.-J., Swinnerton-Dyer, P.: Intersections of two quadrics and Chételet

surfaces. I. J. Reine Angew. Math 373, 37-107 (1987)

. Colliot-Théleéne, J.-L., Sansuc, J.-J., Swinnerton-Dyer, P.: Intersections of two quadrics and Chatelet

surfaces. II. J. Reine Angew. Math 374, 72-168 (1987)

Deuring, M.: Die Typen der Multiplicatorenringe elliptischer Funktionenkorper. Abh. Math. Sem.
Hambg. 14, 197-272 (1941)

Fesenko, I.B., Vostokov, S.V.: Local Fields and Their Extensions. 2nd edn. With a foreword by I. R.
Shafarevich. Translations of Mathematical Monographs, vol. 121. American Mathematical Society,
Providence (2002)

Gazaki, E.: On a filtration of C Hy) for an abelian variety. Compositio. Math. 151(3), 435-460 (2015)
Gazaki, E.: Some results about zero-cycles on abelian and semi-abelian varieties. Math. Nachr. 292(8),
1716-1726 (2019)

. Gazaki, E., Leal, I.: Zero-cycles on a product of elliptic curves over a p-adic field. Int. Math. Res. Not.

(2021). https://doi.org/10.1093/imrn/rnab020

. Hazewinkel, M.: On norm maps for one dimensional formal groups. I. The cyclotomic I'-extension. J.

Algebra 32, 89-108 (1974)

Hiranouchi, T.: Milnor K -groups attached to elliptic curves over a p-adic field. Funct. Approx. Com-
ment. Math. 54(1), 39-55 (2016)

Hiranouchi, T., Hirayama, S.: On the cycle map for products of elliptic curves over a p-adic field. Acta
Arith. 157(2), 101-118 (2013)

Ieronymou, E.: The Brauer—-Manin obstruction for zero-cycles on K3 surfaces. Int. Math. Res. Not.
IMRN 2021(3), 2250-2260 (2021)

Kahn, B.: The decomposable part of motivic cohomology and bijectivity of the norm residue homo-
morphism. In: Dennis, R.K., et al. (eds.) Algebraic K-Theory, Commutative Algebra, and Algebraic
Geometry. Contemporary Mathematics, vol. 126, pp. 79-87. American Mathematical Society, Provi-
dence (1992)

Kahn, B.: Nullité de certains groupes attachés aux variétés semi-abéliennes sur un corps fini; applica-
tion. C. R. Acad. Sci. Paris Sér. I Math. 314(13), 1039-1042 (1992)

Kahn, B., Yamazaki, T.: Voevodsky’s motives and Weil reciprocity. Duke Math J. 162(14), 2751-2796
(2013)

Kato, K., Saito, S.: Unramified class field theory of arithmetical surfaces. Ann. Math. 118(2), 241-275
(1983)

Kato, K., Saito, S.: Global class field theory of arithmetic schemes. In: Bloch, S.J., et al. (eds.) Appli-
cations of Algebraic K-Theory to Algebraic Geometry and Number Theory, Part I, II. Contemporary
Mathematics, vol. 55, pp. 255-331. American Mathematical Society, Providence (1986)

Katz, N.M.: p-adic properties of modular schemes and modular forms. In: Kuyk, W., Serre, J.-P. (eds.)
Modular Functions of One Variable, III, vol. 350, pp. 69—190. Lecture Notes in Mathematics, vol. 350.
Springer, Berlin (1973)

Kawachi, M.: Isogenies of degree p of elliptic curves over local fields and kummer theory. Tokyo J.
Math. 25(2), 247-259 (2002)

Kerz, M., Saito, S.: Chow group of O-cycles with modulus and higher-dimensional class field theory.
Duke Math. J. 165(15), 2811-2897 (2016)

Kolldr, J., Szabd, E.: Rationally connected varieties over finite fields. Duke Math. J. 120(2), 251-267
(2003)

@ Springer


https://doi.org/10.1093/imrn/rnab020

E. Gazaki, T. Hiranouchi

28.
29.
30.
31
32.
33.
. Parimala, R., Suresh, V.: Zero-cycles on quadric fibrations: finiteness theorems and the cycle map.
35.
36.
37.
38.

39.

40.
41.
42.
43.
44.
45.
46.
47.

48.

49.
50.

51

52.

Langer, A., Raskind, W.: 0-cycles on the self-product of a CM elliptic curve over Q. J. Reine Angew.
Math. 516, 1-26 (1999)

Langer, A., Saito, S.: Torsion zero-cycles on the self-product of a modular elliptic curve. Duke Math
J. 85(2), 315-357 (1996)

Mazur, B.: Rational points of abelian varieties with values in towers of number fields. Invent. Math.
18, 183-266 (1972)

Merkur’ev, A.S., Suslin, A.A.: K-cohomology of Severi—Brauer varieties and the norm residue homo-
morphism. Izv. Akad. Nauk SSSR Ser. Mat. 46(5), 1011-1046 (1982) (in Russian)

Milne, J.S.: Arithmetic Duality Theorems, 2nd edn. BookSurge, LLC, Charleston (2006)

Mumford, D.: Rational equivalence of 0-cycles on surfaces. J. Math. Kyoto Univ. 9, 195-204 (1968)

Invent. Math. 122(1), 83-117 (1995)

Poonen, B.: Rational Points on Varieties. Graduate Studies in Mathematics, vol. 186. American Math-
ematical Society, Providence (2017)

Raskind, W., Spiess, M.: Milnor K-groups and zero-cycles on products of curves over p-adic fields.
Compositio. Math. 121(1), 1-33 (2000)

Rojtman, A.A.: The torsion of the group of 0-cycles modulo rational equivalence. Ann. Math. 111(3),
553-569 (1980)

Saito, S., Sato, K.: A finiteness theorem for zero-cycles over p-adic fields. With an appendix by Uwe
Jannsen. Ann. Math. 172(3), 1593-1639 (2010)

Salberger, P.: Torsion cycles of codimension 2 and [-adic realizations of motivic cohomology. In:
David, S. (ed.) Séminaire de Théorie des Nombres, Paris 1991/1992. Progress in Mathematics, vol.
116, pp. 247-277. Birkhéuser, Boston (1993)

Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15(4),
259-331 (1972)

Serre, J.-P.: Local Fields. Graduate Texts in Mathematics, vol. 67. Springer, New York (1979)

Serre, J.-P., Tate, J.: Good reduction of abelian varieties. Ann. Math. 88, 492-517 (1968)

Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106, 2nd edn.
Springer, Dordrecht (2009)

Skorobogatov, A.N.: Torsors and Rational Points. Cambridge Tracts in Mathematics, vol. 144. Cam-
bridge University Press, Cambridge (2001)

Skorobogatov, A.N., Zarhin, Yu.G.: A finiteness theorem for the Brauer group of abelian varieties and
K 3 surfaces. J. Algebr. Geom. 17(3), 481-502 (2008)

Skorobogatov, A.N., Zarhin, Yu.G.: The Brauer group and the Brauer—-Manin set of products of varieties.
J. Eur. Math. Soc. (JEMS) 16(4), 749-768 (2014)

Somekawa, M.: On Milnor K-groups attached to semi-abelian varieties. K-Theory 4(2), 105-119
(1990)

Stix, J.: A course on finite flat group schemes and p-divisible groups. https://www.uni-frankfurt.de/
52288632/Stix_finflat Grpschemes.pdf

Tate, J.: Relations between K7 and Galois cohomology. Invent. Math. 36, 257-274 (1976)
Wittenberg, O.: Zéro-cycles sur les fibrations au-dessus d’une courbe de genre quelconque. Duke Math.
J.161(11),2113-2166 (2012)

Wittenberg, O.: Rational points and zero-cycles on rationally connected varieties over number fields.
In: de Fernex, T. et al. (eds.) Algebraic Geometry: Salt Lake City 2015. Proceedings of Symposia in
Pure Mathematics, vol. 97.2, pp. 597-635. American Mathematical Society, Providence (2018)
Yamazaki, T.: On Chow and Brauer groups of a product of Mumford curves. Math. Ann. 333(3),
549-567 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


https://www.uni-frankfurt.de/52288632/Stix_finflat_Grpschemes.pdf
https://www.uni-frankfurt.de/52288632/Stix_finflat_Grpschemes.pdf

	Divisibility results for zero-cycles
	Abstract
	1 Introduction
	1.1 Local-to-global approximations for zero-cycles
	1.2 Outline of the method and additional results
	1.3 Notation

	2 Background
	2.1 Mackey functors
	The restriction map
	2.2 Somekawa K-group
	2.3 Galois symbol map
	2.4 Relation to zero-cycles

	3 Preliminary computations
	3.1 Formal groups
	3.2 Elliptic curves
	3.3 Elliptic curves with good ordinary reduction
	3.4 Elliptic curves with good supersingular reduction
	Behavior with respect to the filtration of the formal group
	3.5 Computing ramification jumps
	3.6 Galois action on graded quotients

	4 Main results
	4.1 Proof of Theorem 1.4
	4.2 The case of two elliptic curves with good supersingular reduction
	4.3 Extensions

	5 Local-to-global results
	5.1 The Brauer group
	5.2 The Brauer–Manin pairing
	Behavior with respect to filtrations
	5.3 The conjecture
	5.4 Elliptic curves with potentially good reduction

	Acknowledgements
	References




