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Abstract

Bivalves have ecological and economic importance but information regarding their associated microbiomes is lacking. As
suspension feeders, bivalves capture and ingest a myriad of particles, and their digestive organs have a high throughput of
particle-associated microbiota. To better understand the complement of transient and resident microbial communities, standard
methods need to be developed. For example, fecal sampling could represent a convenient proxy for the gut microbiome and is
simple, nondestructive, and allows for sampling of individuals through time. The goal of this study was to evaluate fecal sampling
as a reliable proxy for gut microbiome assessment in the blue mussel (Mytilus edulis). Mussels were collected from the natural
environment and placed into individual sterilized microcosms for 6 h to allow for fecal egestion. Feces and gut homogenates from
the same individuals were sampled and subjected to 16S rRNA gene amplicon sequencing. Fecal communities of different
mussels resembled each other but did not resemble gut communities. Fecal communities were significantly more diverse, in terms
of amplicon sequence variant (ASV) richness and evenness, than gut communities. Results suggested a mostly transient nature
for fecal microbiota. Nonetheless, mussels retained a distinct resident microbial community in their gut after fecal egestion that
was dominated by ASVs belonging to Mycoplasma. The use of fecal sampling as a nondestructive substitute for direct sampling
of the gut is strongly discouraged. Experiments that aim to study solely resident bivalve gut microbiota should employ an
egestion period prior to gut sampling to allow time for voidance of transient microbes.
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Introduction

Little is known about the microbial communities occupying
marine invertebrates relative to what has been established for
terrestrial species; marine invertebrate microbial communities
warrant increased attention for a comprehensive understand-
ing of animal-associated microbiomes. In particular, bivalve
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molluscs are a group of ecologically and economically impor-
tant invertebrates, but information regarding their tissue-
associated microbiomes is lacking. Bivalves are often domi-
nant members of the macrobenthos in coastal ecosystems and
provide numerous pivotal ecosystem services such as nutrient
cycling, benthic-pelagic coupling, and exerting top-down con-
trol on phytoplankton communities [1-3]. Suspension-
feeding bivalves can filter large quantities of water (e.g., 3—
5 L/h/g dry mass) [4]; and therefore, their digestive organs
encounter large numbers of both free-living and particle-
associated microbiota. The anatomical arrangement of the di-
gestive tract of bivalves includes digestive diverticula, gut
tubules ending in blind sacs that are sites for phagocytosis
and intracellular digestion. This complex morphological fea-
ture of the gut is an ideal location for resident microbes [5].
As efforts to study the microbial communities of bivalves
continue to grow, methods for microbial community sampling
should be evaluated and standardized to maximize compara-
bility and reproducibility among research groups. For
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example, the sampling of bivalve feces could represent a con-
venient proxy for the gut microbiome because fecal collection
is simple, nondestructive, and allows for the sampling of in-
dividuals through multiple time points. Fecal sampling is rou-
tine for microbial investigations of the human gut [6, 7]; sim-
ilarities between human gut and fecal communities likely ex-
plain the efficacy of fecal transplantation therapies [8].
However, efforts to directly compare fecal communities with
those of rectal tissue and mucosal swabs in humans [9], bats
[10], and cane toads [11] repeatedly reveal stark differences
between fecal and gut microbiomes.

It is currently unknown how the fecal and gut communi-
ties of marine bivalves, which have markedly different di-
gestive physiology than vertebrates [12], relate or differ.
Simons et al. [13] examined the effects of changes in
microalgal diets on the microbiome of the Pacific oyster
(Crassostrea gigas). They sampled oyster feces and claimed
that it was representative of the “digestive microbiome”
without any verification of gut community composition.
Only one study has evaluated the effect of depuration (non-
sterile) on the mussel gut microbiome [14]. In this study, two
mussels were allowed to depurate for 15 h, and taxonomic
composition of their guts was compared with three mussels
that did not undergo depuration. Although depurated mus-
sels showed a reduced alpha diversity compared with non-
depurated ones, lack of sufficient replication in the study and
absence of direct comparison to fecal microbiota justifies
further experimentation.

The goal of the present study was to evaluate fecal sam-
pling as a reliable proxy for gut microbiome assessment in the
blue mussel (Mytilus edulis). Mussels are commonly used as
model suspension-feeding bivalves in laboratory studies and
have been the focus of some gut microbiome research efforts
[15-17]. Animals were collected from the natural environ-
ment and placed into individual sterilized microcosms to al-
low for fecal egestion. Samples of feces and gut homogenates
from the same individuals were subjected to 16S rRNA gene
amplicon sequencing and analysis to directly compare alpha
diversity and taxonomic composition of the different sub-
strates. This design allowed for an effective comparison of
autochthonous (resident) and allochthonous (transient) mi-
crobes associated with mussel guts under normal physiologi-
cal conditions. Such comparisons are important because they
can provide insight into the microbial information that can be
gleaned from fecal sampling, and because they can enhance
interpretation of other bivalve gut microbiome studies. The
results are also important for advancing basic ecological and
spatial understanding of the microbial communities that be-
come ingested and egested by suspension-feeding bivalves.
The tested null hypothesis was that fecal communities would
resemble gut communities of the same individuals in terms of
similarity metrics, alpha diversity, and taxonomic
composition.
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Materials and Methods
Mussel Collection

Eleven adult blue mussels were collected from a natural pop-
ulation in Long Island Sound at the University of Connecticut
Avery Point campus (June 2019). All mussels were of similar
size, ranging from 4 to 6 cm in shell length, and environmental
seawater was 19 °C at time of collection. The salinity at Avery
Point from June—July was approximately 30 ppt. Mussel
valves were gently scrubbed and rinsed briefly with 70%
EtOH to remove epiphytic invertebrates and microbes.

Microcosm Design

Microcosms were employed to isolate individual mussels dur-
ing the fecal egestion period. The microcosms consisted of
1.9-L volume glass jars fitted with custom plastic lids that
allowed an air supply to pass into the experimental seawater
(Fig. 1). Air was supplied by means of aquarium pumps and

Fig. 1 One individual microcosm housing a mussel. Air was supplied by
means of aquarium pumps, and directed through silicone tubing, 0.22-pum
Whatman air filters, and glass pipettes (top). Each chamber was also
outfitted with a plastic grid platform (bottom) upon which mussels could
rest and remain elevated above biodeposits. All components of the mi-
crocosm system were sterilized prior to experimentation
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directed through silicone tubing, 0.22-pum Whatman air filters,
and glass pipettes. Every microcosm also was outfitted with a
plastic grid platform upon which mussels could rest and re-
main elevated above biodeposits. All components of the mi-
crocosm system were sterilized prior to experimentation; glass
jars and pipettes were autoclaved, while plastic lids, grid plat-
forms, and air tubing were soaked overnight in 70% EtOH.
Each sterilized microcosm was filled with 1.5 L of filtered
(0.2-pum cartridge) and autoclaved seawater and housed with-
in an environmental chamber held at a constant temperature of
19 °C. Seawater was sterilized in 20-L polycarbonate carboys;
autoclaving increased pH by less than 0.02 and had no effect
on salinity.

Egestion Period and Fecal Sampling

Mussels were placed into their individual microcosms and left
to defecate for 3 h. This amount of time was sufficient to allow
intestinal feces and some, but not all, glandular feces to clear
from the gut. After 3 h, all mussels had deposited feces at the
bottom of their jars, and these feces were collected with sero-
logical pipettes and transferred to 15-mL collection tubes.
Collection tubes were centrifuged at 1500 xg for 20 s to pellet
the feces, and the overlying seawater was decanted down to a
volume of 1 mL. Feces were resuspended in this 1 mL and
transferred to 1.5-mL microcentrifuge tubes which were cen-
trifuged at 10,000 xg for 60 s to further pellet the feces. All
remaining supernatants were removed by means of a micro-
pipette. Fecal pellets were then resuspended in 200 pL of
ZymoBiomics DNA/RNA Shield (Zymo Research Corp.,
Orange County, CA) to prevent nucleic acid degradation and
homogenized uniformly with pestles. Homogenized fecal
samples were then stored at — 80 °C until DNA extraction.

Mussel Dissections

Mussels remained in their aerated microcosms for an addition-
al 3 h after the end of the egestion period while fecal samples
were being processed. This additional time period allowed
mussels to further clear glandular feces from the gut, but this
second round of feces was not collected in the present study.
Mussels were dissected individually following the aseptic
techniques outlined by Greenberg and Hunt [18]. Each mussel
was removed from its microcosm and its valves washed brief-
ly with 70% EtOH to remove potentially contaminating mi-
crobes. The adductor muscles were cut, the valves were
opened, and the pallial cavity rinsed with 10 mL of sterilized
3% NaCl solution to remove microbes associated with the
pallial fluid. The gut (including stomach and digestive diver-
ticula) was then removed using sterilized instruments over a
cold surface to minimize nucleic acid degradation. The gut
was transferred to a 1.5-mL microcentrifuge tube, suspended
in 400-600 pL of ZymoBiomics DNA/RNA Shield (enough

to cover the whole tissue), and homogenized uniformly with a
pestle. Homogenized gut samples were then stored at — 80 °C
until DNA extraction.

DNA Extraction, PCR, and Sequencing

Mussel gut and fecal samples were processed in the same
manner. The ZymoBiomics DNA Microprep Kit (Zymo
Research Corp., Orange County, CA) was employed to extract
total genomic DNA from all samples following the manufac-
turer’s instructions, with the inclusion of a proteinase K
(20 mg/mL) digestion at 55 °C for 15 min. After DNA extrac-
tion, bacterial 16S TRNA gene fragments (V4 hypervariable
region) were amplified with PCR using modified primers
from the Earth Microbiome Project [19], supplied with indices
by the University of Connecticut’s Microbial Analysis,
Resources, and Services center (MARS). Fragments were am-
plified with a GoTaq DNA polymerase kit and dNTPs from
Promega (Promega Corporation, Madison, WI). Reactions
were incubated at 94 °C for 3 min for initial denaturation.
Reactions were then subjected to 31 cycles of 94 °C for
45 s, 55 °C for 60 s, and 72 °C for 90 s, followed by a final
elongation step of 72 °C for 10 min. For each sample, ampli-
fication was confirmed visually by gel electrophoresis and
imaged under UV following staining with GelRed (Biotium,
Fremont, CA). Amplicons were submitted to MARS and se-
quenced on an [llumina MiSeq platform producing 2 x 250-bp
paired-end read libraries. Raw reads were uploaded to the
NCBI Short Read Archive (SRA) under submission ID
SUB7223904 (BioProject ID: PRINA622268).

Amplicon Sequence Analysis

All bioinformatic amplicon read analysis was conducted in R.
Amplicon sequence variants (ASVs) were generated with the
DADAZ2 pipeline [20]. Paired reads were quality filtered and
merged, and chimeric sequences were removed. Taxonomic
assignments down to the species level, when possible, were
conducted via the SILVA rRNA gene database (version 132)
[21, 22]. A generalized, time-reversible maximum likelihood
phylogenetic tree, with gamma rate variation, was generated
de novo using the phangorn package and a multiple alignment
produced with the DECIPHER package [23, 24].

Further data analysis, manipulation, and figure generation
were conducted with the phyloseq package [25]. ASVs with
taxonomic assignments associated with eukaryotes, chloro-
plasts, and mitochondria were considered erroneous and re-
moved from analysis. Additional classification efforts for se-
lected ASVs were conducted manually with MEGA X and
reference sequences from the SILVA database [21, 26]. A
phylogenetic tree was constructed using the neighbor-joining
method [27] with evolutionary distances calculated via the
maximum composite likelihood method [28] and confidence
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evaluated with a bootstrap test [29]. Data were never rarefied.
Prior to analysis of beta diversity, a variance stabilizing trans-
formation was conducted with DESeq2 to correct for differ-
ences in library size [30, 31]. Bray-Curtis dissimilarity and
UniFrac distance metrics were both computed and compared
[32]. DESeq?2 was also employed to examine differential rep-
resentation of ASVs between substrate types [30].

Categorical differences in community composition were
tested statistically with permutational analysis of variance
(PERMANOVA) [33]. Homogeneity of variance was evalu-
ated with the betadisper function which utilizes a multivariate
analogue of Levene’s test to compare category dispersions.
Although the data violated the homogeneity assumption of
the PERMANOVA test, results were treated as valid consid-
ering that PERMANOVA is robust to departures from homo-
geneity in balanced designs [34]. Paired comparisons of alpha
diversity between fecal and gut samples were conducted with
paired Student’s ¢ tests. Normality of pair differences was
confirmed with Shapiro-Wilk tests.

Results
16S rRNA Gene Amplicon Sequencing

A total of 393,250 raw reads from the 22 samples (median
18,256 reads) were loaded into the DADA?2 pipeline. After
rigorous quality control, i.e., read filtering and removal of
erroneous taxonomic assignments, 1664 ASVs were ob-
served. Rarefaction analysis revealed that, despite variability
in filtered read depth, this sequencing effort sufficiently cap-
tured the ASV richness in all samples (Fig. 2).

Beta Diversity Analysis

There were obvious distinctions between the microbial com-
munities of mussel feces and gut. Principal coordinates
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Fig. 2 Rarefaction curves for all 22 samples produced by the rarecurve
command in phyloseq with a step size of five. Each of the curves for fecal
samples (red) and gut samples (blue) saturated prior to termination
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analysis on weighted UniFrac distances showed that fecal
and gut communities from the same mussel never clustered
together (Fig. 3a). However, all fecal samples and all gut sam-
ples, regardless of mussel identity, clustered together reason-
ably well (Fig. 3b). PERMANOVA on the weighted UniFrac
distances confirmed the significant difference in multivariate
ASV composition between sample types (pseudo-F{; 29y =
17.80, p <0.001). Fecal samples clustered more tightly with
each other than gut samples did with each other; there was less
distance between individual fecal samples and more distance
between individual gut samples (Fig. 3). The nonhomoge-
neous dispersions were confirmed with a multivariate homo-
geneity of groups dispersions (betadisper) test (F(; 20 =
118.81, permutations = 999, p <0.001), and can also be visu-
alized via a compositional dissimilarity network plot (Fig. 4).

Alpha Diversity Analysis

Gut and fecal microbial communities had considerable differ-
ences in alpha diversity. Gut communities had a mean ASV
richness of 59 (SD =27.9), whereas fecal communities had a
mean ASV richness of 328 (SD = 96.0), over five times great-
er. Pairwise comparisons of gut and fecal ASV richness values
from individual mussels revealed a significantly greater ASV
richness among fecal communities (Fig. 5a, paired Student’s ¢
test, f10y=—28.36, p<0.001). Similarly, fecal communities
were more diverse according to the Shannon index. Gut com-
munities had a mean Shannon index of 2.3 (SD =0.44),
whereas fecal communities had a mean Shannon index of
4.6 (SD=0.27), twice as great. Pairwise comparisons of
Shannon index values between gut and fecal samples from
individual mussels revealed a significantly greater Shannon
index among fecal communities (Fig. 5b, paired Student’s ¢
test, £10y=—14.82, p<0.001). These differences in diversity
were also evident at higher taxonomic levels (e.g., phylum-
level, Fig. 6).

Taxonomic Composition

Seven bacterial ASVs that could not be assigned taxonomic
classification at the phylum level by the DADA2 pipeline
were putatively assigned to the phylum Tenericutes after phy-
logenetic analysis (Fig. S1). Phylum-level taxonomic compo-
sition was relatively uniform across all fecal communities with
major representation from the Proteobacteria, Bacteroidetes,
and Tenericutes (Fig. 6). In contrast, phylum-level taxonomic
composition was more variable among gut communities, with
the Tenericutes usually representing 50-80% of the total rel-
ative abundance (Fig. 6). ASVs that could be assigned taxo-
nomic classification to the genus level were utilized for in-
depth taxonomic characterization. Fecal communities were
not dominated by singular genera, but typically consisted of
the following genera ranging from ca. 2.5 to 30% in relative
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Fig. 3 Ordination plots
displaying principal coordinates
analysis on weighted UniFrac
distances. a Microbial
communities colored by mussel
identity and shaped according to
substrate type. b Microbial
communities colored by substrate
type and drawn with 95% data
ellipses (PERMANOVA,
pSeudO-F(l’zo) =17.80, p< 0.001)

Fig. 4 Compositional
dissimilarity network based on
the Bray-Curtis dissimilarity met-
ric created with the plot_net
command in phyloseq using the
Fruchterman Reingold network
layout algorithm. Nodes represent
microbial communities with color
denoting mussel identity and
shape denoting substrate type.
Edges between nodes represent
dissimilarity values less than 0.7
with thickness scaled according to
the dissimilarity between nodes
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Fig. 5 Comparison of a ASV (7,
richness (paired Student’s ¢ test, > S
t10y=-8.36, p<0.001), and b (7,
Shannon diversity index (paired <L
Student’s ¢ test, 10, =—14.82, > §
p<0.001), between gut and fecal )
microbial communities from ‘= o
individual mussels. Coloration = b=
distinguishes individual mussels =3
and the broken line represents a E S
1:1 relationship E N

S 8

)

5 o

Gut community
Shannon index
3

abundance (high to low): Mycoplasma, Aliivibrio, Vibrio,
Halioglobus, Psychromonas, Haloferula, Blastopirellula,
and Algibacter (Table 1). Gut communities were always dom-
inated by the genus Mycoplasma, ranging from roughly 50 to
95% in relative abundance, and some also had other promi-
nent genera ranging from roughly 10 to 35% in relative abun-
dance belonging to the following genera: Psychrilyobacter,
Brochothrix, Alteromonas, or Lutibacter (Table 1).
Differential abundance analysis with DESeq?2 revealed that
200 ASVs (12.0% of all ASVs observed) were significantly
more abundant in fecal communities (Fig. 7, pagjustea < 0.01).
Of the ASVs significantly more abundant in fecal communi-
ties, 79 (39.5%) belong to the class Gammaproteobacteria, 51
(25.5%) belong to the Bacteroidia, 16 (8.0%) belong to the
Deltaproteobacteria, 15 (7.5%) belong to the
Alphaproteobacteria, and 14 (7.0%) belong to the
Verrucomicrobiales (Table S1). There were two ASVs with
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notable overrepresentation in fecal communities, one belong-
ing to the clade Sva0081 sediment group [35] and the other
belonging to the genus Ulvibacter, with log,-fold differences
of 24.2 and 23.8, respectively (Fig. 7). All other ASVs that
were significantly more abundant in fecal communities had
log,-fold differences between 4.4 and 10.3 (Table S1).
Concurrently, there was only one ASV significantly more
abundant in gut communities than fecal communities. This
ASV belonged to the phylum Proteobacteria but could not
be assigned classification any more specifically (Fig. 7,
Table S1).

Discussion

The design of this study allowed for an informative compari-
son of resident and transient microbiota of M. edulis. Unlike
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many vertebrate digestive systems that can be divided into  need to resemble more closely each other than any communi-
mucosal and luminal compartments as habitats for microbes  ties from different individuals. The data presented here do not
to occupy, the complexity of the bivalve gut does not allow for  satisfy that requirement. Fecal communities from individual
such a binary distinction. Instead, microbes associated with ~ mussels resembled each other and did not resemble gut com-
the gut are better classified simply as resident or transient. munities regardless of mussel identity (Fig. 3). Based on these
Under normal physiological conditions, mussels generate  results, sampling the fecal microbiome in place of direct gut
and void feces from two compartments [36]. Intestinal feces sampling would provide little information about the resident
are composed of undigested material subjected to extracellular ~ gut community. Thus, the use of fecal sampling as a noninva-
digestion in the stomach, and are voided on short timescales  sive and nondestructive substitute for direct gut sampling is
(e.g., 0.2-2 h). Glandular feces are composed of undigested  strongly discouraged for experiments concerned with the res-
material subjected to intracellular digestion by phagocytic  ident microbiota of the mussel gut. Lack of interchangeability
cells that line the sacs of the digestive diverticula, and are  between fecal and invasive gut sampling has also been ob-
voided on longer timescales (e.g., 2-9 h or longer) [37—40].  served in bats and cane toads [10, 11], and likely applies to
Because the microcosms were sterile and mussels were notfed ~ other groups of animals.
after collection from the natural environment, microbial sig- Considering that fecal communities of mussels formed a
natures recovered in feces voided in 3 h represent a valid  cohesive group distinct from gut communities, it is pertinent
approximation of transient microbiota of primarily intestinal ~ to evaluate specific ways that fecal and gut microbiomes dif-
origin. Concurrently, microbial signatures recovered in gut  fered. The evidence supports the notion that fecal
tissues 6 h after collection from the natural environment rep-  microbiomes represent largely transient groups of microbes
resent an approximation of resident microbiota that inhabitthe ~ that become ingested by mussels and voided shortly after-
gut and avoid routine clearance by digestive processes. It ~ wards (i.e., within hours). Fecal communities were signifi-
should be recognized that because feces were collected atonly ~ cantly more diverse, in terms of ASV richness and evenness,
a single time point, it is possible that some fluctuations in  than their gut community counterparts (Fig. 5). This disparity
microbial composition took place within fecal material during  in alpha diversity would be expected if fecal communities
the period after egestion but before sampling. Additionally, as  represent the diverse community of environmental microbes
a result of the time course of glandular feces egestion, it is  that normally reside suspended in coastal seawater, and inci-
likely that some glandular feces destined for egestion  dentally become ingested and voided by suspension-feeding
remained in the gut at time of sampling. Therefore, results ~ mussels. Conversely, diversity would expectedly be low for
from gut samples likely contain mostly resident but also some  residents of the mussel gut, a complex environment character-
transient microbes. ized by low pH, abundant digestive enzymes, and mucociliary
The microbial communities sampled from mussel feces  flux of material [12]. Fecal communities also formed a more
and gut tissue were markedly different. For fecal microbiome = homogenous grouping than gut communities; dissimilarity
sampling to be a reliable proxy for resident gut microbiome  was larger among gut communities than it was among fecal
sampling, fecal and gut communities from individuals would  communities (Fig. 4). This homogeneity among fecal samples
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Family Genus

Order

Phylum Class

Genus Relative

Order Family

Class

Phylum

Relative

abundance

abundance

Mycoplasma

Mycoplasmataceae

Mycoplasmatales

Mollicutes

Tenericutes

0.576

Mycoplasma
Aliivibrio

Mycoplasmataceae

Mycoplasmatales

Mollicutes

Tenericutes

0.140
0.097
0.056

Mussel 11

Alteromonas

Alteromonadaceae

Gammaproteobacteria  Alteromonadales

Proteobacteria

0.125
0.047
0.032

Vibrionaceae

Gammaproteobacteria  Vibrionales

Proteobacteria

Donghicola
Vibrio

Rhodobacteraceae

Rhodobacterales

Gammaproteobacteria  Vibrionales

Proteobacteria  Alphaproteobacteria

Halioglobus
Vibrio

Gammaproteobacteria  Cellvibrionales Halieaceae

Proteobacteria

Vibrionaceae

Proteobacteria

Vibrionaceae

Gammaproteobacteria  Vibrionales

Proteobacteria

0.042

0.039

Gammaproteobacteria ~ Alteromonadales  Psychromonadaceae Psychromonas

0.025 Proteobacteria

Haloferula

Verrucomicrobiales Rubritaleaceae

Verrucomicrobiae

Verrucomicrobia

Psychromonas

Psychromonadaceae

Gammaproteobacteria  Alteromonadales

Proteobacteria

0.030

Blastopirellula

Pirellulaceae

Planctomycetes Planctomycetacia Pirellulales

0.030

Flavobacteriaceae Polaribacter 4

Flavobacteriales

Bacteroidetes Bacteroidia

0.028

Sulfurovum

Sulfurovaceae

Campylobacterales

Campylobacteria

Epsilonbacteracota

0.026

More abundant
in feces

10

-10

Log,-fold difference
0

More abundant
in gut °

-20
I

T T T T T
0.1 1.0 10.0 100.0 1000.0
Mean normalized abundance

Fig. 7 Ratio intensity plot comparing mean normalized ASV abundance
in fecal and gut microbial communities created from the plotMA
command in DESeq2. Points on the plot represent all ASVs in the
dataset. Points colored red are the 201 ASVs with abundances that were
statistically different (p,gjustea <0.01). Positive values on the y-axis
indicate increased abundance in fecal communities relative to gut
communities. Negative values indicate increased abundance in gut
communities relative to fecal communities

likely reflects the common location of collection for all mus-
sels in this study. Prior to collection, the mussels were pre-
sumably filtering and ingesting the same ambient seawater-
and particle-associated microbiota. Similar findings were ob-
tained by Ingala et al. [10] through a direct comparison of
guano and intestinal microbiota in bats; fecal samples were
more indicative of environmental factors such as host diet.

Analysis of taxonomic composition also supports the char-
acterization of fecal communities of mussels as largely tran-
sient. Abundant classified genera in fecal communities includ-
ed many that are known to be associated with temperate coast-
al seawater and sediments (Table 1), such as Vibrio [41],
Halioglobus [42, 43], Psychromonas [44, 45], and
Haloferula [46]. Algibacter, a genus known to be associated
with macroalgae [47], the detritus of which is ingested by
mussels [48], was also relatively abundant in feces. The genus
Aliivibrio, which includes the well-known symbiont of the
Hawaiian bobtail squid, Euprymna scolopes, was also a nota-
ble member of fecal communities [49, 50]. The identities of
the differentially abundant ASVs in fecal communities also
reinforce their inferred roles as transients (Table S1). The
two most differentially abundant ASVs were of the
Sva0081 sediment group and Ulvibacter, known as sulfate-
reducing sediment bacteria and associates with green
macroalgal detritus, respectively [35, 51]. Additionally, sig-
nificantly more abundant in fecal communities were some
known and putative photosynthetic ASVs belonging to the
Cyanobacteria and Chromatiaceae [52], which cannot be res-
ident gut microbes considering the lack of light inside the
mussel gut.

Harris [53] provided an effective conceptual framework for
the differences between resident and transient gut microbiota
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in aquatic invertebrates. Resident microbes are those that form
permanent, relatively stable populations and may live attached
to epithelia or in gut pouches or crevices. Transient microbes
are those that become ingested and traverse the length of the
gut; they may colonize gut contents or proliferate within the
gut habitat. Importantly, members of both resident and tran-
sient communities are expected to be voided with feces.
Although informative, the data synthesized by Harris [53]
lacked any of the high-throughput sequence analysis available
currently. Hammer et al. [54] provided a compelling argument
that caterpillars do not retain, or minimally so, resident gut
communities by demonstrating that caterpillar fecal microbi-
ota were primarily leaf-associated taxa and host-specific gut
taxa were largely absent. Caterpillars may represent an ex-
treme case, and the data presented here do not suggest that
resident microbiota are absent from the mussel gut.

Of the 201 ASVs with abundances that were statistically
different, only one was more abundant in resident gut com-
munities (Fig. 7). These data suggest that the resident gut
community is mostly a subset of the fecal microbiome, which
is not unexpected for a community that must undergo regular
turnover and voidance in the feces. With that in mind, and
considering the dominance of the Mycoplasma in gut commu-
nities, it is hypothesized that the relatively large abundance of
Mycoplasma in the feces is a consequence of routine residen-
tial voidance. Although Rubiolo et al. [14] also observed in-
creased relative abundance of the Tenericutes in mussel guts
following a depuration period, other phyla (e.g.,
Cyanobacteria, Proteobacteria, and Planctomycetes) were still
prominent, likely reflecting the non-sterile nature of the
depuration period in their experiment. Members of the
Mycoplasma are often dominantly abundant in 16S rRNA
gene sequencing surveys of gut microbial communities of
bivalves [17, 55-57], and have recently been proposed to be
members of a “core” gut microbiome [58]. Although the func-
tional role of Mycoplasma in the mussel gut is unconfirmed,
metagenomic data from an analysis of oyster gut communities
suggest that these bacteria might utilize chitin and arginine
supplied by the host as carbon sources (Pimentel, personal
communication). These results, coupled with the sheer numer-
ical dominance of Mycoplasma in the resident community
observed in the present study, hint at an important symbiosis
between these bacteria and host mussels.

Although the use of fecal sampling as a substitute for direct
sampling of the mussel gut is discouraged for studies con-
cerned with the resident gut microbiota, fecal sampling may
have other utility. For example, sampling the microbial com-
munities of bivalve feces may lead to significant insight into
the biogeochemical processes associated with biodeposits
[59], which have profound ecological implications (e.g.,
carbon/nitrogen cycling, benthic-pelagic coupling) [3, 60].
Additionally, results of this study have implications for the
interpretation of results of numerous gut microbiome studies

that sampled bivalves directly from the natural environment or
laboratory tanks, without allowing for a period of fecal eges-
tion (see Pierce and Ward [58] and references therein). When
no egestion period is allowed for the host to void the gut,
subsequent results mainly identify robust transient microbial
communities. These studies still have merit, especially consid-
ering that transient microbes may be metabolically active and
important for host physiology. Results of the current study,
however, highlight the importance of tailoring experimental
and sampling design schemes to match the experimental ques-
tions being addressed. Any work that aims to study resident
microbes of the bivalve gut should employ sterile microcosms
and a fecal egestion period, similar to the design described
here, prior to lethal gut sampling to allow time for transient
microbes to be voided.

Conclusion

Fecal and gut microbiota of blue mussels were compared. The
microbial communities sampled from feces voided within 3 h
and gut tissue after 6 h of egestion were markedly different.
Fecal communities of different mussels resembled each other
but did not resemble gut communities. Furthermore, fecal
communities were significantly more diverse, in terms of
ASV richness and evenness, than their gut community coun-
terparts. Thus, the use of fecal sampling as a noninvasive and
nondestructive substitute for direct sampling of the gut is
strongly discouraged for studies concerned with the resident
microbiota of the mussel gut. The results suggested a mostly
transient nature for the majority of fecal microbiota. Mussels
retained a distinct resident microbial community in their gut
after fecal egestion that was dominated by ASVs belonging to
the Mycoplasma, which suggests an important symbiosis be-
tween these bacteria and host mussels. Prior studies of the gut
microbiome of bivalves that lack an egestion period for the
voidance of transient microbes likely include results biased
toward transient communities. Any work that aims to study
the resident microbes of the bivalve gut should employ sterile
microcosms and a fecal egestion period, similar to the design
described here, prior to lethal gut sampling to allow time for
transient microbes to be voided.
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