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Abstract
Let X be a product of smooth projective curves over a finite unramified extension k
of Qp. Suppose that the Albanese variety of X has good reduction and that X has a
k-rational point.We propose the following conjecture. The kernel of the Albanesemap
CH0(X)0 → AlbX (k) is p-divisible.When p is an odd prime,we prove this conjecture
for a large family of products of elliptic curves and certain principal homogeneous
spaces of abelian varieties. Using this, we provide some evidence for a local-to-global
conjecture for zero-cycles of Colliot-Thélène and Sansuc (Duke Math J 48(2):421–
447, 1981), and Kato and Saito (Contemporary Mathematics, vol. 55:255–331, 1986).
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1 Introduction

Let X be a smooth, projective, and geometrically connected variety over a field k. We
consider the group CH0(X) of zero cycles on X modulo rational equivalence. This
group is a direct generalization of the Picard group Pic(C) of a curve C , and as such

it inherits many of its properties. Namely, there is a degree map, CH0(X)
deg−→ Z,

whose kernel will be denoted by F1(X). Moreover, there is a generalization of the
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Abel–Jacobi map,

F1(X)
albX−−−→ AlbX (k),

called the Albanese map of X , where AlbX is the dual abelian variety to the Picard
variety of X . When X has a k-rational point, the degree map is surjective. When k is
algebraically closed it follows by Roitman’s theorem that the Albanese map is also
surjective [37], but this is not always true over arbitrary fields, except in some special
cases. Some examples when surjectivity holds include K3 surfaces and geometrically
rationally connected varieties (in these cases surjectivity holds trivially since AlbX =
0), and products of curves all having a k-rational point [20,36]. Coming to the question
of injectivity, unlike the case of curves when themap albX is always injective, in higher
dimensions the situation is rather chaotic and the map albX has often a very significant
kernel, which we will denote by F2(X). Mumford [33] was the first to find examples
of surfaces over C with enormous F2, in particular not finitely generated. The key
feature of these examples was the positive geometric genus, pg(X) > 0.

When k is a finite extension over its prime field, the expectations for the structure
of F2(X) are on the other extreme, predicting that F2(X) is rather small. When k is
a finite field, F2(X) is indeed finite and its structure can be understood by geometric
class field theory [22,26]. When k is a number field, that is, a finite extension of Q, we
have fascinating conjectures due to Beilinson and Bloch. Namely, Beilinson predicts
[1] that F2(X⊗kQ) = 0, which would imply that F2(X) is a torsion group, while
Bloch [2] expects that the group CH0(X) is a finitely generated abelian group. The
two conjectures combined suggest that F2(X) should be finite. Apart from curves
for which the above conjectures follow by the Mordell–Weil theorem, there is some
evidence for surfaces with pg(X) = 0 by the work of Colliot-Thélène and Raskind
[6] and Salberger [39], and for the self-product E×E of an elliptic curve E over Q by
the work of Langer and Saito [29], and Langer and Raskind [28]. Namely, for all these
classes of surfaces it has been shown that the torsion subgroup of F2(X) is finite.

The intermediate case of a p-adic field k is rather interesting, as it features similar-
ities with both C and Q. In this case the group F2(X) is conjectured by Raskind and
Spiess to have the following structure.

Conjecture 1.1 (Raskind, Spiess [36, Conjecture 3.5.4]) Let X be a smooth projective
variety over a finite extension of the p-adic field Qp. The Albanese kernel F2(X) is
the direct sum of a divisible group and a finite group.

This conjecture was inspired by earlier considerations of Colliot-Thélène [4, Conjec-
ture 1.4 (d, e, f)]. A celebrated result in this direction is due to Saito and Sato [38],
who proved a weaker form of Conjecture 1.1, namely that the group F1(X) is the
direct sum of a finite group and a group divisible by any integer m coprime to p. The
full conjecture has been verified in very limited cases including rationally connected
varieties with good reduction [27, Theorem 5] (those in fact satisfy F2(X) = 0) and
certain products of curves, [36, Theorem 1.1], [14, Theorem 1.2]. Moreover, for ratio-
nally connected varieties with semistable reduction and abelian varieties with good
ordinary reduction it has been established that the group F2(X) is the direct sum of
a divisible group and a torsion group (cf. [27, Corollary 9] and [13, Theorem 1.1]
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respectively). We also refer to [34] for a list of results on CH0 for quadric fibrations
over various types of fields, including number fields.

When X has good reduction, it follows by [38, Theorem 0.3, Corollary 0.10] and
[22, Theorem 1] that the group F1(X) is l-divisible for every prime l �= p. For the
classes of varieties for which Conjecture 1.1 has been verified, this is also true for
the group F2(X). It is natural therefore to ask if the same holds for the “p”-part, a
question which only makes sense for the group F2(X).

Question 1.2 Suppose that the variety X has good reduction and that Conjecture 1.1
holds for X . Is the group F2(X) p-divisible?

The answer is no in general. In fact all the known results [14,16,36,52] indicate that the
group F2(X)/p is nontrivial when k is ramified enough. The purpose of this article is
to investigate what happens when k is unramified over Qp. We expect that in this case
Question 1.2 should have an affirmative answer, at least for certain classes of varieties,
including some cases of bad reduction. This expectation is strongly motivated by
certain local-to-global expectations for zero-cycles, which will be discussed in more
detail in Sect. 1.1. We suggest the following conjecture.

Conjecture 1.3 Suppose that k is a finite unramified extension of Qp. Let X =
C1× · · · ×Cr be a product of smooth projective curves over k such that for i =
1, . . . , r , Ci (k) �= ∅. Suppose we are in one of the following two situations:

(a) The Jacobian variety Ji of Ci has good reduction, for i = 1, . . . , r .
(b) The Jacobian variety Ji of Ci has split multiplicative reduction, for i = 1, . . . , r ,

that is, Ci is a Mumford curve over k.

Then, the kernel of the Albanese map F2(X) is p-divisible.

Our first significant evidence for the situation (a) of the above conjecture is the fol-
lowing theorem, which constitutes the main result of this article.

Theorem 1.4 (cf. Theorem 4.5) Let X = E1×E2 be a product of two elliptic curves
over a finite unramified extension k of Qp with good reduction, where p is an odd
prime. Suppose that one of the curves has good ordinary reduction. Then, the Albanese
kernel F2(X) is p-divisible.

We note that Conjecture 1.1 has already been established for such products by joint
work of the first author with Isabel Leal [14, Theorem 1.2]. Moreover, using easy
descent arguments, and related work of Takao Yamazaki [52], we verify Conjecture
1.3 in the following additional cases, including the situation (b) of Conjecture 1.3.

Corollary 1.5 (cf. Corollaries 4.10, 4.11, and 4.13) Let k be a finite unramified exten-
sion ofQp, with p is odd. Then, Conjecture 1.3 is true for each of the following classes
of varieties:

(a) An abelian variety A such that there is an isogeny A
φ−→ E1× · · · ×Er of degree

coprime to p, where Ei are elliptic curves over k with good reduction with at most
one having good supersingular reduction.

(b) A principal homogeneous space X of an abelian variety A, such that X⊗k L �
A⊗k L for some finite extension L/k of degree coprime to p and with A as in (a).
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(c) A product X = C1× · · · ×Cr of Mumford curves over k.

Our current techniques work well only for odd primes p. However, we have no sig-
nificant reason to exclude p = 2 from Conjecture 1.3. When X = E1×E2 with both
curves having good supersingular reduction we only obtain a partial result, which we
will state in Sect. 1.2. Before doing that, we would like to discuss some connections
of Conjecture 1.3 with certain local-to-global expectations.

1.1 Local-to-global approximations for zero-cycles

For a smooth projective geometrically connected variety X over a number field F , it
is customary to consider the diagonal embedding X(F) ↪→ X(AF ) to the set of adelic
points, X(AF ) ..= ∏

v∈� X(Fv), where � is the set of places in F . When X(F) �= ∅,
the question that arises is whether X satisfies weak approximation, that is, whether
X(F) is dense in X(AF ). The Brauer group Br(X) of X is known to often obstruct
Weak Approximation (cf. [35,44]). Namely, it gives rise to an intermediate closed
subset, X(F) ⊂ X(AF )Br(X) ⊂ X(AF ), which is often properly contained in X(AF ).
This obstruction is called Brauer–Manin obstruction to Weak Approximation.

Although this obstruction cannot always explain the failure ofWeakApproximation
for points, its zero-cycles counterparts are conjectured to explain all phenomena. We
are particularly interested in the following conjecture.

Conjecture 1.6 ([7, Section 4], [23, Section 7], see also [4, Conjecture 1.5 (c)] and
[50, Conjecture (E0)]) Let X be a smooth projective geometrically connected variety
over a number field F. The following complex is exact:

lim←−
n

F1(X)/n
�−−→ lim←−

n

F1
A(X)/n → Hom(Br(X)/Br(F), Q/Z).

Here, the adelic Chow group F1
A(X) is essentially

∏
v∈� f

F1(X⊗F Fv) with a small
contribution from the infinite real places, where � f is the set of all finite places in F .
For a precise definition see Sect. 5.

Conjecture 1.6 was originally suggested by Colliot-Thélène and Sansuc [7] for
geometrically rational varieties built upon some evidence. It was later extended to
general varieties by Kato and Saito [22]. However, to this day the only evidence we
have for this conjecture is for several classes of rationally connected varieties, starting
with the work of Colliot-Thélène, Sansuc and Swinnerton-Dyer on Châtelet surfaces
[8,9], and continued by multiple authors (cf. [51] for a great survey article). There is
some recent partial evidence for K3 surfaces by work of Ieronymou [18], which is the
only known result for varieties with positive geometric genus.

We are interested to see whether the above conjecture has any chance of being true
for a product X = C1×C2 of two curves over F having an F-rational point. In what
follows we do a quantitative analysis of this problem. In this case the Albanese variety
AlbX is just the product J1× J2 of the Jacobian varieties of C1,C2, and it follows by
a result of Raskind and Spiess [36, Corollary 2.4.1] that we have a decomposition

CH0(X) � Z⊕AlbX (F)⊕F2(X) � Z⊕ J1(F)⊕ J2(F)⊕F2(X).
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If we assume the finiteness of the Tate–Shafarevich group of J1× J2, then verifying
Conjecture 1.6 is reduced to proving that the following complex is exact (cf. Proposi-
tion 5.4):

lim←−
n

F2(X)/n
�−−→ lim←−

n

F2
A(X)/n → Hom(Br(X)/Br1(X), Q/Z), (1.1)

where Br1(X) ..= ker (Br(X)→Br(X⊗F F)) is the algebraic Brauer group, and
the quotient Br(X)/Br1(X) is the transcendental Brauer group of X . By a result of
Skorobogatov and Zarhin [46] the quotient Br(X)/Br1(X) is finite for such a product
of curves X defined over a number field. At the same time, the Beilinson–Bloch
conjectures predict that the group F2(X) is finite, and should therefore coincide with
lim←− n F2(X)/n. As a conclusion, for Conjecture 1.6 to be compatible with the global

expectations, the adelic Albanese kernel lim←− n F2
A(X)/nmust also be finite. Conjecture

1.3 when combined with Conjecture 1.1 and [36, Theorem 3.5] imply this finiteness,
suggesting that the group lim←− n F2

A(X)/ln vanishes, for all rational primes l lying below
unramified places of F of good reduction. Theorem 1.4 yields the following corollary,
which is precisely of that flavor.

Corollary 1.7 (cf. Corollary 5.7) Let X = E1×E2 be the product of two elliptic curves
over a number field F. Assume that for i = 1, 2 the elliptic curve Ei has potentially
good reduction at all finite places of F. There is an infinite set T of rational primes
such that

∏
v∈�

∏
l∈T lim←− n F2(X⊗F Fv)/ln = 0. In particular, the result holds when

for i = 1, 2 the elliptic curve Ei ⊗QQ has complex multiplication by the ring of
integers of a quadratic imaginary field Ki .

Unfortunately, the complement of T may be infinite, because in order to use Theorem
1.4, we need to exclude the rational primes below all places of bad reduction, all
ramified places, and all places where both curves have good supersingular reduction,
and the latter subset is infinite. In the present article we can only treat the case of
potentially good reduction. We hope that in a future paper we will explore higher
ramification cases and primes of bad multiplicative reduction, where it is very likely
that global zero-cycles need to be constructed.

Remark 1.8 One could suggest extending Conjecture 1.3 to K3 surfaces, as most of
the above analysis carries over to that case. Namely, in this case the groups F1(X)

and F2(X) coincide, which allows once again to reduce Conjecture 1.6 to proving
exactness of (1.1). Additionally, the quotient Br(X)/Br1(X) is finite [45, Theorem
1.2]. Our methods do not provide any information for those at the moment. However,
if one could verify Conjecture 1.3 for K3 surfaces, this would strengthen very signifi-
cantly the recent result of Ieronymou [18, Theorem 1.2], which could potentially lead
to a full proof of Conjecture 1.6 for K3 surfaces. Another interesting case to consider
is surfaces with pg(X) = 0, which are not rationally connected. These are known to
have finite Albanese kernel ([6], see also [4, Théorème 2.2]).
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1.2 Outline of themethod and additional results

The key tool to prove Theorem 1.4 is the use of the Somekawa K -group K (k; E1, E2)

attached to E1, E2. This group is a quotient of the group
⊕

L/k finite E1(L)⊗E2(L),

and it is a generalization of the Milnor K -group KM
2 (k) of k. For a finite extension

L/k and points ai ∈ Ei (L), the image of a tensor a1⊗a2 inside K (k; E1, E2) is
denoted as a symbol {a1, a2}L/k . Raskind and Spiess [36] proved an isomorphism,
ρ : F2(X) �−−→ K (k; E1, E2). As an example, if (x, y) ∈ X(k) is a k-rational point,
then ρ sends the zero-cycle [x, y] − [x, 0] − [0, y] + [0, 0] ∈ F2(X) to the symbol
{x, y}k/k .

Some limited cases of Theorem 1.4 were obtained in [14] for good ordinary reduc-
tion, but the arguments were very ad hoc. In the current article, we develop a uniform
method to prove p-divisibility of K (k; E1, E2). Our method roughly involves the
following main steps:

Step 1: (cf. Theorem 4.4) We show that the K -group K (k; E1, E2)/p is generated by
symbols of the form {x, y}k/k for (x, y) ∈ X(k).

Step 2: (cf. Theorem 4.5) We prove that all symbols of the form {x, y}k/k are p-
divisible.

The key to prove both steps is to consider the extension L = k(Ê1[p], Ê2[p]),
where Êi is the formal group of Ei , and study the restriction map

K (k; E1, E2)/p
resL/k−−−−→ K (L; E1, E2)/p.

We may reduce to the case when the extension L/k is of degree coprime to p, in
which case resL/k is injective. The advantage of looking at the restriction is that under
the reduction assumptions of Theorem 1.4, we have a complete understanding of the
group K (L; E1, E2)/p; namely it is isomorphic to (Z/pZ)r for some 0 � r � 2.

When both curves have good supersingular reduction, Step 2 still holds. It is much
harder to establish Step 1 however. In this case we obtain the following partial result.

Theorem 1.9 (cf. Theorems 4.6, 4.9) Let k be a finite unramified extension of Qp. Let
X = E×E be the self product of an elliptic curve over k with good supersingular
reduction. Let L = k(E[p]). Then all symbols of the form {a, b}L/k and {a, b}k/k
vanish in K (k; E, E)/p.

In order to give some content to Theorem 1.9, we note that in all other cases it has
been established by previous work of Isabel Leal and the authors [14,16] that the
group K (L; E1, E2)/p is generated by symbols {x, y}L/L defined over L . We expect
the same to be true in the case of two elliptic curves with good supersingular reduction,
and then Theorem 1.9 would imply p-divisibility. However, this case appears to be
much harder, and at the moment we do not have a good way to control all finite
extensions.
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1.3 Notation

For a variety X over a field k and an extension L/k, we will denote by XL
..= X⊗k L

the base change to L . For an abelian group A and an integer n � 1, we will denote by
A[n] and A/n the n-torsion and n-cotorsion respectively. For a field k we will denote
by Gk

..= Gal(k/k) the absolute Galois group of k. Moreover, for a Gk-module M we
will denote by Hi (k, M) the Galois cohomology groups of M , for i � 0.

2 Background

In this section we review some necessary background. We start with the definitions of
Mackey functors and Somekawa K -groups. Throughout this section, k will be a field
with characteristic 0.

2.1 Mackey functors

Following [36, (3.2)], we introduce Mackey functors and their product. For properties
of Mackey functors, see also [19,20].

Definition 2.1 A Mackey functor M (over k) is a presheaf of abelian groups in the
category of étale k-schemes equipped with push-forward maps f� : M(X) → M(Y )

for finite morphisms X
f−→ Y , satisfying the following properties:

(i) M(X1 
 X2) = M(X1)⊕M(X2), for étale k-schemes X1, X2.
(ii) If Y ′ g−→ Y is a finite morphism and

X ′ g′

f ′

X

f

Y ′ g
Y

is a Cartesian diagram, then the induced diagram

M(X ′)
g′
�

M(X)

M(Y ′) g�

f ′�

M(Y )

f �

commutes.

Property (i) implies that a Mackey functor M is fully determined by its value on
Spec(K ) where K is a finite field extension of k. We will denote by M(K ) ..=
M(Spec K ).

123



E. Gazaki, T. Hiranouchi

Notation 2.2 For finite field extensions k ⊂ K ⊂ L , the map j� : M(L) → M(K )

induced by the projection Spec(L)
j−→ Spec(K ) will be denoted by NL/K : M(L) →

M(K ) and will be referred to as the norm. Similarly, the induced pull-back map
j� : M(K ) → M(L)will be denoted by resL/K : M(K ) → M(L) andwill be referred
to as the restriction.

The category of Mackey functors over k is abelian ([21, p. 5], [36, p. 14]) with a tensor
product defined by Kahn in [19], whose definition we review below.

Definition 2.3 For Mackey functorsM,N, theirMackey product M⊗N is defined as
follows. For a finite field extension k′/k,

(M⊗N)(k′) =
( ⊕

K/k′: finite
M(K )⊗ZN(K )

)/
(PF),

where (PF) is the subgroup generated by elements of the following form. For a tower
of finite extensions k′ ⊂ K ⊂ L ,

(PF1) NL/K (x)⊗ y − x⊗ resL/K (y) ∈ (PF), for elements x ∈ M(L), y ∈ N(K ).
(PF2) x⊗NL/K (y) − resL/K (x)⊗ y ∈ (PF), for elements x ∈ M(K ), y ∈ N(L).

These relations are referred in the literature as projection formula.
For x ∈ M(K ), y ∈ N(K ) the image of x⊗ y in (M⊗N)(k′) is traditionally

denoted as a symbol {x, y}K/k′ . Moreover, for a finite extension F/k′ the norm map
NF/k′ is given by

NF/k′ : (M⊗N)(F) → (M⊗N)(k′)
{x, y}K/F �→ {x, y}K/k′ .

In other words, NF/k′({x, y}K/F ) = {x, y}K/k′ , for x ∈ M(K ), y ∈ N(K ).

Remark 2.4 Using the symbolic notation, the projection formula (PF), can be rewritten
as

{NL/K (x), y}K/k′ = {x, resL/K (y)}L/k′ ,

{x, NL/K (y)}K/k′ = {resL/K (x), y}L/k′ .
(2.1)

Example 2.5 (1) Let G be a commutative algebraic group over k. Then G induces a
Mackey functor by defining G(K ) ..= G(Spec K ) for K/k finite.

(2) LetM be a Mackey functor and n ∈ N be a positive integer. We define a Mackey
functor M/n as follows: (M/n)(K ) ..= M(K )/n.

(3) For every integer n � 1 and any finite extension K/k, in an unpublished work due
to Kahn, we have an isomorphism

(
Gm⊗Gm

n

)

(K ) � KM
2 (K )

n
,
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where KM
2 (K ) is the Milnor K -group of K (cf. [36, Remark 4.2.5 (b)]). When k

is a finite extension of the p-adic field Qp, this follows also from [36, Lemma
4.2.1].

The restrictionmap

Suppose k ⊂ K ⊂ L is a tower of finite extensions of k. In the following sections we
are going to use extensively the restriction map

resL/K : (M⊗N)(K ) → (M⊗N)(L).

We review its definition here. Let F/K be a finite extension. There is an isomorphism
of L-algebras, F⊗K L � ∏n

i=1 Ai , where for each i ∈ {1, . . . , n}, Ai is an Artin local
ring of length ei over L with residue field Li . Let x ∈ M(F), y ∈ N(F). Then, we
define

resL/K ({x, y}F/K ) =
n∑

i=1

ei
{
resLi /F (x), resLi /F (y)

}
Li /L

.

The following lemma gives a more concrete description of resL/k in some special
cases.

Lemma 2.6 (1) Suppose L/k is a finite extension and x ∈ M(k), y ∈ N(k). Then
resL/k({x, y}k/k) = {x, y}L/L .

(2) Suppose L/k is a finite Galois extension and x ∈ M(L), y ∈ N(L). Let G =
Gal(L/k). Then,

resL/k({x, y}L/k) = resL/k(NL/k({x, y}L/L)) =
∑

g∈G
g{x, y}L/L .

Proof The assertion (1) follows immediately, since we have an isomorphism k⊗k L
� L . Hence, in this case we have n = 1, Li = L and ei = 1.

To prove (2), note that since L/k is Galois, it is the splitting field of some polynomial
f (x) ∈ k[x] so that L � k[x]/〈 f (x)〉. By taking a root α ∈ L of f (x), we have

L⊗k L = k[x]
〈 f (x)〉 ⊗k L = L[x]

〈 f (x)〉 �
∏

g∈G

L[x]
〈x − g(α)〉 �

n∏

i=1

Li ,

where for each i ∈ {1, . . . , n} there is an isomorphism g : Li
�−−→ L given by some

g ∈ G. �

Remark 2.7 Let M be a Mackey functor over k. Suppose that we have an equality
NL/K ◦ resL/K = [L : K ], for every finite extension L/K , e.g. M is given by a com-
mutative algebraic group (cf. Example 2.5 (1)). The equality implies that for every
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prime number p coprime to [L : K ], the restriction map (M/p)(K )
resL/K−−−→ (M/p)(L)

is injective, while the norm (M/p)(L)
NL/K−−−→ (M/p)(K ) is surjective.

Remark 2.8 (The vanishing trick) In the following sections we are going to prove the
vanishing of certainMackey products of the form (M/p⊗N/p)(k), where p is a prime
number. A usual strategy to show that a symbol {a, b}k/k ∈ (M/p⊗N/p)(k) vanishes
is to consider a finite extension k′/k over which there exists an element a′ ∈ M(k′)with
pa′ = resk′/k(a). If b = Nk′/k(b′), for some b′ ∈ N(k′), then the projection formula
(2.1) yields an equality

{a, b}k/k = {a, Nk′/k(b
′)}k/k = {resk′/k(a), b′}k′/k = Nk′/k({pa′, b′}k′/k′) = 0.

This trick was used in [49, Proposition 4.3] and refined in the context of Mackey
functors by Kahn in [20].

Notation 2.9 Let G be a commutative algebraic group over k and a ∈ G(k). For
every n � 1 the multiplication-by-n map G(k)

n−→ G(k) is surjective. Suppose that
G[n] ..= G(k)[n] ⊂ G(k). We will denote by k

( 1
n a

)
the smallest finite extension k′

of k over which there exists an element a′ ∈ G(k′) such that na = a′. The assumption
G[n] ⊂ G(k) implies that this is a Galois extension.

2.2 Somekawa K-group

For semi-abelianvarietiesG1, . . . ,Gr over k theSomekawa K-group K (k;G1, . . . ,Gr )

attached to G1, . . . ,Gr is a quotient of the Mackey product (G1⊗ · · · ⊗Gr )(k) (see
[47] for the precise definition).Althoughour statementswill often concern theK -group
K (k;G1, . . . ,Gr ), all our computations will be at the level ofMackey products, hence
we omit the definition of K (k;G1, . . . ,Gr ). We only highlight the following facts:

• For every K/k finite there is a surjection, (G1⊗ · · ·⊗Gr )(K ) � K (K ;G1, . . . ,Gr ).

• When G1 = · · · = Gr = Gm , there is an isomorphism K (k;G1, . . . ,Gr ) �
KM
r (k) with the Milnor K -group of k (cf. [47]).

• The elements of K (k;G1, . . . ,Gr ) will also be denoted as linear combinations
of symbols of the form {x1, . . . , xr }K/k , where K/k is some finite extension and
xi ∈ Gi (K ) for i = 1, . . . , r .

• The Somekawa K -group K (k;G1, . . . ,Gr ) inherits all the properties of the
Mackey product (G1⊗ · · · ⊗Gr )(k) discussed in the previous subsection.

2.3 Galois symbol map

LetG be a semi-abelian variety over k and p be a prime number. Sincewe assumed that
the field k has characteristic zero, for any finite extension K/k the Kummer sequence

0 → G[p] → G(K )
p−→ G(K ) → 0
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Divisibility results for zero-cycles

is a short exact sequence of GK -modules and hence it induces a connecting homo-
morphism

δG : G(K )/p ↪→ H1(K ,G[p]), (2.2)

which is often called the Kummer map.

Definition 2.10 (cf. [47, Proposition 1.5]) LetG1,G2 be semi-abelian varieties over k
and p be a prime. By considering G1,G2 as Mackey functors (as in Example 2.5 (1)),
the Galois symbol map

sp : (G1⊗G2)(k)/p → H2(k,G1[p]⊗G2[p])

is defined by the cup product and the corestriction as follows:

sp({x, y}K/k) = CorK/k
(
δG1(x) ∪ δG2(y)

)
.

For semi-abelian varietiesG1,G2 over k, it is known that the Galois symbol sp defined
above factors through the Somekawa K -group K (k;G1,G2)/p [47, Proposition 1.5].
The induced homomorphism K (k;G1,G2)/p → H2(k,G1[p]⊗G2[p]) will also
be denoted by sp. In particular, when G1 = G2 = Gm , we have the following
commutative diagram:

(Gm⊗Gm)(k)/p

sp

�
KM
2 (k)/p

gp

H2(k, μ⊗2
p ),

(2.3)

where the map gp : KM
2 (k)/p → H2(k, μ⊗2

p ) is the classical Galois symbol, which
is an isomorphism by the Merkurjev/Suslin theorem [31] (for the isomorphism
(Gm⊗Gm)(k)/p � KM

2 (k)/p see Example 2.5 (3)). Now, we suppose μp ⊂ k×.
In this case the map gp sends the symbol {x, y}k/k to the central simple algebra
(x, y)p . From [49, Proposition 4.3], we have the following equivalences:

{x, y}k/k = 0 in (Gm⊗Gm)(k)/p ⇐⇒ (x, y)p = 0 ⇐⇒ x ∈ Nk1/k(k
×
1 ), (2.4)

where k1 = k( p
√
y). Note that the last implication ⇐ follows from the same argument

as in Remark 2.8.

2.4 Relation to zero-cycles

Let X be a smooth projective variety over k. We consider the Chow group of zero-
cycles, CH0(X). Recall that this group has a filtration

CH0(X) ⊃ F1(X) ⊃ F2(X) ⊃ 0,
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where F1(X) ..= ker (deg : CH0(X)→ Z) is the kernel of the degree map, and F2(X)
..= ker (albX : F1(X)→AlbX (k)) is the kernel of the Albanese map. When X =
C1× · · · ×Cr is a product of smooth projective, geometrically connected curves over
k such that Ci (k) �= ∅ for i = 1, . . . , r , the Albanese kernel F2(X) has been related
to the Somekawa K -group attached to the Jacobian varieties J1, . . . , Jr ofC1, . . . ,Cr

by Raskind and Spiess. Namely, we have the following theorem.

Theorem 2.11 ([36, Theorem 2.2, Corollary 2.4.1]) For X = C1× · · · ×Cr as above
there is a canonical isomorphism,

CH0(X)
�−−→ Z ⊕

⊕

1 � ν � r

⊕

1 � i1<i2<···<iν � r

K (k; Ji1 , . . . , Jiν ).

Since each curve Ci has a k-rational point, we have CH0(X) � Z⊕F1(X). Hence,
we have

F1(X)
�−−→

⊕

1 � ν � r

⊕

1 � i1<i2<···<iν � r

K (k; Ji1 , . . . , Jiν ).

Since we have K (k; Ji ) � Ji (k) and the Albanese map albX : F1(X) → AlbX (k) =
J1(k)⊕ · · · ⊕ Jr (k) is surjective, we obtain

F2(X)
�−−→

⊕

2 � ν � d

⊕

1 � i1<i2<···<iν � d

K (k; Ji1 , . . . , Jiν ) (2.5)

when r � 2. In particular, when X = C1×C2, we have an isomorphism F2(X) �−−→
K (k; J1, J2), which has the following explicit description. Fix base points x0 ∈ C1(k),
y0 ∈ C2(k). Let x ∈ C1(L), y ∈ C2(L) where L/k is some finite extension. Let
πL/k : XL → X be the projection. Then

πL/k�([x, y] − [x, y0] − [x0, y] + [x0, y0]) �→ {x − x0, y − y0}L/k .

3 Preliminary computations

Convention 3.1 From now on we assume that k is a finite extension of the p-adic field
Qp with absolute ramification index ek , where p is an odd prime. We will denote by
Ok the ring of integers of k, mk the maximal ideal of Ok and F its residue field. For
a finite extension k′/k, we will denote by vk′ the discrete valuation of k′ that extends
the one of k, and by Fk′ the residue field of k′. We also denote by O×

k′ = U 0
k′ the group

of units in Ok′ and Ui
k′ ..= 1 + mi

k′ for i � 1 the higher unit groups.

In this section we will obtain some essential information about the Mackey functor
E/p (cf. Example 2.5 (2)) for an elliptic curve E over k, and we will discuss some
necessary ramification theory.
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3.1 Formal groups

Let F be a formal group law (which is commutative of dimension one) over Ok .
The group F(mk) associated to F is denoted by F(k). The group F(k) has a natural
filtration given by Fi (k) ..= F(mi

k), for i � 1. Let φ : F → F ′ be an isogeny of formal
groups over Ok which is given by a formal power series φ(T ) = a1T + a2T 2 + · · ·
in Ok[[T ]]. We define a filtration on F ′(k)/φ(F(k)) by

Jik
..= Im

(
F ′i (k)→ F ′(k)/φ(F(k))

) = F ′i (k)
φ(F(k)) ∩ F ′i (k)

, (3.1)

for i � 1. Recall that the height of φ is defined to be the positive integer n such that
φ(T ) ≡ ψ(T pn ) mod mk for some ψ ∈ Ok[[T ]] whose leading coefficient is a unit in
Ok . The structure of these graded pieces are known as follows.

Proposition 3.2 ([25, Lemma 2.1.4]) Assume that the isogeny φ : F → F ′ which
is given by the power series φ(T ) = a1T + a2T 2 + · · · has height 1 and F[φ] ..=
ker(φ) ⊂ F(k). Putting t(φ) = vk(a1) and t0(φ) = t(φ)/(p − 1), we have

(a) If 1 � i < pt0(φ) and i is coprime to p, then Jik/J
i+1
k � F ′i (k)/F ′i+1(k) � F.

(b) If 1 � i < pt0(φ) and i is divisible by p, then Jik/J
i+1
k = 0.

(c) If i = pt0(φ), then Jik/J
i+1
k � Z/p.

(d) If i > pt0(φ), then Jik = 0.

The above isomorphisms are induced by the standard isomorphism F ′i (k)/F ′i+1(k)
�−−→F as in [41, IV.2, Proposition 6] and they depend on the choice of a uniformizer

πk of k.
A typical example of a height 1 isogeny is the multiplication [p] : Ĝm → Ĝm by p

on the multiplicative group Ĝm . This isogeny is given by the power series [p](T ) =
pT +· · · and Ĝm[p] = μp, the group of p-th roots of unity. In particular, t([p]) = ek
is the absolute ramification index of k. The filtration Ĝi

m(k) = Ui
k defines a filtration

on k×/p = k×/(k×)p by

Ui
k

..= Im
(
Ui
k → k×/p

)
for i � 0.

Applying Proposition 3.2 to [p] : Ĝm → Ĝm , the structure of the graded quotients
Ui

k/U
i+1
k is summarized as follows.

Lemma 3.3 Assume μp ⊂ k. Set e0(k) = ek/(p − 1) (which is an integer).

(a) If 0 � i < pe0(k) and i is coprime to p, then Ui
k/U

i+1
k � Fk .

(b) If 0 � i < pe0(k) and i is divisible by p, then Ui
k/U

i+1
k = 1.

(c) If i = pe0(k), then Ui
k/U

i+1
k � Z/p.

(d) If i > pe0(k), then Ui
k = 1.

For the remaining of this subsection we assume that φ : F → F ′ is a height 1 isogeny
with F[φ] ⊂ F(k). For a point x ∈ F ′(k), let k′ ..= k(φ−1(x)) be the smallest
extension of k over which there exists a point y ∈ F(k′) such that φ(y) = x . Under
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our assumptions this is a finite Galois extension of k of degree p (cf. Lemma 3.4
below). Let G = Gal(k′/k) be the Galois group of k′/k. Consider the ramification
filtration (Gλ)λ � −1 in the upper numbering of G [41, IV.3]. Then there is an integer
s, called the jump of G, such that Gλ = G, for every λ � s and Gλ = 1, for every
λ > s [41, IV.3, Theorem]. The ramification of the extension k′/k is described in the
following lemma due to Kawachi.

Lemma 3.4 ([25, Lemma 2.1.5]) For a height 1 isogeny φ : F → F ′ with F[φ] ⊂
F(k), and x ∈ Jik \Ji+1

k , the ramification of the extension k′ = k(φ−1(x))/k is known
as follows:

(a) If 1 � i < pt0(φ), then k′/k is a totally ramified extension of degree p with the
jump in the ramification filtration of G ..= Gal(k′/k) occurring at s = pt0(φ) − i .

(b) If i = pt0(φ), then k′/k is an unramified extension of degree p.

Note that Proposition 3.2 implies that Lemma 3.4 covers all possible cases. Next
we further assume that μp ⊂ k×. The short exact sequences of Gk-modules 1 →
μp → k× p−→ k× → 1 and 0 → F[φ] → F

φ−→ F ′ → 0 give rise to connecting
homomorphisms (Kummer maps, cf. (2.2))

k×/p
�−−→ H1(k, μp), and F ′(k)/φ(F(k)) ↪→ H1(k, F[φ]).

After fixing an isomorphism F[φ] � μp of (trivial)Gk-modules, we get noncanonical
homomorphisms

f : F ′(k)/φ(F(k)) ↪→ H1(k, F[φ]) � H1(k, μp)
�←−− k×/p.

In fact, the inducedmap is compatible with filtrations and the following theorem holds.

Theorem 3.5 ([25, Theorem 2.1.6]) The map f : F ′(k)/φ(F(k)) → k×/p satisfies

f (Jik) = U p(e0(k)−t0(φ))+i
k

for any i � 1, where e0(k) = ek/(p − 1) and t0(φ) is defined in Proposition 3.2.

We close this subsection by defining a Mackey functor by the higher unit groupsUi
k .

Definition 3.6 Let i � 0. We define the sub-Mackey functor Ui, of Gm/p as follows.
If L is a finite extension of k, thenUi (L) ..= U ie(L/k)

L . For a finite extension F/L , the
norm NF/L and restriction maps resF/L are induced by the ones on Gm .

3.2 Elliptic curves

Let E be an elliptic curve over k with good reduction. Let E be the Néron model of E ,
which is an abelian scheme over Spec(Ok). Let E ..= E⊗Ok F be the reduction of E ,
and Ê be the formal group of E . We have a short exact sequence of abelian groups,

0 → Ê(mk)
j−→ E(k)

r−→ E(F) → 0, (3.2)
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where r : E(k) → E(F) is the reduction map. This induces a short exact sequence of
Mackey functors,

0 → Ê → E → [E/Ê] → 0, (3.3)

where Ê is the Mackey functor given by K �→ Ê(K ) ..= Ê(mK ), and [E/Ê] is a
Mackey functor defined by L �→ E(FL). For a finite extension L/K , the restriction

resL/K : [E/Ê](K ) → [E/Ê](L) is the usual restriction, E(FK )
resL/K−−−→ E(FL),

while the norm NL/K : [E/Ê](L) → [E/Ê](K ) is the map E(FL)
e(L/K ) ·NL/K−−−−−−−−→

E(FK ). The fact that [E/Ê] is a Mackey functor has been shown by Raskind and
Spiess [36, p. 15].

From now on we will drop the notation [p] : Ê(k) → Ê(k) and will denote it
simply by p : Ê(k) → Ê(k). Recalling from Sect. 3.1, the group Ê(k) = Ê(mk) has
a natural filtration given by Ê i (k) ..= Ê(mi

k), for i � 1.

Definition 3.7 Following (3.1), we define a filtration on Ê(k)/p = Ê(k)/pÊ(k) by

Di
k

..= Ê i (k)

pÊ(k) ∩ Ê i (k)
, i � 1.

In the case when Ê[p] ⊂ E(k), we can decompose E/p using the Mackey functors
Gm/p and Ui (cf. Definition 3.6). This decomposition depends on the reduction type
of E , which we review in the following two subsections.

3.3 Elliptic curves with good ordinary reduction

We first consider the case when E has good ordinary reduction; that is, E is an
ordinary elliptic curve over F. In this case theGk-module E[p] has a one-dimensional
Gk-invariant submodule. Namely, we have the connected-étale short exact sequence
of Gk-modules

0 → E[p]◦ → E[p] → E[p]ét → 0, (3.4)

where E[p]◦ ..= Ê[p] are the [p]-torsion points of the formal group Ê of E . For more
details on the connected-étale exact sequence we refer to [48, Section 8]. After a finite
unramified extension k′/k the short exact sequence (3.4) becomes

0 → μp → E[p] → Z/p → 0. (3.5)

This follows because after base change to the maximal unramified extension knr of
k the formal group Ênr becomes isomorphic to the multiplicative group Ĝm (cf. [30,
Lemma 4.27]). As the multiplication p : Ê → Ê has height 1, Theorem 3.5 now leads
to the following proposition.

Proposition 3.8 ([25, Theorem 2.1.6], see also [14, Proposition 3.12]) Let E be an
elliptic curve over k with good ordinary reduction, and Ê be its formal group. Assume
that Ê[p] ⊂ Ê(k) and μp ⊂ k×. Then, we have an isomorphism f : Ê(k)/p �−−→
U 1

k � U 0
k , which satisfies f (Di

k) = Ui
k for i � 1.
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Assume we are in the situation of Proposition 3.8. In particular, μp ⊂ k× and after
a finite unramified extension (3.5) holds. Next we consider the short exact sequence
(3.2) and apply the right exact functor ⊗ZZ/p. Using Proposition 3.8 we get an exact
sequence of Fp-vector spaces,

U 0
k

j−→ E(k)/p
r−→ E(F)/p → 0.

The map j is not always injective. Namely, there is a unit u ∈ O×
k /O

×p
k , known as the

Serre–Tate parameter of E , that generates the kernel. For more details see [14, Section
3.1]. All we need in this article is that there is an exact sequence of Mackey functors,

U 0 → E/p → [E/Ê]/p → 0,

where U 0, [E/Ê] are the Mackey functors defined previously.

3.4 Elliptic curves with good supersingular reduction

Lastly, we consider the case when E has good supersingular reduction. This means
that the elliptic curve E has no p-torsion, and hence we get a surjection of Mackey
functors,

Ê/p
j−→ E/p → 0. (3.6)

For the rest of this subsectionwe assume that E[p] ⊂ E(k). Let e0(k) = ek
p−1 . Suppose

y0, y1 are two generators of Ê[p] � Z/p⊕Z/p such that

vk(y0) = max {vk(y) : y ∈ Ê[p], y �= 0}.

From now on we will denote t0(k) ..= vk(y0). We have a decomposition of Mackey
functors (see [16, Proof of Theorem 4.1]),

E/p � U p(e0(k)−t0(k)) ⊕U pt0(k), (3.7)

where U p(e0(k)−t0(k)), U pt0(k) are Mackey functors defined as in Definition 3.6. We
recall how this decomposition is obtained. Themain reference for what follows is [25].

Consider the isogenous elliptic curve E ′ ..= E/〈y0〉 and the isogeny E
φ−→ E ′, and its

dual, E ′ φ̌−→ E , which are both defined over k. As [p] = φ̌ ◦φ : E → E has height 2,

these isogenies correspond to isogenies of formal groups, Ê
φ−→ Ê ′, Ê ′ φ̌−→ Ê , which

are both of height 1. We have a splitting short exact sequence of Fp-vector spaces,

0 → E ′(k)
φ(E(k))

φ̌−→ E(k)

p
ε−→ E(k)

φ̌(E ′(k))
→ 0, (3.8)
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where ε is just the projection. By [17, Corollary 2.3], we have t0(φ) = t0(k). From
[25, Theorem 3.2.6 (2)], we have isomorphisms

E ′(k)
φ(E(k))

� Ê ′(k)
φ(Ê(k)))

�−→
f

U
p(e0(k)−t0(k))
k � U

p(e0(k)−t0(k))+1
k ,

where the middle isomorphism f follows from Theorem 3.5, and the last one follows
from Lemma 3.3 (b). It is clear that the dual isogeny φ̌ identifies E with the quotient
E ′/〈φ(y1)〉. By [17, Corollary 2.3] again, we have t0(φ̌) = vk(φ(y1)). The leading
coefficient of [p] = φ̌ ◦φ equals to p so that t(φ)+t(φ̌) = ek andhence t0(k)+t0(φ̌) =
e0(k). Then the same theorem [25, Theorem 3.2.6 (2)] gives an isomorphism,

E(k)

φ̌(E ′(k))
� Ê(k)

φ̌(Ê ′(k))
�−−→
f

U p(e0(k)−t0(φ̌))+1
k = U pt0(k)+1

k .

Behavior with respect to the filtration of the formal group

Notation 3.9 Consider the filtration Di
k = Ê i (k)

pÊ(k)∩Ê i (k)
, i � 1 (cf. Definition 3.7). We

define additionally F i
k

..= Ê i (k)
φ̌(Ê ′(k))∩Ê i (k)

, and Gik
..= Ê ′i (k)

φ(Ê(k))∩Ê ′i (k) , for i � 1.

Note that since the isogenies φ, φ̌ are of height 1, Proposition 3.2 applies for the
quotients F i

k /F
i+1
k , Gik/G

i+1
k .

Remark 3.10 It is clear that the map ε : D1
k → F1

k preserves the filtration. The follow-
ing lemma gives a complete description of the quotients Di

k/D
i+1
k for i � 1.

Lemma 3.11 Let i � 1 be an integer. Suppose that we have e0(k) − t0(k) = pt0(k).
Then the following are true for the quotient Di

k/D
i+1
k :

(a) If i < p(e0(k) − t0(k)) and (i, p) = 1, then ε induces an isomorphism,

ε : Di
k/D

i+1
k

�−−→ F i
k /F

i+1
k � F.

Moreover, both quotients are isomorphic to Êi (k)/Ê i+1(k).
(b) If i < p(e0(k)−t0(k))and i = pj , for some j � 1, then φ̌ induces an isomorphism,

φ̌ : G j
k/G

j+1
k

�−−→ Di
k/D

i+1
k .

Moreover,we have an isomorphismF � Ê ′ j (k)/Ê ′ j+1(k) � Di
k/D

i+1
k if ( j, p) =

1.
(c) If i = p(e0(k)− t0(k)), then we have a short exact sequence of Fp-vector spaces,

0 → G
e0(k)−t0(k)
k

G
e0(k)−t0(k)+1
k

φ̌−→ D
p(e0(k)−t0(k))
k

D
p(e0(k)−t0(k))+1
k

ε−→ F
p(e0(k)−t0(k))
k

F
p(e0(k)−t0(k))+1
k

→ 0.
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Moreover, we have isomorphisms,
G
e0(k)−t0(k)
k

G
e0(k)−t0(k)+1
k

� F
p(e0(k)−t0(k))
k

F
p(e0(k)−t0(k))+1
k

� Z/p.

(d) If i > p(e0(k) − t0(k)), then Di
k = 0.

Proof All the parts will follow from Proposition 3.2 and [17, Lemma 2.6]. For the
first claim Proposition 3.2 (a) gives an isomorphism, F i

k /F
i+1
k � F. At the same

time, we have a surjective map of finite dimensional Fp-vector spaces, Di
k/D

i+1
k

ε−→
F i
k /F

i+1
k → 0. Moreover, the projection Ê i (k) → Di

k/D
i+1
k induces a surjection

Ê i (k)/Ê i+1(k) → Di
k/D

i+1
k → 0. Since the quotient Ê i (k)/Ê i+1(k) is isomorphic

to F [43, Chapter IV, Proposition 3.2], the claim follows.
For the second claim, the proof of [25, Lemma 2.1.4 (1)] shows an isomorphism

G
j
k/G

j+1
k

�−−→Di
k/D

i+1
k induced by φ̌. If p � j , then F � Ê ′ j (k)/Ê ′ j+1(k) � G

j
k/G

j+1
k

by Proposition 3.2 (a).
Next, suppose i = p(e0(k) − t0(k)). The isomorphisms

G
e0(k)−t0(k)
k

G
e0(k)−t0(k)+1
k

� F
p(e0(k)−t0(k))
k

F
p(e0(k)−t0(k))+1
k

� Z/p

follow by Proposition 3.2 (c). The short exact sequence follows easily by the short

exact sequence 0 → G1
k

φ̌−→ D1
k

ε−→ F1
k → 0, after restricting to D

p(e0(k)−t0(k))
k .

Finally, claim (d) follows by Proposition 3.2 (d). �


3.5 Computing ramification jumps

In the remaining two subsections we focus on the following special case. We con-
sider an elliptic curve E with good supersingular reduction over a finite unramified
extension k/Qp, that is, ek = 1. In this situation, for the mod p Galois representation

ρ : Gal(k/k) → Aut(E[p]) � GL2(Fp),

the image of the inertia subgroup by ρ is known to be cyclic of order p2 − 1 [40,
Proposition 12]. This implies that

• the extension L ..= k(E[p])/k corresponding to the kernel of ρ has ramification
index eL/k = p2 − 1, and

• the inertia subgroup of Gal(L/k) is cyclic.

Lemma 3.12 For every non-zero x ∈ Ê[p], we have vL(x) = 1.

Proof Since the valuation of the p-th coefficient, ap, of multiplication by p in the
formal group Ê satisfies vk(ap) � pe/(p + 1) = p/(p + 1), we have vL(x) =
eL/k

1
p2−1

= 1 (cf. [24, Theorem 3.10.7]). �

From (3.7), we obtain a decomposition,

E(L)/p � U p(e0(L)−t0(L))
L ⊕U pt0(L)

L = U p2+1
L ⊕U p+1

L , (3.9)
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since t0(L) = max {vL(x) : 0 �= x ∈ Ê[p]} = 1 and e0(L) = p + 1.

Nextwemake a simplifying assumption that the extension L = k(E[p])/k is totally
ramified of degree p2 − 1. We consider the restriction

resL/k : D1
k → D

p2−1
L ,

which is an injectivemap ofFp-vector spaces, since [L : k] is coprime to p (cf. Remark
2.7). Let x ∈ D1

k . We will identify x with its image, resL/k(x). We are interested in
obtaining concrete information about the ramification of the finite Galois extension
L
( 1
p x

)
. This will be achieved in Lemma 3.15, but we first need some reminders from

Kummer theory.
Let F/k be an arbitrary finite extension such that μp ⊂ F×. Let a ∈ F×/p =

F×/(F×)p. Consider the Kummer extension F1 = F( p
√
a). Let G = Gal(F1/F) be

the Galois group of F1/F . In this setting, Lemma 3.4 now reads as follows:

Lemma 3.13 Let a ∈ F×/p. Consider the Galois extension F1 = F( p
√
a).

(a) If a ∈ Ui
F \Ui+1

F , for some 0 � i < pe0(F), then F1/F is a totally ramified
extension of degree p with the jump at s = pe0(F) − i .

(b) If a ∈ U pe0(F)
F \U pe0(F)+1

F , then the extension F1/F is unramified extension of
degree p.

Next, consider the Herbrand ψF1/F function defined as follows:

ψF1/F (x) =
{
x, x � s

s + p(x − s), x > s.

We will need the following facts about the norm map NF1/F .

Proposition 3.14 (cf. [41, V.3, Corollaries 2 & 3])

(1) For every integer1 � i < s, the normmap NF1/F : F×
1 → F× induces a surjection

Ui
F1

Ui+1
F1

NF1/F−−−−→ Ui
F

Ui+1
F

→ 0.

(2) For every integer i > s, the norm map induces a surjection

U
ψF1/F (i)
F1

NF1/F−−−→ Ui
F → 0.

We now come back to the element x ∈ D1
k considered before the Kummer theory

aside. We think of the element x as lying in D
p2−1
L under the restriction map. The

following lemma gives us how x decomposes under the decomposition (3.9). We note
that this lemma is a key computation that will be used several times in the next section.
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Lemma 3.15 Let x ∈ D1
k . Consider the finite extension L0 = L

( 1
p x

)
.

(1) Suppose x ∈ D1
k \D2

k . Under the decomposition (3.9) the image of x in E(L)/p =
D1

L can be written as (x0, x1) with x0 ∈ U p2+p
L and x1 ∈ U p+p2−1

L \U p+p2

L . In
particular, we have a tower of finite extensions L0 ⊃ L1 ⊃ L, with L1 ⊃ L
unramified and L0 ⊃ L1 totally ramified of degree p. The jump in the ramification
filtration of Gal(L0/L1) happens at s = 1.

(2) Suppose x ∈ D2
k . Then, L0 = L.

Proof In what follows wewill denote by ⊕ the addition law given by the formal group
ÊL . Moreover, we will fix π , πL uniformizer elements of k, L respectively.

We first prove (2). If x ∈ D2
k , then vL(x) � 2(p2 − 1), and hence its image in D1

L

lies in D
2(p2−1)
L . Since 2(p2 − 1) > p2, the claim (2) follows by Lemma 3.11 (d),

since D2(p2−1)
L = 0.

We next prove (1). Following the notation from (3.8), for every finite extension
L ′/k we have a splitting short exact sequence of Fp-vector spaces,

0 → Ê ′1(L ′)
φ(Ê1(L ′))

φ̌−→ Ê1(L ′)
p

ε−→ Ê1(L ′)
φ̌(Ê ′1(L ′))

→ 0.

We can therefore decompose the image of x in Ê1(L)p as x = φ̌(w0)⊕w1, where
w0 is the class of some w̃0 ∈ Ê ′1(L) mod φ(Ê1(L)) and w1 is the class of some
w̃1 ∈ Ê1(L) mod φ̌(Ê ′1(L)). Note that the same decomposition holds also over any
finite extension L ′/L . This implies that there exists an element y ∈ Ê1(L ′) such that
x = py if and only if there exist elements z̃0 ∈ Ê1(L ′) and z̃1 ∈ Ê ′1(L ′) such that
w̃0 = φ(z̃0) and w̃1 = φ̌(z̃1). This means that the extension L

( 1
p x

)
is precisely the

compositum of the extensions L1 = L(φ−1(w̃0)) and L2 = L(φ̌−1(w̃1)) (for this
notation see paragraph preceding Lemma 3.4).

Next we analyze the extensions L1, L2. We start with L1 = L(φ−1(w̃0)) and we
claim that the extension L1/L is unramified. It is enough to show that we are in
the set-up of Lemma 3.4 (b), which we apply for the height 1 isogeny φ : Ê → Ê ′.
Recall from the discussion in Sect. 3.4 and Lemma 3.12 that we have an equality
t0(φ) = t0(L) = 1. Thus, it suffices to show that vL(w̃0) � p. Since x is the restriction
of an element fromD1

k \D2
k , vL(x) = p2 − 1. This yields vL(φ̌(w̃0)) � p2 − 1. Let i

be such that w̃0 ∈ Ê ′i (L)\ Ê ′i+1(L). Since φ̌ is a height 1 isogeny, it follows that

vL(φ̌(w̃0)) = pi

(cf. [17, Lemma 2.2]). In particular, it is divisible by p. Combining the two relations,
we conclude that i = vL(w̃0) � p as required. Next consider the isomorphism

Ê ′1(L)

φ(Ê1(L))

�−−→ U p2+1
L
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and let x0 be the image ofw0 under this isomorphism. The above computation together

with Theorem 3.5 give us that x0 ∈ U p2+p
L .

Next we consider the extension L2 = L(φ̌−1(w̃1)), and let z̃1 ∈ Ê ′(L2) be such
that φ̌(̃z1) = w̃1. We apply Lemma 3.4 (a) for the height 1 isogeny φ̌ : Ê ′ → Ê . By
the discussion in Sect. 3.4 it follows that

t0(φ̌) = e0(L) − t0(L) = p + 1 − 1 = p.

Thus, in order to show that we are in the set-up of Lemma 3.4 (a), it is enough to
verify that vL(w1) < p2, which follows directly by the previous paragraph and the
equality vL(x) = p2 − 1. We conclude that the extension L2/L is totally ramified
of degree p and Lemma 3.4 (a) gives that the jump of the ramification filtration of
Gal(L2/L) occurs at s = pt0(φ̌) − (p2 − 1). Moreover, if x1 is the image of w1

under the isomorphism Ê(L)/φ̌(Ê ′(L)) � U p+1
L , then Theorem 3.5 implies that

x1 ∈ U p+p2−1
L \U p2+p

L .
We conclude the proof by noticing that the extensions L1/L , L2/L are totally

disjoint, one being unramified and the other totally ramified of degree p. Thus,
for the compositum L

( 1
p x

) = L1 · L2 we have an isomorphism Gal(L1L2/L1) �
Gal(L2/L). �


3.6 Galois action on graded quotients

We close this section with a technical computation that will be used in the proofs
of Theorems 4.4 and 4.9. We continue working in the set-up of Sect. 3.5. Namely,
E is an elliptic curve over a finite unramified extension k of Qp and the extension
L = k(E[p])/k is totally ramified of degree [L : k] = e(L/k) = p2 − 1. We want to
understand how the Galois group Gal(L/k) acts on the graded quotients Di

L/Di+1
L .

Thiswill be achieved inLemma3.17.Before thatwe startwith a preliminary discussion
about tame extensions and formal groups.

Suppose k/Qp is finite and L/k is a totally ramified extension of degree coprime to
p (that is, L/k is a tame extension). Fix a uniformizer π of L . Let G0 = Gal(L/k) be
the Galois group. Because L/k is tame, G0 is cyclic [41, IV.2, Corollary 1]. Let σ be
a generator of G0. We have an injection, f : G0 ↪→ U 0

L/U 1
L given by σm �→ σm (π)

π
.

Since there is an isomorphism U 0
L/U 1

L � F×
L , f identifies G0 with a subgroup of

F×
L . Set u = σ(π)/π ∈ F×

L . The following lemma shows how σ acts on the quotient
Ui

L/Ui+1
L � FL , when i � 1.

Lemma 3.16 Let i � 1. Then σ induces an automorphism, σ : Ui
L/Ui+1

L → Ui
L/Ui+1

L ,
which is given by multiplication by u i .

Proof Since Ui
L/Ui+1

L � FL , and L/k is totally ramified, the map σ is an FL -linear
map, σ : FL → FL , and hence it is given by multiplication by a non-zero scalar
c ∈ F×

L . We will show that c = u i. For every i � 1, we have an isomorphism of
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groups,

Ui
L

Ui+1
L

= Ĝm(mi
L)

Ĝm(mi+1
L )

� Ĝa(m
i
L)

Ĝa(m
i+1
L )

= (π i )

(π i+1)
,

(cf. [43, Chapter IV, Proposition 3.2]). It is immediate that the isomorphism is G0-

equivariant. Thus, it is enough to see how σ acts on the quotient (π i )

(π i+1)
. But this is

immediate, since

π i �→ σ(π i ) =
(

σ(π)

π

)i

π i = u iπ i ,

and the class of π i corresponds to 1 under the isomorphism (π i )

(π i+1)
� FL . �


Note that there was nothing special about the multiplicative group in Lemma 3.16.
Namely, according to [43, Chapter IV, Proposition 3.2], if F is any formal group over
Ok , then for each i � 1 the map F(mi

k)/F(mi+1
k ) → Ĝa(m

i
k)/Ĝa(m

i+1
k ) induced by

the identity map on sets is an isomorphism of groups. Thus, if L/k is a tame extension,
then the induced map σ : F(mi

L)/F(mi+1
L ) → F(mi

L)/F(mi+1
L ), which is obviously

G0-equivariant, is given by scalar multiplication by u i = (σ (π)/π)i .
We are now going to apply this to our elliptic curve E satisfying the assumptions of

the beginning of this subsection. IfG0 = Gal(L/k) = 〈σ 〉, then σ induces a FL -linear
automorphism

σ : Ê1(L)/Ê2(L)
· u−−→ Ê1(L)/Ê2(L)

of exact order p2 − 1. In fact, the Galois group G0 permutes the p-torsion points.
Next we see how the G0-action behaves under the decomposition (3.9). Following
the notation of Sect. 3.4 we may take E ′ = EL/〈y0〉, where y0 is some fixed torsion
point. Consider the isogenous elliptic curve E ′σ = EL/〈σ(y0)〉 and the isogenies

EL
φσ−→ E ′σ, E ′σ ˇφσ−→ EL . It is clear that we have an equality φσ = σ ◦φ ◦σ−1. We

therefore get a commutative diagram,

Ê ′(L)/φ(ÊL(L))
φ̌

σ

ÊL(L)/p
ε

σ

ÊL(L)/φ̌(Ê ′(L))

σ

Ê ′σ (L)/φσ (ÊL(L))
φ̌σ

ÊL(L)/p
εσ

ÊL(L)/φ̌σ (Ê ′σ (L)).

Combining this diagram with the information in Lemma 3.11 we obtain the following
lemma.

Lemma 3.17 Consider the decomposition EL(L)/p � U p2+1
L ⊕U p+1

L given in (3.9).
Let σ be the generator of G0 = Gal(L/k). Then
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(1) For each j ∈ {1, . . . , p − 1}, σ induces an automorphism
U p2+ j

L

U p2+ j+1
L

σ−→ U p2+ j
L

U p2+ j+1
L

given by multiplication by u pj .
(2) For each i ∈ {1, . . . , p2 − 1} which is coprime to p, σ induces an automorphism

U p+i
L

U p+i+1
L

σ−→ U p+i
L

U
p+i+1
L

given by multiplication by u i.

Proof This follows directly by Lemma 3.11. Namely, to prove (1) note that, for each
j ∈ {1, . . . , p − 1} which is coprime to p, we have a commutative diagram of iso-
morphisms,

U p2+ j
L /U p2+ j+1

L

σ

�
Ê ′ j (L)/Ê ′ j+1(L)

φ̌

σ

Ê pj
L (L)/Ê pj+1

L (L)

σ

U p2+ j
L /U p2+ j+1

L
�

(Êσ ) j (L)/(Ê ′′σ ) j+1(L)
φ̌σ

Ê pj
L (L)/Ê pj+1

L (L),

where the leftmost verticalmap is obtained by the diagram. Since the rightmost vertical
map is given by multiplication by u pj , the claim follows.

Similarly, to prove (2) note that for each i ∈ {1, . . . , p2−1}we have a commutative
diagram of isomorphisms,

Ê i
L(L)/Ê i+1

L (L)

σ

ε
F i
L/F i+1

L
�

σ

U
p+i
L /U

p+i+1
L

σ

Ê i
L(L)/Ê i+1

L (L)
εσ

(Fσ )iL/(Fσ )i+1
L

� U
p+i
L /U

p+i+1
L ,

where F i
L = Ê i

L(L)/(Ê i
L(L) ∩ φ̌(Ê ′(L))), (Fσ )iL = Ê i

L(L)/(Ê i
L(L) ∩ φ̌σ (Ê ′σ (L))),

and the rightmost vertical map is obtained by the diagram. Since the leftmost vertical
map is given by multiplication by u i, the claim follows. �


Remark 3.18 We note that the various isomorphisms in Lemmas 3.16 and 3.17 are not
canonical; namely they depend on the choice of a uniformizer element π of L .

4 Main results

In this section we give proofs for Theorems 1.4 and 1.9. All our statements will be in
terms of theMackey product (E1⊗E2)(k), and the Somekawa K -group K (k; E1, E2).
Using the identification of the latter with the Albanese kernel F2(E1×E2) (cf. (2.11)),
the corresponding statements for zero-cycles will follow. We start with some prelim-
inary lemmas.
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Lemma 4.1 Let E1, E2 be elliptic curves with good reduction over a finite extension
k of Qp. Then, we have a surjection of Mackey functors,

Ê1⊗ Ê2

p
→ E1⊗E2

p
→ 0.

Proof We have an exact sequence of Mackey functors,

Ê1/p → E1/p → [E1/Ê1]/p → 0.

Applying the right exact functor ⊗E2/p, we obtain an exact sequence of Mackey
functors,

Ê1/p⊗E2/p → E1/p⊗E2/p → [E1/Ê1]/p⊗E2/p → 0.

We claim that [E1/Ê1]/p⊗E2/p = 0, that is ([E1/Ê1]/p⊗E2/p)(K ) = 0, for any
finite extension K/k. To see this, let {x, y}F/K ∈ ([E1/Ê1]/p⊗E2/p)(K ), where
F/K is some finite extension, x ∈ [E1/Ê1](F)/p and y ∈ E2(F)/p. Recall that
[E1/Ê1](F) = E1(FF ). Let x ′ ∈ E1(FF ) be a point such that x = px ′. Then x ′ is
defined over some finite extension F′/FF . Let F ′/F be a finite unramified extension
with FF ′ = F′ (cf. [41, I.6]). Since the elliptic curve E2 has good reduction, [30,

Cororally 4.4] gives that the norm map E2(F ′)
NF ′/F−−−→ E2(F) is surjective. Thus, we

can find y′ ∈ E2(F ′) such that y = NF ′/F (y). The projection formula (2.1) yields (cf.
Remark 2.8),

{x, y}F/K = {x, NF ′/F (y)}F/K

= NF ′/F ({x, y′}F ′/F ′) = NF ′/F ({px ′, y′}F ′/F ′) = 0.

We conclude that there is a surjection of Mackey functors,

Ê1/p⊗E2/p → E1/p⊗E2/p → 0.

With a similar argument, by applying the right exact functor Ê1/p⊗ to the exact
sequence (3.3) for E2 we obtain an exact sequence of Mackey functors,

Ê1/p⊗ Ê2/p → Ê1/p⊗E2/p → Ê1/p⊗[E2/Ê2]/p → 0.

We claim that Ê1/p⊗[E2/Ê2]/p = 0. The argument is exactly the same as before,
noting that if F ′/F is a finite unramified extension, then the norm map on formal

groups, Ê1(mF ′)
NF ′/F−−−→ Ê1(mF ) is surjective (cf. [15, Proposition 3.1]). �


Notation 4.2 For X = E1×E2 we will denote by SymbX (k) the subgroup of
(E1⊗E2)(k) generated by symbols of the form {x, y}k/k . Moreover, let SymbX (k) be
the image of SymbX (k) in (E1⊗E2)(k)/p.
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Lemma 4.3 Let E1, E2 be elliptic curves over a finite extension k of Qp. Assume that
at least one of the curves has good reduction. Let k′/k be a finite unramified extension.
Then,

(1) We have an inclusion SymbX (k) ⊆ Nk′/k(SymbX (k′)) in (E1⊗E2)(k)/p..
(2) If the group (E1⊗E2)(k′) is p-divisible, then so is (E1⊗E2)(k).

Proof Without loss of generality, assume that E1 has good reduction. To prove (1), let
{a, b}k/k ∈ SymbX (k). Because k′/k is unramified, and E1 has good reduction, the

norm map E1(k′)
Nk′/k−−→ E1(k) is surjective [30, Cororally 4.4]. Thus, we may find

a′ ∈ E1(k′) such that a = Nk′/k(a′). This yields equalities,

{a, b}k/k = {Nk′/k(a
′), b}k/k = {a′, b}k′/k = Nk′/k({a′, b}k′/k′).

To prove (2), assume that (E1⊗E2)(k′) is p-divisible. Let {a, b}F/k ∈ (E1⊗E2)(k)/p,
where F/k is some finite extension. Consider the extension F ′ = F ·k′. Then F ′/F is

unramified, and hence the norm E1(F ′)
NF ′/F−−−→ E1(F) is surjective. Thus there exists

some a′ ∈ E1(F ′) such that a = NF ′/F (a′). The projection formula yields (cf. Remark
2.8),

{a, b}F/k = {NF ′/F (a′), b}F/k

= {a′, b}F ′/k = Nk′/k({a′, b}F ′/k′) = 0 ∈ (E1⊗E2)(k)/p,

and hence (E1⊗E2)(k)/p = 0. �


4.1 Proof of Theorem 1.4

As alreadymentioned in the introduction, the proof of this theoremwill be split up into
two steps. Let k be a finite unramified extension ofQp and let E1, E2 be elliptic curves
over k with good reduction. Put X = E1×E2. Suppose that E1 has good ordinary
reduction. In the following, we consider the following two cases:

(ord) E2 has good ordinary reduction,

(ssing) E2 has good supersingular reduction.

We can consider the smallest extension L/k such that the following are true:

• L ⊃ k(Ê1[p], Ê2[p]).
• If the curve Ei has good ordinary reduction, then the GL -module EiL [p] fits into
a short exact sequence of the form (3.5), and hence Ei [p] ⊂ Ei (FL).

The above assumptions imply that L ⊃ k(μp) and that L fits into a tower of finite
extensions

k ⊂ k′ ⊂ L (4.1)

with k′/k unramified and L/k′ totally ramified of degree coprime to p. More precisely,
Sects. 3.3–3.5 imply the following:

• In case (ord), then L/k has ramification index p − 1, and hence e0(L) = 1.
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• In case (ssing), then L/k has ramification index p2 −1, and hence e0(L) = p+1.

Theorem 4.4 Let L/k′/k be the tower of extensions as in (4.1). Then, we have an
equality SymbXk′ (k

′) = (E1⊗E2)(k′)/p.

Proof For simplicity we assume that the extension L/k is totally ramified, and hence
k = k′. We need to show that the group (E1⊗E2)(k)/p is generated by symbols of

the form {a, b}k/k . Since [L : k] is coprime to p, the norm map (E1⊗E2)(L)/p
NL/k−−→

(E1⊗E2)(k)/p is surjective. It is enough therefore to show that the image of the norm
lies in SymbX (k).

Claim A SymbXL
(L) = (E1⊗E2)(L)/p. That is, the group (E1⊗E2)(L)/p is gen-

erated by symbols of the form {x, y}L/L , with x ∈ E1(L), y ∈ E2(L).

This claim follows easily by the computations in [16] as follows: Using Lemma 4.1,
the problem is reduced to showing that the Mackey product (Ê1/p⊗ Ê2/p)(L) is
generated by symbols of the form {x, y}L/L , with x ∈ Ê1(L), y ∈ Ê2(L). We have
the following subcases:

• In case (ord), Proposition 3.8 gives for i = 1, 2 an isomorphism Êi/p � U 0 of
Mackey functors over L . This implies an isomorphism of abelian groups,

(Ê1/p⊗ Ê2/p)(L) � (U0⊗U 0)(L).

• In case (ssing), (3.9) gives an isomorphism Ê2/p � U p2⊕U p ofMackey functors
over L , and [16, Lemma 3.3] gives,

(Ê1/p⊗ Ê2/p)(L) � (U 0⊗U p2)(L)⊕(U 0⊗U p)(L).

The argument discussed in [16, Proposition 3.11] gives that these Mackey products
(U0⊗U j )(L) are generated by symbols defined over L . Thus, Claim A holds.

By [16, Theorem 3.6], for each j < pe0(L), the composition

(U0⊗U j )(L)
ι−→ (Gm⊗Gm)(L)/p

sp−−→ H2(L, μ⊗2
p ) � Z/p,

is bijective, where ι is induced by the mapsUi ↪→ Gm/p, and sp is the Galois symbol
map (cf. (2.3)). By (2.4), for a symbol {x, y}L/L in (U 0⊗U j )(L)

{x, y}L/L generates (U 0⊗U j )(L) ⇐⇒ x /∈ NL1/L(L×
1 ), (4.2)

where L1 = L( p
√
y).

Claim B Suppose we are in case (ord). Then, the Mackey product (E1⊗E2)(L)/p is
generated by symbols of the form {x, y}L/L with either x ∈ E1(k), or y ∈ E2(k).
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It is enough to show that the group (Ê1/p⊗ Ê2/p)(L) � (U 0⊗U0)(L) is generated
by a symbol {x, y}L/L with x ∈ Ê1(k). Take any x ∈ Ê1

1(k)\ Ê2
1(k). Then its restric-

tion in Ê1(L) lies in Ê p−1
1 (L)\ Ê p

1 (L). In particular, we can view x as an element of

U p−1
L \U p

L . The extension L1 = L( p
√
x)/L is totally ramified extension of degree p

with the jump at s = pe0(L) − (p − 1) = 1 (cf. Lemma 3.13 (a)). Then the isomor-
phism UL/NL1/L(UL1) � L×/NL1(L

×
1 ) of order p (cf. [41, V.3, Corollary 7]) gives

us that there exists some y ∈ UL such that y /∈ NL1/L(UL1). By (4.2), the symbol

{x, y}L/L generates the group (U 0⊗U
0
)(L) � (Ê1/p⊗ Ê2/p)(L).

The above computation guarantees that in case (ord), (E1⊗E2)(k)/p coincides
with SymbX (k). For, find elements {xi , yi }L/L ∈ (E1⊗E2)(L)/p that generate this
group and are such that xi ∈ E1(k). Then NL/k({xi , yi }L/L) generate (E1⊗E2)(L)/p.
But the projection formula yields,

NL/k({xi , yi }L/L) = {xi , NL/k(yi )}k/k ∈ SymbX (k).

This completes the proof in case (ord).
Lastly, we consider case (ssing), namely, E1 has good ordinary and E2 has good

supersingular reduction (hence e0(L) = p + 1). In this case we have a commutative
diagram with exact rows and surjective vertical maps,

(U 0⊗U p2)(L)⊕(U 0⊗U p)(L)

NL/k

(E1⊗E2)(L)/p

NL/k

0

(Ê1/p⊗ Ê2/p)(k) (E1⊗E2)(k)/p 0.

With a similar argument as in case (ord) we can show that the subgroup (U 0⊗U p)(L)

of (Ê1/p⊗ Ê2/p)(L) is generated by a symbol {x, y}L/L with y ∈ Ê1
2(k). Namely,

let y ∈ Ê1
2(k)\ Ê2

2(k). Then by Lemma 3.15 (1) the image of y in E2(L)/p decom-

poses as (y0, y1), with y0 ∈ U p2+p
L , and y1 ∈ U p+p2−1

L \U p+p2

L . Since the extension
L( p

√
y1)/L is totally ramified of degree p (cf. Lemma 3.13 (a)), by [41, V.3, Corollary

7] we can find some x ∈ U0
L such that {x, y1}L/L �= 0 ∈ (U 0⊗U p)(L). View-

ing x as an element of E1(L)/p, we have that {x, y}L/L generates the subgroup
(U0⊗U p)(L) ⊂ (Ê1/p⊗ Ê2/p)(L). Notice that such an argument will not work for
the other subgroup of (Ê1/p⊗ Ê2/p)(L). Namely, no matter which symbol {x, y}L/L

we take with either x ∈ Ê1(k)/p or y ∈ Ê2(k)/p, the coordinate {x, (y0, 1)}L/L will
always vanish. For, if y ∈ Ê2(k)/p this follows immediately from Lemma 3.15. On

the other hand, if x ∈ Ê1(k)/p, then x ∈ Ê p2−1
1 (L)/p. An easy computation shows

that for y = (y0, y1) ∈ Ê2(L)/p, and L ′ = L( p
√
y0), it follows that x ∈ NL ′/L(L ′×).

We suggest the following claim instead.

Claim C The norm map (U 0⊗U p2)(L)
NL/k−−→ (Ê1/p⊗ Ê2/p)(k) is zero.

To prove this claim let {a, b}L/L be a generator of (U0⊗U p2)(L) � Z/p. For
notational simplicity we will identify this symbol with its image, {a, (b, 1)}L/L ∈
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(Ê1/p⊗ Ê2/p)(L). We will show NL/k({a, b}L/L) = 0. Since the restriction resL/k

is injective, it suffices to show

resL/k(NL/k({a, b}L/L)) = 0 ∈ (U 0⊗U p2)(L).

We first obtain some information about the generator {a, b}L/L .

As noted in (4.2), the symbol {a, b}L/L is a generator of (U0⊗U p2)(L) if and
only if a /∈ NL1/L(L×

1 ), where L1 = L(
p
√
b). Suppose that a ∈ Ui

L \Ui+1
L , and

b ∈ U p2+ j
L \U p2+ j+1

L . By [16, Lemma 3.4 (ii)] we may assume that i is coprime to
p, i < p2 + p and 1 � j < p, otherwise {a, b}L/L �= 0, and hence {a, b}L/L is

not a generator of (U0⊗U p2)(L). Moreover, by [41, V.3, Corollary 7] we obtain the
following equivalence:

{a, b}p �= 0 ⇐⇒ i + p2 + j = pe0(L) = p2 + p ⇐⇒ i + j = p.

Let G0 = Gal(L/k). Note that L = k(Ê2[p]), and hence G0 is a cyclic group of order
p2 −1 (see Sect. 3.5 for details). Let σ be a generator of G0. Then Lemma 2.6 yields,

resL/k(NL/k({a, b}L/L)) =
p2−2∑

r=0

σ r ({a, b}L/L).

Set V = (U 0⊗U p2)(L). Using the previous remarks, the symbol {a, b}L/L is in the

image of the symbol mapUi
L ⊗U p2+ j

L → V defined by x⊗ y �→ {x, y}L/L . This map

factors through Ui
L/Ui+1

L ⊗U p2+ j
L /U

p2+ j+1
L , inducing a symbol map

Ui
L/Ui+1

L ⊗U p2+ j
L /U

p2+ j+1
L → V . (4.3)

In fact, for any x ∈ Ul
L , y ∈ U p2+l ′

L with l + l ′ = p+ 1, sp({x, y}L/L) = (x, y)p = 0
by [17, Lemma 3.4] as l + p2 + l ′ = p2 + p + 1 > pe0(L). This implies

{x, y}L/L = 0. Let σ be the endomorphism of Ui
L/Ui+1

L ⊗U p2+ j
L /U p2+ j+1

L induced
by σ . Fix a uniformizer πL of L . Then Lemma 3.17 yields the following equality in

Ui
L/Ui+1

L ⊗U p2+ j
L /U p2+ j+1

L :

σ(a⊗b) = σ(a)⊗σ(b) =
(

σ(πL)

πL

)i
a⊗

(
σ(πL)

πL

)pj

b = u ia⊗u pj b,

where u = σ(πL)/πL ∈ F×
L . Note that since σ has exact order p2 − 1, u lies in the

(possibly smaller) field Fp2 . The next claim is that we have an equality, u ia⊗u pj b =
u i+pj a⊗b. This follows by Lemma 3.3. Namely, we have isomorphisms Ui

L/Ui+1
L

� FL , and U p2+ j
L /U p2+ j+1

L � FL . Thus, the group Ui
L/Ui+1

L ⊗U p2+ j
L /U p2+ j+1

L
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becomes an FL -vector space by defining for c ∈ FL and x⊗ y ∈ Ui
L/Ui+1

L ⊗
U p2+ j

L /U p2+ j+1
L ,

c · x⊗ y = (cx)⊗ y = x⊗(cy).

We conclude that σ acts as follows:

σ(a)⊗σ(b) = u i+pj a⊗b.

Since i + j = p, and both i, j are coprime to p, we have 1 � j � p − 1, and hence
pj � p2 − p. This gives

i + pj � p2 − p + p − 1 = p2 − 1.

In order for the inequality to become an equalitywe need both j = p−1 and i = p−1.
But this is not true, since i + j = p. Thus, i + pj < p2 − 1. Set v = u i+pj ∈ Fp2 .

The above inequality implies that v �= 1. At the same time v p2−1 = 1, which means
that v is a root of the polynomial f (x) = x p2−2 + x p2−3 + · · · + x + 1 ∈ Fp2 [x]. We
then can compute,

p2−2∑

r=0

σ r (a⊗b) =
(p2−2∑

r=0

v r
)

a⊗b = 0 in Ui
L/Ui+1

L ⊗U p2+ j
L /U p2+ j+1

L .

Then (4.3) yields a vanishing resL/k(NL/k({a, b}L/L)) = 0, which completes the
proof. �

The next theorem completes the proof of Theorem 1.4.

Theorem 4.5 Let k be a finite unramified extension of Qp. Let E1, E2 be elliptic
curves over k with good reduction. Assume that E1 has good ordinary reduction.
Then, the Mackey product (E1⊗E2)(k) is p-divisible. In particular, the same holds
for K (k; E1, E2).

Proof Using Lemma 4.3 (2), we may assume k = k′, where k′/k is as in (4.1). By
Theorem 4.4, it is enough to show the vanishing of SymbX (k). Notice that throughout
the proof of Theorem 4.4, we used theMackey product (Ê1⊗ Ê2)(k)/p. It is therefore
enough to show that {a, b}k/k = 0, for every a ∈ Ê1(k)/p and b ∈ Ê2(k)/p. Consider
the finite extension L/k as in (4.1), which is totally ramified of degree p2−1 or p−1,
depending on whether the curve E2 has good supersingular reduction or not.

Case (ord): When both elliptic curves have good ordinary reduction. In this case

we have e0(L) = 1. We consider the restriction map, (Ê1⊗ Ê2)(k)/p
resL/k−−−→

(Ê1⊗ Ê2)(L)/p. Since the extension L/k is of degree coprime to p, resL/k is injec-
tive. It is therefore enough to show that resL/k({a, b}k/k) = {a, b}L/L = 0, for every
a ∈ Ê1(k)/p and b ∈ Ê2(k)/p. Using the identification Êi (L)/p � U 0

L for i = 1, 2
(Proposition 3.8), we will show {a, b}L/L = 0 in (U0⊗U 0)(L). Using the vanishing

trick (2.8), it is enough to show that b ∈ Im
(
U0

L1

NL1/L−−−→U 0
L

)
for L1 = L( p

√
a). Since
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a ∈ Ê1
1(k), its restriction in Ê1(L) lies in Ê p−1

1 (L), and the same holds for b. Thus in

order to calculate the symbol {a, b}L/L , we may view a, b as units inU p−1
L ⊂ U 0

L . We
distinguish the following two cases. First, if vk(a) = 1, that is, a ∈ Ê1

1(k)\ Ê2
1(k), then

its restriction over L lies inU p−1
L \U p

L . In this case Lemma 3.13 (a) gives us that L1/L
is a totally ramified degree p extension and its Galois group Gal(L1/L) has jump in
its ramification filtration at s = pe0(L)− p+1 = 1. Since b ∈ U p−1

L , and p−1 > s,

Proposition 3.14 (2) gives a surjection Uψ(p−1)
L1

� U p−1
L , where ψ ..= ψL1/L . Since

Uψ(p−1)
L1

⊂ U 0
L1

and Ê2(L1)/p � U 0
L1
, we conclude that b is in the image of the

norm map, and hence {a, b}L/L = 0. Second, if vk(a) > 1, then its restriction over L
lies inU p

L ⊂ U0
L . In this case the extension L1/L is unramified (cf. Lemma 3.13 (b)),

and hence the norm map UL1

NL1/L−−−→ UL is surjective. This completes the proof for
the case of two elliptic curves with good ordinary reduction.

Case (ssing): When E2 has good supersingular reduction. In this case we have
[L : k] = p2 − 1, and e0(L) = p + 1. The argument is analogous to the previ-
ous case. Namely, let {a, b}k/k ∈ (Ê1⊗ Ê2)(k)/p. Since the extension L/k is of
degree coprime to p, in order to show that {a, b}k/k = 0, it is enough to show
that {a, b}L/L = 0. Since b ∈ Ê2(k), vL(b) � p2 − 1. Let F = L

( 1
p b

)
. We will

show that a ∈ NF/L(Ê1(F)/p). Lemma 3.15 allows us to reduce to the case when

b ∈ Ê p2−1
2 (L)\ Ê p2

2 (L). Then Lemma 3.15 (1) gives us that b decomposes as (b0, b1)
under the decomposition (3.9), the extension F0 = L( p

√
b0) is unramified over L ,

while the extension F1 = L( p
√
b1)/L is totally ramified of degree p and the jump in

the ramification filtration of Gal(L( p
√
b1)/L) happens at s = 1. We may write,

{a, b}L/L = {a, (b0, 1)}L/L + {a, (1, b1)}L/L .

We claim that both these symbols are zero. The first one vanishes, since the norm

map E1(F0)
NF0/L−−−→ E1(L) is surjective. For the second symbol, we can identify the

restriction of a over L with a unit a ∈ U p2−1
L . Since p2 − 1 > s = 1, Proposition

3.14 gives us that a ∈ NF1/L(F×
1 ), and hence a ∈ NF1/L(Ê1(F1)/p). �


4.2 The case of two elliptic curves with good supersingular reduction

In this subsection we focus on the only case which is not covered in Theorem 1.4;
namely when X = E1×E2 is a product of two elliptic curves with good supersingular
reduction. This case appears to be much harder than all others, and we can only obtain
a partial result. Our first computation shows that a weaker form of Theorem 4.5 is still
true in this case.

Theorem 4.6 Let X = E1×E2 be a product of two elliptic curves with good supersin-
gular reduction over an unramified extension k of Qp. Then, we have SymbX (k) = 0.

Proof The proof is very analogous to Theorem 4.5. Consider the finite extension
L = k(E1[p], E2[p]). Using Lemma 4.3 we may assume that L/k is totally ramified.
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Since for i = 1, 2 the extension ki ..= k(Ei [p])/k is totally ramified of degree p2 − 1,
L/k is a tamely ramified extension of degree e(p2 −1), where e = [L : k1] = [L : k2].

It follows by (3.6), that once again it suffices to show the vanishing of every symbol
{a, b}k/k ∈ (Ê1⊗ Ê2)(k)/p. Let {a, b}k/k ∈ (Ê1⊗ Ê2)(k)/p. We will show that
{a, b}L/L = 0. Decompose a = (a0, a1) ∈ Ê1(k1)/p, and b = (b0, b1) ∈ Ê2(k2)/p
by identifying

Êi (ki )/p � U p(e0(ki )−t0(ki ))
ki

⊕U pt0(ki )
ki

= U p2

ki
⊕U p

ki
.

From Lemma 3.15, we may assume that vk(a) = vk(b) = 1 and we have

a0 ∈ U p2+p
k1

and a1 ∈ U p2+p−1
k1

\U p2+p
k1

,

b0 ∈ U p2+p
k2

and b1 ∈ U p2+p−1
k2

\U p2+p
k2

.

By restricting them to L , we obtain

a = (a0, a1), b = (b0, b1)

with a0, b0 ∈ Ue(p2+p)
L and a1, b1 ∈ Ue(p2+p−1)

L \Ue(p2+p)
L in the decomposition

Êi (L)/p � U p(e0(L)−t0(L))
L ⊕U pt0(L)

L = Uep2

L ⊕Uep
L . This in turn gives,

{a, b}L/L = {(a0, 1), (b0, 1)}L/L + {(1, a1), (b0, 1)}L/L

+ {(a0, 1), (1, b1)}L/L + {(1, a1), (1, b1)}L/L .

Since the extensions L( p
√
a0), and L( p

√
b0) are unramifiedover L , thefirst three symbols

vanish. It remains to show {(1, a1), (1, b1)}L/L = 0. Consider the finite extension
L1 = L( p

√
b1). We need to show that (1, a1) ∈ NL1/L(Ê1(L1)/p). By the same

reason, we may assume that L1/L is ramified. Lemma 3.13 gives us that L1/L is
totally ramified of degree p with jump at s = pe0(L) − i = e(p2 + p) − i for some
e(p2 + p − 1) � i < e(p2 + p). In particular, we have 0 < s � e. Considering the
decomposition

Ê1(L1)/p � Uep3

L1
⊕Uep2

L1
,

it is enough to show that a1 ∈ Im
(
Uep2

L1

NL1/L−−−→U
ep
L

)
. By e(p2 + p − 1) > e � s,

Proposition 3.14 gives us a surjection

Uψ(e(p2+p−1))
L1

NL1/L−−−→ Ue(p2+p−1)
L → 0.

In order for (1, a1) to be a norm, we need to verify that Uψ(e(p2+p−1))
L1

⊂ Uep2

L1
. This

follows from ψ(e(p2 + p − 1)) � e(p2 + p − 1) > ep2. Here, the first inequality
follows from the definition of the Herbrand function. �
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In order to extend Theorem 1.4 to this case, we would need an analog of Theo-
rem 4.4. The problem is that in this case we do not know how large the K -group
K (L; E1, E2)/p is. Let us focus for simplicity on the case of a self-product X =
E×E . It follows by [17, Proposition 3.6] that the image of the Galois symbol

(E/p⊗E/p)(L)
sp−→ H2(L, E[p]⊗E[p]) is isomorphic to Z/p. In all other reduc-

tion cases this map is an isomorphism [16,36,52].

Question 4.7 Is the map (E/p⊗E/p)(L)
sp−→ H2(L, E[p]⊗E[p]) injective when E

has good supersingular reduction?

It is very likely that Question 4.7 has a negative answer. At least the Mackey product
(E/p⊗E/p)(L) � (U p⊗U p2)(L) does not seem to give enough relations that
guarantee injectivity. A weaker question is whether the analog of Claim A in the proof
of Theorem 4.4 is true in this case.

Question 4.8 Is the K -group K (L; E1, E2)/p generated by symbols of the form
{a, b}L/L , with a ∈ E1(L), b ∈ E2(L)?

The next theorem provides some indication that if Question 4.8 has an affirmative
answer, then Theorem 4.4 can indeed be extended to this case.

Theorem 4.9 Let k be a finite unramified extension of Qp. Suppose X = E×E is
the self-product of an elliptic curve over k with good supersingular reduction. Let
L = k(E[p]). Then, for every a, b ∈ E(L)/p, we have

NL/k({a, b}L/L) = {a, b}L/k = 0

in the Mackey product (E⊗E)(k)/p.

Proof Theproofwill be along the lines ofClaimC in the proof ofTheorem4.4.With the
usual argument we may assume that the extension L = k(Ê[p])/k is totally ramified
of degree p2 − 1 with cyclic Galois group. By Lemma 4.1 and (3.6) it is enough to
prove that for every a, b ∈ Ê(L)/p, it holds NL/k({a, b}L/L) = 0, and since resL/k

is injective, this is equivalent to proving that resL/k(NL/k({a, b}L/L)) = 0.
Set W = (Ê/p⊗ Ê/p)(L). Recall that the group Ê(L)/p has a filtration {Di

L}
given byDi

L = Ê i (L)/(pÊ(L) ∩ Ê i (L)), for i � 1. This induces a filtration on W as
follows. For every t � 1 the symbol maps define

Fil t (W ) ..=
∑

n+m=t

Im (Dn
L ⊗Dm

L →W ).

Claim A Proving resL/k ◦NL/k = 0 is equivalent to proving that if {a, b}L/L ∈
Fil t (W ) for some t � 1, then resL/k(NL/k({a, b}L/L)) ∈ Fil t+1(W ).

The direction (⇒) is clear. To prove (⇐), fix a, b ∈ Ê(L)/p. Assume that {a, b}L/L ∈
Fil t (W ) for some t � 1. Since by assumption resL/k(NL/k({a, b}L/L)) ∈ Fil t+1(W ),
we may write resL/k(NL/k({a, b}L/L)) in the form,

∑N
l=1{al , bl}L/L , for some N � 1

and some al ∈ Dn
L , bl ∈ Dm

L with n + m � t + 1. We claim that {a, b}L/k = 0 if and
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only if
∑N

l=1{al , bl}L/k = 0. To see this note that the element
∑N

l=1{al , bl}L/k can be
rewritten as,

N∑

l=1

{al , bl}L/k = NL/k

( N∑

l=1

{al , bl}L/L

)

= NL/k(resL/k({a, b}L/k)) = (p2 − 1){a, b}L/k .

Since p2 − 1 ≡ −1 (mod p), the claim follows. Using the above argument allows us
to reduce to proving that {a, b}L/k = 0, whenever {a, b}L/L ∈ Fil t+1(W ). At this
point we can continue inductively. The process is guaranteed to terminate in finitely
many steps, since Lemma 3.11 (d) implies that Fil2p

2
(W ) = 0.

From now we focus on proving the implication,

{a, b}L/L ∈ Fil t (W ) �⇒ resL/k(NL/k({a, b}L/L)) ∈ Fil t+1(W ).

Let G0 = Gal(L/k) = 〈σ 〉 be the Galois group of L/k. Then for all a, b ∈ Ê(L)/p
we have,

resL/k(NL/k({a, b}L/L)) =
p2−2∑

r=0

σ r ({a, b}L/L).

Suppose that a ∈ Di
L \Di+1

L , and b ∈ D
j
L \D j+1

L , for some i, j ∈ {1, . . . , p2} with
i + j = t . Note that if either i or j is equal to p2, then Lemmas 3.11 and 3.15
imply that the extension L0 = L

( 1
p b

)
is unramified over L . Using the surjectivity

of the norm, E1(L0)
NL0/L−−−→ E1(L), we immediately get that {a, b}L/L = 0. We

may therefore reduce to the case when i, j ∈ {1, . . . , p2 − 1}. Consider the quotient
Fil t (W )/Fil t+1(W ) and the well-defined map,

Di
L/Di+1

L ⊗D
j
L/D

j+1
L → Fil t (W )/Fil t+1(W ).

Denote by a⊗b the image of a⊗b in Di
L/Di+1

L ⊗D
j
L/D

j+1
L . Moreover, let σ be the

endomorphism induced by σ ,

σ : Di
L/Di+1

L ⊗D
j
L/D

j+1
L → Di

L/Di+1
L ⊗D

j
L/D

j+1
L .

Fix a uniformizer πL of L and set u = σ(πL)/πL ∈ F×
p2
. Then Lemmas 3.16 and

3.17 (2) yield an equality,

σ(a⊗b) = u ia⊗u jb.
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Similarly to the proof of Claim C in Theorem 4.4, the tensor product Di
L/Di+1

L ⊗
D

j
L/D

j+1
L becomes an FL -vector space, and hence we can rewrite,

σ(a⊗b) = u i+ j a⊗b.

When i + j is not divisible by p2−1, we may proceed exactly as in the proof of Claim
C in Theorem 4.4 to deduce that

p2−2∑

r=0

σ r (a⊗b) =
(p2−2∑

r=0

(u i+ j )r
)

a⊗b = 0,

and hence resL/k(NL/k({a, b}L/L)) ∈ Fil t+1(W ). It remains to consider the cases
when i + j is a multiple of p2 − 1. Since 2 � i + j � 2p2 − 2, the only multiples of
p2 − 1 in that range are p2 − 1 and 2p2 − 2. We consider each case separately.

Case 1: Suppose that i + j = 2p2 − 2. This is only possible if i = j = p2 − 1. In
this case we can prove that {a, b}L/L = 0, imitating the proof of Theorem 4.6.

Case 2.1:Suppose that i+ j = p2−1 and both i, j are coprime to p. Using (3.9)we can

decompose a = (a0, a1), and b = (b0, b1) with a0, b0 ∈ U p2+1
L , and a1, b1 ∈ U p+1

L .

Then Lemma 3.11 gives us that a1 ∈ U p+i
L \U p+i+1

L , b1 ∈ U p+ j
L \U p+ j+1

L , while

a0 ∈ U p2+t
L , b0 ∈ U p2+t ′

L , for some t, t ′ such that pt > i , and pt ′ > j . Notice that the
symbols {(1, a1), (b0, 1)}L/k , {(a0, 1), (1, b1)}L/k and {(a0, 1), (b0, 1)}L/k vanish due
to previous considerations in the proof. It remains to show that {(1, a1), (1, b1)}L/k =
0. In fact, we claim that {(1, a1), (1, b1)}L/L = 0. We consider the finite extensions
L1 = L( p

√
a1), and L2 = L( p

√
b1), both of which are totally ramified of degree p

over L . Using the usual vanishing trick (see Remark 2.8), it is enough to establish the
following claim.

Claim B The assumption i + j = p2 −1 forces one of the elements to be a norm. That
is, either (1, a1) ∈ NL2/L(E(L2)/p), or (1, b1) ∈ NL1/L(E(L1)/p).

To prove Claim B, we need to show that either a1 lies in the image of the norm map

U p2

L2

NL2/L−−−→ U p
L , or b1 lies in the image of U p2

L1

NL1/L−−−→ U p
L . Let G1 = Gal(L1/L),

G2 = Gal(L2/L) be the Galois groups of L1, L2 respectively. Then the jump in the
ramification filtration of G1 (resp. of G2) occurs at s1 = p2 + p − (p + i) = p2 − i
(resp. at s2 = p2 − j). Observe that since i + j = p2 − 1, it follows that,

p + i = p2 + p − 1 − j > p2 − j ⇒ p + i > s2.

Since the computation is symmetric, we also get p + j > s1. Then Proposition 3.14
yields,

ψL2/L(p + i) = s2 + p(p + i − s2) = p2 − j + p(p + i − p2 + j)

= p2 − j + p(p − 1) = 2p2 − p − j .
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A symmetric computation yields ψL1/L(p + j) = 2p2 − p − i . In order to prove
Claim B, we must show that at least one of ψL2/L(p + i) and ψL1/L(p + j) is larger
than p2. Assume to contradiction that ψL1/L(p + j) � p2, and ψL2/L(p + i) � p2.
Adding these inequalities yields,

2p2 − p − j + 2p2 − p − i � 2p2 �⇒ 2p2 − 2p � i + j

�⇒ 2p2 − 2p � p2 − 1 �⇒ (p − 1)2 � 0,

which is a contradiction. We conclude that either ψL2/L(p + i) > p2, or ψL1/L(p +
j) > p2, which respectively give that (1, a1) ∈ NL2/L(E(L2)/p), or (1, b1) ∈
NL1/L(E(L1)/p).

Case 2.2: Suppose that i + j = p2 − 1 and one of the integers i, j is divisible
by p. Without loss of generality, assume that i = pl, for some 1 � l < p. We

decompose a = (a0, a1), b = (b0, b1) with a0, b0 ∈ U p2+1
L , and a1, b1 ∈ U p+1

L .

Lemma 3.17 and [25, Lemma 2.1.4] yield that a0 ∈ U p2+l
L \U p2+l+1

L , a1 ∈ U p+i+1
L ,

while b1 ∈ U p+ j
L \U p+ j+1

L . Finally, b0 ∈ U p2+t
L for some t such that pt > j . The

symbols {(1, a1), (b0, 1)}L/k , {(1, a1), (1, b1)}L/k and {(a0, 1), (b0, 1)}L/k vanish due
to earlier considerations in this proof. It remains to show that {(a0, 1), (1, b1)}L/k = 0.
Weproceed similarly toCase 2.1, to show {(a0, 1), (1, b1)}L/L = 0. Consider the finite
extension L3 = L( p

√
a0), which is totally ramified of degree p over L . It is enough to

establish the following claim.

Claim C The assumption i + j = p2 − 1 forces the element (1, b1) ∈ E(L)/p to be
a norm, namely (1, b1) ∈ NL3/L(E(L)/p).

To proveClaimCwe need to show that b1 lies in the image of the normU p2

L3

NL3/L−−−→ U p
L .

Let G3 = Gal(L3/L) be the Galois group of L3/L . The jump in the ramification
filtration of G3 occurs at s3 = p2 + p − (p2 + l) = p − l. It is then clear that
p + j > s3, and hence we can compute ψL3/L(p + j) as follows:

ψL3/L(p + j) = s3 + p(p + j − s3) = p − l + p(p + j − p + l)

= p − l + p( j + l) = p − l + pj + pl.

Using that i + j = p2 − 1, and hence pl + j = p2 − 1, the last equality can be
rewritten as,

ψL3/L(p + j) = p − l + pj + p2 − 1 − j = p2 + p + (p − 1) j − l − 1.

We want to prove that ψL3/L(p + j) > p2. Equivalently, (p − 1) j + p − l > 1. But

this is clear, since l < p and j � 1. We conclude that b1 ∈ Im
(
U p2

L3

NL3/L−−−→U p
L

)
, as

required. �
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4.3 Extensions

We close this section by giving some easy extensions of Theorem 4.5.

Corollary 4.10 Let k be a finite unramified extension of Qp and E1, . . . , Er be elliptic
curves over k with good reduction. Assume that at most one of the curves has good
supersingular reduction. Let X = E1× · · · ×Er . Then, the Albanese kernel F2(X)

is p-divisible.

Proof Using the relation of F2(X) with the Somekawa K -groups given in (2.5), we
are reduced to proving that the K -group K (k; Ei1 , . . . , Eiν ) is p-divisible, for every
2 � ν � r and 1 � i1 < i2 < · · · < iν � r . It is enough to show that the Mackey
product (Ei1/p⊗· · · ⊗Eiν /p)(k) = 0. Note that Theorem 4.5 implies that this is true
when ν = 2. The general case follows by the fact that the product ⊗ in the category
of Mackey functors is associative. �

The following corollary follows by an easy descent argument.

Corollary 4.11 Let k be a finite unramified extension of Qp. Let X be a principal
homogeneous space of an abelian variety A, such that XL � AL for some finite
extension L/k of degree coprime to p. Suppose additionally that there is an isogeny

A
φ−→ E1× · · · ×Er of degree coprime to p, where Ei are elliptic curves over k

satisfying the assumptions of Corollary 4.10. Then, the groups F2(A) and F2(X) are
p-divisible.

Proof We first show that the Albanese kernel F2(A) is p-divisible. Suppose that the

isogeny A
φ−→ E1× · · · ×Er has degree n. Let φ̌ be the dual isogeny. These induce

push-forward maps,

F2(A)/p
φ�−−→ F2(E1× · · · ×Er )/p

φ̌�−−→ F2(A)/p,

with φ̌�◦φ� = n. Since by assumption n is coprime to p, multiplication by n is
injective on F2(A)/p. At the same time F2(E1× · · · ×Er )/p = 0 by the previous
corollary. We conclude that F2(A) is p-divisible.

Next suppose that X is a principal homogeneous space of A such that XL � A for
some finite extension L/k of degreem which is coprime to p. Consider the projection
XL

g−→ X , which induces a push-forward, F2(XL)/p
g�−→ F2(X)/p, and a pull-back

F2(X)/p
g�−→ F2(XL)/p, satisfying g� ◦g� = m. By the previous case we have

F2(XL)/p � F2(A)/p = 0, which forces g� to vanish. Since g� is also injective, the
claim follows. �

Proposition 4.12 Let k be a finite unramified extension of Qp. Let A1 and A2 be
abelian varieties over k. For each i = 1, 2, we assume that the connected component
of the special fiber of the Néron model of Ai is a split torus. Then, (A1⊗ A2)(k) is
p-divisible.
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Proof From the assumption on Ai , there exists a split torus Ti � G
⊕gi
m over k with

gi = dim Ai and a free abelian subgroup Li ⊂ Ti (k) such that Ti (k′)/Li � Ai (k′) for
any finite extension k′/k. This gives surjections of Mackey functors Ti/p → Ai/p,
which induce a surjection

(T1/p⊗T2/p)(k) → (A1/p⊗ A2/p)(k) → 0

(cf. [52, Remark 4.2 (2)]). As the tori T1 and T2 split, we have

(T1/p⊗T2/p)(k) � (Gm/p⊗Gm/p)(k)⊕g1g2 � (K2(k)/p)
⊕g1g2 = 0,

where the last equality follows from [11, Chapter IX, Proposition 4.2]. This shows
that (A1/p⊗ A2/p)(k) = 0. �

Recall that the Jacobian variety of a Mumford curve satisfies the assumption in the
above proposition. Using the associativity of the Mackey products as in the proof of
Corollary 4.10, we obtain the following corollary.

Corollary 4.13 Let k be a finite unramified extension ofQp. Let X = C1× · · · ×Cr be
a product of Mumford curves over k. Then, the Albanese kernel F2(X) is p-divisible.

5 Local-to-global results

In this last section we focus on the local-to-global Conjecture 1.6, which constitutes
one of the main motivations of this article.

Notation 5.1 For aZ-module M wewill denote by M̂ ..= lim←− nM/n the completion of
M . Let F be a number field, that is, a finite extension of Q. We will denote by �, � f

and �∞ the set of all places, all finite places and all infinite places of F respectively.

5.1 The Brauer group

Let X be a smooth projective and geometrically connected variety over F . The Brauer
group Br(X) = H2

ét(X , Gm) of X has a filtration,

Br(X) ⊃ Br1(X) ⊃ Br0(X),

induced by the Hochschild–Serre spectral sequence

Hi (F, H j
ét(XF , Gm)) ⇒ Hi+ j

ét (X , Gm).

The two subgroups are defined as follows; Br0(X) ..= Im(Br(F)→Br(X)), and
Br1(X) ..= ker(Br(X)→Br(XF )). The latter is usually referred in the literature as the
algebraic Brauer group, while the quotient Br(X)/Br1(X) is called the transcendental
Brauer group. When X is an abelian variety, a K3 surface [45, Theorem 1.1], or a
product of curves [46, Theorem B] over a number field, the transcendental Brauer
group is finite.
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5.2 The Brauer–Manin pairing

For each place v of F , put Xv = XFv . Suppose v is a finite place of F . There is a
pairing,

〈 · , · 〉v : CH0(Xv)×Br(Xv) → Br(Fv) � Q/Z,

known as theBrauer–Manin pairing,which is defined using evaluation at closed points,
and the invariant map of local class field theory, invv : Br(Fv)

�−−→Q/Z. Precisely, for
each closed point P ∈ Xv and α ∈ Br(Xv), the pull-back of α along the closed point
P → Xv is denoted by α(P) ∈ Br(Fv(P)), where Fv(P) is the residue field of P .
The paring above is defined by 〈P, α〉v ..= CorFv(P)/Fv

(α(P)). In a similar manner,
one can define a Brauer–Manin pairing for every real place v of F ,

〈 · , · 〉v : CH0(Xv)×Br(Xv) → Br(Fv) � Z/2Z ↪→ Q/Z.

Note that in this case the subgroup πFv/Fv�(CH0(Xv ⊗Fv Fv)) of CH0(Xv) is con-

tained in the left kernel of this pairing, where XFv

πFv/Fv−−−−→ X is the projection.

Definition-Notation 5.2 The adelic Chow group of X is defined as

CH0,A(X) =
∏

v∈�

CH0(Xv),

where for every finite place v of F , we have an equality CH0(Xv) = CH0(Xv), while
for every infinite place v, CH0(Xv)

..= CH0(Xv)

πFv/Fv�(CH0(Xv⊗Fv Fv))
. In a similar way, we

define the adelic group F1
A(X) ..= ∏

v∈� F1(Xv) of zero-cycles of degree zero, and

the adelic Albanese kernel, F2
A(X) ..= ∏

v∈� F2(Xv) (cf. Sect. 2.4 for the definition
of the filtration).

Notice that for every infinite complex place v we have an equality, CH0(Xv) = 0.
The local pairings induce a global pairing,

〈 · , · 〉 : CH0,A(X)×Br(X) → Q/Z,

defined by 〈(zv)v, α〉 = ∑
v〈zv, ι�(α)〉v , where ι� is the pull-back of ι : Xv → X . We

note that, if v is a real place, then [4, Théorème 1.3] gives us that the group F1(Xv)

is isomorphic to a finite number of copies of Z/2Z.
The short exact sequence of global class field theory,

0 → Br(F) →
⊕

v∈�

Br(Fv)

∑
invv−−−−→ Q/Z → 0,
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implies that the group CH0(X) lies in the left kernel of 〈 · , · 〉, thus giving rise to a
complex,

CH0(X)
�−→ CH0,A(X) → Hom(Br(X), Q/Z).

Behavior with respect to filtrations

Under the Brauer–Manin pairing, the filtration CH0(X) ⊃ F1(X) ⊃ F2(X) ⊃ 0
is compatible with the filtration Br(X) ⊃ Br1(X) ⊃ Br0(X) of the Brauer group.
Namely, restricting the map CH0,A(X) → Hom(Br(X), Q/Z) to F1

A(X), it factors
through

F1
A(X) → Hom(Br(X)/Br0(X), Q/Z) ↪→ Hom(Br(X), Q/Z).

Similarly, restricting the latter to F2
A(X), it factors through,

F2
A(X) → Hom

(
Br(X)

Br1(X)
, Q/Z

)

↪→ Hom(Br(X), Q/Z).

This compatibility follows by considering the local pairings, CH0(Xv) →
Hom(Br(Xv), Q/Z) and using local Tate duality. For a proof of this compatibility
we refer to [52, Proof of Proposition 3.1] and [12, Proof of Theorem 6.9].

5.3 The conjecture

We are interested in the following conjecture.

Conjecture 5.3 ([7, Section 4], [23, Section 7], [4, Conjecture 1.5 (c)] and [50, Con-
jecture (E0)]) Let X be a smooth projective geometrically connected variety over a
number field F. The following complex is exact:

F̂1(X)
�−−→ F̂1

A(X) → Hom(Br(X)/Br0(X), Q/Z), (5.1)

where F1
A(X) is the group defined in 5.2.

When E is an elliptic curve, it is a theorem of Cassels [3] that Conjecture 5.3 is true, if
the Tate–Shafarevich group of E contains no nonzero divisible element; in particular, it
is true if it is finite. This result has been generalized by Colliot-Thélène [5, paragraphe
3] to all curves, assuming that the Tate–Shafarevich group of their Jacobian contains no
nonzero divisible element. We next consider what happens for a product X = C1×C2
of two curves over F .

Proposition 5.4 Let X = C1×C2 be a product of smooth projective curves over a
number field F. Let AlbX = J1× J2 be the Albanese variety of X, where J1, J2 are
the Jacobian varieties of C1,C2 respectively. Assume that X contains a k-rational
point and that the Tate–Shafarevich group of AlbX contains no nonzero divisible
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element. Then the exactness of (5.1) can be reduced to the exactness of the following
complex:

F̂2(X)
�−→ F̂2

A(X) → Hom

(
Br(X)

Br1(X)
, Q/Z

)

. (5.2)

Proof It follows by [36, Corollary 2.4.1] that we have a direct sum decomposition,

F1(X) � J1(F)⊕ J2(F)⊕F2(X),

and the same holds over Fv , for every place v of F . This decomposition passes to the
completions. Thus, proving exactness of (5.1) amounts to proving exactness of (5.2)
and exactness of the following complex:

̂AlbX (F)
�−−→

∏

v∈�

ÂlbXv (Fv) → Hom(Br1(X)/Br0(X), Q/Z). (5.3)

It follows directly by the Hochshchild–Serre spectral sequence,

Ei, j
2 = Hi (F, H j (XF , Gm)) ⇒ Hi+ j (X , Gm),

that we have a surjection H1(F,Pic(XF )) → Br1(X)/Br0(X) → 0. Namely,
H1(F,Pic(XF )) = E1,1

2 , while the quotient Br1(X)/Br0(X) is precisely the graded

piece gr1(E
2) = gr1(Br(X)) = E1,1∞ . Note that the differential d1,12 : E1,1

2 → E3,0
2

vanishes, since E3,0
2 = H3(F, F×) = 0. This is a byproduct of global class field

theory (cf. [35, Remark 6.7.10]). Thus, we get a surjection E1,1
2 → E1,1∞ → 0.

This induces an injection on the dual groups, 0 → Hom(Br1(X)/Br0(X), Q/Z) →
Hom(H1(F,Pic(XF )), Q/Z).Moreover, there is amapHom(H1(F,Pic(XF )), Q/Z)

→ Hom(H1(F,Pic0(XF )), Q/Z) induced by the short exact sequence of GF -modu-
les,

0 → Pic0(XF ) → Pic(XF ) → NS(XF ) → 0.

The variety Pic0(X) is the dual abelian variety to AlbX . Since the latter is equal to the
product J1× J2, it is self dual. We conclude that the exactness of (5.3) follows by the
exactness of the following complex:

̂AlbX (F)
�−−→

∏

v∈�

̂AlbXv (Fv)
β−→ Hom(H1(F,AlbX ), Q/Z).

Here the map β : ∏
v∈�

̂AlbXv (Fv) → Hom(H1(F,AlbX ), Q/Z) is obtained by all
the local isomorphisms AlbXv (Fv) � Hom(H1(Fv,AlbXv ), Q/Z) induced by local
Tate duality (cf. [32, I. Corollary 3.4]) and composing it with the map

∏

v∈�

Hom(H1(Fv,AlbXv ), Q/Z)

∑
v−−−→ Hom(H1(F,AlbX ), Q/Z).
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The fact that the map
∑

v is well-defined follows by [32, I. Lemma 6.3]. This complex
is known to be exact under the assumption on the Tate–Shafarevich group of AlbX
(cf. [32, II. 5.6 (b)]). �


5.4 Elliptic curves with potentially good reduction

In this section we consider a product X = E1×E2 of two elliptic curves over F .
We assume that for i = 1, 2 the elliptic curve Ei has potentially good reduction at
all finite places of F . It is known that an elliptic curve over F has potentially good
reduction if and only if its j-invariant is integral [43, Chapter VII, Proposition 5.5]. An
important class of elliptic curves with this property are elliptic curves with complex
multiplication ([10, p. 225] and [42, Theorem 7], see also [43, Chapter VII, Exercise
7.10]).

Suppose that v1, . . . , vr are all the places of bad reduction of X . Then, there exists
some finite extension Lvi of Fvi such that XLvi

has good reduction. We set ni ..=
[Lvi : Fvi ].
Lemma 5.5 Let i ∈ {1, . . . , r}. Let p be a prime number such that vi � p and p is
coprime to ni . Then the Albanese kernel F2(Xvi ) is p-divisible.

Proof Consider the projection XLvi

πLvi /Fvi−−−−→ Xvi , and let CH0(XLvi
)

πLvi /Fvi �−−−−−→
CH0(Xvi ), and CH0(Xvi )

π�
Lvi /Fvi−−−−→ CH0(XLvi

) be the induced push-forward and
pull-back maps respectively. Since XLvi

has good reduction and vi � p, it follows by

[38, Corollary 0.10] that the Albanese kernel F2(XLvi
) is p-divisible. Moreover, the

endomorphism

F2(Xvi )

p
ni−→ F2(Xvi )

p

can be factored as ni = πLvi /Fvi �
◦π�

Lvi /Fvi
. Since we assumed that p does not divide

ni , this forces the multiplication by ni to be injective modulo p. At the same time the
map πLvi /Fvi �

is the zero map. We conclude that the group F2(Xvi )/p vanishes. �

Definition 5.6 Let S be the set of rational primes consisting of:

• all the primes p such that vi | p for some 1 � i � r ,
• all the prime divisors of

∏r
i=1 ni ,• all the primes p such that both E1, E2 have good supersingular reduction at v for

some place v ∈ � f that lies above p,
• all the ramified primes in the extension F/Q, and
• p = 2.

Moreover, let TS be the set of all integers whose prime divisors do not belong to S,
namely

TS = {n � 1 : p � n, for all p ∈ S}.
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The following corollary follows directly from Theorem 4.4.

Corollary 5.7 Let X = E1×E2 be the product of two elliptic curves over F. Assume
that for i = 1, 2 the elliptic curve Ei has potentially good reduction at all finite places
of F. Then, we have

∏

v∈�

lim←−
n∈TS

F2(Xv)

n
= 0.

In particular, the following complex is exact:

lim←−
n∈TS

F2(X)

n
�−−→

∏

v∈�

lim←−
n∈TS

F2(Xv)

n
ε−→ Hom

(
Br(X)

Br1(X)
, Q/Z

)

.

Proof Fix v ∈ � and n ∈ TS . We will show that the group F2(Xv) is n-divisible.
It is enough to show that F2(Xv) is p-divisible, for each prime divisor p of n. By
definition of the set TS , we have p /∈ S.

Case 1: Suppose v ∈ �∞ is a real place of F . By our assumption, p is odd. Since
F2(Xv) = (Z/2Z)s, for some s � 0 [4, Théorèm 1.3], we conclude that F2(Xv) is
p-divisible.

Case 2: Suppose v ∈ � f and v � p. If Xv has good reduction, then F2(Xv) is p-
divisible [38, Corollary 0.10]. If Xv has bad reduction, then it follows by Lemma 5.5
that F2(Xv) is p-divisible.

Case 3: Suppose v ∈ � f and v | p. By p /∈ S, the surface Xv has good reduction.
Moreover, the extension Fv/Qp is unramified, and at least one of the curves E1v , E2v
over Fv has good ordinary reduction. It then follows by Theorem 4.5 that the group
F2(Xv) is p-divisible. �

Example 5.8 Consider the product X = E1×E2 of the elliptic curves given by the
Weierstrass equations y2 = x3 + x and y2 = x3 + 1 respectively. The curve E1⊗QQ

has complex multiplication by Z[i], while E2⊗QQ has complex multiplication by
Z[ω], where ω is a primitive third of unity. Then Corollary 5.7 in this case reads as
follows: for every prime p � 5 such that p �≡ 11 mod 12, the group lim←− n F2

A(X)/pn =
0.
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