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Abstract We prove versions of various classical results on specialisation of fundamental groups in the
context of log schemes in the sense of Fontaine and Illusie, generalising earlier results of Hoshi, Lepage
and Orgogozo. The key technical result relates the category of finite Kummer étale covers of an fs log
scheme over a complete Noetherian local ring to the Kummer étale coverings of its reduction.
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1. Introduction

1.1. Let Abea complete Noetherian local ring with maximal ideal m and residue field
k, and let f: X3 — Spec(A4) be a proper morphism with closed fibre Xj. Then it follows
from the Grothendieck existence theorem that the pullback functor

Fét(X7) — Fét(Xy)

is an equivalence of categories (see, e.g., [9, Exposé X, Théoréme 2.1]), where for a scheme
Y we write Fét(Y) for the category of finite étale Y-schemes.

This was generalised to the logarithmic setting by Hoshi [10, Corollary 1, p. 83] under
assumptions and by Orgogozo [24]. In this article we give a stack-theoretic proof of the
logarithmic version of [9, Exposé X, Théoréme 2.1] and deduce various consequences with
an eye towards future applications to fundamental groups.

Let (S, Mg) be an fs log scheme with § = Spec(z) a complete Noetherian local ring
as before, and let (f,f?) : (X,Mx) = (S,Ms) be a morphism of fs log schemes with
underlying morphism of schemes X — S proper. The main purpose of this article is
to explain how to deduce the following result — originally due to Orgogozo [24], who
references ideas of Gabber — from stack-theoretic considerations:

Theorem 1.2. The restriction functor

Fét(X, Mx) — Fét(Xy, Mx,) (1.2.1)
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2 M. Olsson

18 an equivalence of categories, where for an fs log scheme (Y, My) we write Fét(Y, My)
for the category of fs log schemes over (Y, My) which are finite and Kummer étale.

Remark 1.3. The log structure Mg on S plays no role in the statement of Theorem 1.2,
and there is no loss of generality in assuming that Mg = 07%.

Remark 1.4. Using Artin approximation, we also prove a variant of Theorem 1.2 with
A replaced by a henselian local ring; see 5.1. This variant over a Henselian local ring has
also been obtained by Lepage [16, Theorem 1.8].

Using Theorem 1.2, we generalise two classical results on fundamental groups to log
schemes.

1.5. For a Noetherian fs log scheme (Y, My), the category Fét(Y,My) is a Galois
category by [10, Theorem B.1]. We can therefore talk about an object (U,My) €
Fét(Y, My) being Galois. For a prime p, let Fét? (Y, My) c Fét(Y, My) be the full
subcategory of objects which can be written as quotients (U, My)/H for some Galois
object (U, My) of degree (a locally constant function on Y) prime to p and H a finite
group of automorphisms of (U, My) over (Y, My). More generally, for a set of primes L
we can consider the category Fét¥ (Y, My), defined to be the intersection of the categories
FétP (Y, My) for p € L.

1.6. Let (B, Mp) be an fs log scheme and let (f,f?): (X, Mx) — (B, Mg) be a morphism
Qf fs log schemes with underlying morphism f X — B proper. For a log geometric point
b8 = (b, Mjiog) = (B, Mp), we consider the following category, introduced by Hoshi in
[10]:

Fét((X, My) pios)) := colimy, Fét((X, Mx) X (5, 1) 0%, (1.6.1)

where the colimit is taken over fs log structures M, C Mje containing the image of
Mp 3 and we write I_)iog for the log scheme (b, M) (here and throughout this article, fibre
products are taken in the category of fs log schemes). This category should be viewed as
the category of covers of the fibre of (X, My) over b8, though this does not make literal
sense, because Mjiog is not fine.

Theorem 1.7. Let h: b8 — bl°% be a morphism of log geometric points over (B, Mp).
Then the pullback functor

F66P (X, Mx) iog)) = F66P (X, Mx) 108, (1.7.1)
is an equivalence of categories, where p is the residue characteristic of b'°8.

Remark 1.8. Lepage [16, Theorem 2.15] earlier obtained this result for saturated
morphisms (X, Mx) — (B, Mp) and morphisms h which are isomorphisms on underlying
geometric points using a different argument, which holds also for non-proper morphisms
and without the prime-to-p assumption.

A second application concerns the variation of the category of covers of the fibre in log
smooth proper families:
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Kummer coverings and specialisation 3

Theorem 1.9. Let (B, Mg) be an fs log scheme with B connected and of finite type over
a field or excellent Dedekind ring. Let (X, Mx) be an fs log scheme and [ : (X, Mx) —
(B, Mp) a log smooth morphism with underlying morphism of schemes proper. Then for
any two log geometric points

b%® — (B.Mp), i=12,

the categories FétL((X,MX)(I;log)) and Fét¥ (X, Mx) ) are equivalent, where L is the
1

!

, . 71 71
set of residue characteristics of b;”® and by®.

Remark 1.10. This result was previously obtained by Lepage for “proper polystable log
fibrations” [17, Theorem 3.3].

Remark 1.11. In the proof of Theorem 1.9 we will also make explicit how to relate the
two categories using specialisation and cospecialisation functors.

Remark 1.12. As in the classical case [9, Exposé X, Corollaire 3.9], the prime-to-p
assumptions in Theorem 1.9 are necessary and arise in the proofs with the applications
of the purity theorem, which in the logarithmic context is [18, Theorem 3.3].

Remark 1.13. In the analytic context, the analogue of Theorem 1.9 for exact morphisms
follows from the stronger topological results proven by Nakayama and Ogus in [20,
Theorem 5.1].

Remark 1.14. Mattia Talpo suggested an alternate proof of Theorem 1.2 based on
his result with Vistoli [27, Theorem 6.22]. The basic idea is to show that the category
Fét(X, Mx) is equivalent to the category of finite étale covers of the infinite root stack
associated to (X, My), and this latter category is then equivalent to the colimit of the
categories of finite étale covers of the finite-level root stacks. The technology of infinite root
stacks may well be the “correct” language for proving Theorem 1.2, but in this article we
choose to develop the stack-theoretic tools needed directly. However, the reader familiar
with [27] may in places find more direct proofs of some of the technical results using that
theory.

Example 1.15. An interesting example to consider with regard to Theorem 1.9 is the
case when (B, Mp) is log smooth over a field k, and (X, Mx) is a log blowup of (B, Mp)
with respect to a coherent sheaf of ideals. In this case the morphism (X, Mx) — (B, Mp)
is an isomorphism over a dense open subset of B, and therefore Theorem 1.9 includes the
statement that the geometric fundamental group of the fibre of a log blowup is trivial.
This result is already known by work of Fujiwara and Kato [11, Theorem 6.10], and is in
fact crucial for the argument in this article. Since a proof of this result is not published,
we provide one in Section 9.

1.16. Conventions

We assume that the reader is familiar with the basics of log geometry as developed in
[13] and algebraic stacks as developed in [15].
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4 M. Olsson

Throughout this article, we consider only fine saturated (abbreviated “fs”) log schemes,
and fibre products of log schemes are always considered in this category.

We use the notion of the log geometric point of an fs log scheme (X, My), introduced
in [19, Definition 2.5]. Recall from that reference that this a morphism of log schemes
blos = (b, Mjiog) = (X, Mx), where b is the spectrum of a separably closed field k and
Mjiog is an integral log structure such that for every integer n > 0 prime to char(k), the
multiplication-by-n map on H;,bg is bijective. A morphism of log geometric points of
(X, Mx) is defined to be a morphism of log schemes over (X, Mx).

If k is a separably closed field of characteristic p (possibly 0) and P is a sharp fs monoid,
then we can consider the monoid Pgz,, defined to be the saturation of P inside P®P ® Z,),
where Zp) is the localisation of Z away from p. Writing simply k* @ P for the log structure
on Spec(k) given by the map k* @ P — k sending all nonzero elements of P to 0, we get
for any morphism of log schemes (Spec(k),k* ® P) —» (X, Mx) a log geometric point of
(X, Mx) by considering the induced morphism

(Spec(h),k* ® Pz,,)) = (X, Mx).

Every log geometric point of (X, Mx) can be written as a limit of log geometric points of
this form. Indeed, for any log geometric point b'°% = (b, Mjiog) = (X, Mx), write M jiog =
colimy Py, where P, is a sharp fs submonoid of M Flog containing the image of M x. Then

for each A, the inclusion P) — Mglog extends uniquely to an inclusion P; 7, <> Mglog.
Let M, denote the preimage in Mglog of P,\,Z(p). Then (Spec(k), M,) is noncanonically
isomorphic to (Spec(k), k* ® Pz(p)) and

blos = lim (Spec(k), M; )
in the category of log geometric points over (X, Mx) as well as the category of log schemes.
Similarly, for any morphism of log geometric points f : b'1°8 — b8 of (X, My) with

underlying morphism of schemes an isomorphism, we can present the log geometric points
as limits

plos — lim (Spec(k), M)), b'°& = lim (Spec(k), M),
where M, = k* @ Q)\,Z(p) and M, ~k*® PA,Z(M for fs monoids P; and @, and f is induced
by morphisms
fu s (Spec(k), k™ @ @) — (Spec(k), k™ @ P;)

defined by maps of monoids h, : Py = Q.
We will use the Kummer étale site and topos of a fs log scheme. We refer to the survey
article [11] and references therein for basics on the Kummer étale topology.

2. Kummer coverings and root stacks

2.1. Recall from [19, Definition 2.1.2] that a morphism of fs log schemes f : (Y, My) —
(X, Mx) is of Kummer type if for every geometric point y — Y the induced map

h :Mx’f@) - My’@
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Kummer coverings and specialisation b)

is injective and for every element m € My’@ there exists an integer N > 0 such that Nm
is in the image of h. Note that such a morphism is exact.

If Y is quasi-compact then, since M x is constructible, this implies that there exists an
integer N > 0 such that the map of sheaves

-N Zf_lﬁx - f_lﬁx
given by multiplication by N factors as

i

— b —
[ My LTy [T M x (2.1.1)

for a morphism of sheaves of monoids f,f,, as indicated. Note also that we have a
commutative diagram

_ b _ fh _
FMy — N My

.

— bgp __ —
fIMR 8Q MY ©Q —— MY 9 Q.

where the vertical morphisms are injective, since the sheaves of monoids are saturated and
the morphisms f%#P and i L8P are isomorphisms. From this it follows that f® and fN are
both injective, and we can view M y as being contained in Nf UM x inside (f~ 1Mgp) RQ.

2.2. Fix amorphism f: (Y, My) — (X, Mx) of Kummer type with Y quasi-compact, and
let N be a positive integer such that we have a factorisation (2.1.1). We can then describe
the (X, Mx)-log scheme (Y, My) as follows, using just (X, Mx) and certain morphisms
of stacks.

Let ¢ denote the stack over Y which to any Y-scheme g: T — Y associates the
groupoid of morphisms of fs log structures

u: g*My - MT
such that there exists an isomorphism 1 : g~'f~"M x — M 7 such that the diagram

_ fE _
g My g My

\_l"

M

commutes. Note that the isomorphism 7 is unique if it exists, since M 7 is torsion free.
Taking (Y,My) = (X, Mx), we also get a stack Zy classifying morphisms of log
structures Mx — M such that the induced map M x — M identifies M with %M X
... =8P
inside My ®Q.
The morphism f induces a functor

q:@—) Zn.
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6 M. Olsson

Given a Y-scheme ¢g: T'— Y and an object u: ¢* My — My, the X-scheme fog: T — X
and the morphism of log structures

*rb
g f*Mx EELS g*My —— Mr
is an object of Zn(T) and this defines gq.

Remark 2.3. This construction is a special case of the general construction of root stacks
discussed in [4, §4.2, especially Proposition 4.13].

2.4. For later use, let us explicate the local structure of these stacks, which implies in
particular that they are algebraic stacks, and even tame stacks in the sense of [1, Definition
3.1].

Let y > Y be a geometric point with image z — X. Let P (resp. @) denote the monoid
MX@ (resp. My,@), so we have a morphism of monoids 6 : P — (). By our assumptions
we also have a morphism of monoids 6% : Q — P such that the composition

t
P Q Y. p
is multiplication by N. Let up,o denote the diagonalisable group scheme associated to
the quotient P8P/Q8P, where QP is included in P& by 6%. Similarly, define u q/p to be
the diagonalisable group scheme associated to Q8P /6 (P%P).

Lemma 2.5. After replacing X by an étale neighbourhood of T and Y by an fppf
neighbourhood of y, we can find a commutative diagram

Q Y My(Y) (2.5.1)

o

P My (X)),

where ax and oy are charts inducing the given identifications @ =~ Myy@ and P~Mx ;.
If N is invertible in k(y), we can find such charts étale locally on Y.

Proof. This is very similar to [23, Proposition 2.1]. First, after replacing X and Y by
étale neighbourhoods, we can find charts ax and ay inducing the isomorphisms @ =~
My ; and P~ M ;. Diagram (2.5.1) may not commute: the failure is measured by a
homomorphism A : P& — &7%,. The obstruction to extending this to a homomorphism
h: Qe — 0% is a class in Ext!(Qsp/Pep, 0%,). Therefore, after replacing Y by an fppf
neighbourhood of 7, we can lift & to a homomorphism A : Q8P — & 3, and if N is invertible
in Y we can do so étale locally. Modifying our chart ay by this homomorphism, we then
have that (2.5.1) commutes. O

2.6. Localising, we now assume as chosen such charts oy and ay. In this case, for
any Y-scheme g: T — Y and object u: g*My — My there exists a unique extension
Br : P— Mt of the composition

Q = g My *ﬂ>MT,

Downloaded from https://www.cambridge.org/core. Lawrence Berkeley Nat'l Lab, on 20 May 2021 at 17:54:12, subject to the Cambridge Core terms of use, available
at https://www.cambridge.org/core/terms. https://doi.org/10.1017/51474748020000511


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1474748020000511
https://www.cambridge.org/core

Kummer coverings and specialisation 7

and the map Br lifts étale locally on T to a chart. This extension is defined to be the
composition
P X g_lf_IMX s HT.

From this and [23, Proposition 5.20], we deduce that the stack & in this local situation
is described as the stack quotient

[My(ﬁy ®z[Q) ZIPD/1p)ql:

where the action is induced by the natural action of up, ¢ on Spec(Z[P]) over Spec(Z[Q)).
Similarly, we have a description of Zy as the quotient

[Spec  (Ox ®zip),.n ZIP/1p v

where up y denotes the diagonalisable group scheme associated to P8P @ Z/(NV).
The morphism ¢ : % — 2 is the morphism of stacks induced by the natural map

Spec, (Oy ®zq) Z|P]) = Spec, (Ox ®z1p),n Z[P))
by taking quotients. Note here that there is a natural inclusion wp,g = up y-

2.7. From this we can read off a number of properties of the stacks % and Zn:

(i) The stack & (resp. Zn) is a tame algebraic stack with finite diagonal over Y
(resp. X). Furthermore, if N is invertible on Y (resp. X), then ¢ (resp. Zy) is
Deligne-Mumford.

(ii) The coarse space of % (resp. Zn) is YV (resp. X).
(iii) The morphism ¢ : % — £ is representable and finite if the morphism Y — X is
finite.

Remark 2.8. Note that because % and 2y are tame stacks, the formation of their
coarse spaces commutes with arbitrary base change by [1, Theorem 3.2].

2.9. Let px : Zy > X and py : % — Y be the projections. We have tautological
morphisms of log structures px Mx — Mg, and p}, My — My and an isomorphism
¢* Mgy =~ Mg . So we have a commutative square of log stacks

(Y, My) —"> (Zn. May) (2.9.1)
lPY lpx
f
(Y, My) —— (X, Mx),
where the morphism gq is strict.

Remark 2.10. The vertical morphisms in (2.9.1) are log étale. This follows from [23,
Corollary 5.24].

Lemma 2.11. The map My — plyofMg is an isomorphism, where pl}?f denotes the
pushforward in the category of log structures.
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8 M. Olsson

Proof. Notice t_hat the sheaf_ﬁ 2y is isomorphic to p}lﬁ x, and therefore Mg descends
to Y. In fact, My ~p3'f ' My.
Since Y is the coarse moduli space of ¢, we have

lo
pYEM?y = pY*M?ya

where the right side is the pushforward in the category of sheaves. Indeed, by definition,

pl;;fMg is the fibre product of the diagram

Oy

lz

Py:My —=py.Oxn,

where the vertical morphism is an isomorphism. For ease of notation, we write M{, for
the log structure pl;iEM@/. Note that by the left exactness of py., the natural map

—, . _
MY = (PY*M@/)/(PY*ﬁgy) - pY*M@
is injective. We therefore have an inclusion
—, I -
MycﬁpY*pylf 1]MXzf 1MX,

and it suffices to show that this map identifies M/Y with M y. Here we use the fact
that the map M x — py. p;,lﬁ x is an isomorphism, which follows for example from the
proper base change theorem [3, Expose XII, Theorem 5.1].

Now to prove the lemma, we can work locally in the fppf topology on Y. Let y — Y be
a geometric point with image £ — X, and choose charts as in Lemma 2.5, after possibly
shrinking on X and Y in the fppf topology. Write %3 := % Xy Spec(Oy,;) and let
me MX’,; = P be a section. Then m lifts to (py .Mz )y if and only if the ﬁ%,@—torsor Lo
on ¥y of liftings of m to My, is trivial. Indeed, we have (py.Ma)y = HO(Z?/@),MQ/@),
and the (possibly empty) set of trivialisations of .%,, is precisely the set of global sections
of ng@) mapping to m. Now observe that with the description of ¢ in Paragraph 2.6,
the closed point defines a closed immersion

Bup,q = %y)-

The pullback of £, to Bup,q is the torsor corresponding to the character of up,q
defined by m. It follows that a necessary condition for %, to be trivial is that m lie in
Q = QPN P C PP (using the fact that Kummer morphisms are exact). It follows that
My — py.My is surjective and therefore an isomorphism. O

2.12. Adding to the list in Paragraph 2.7:

(iv) The morphism of log schemes f: (Y, My) — (X, Mx) is obtained from the data of
the representable morphism of stacks q: % — 2 and the morphism of log stacks
(XN, Mary) = (X, My) by taking Y the coarse moduli space of % and My the
pushforward py.q* Mg, .
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Kummer coverings and specialisation 9

2.13. Conversely, we can try to reverse the preceding constructions to get a Kummer
morphism from a representable morphism of stacks. Fix a representable morphism of
stacks % — Z separated over X and let ¥ — X be the coarse moduli space and My
the pushforward log structure plﬁfq*M 2~ Note that a priori it is not clear what good
properties (e.g., fine and/or saturated) the log structure pI{/)E q* Mg posseses.

Let y > Y be a geometric point with image z — X. Then, following the foregoing
arguments, the stalk My ; can be described as follows. Let %; be the fibre product
% xy Spec(Oy ). Let P denote the stalk MX@. Let u denote the stabiliser group scheme
of % over 3, and let up  denote the diagonalisable group scheme

Hom (PP, ).

Then pp  is the stabiliser group scheme of Zy at z, and since %" — Z'y is representable
we have a closed immersion p < up . Since a closed subgroup scheme of a diagonalisable
group scheme is again diagonalisable, the group scheme w is also diagonalisable, and the
inclusion u <> pp y corresponds to a quotient

P8P /NP8 — A,
or equivalently a subgroup Q%P C P#P containing NP®P. Let @ C P denote PN Q8P.
Lemma 2.14. We have HY,@ = @ inside Mx,i =P.

Proof. With notation as in the proof of Lemma 2.11, let m € P be a section and let
%, denote the 0,-torsor over %(3, of liftings of m to a section of My := ¢*Mg,. Then
L8N s trivial, and fixing a trivialisation we get a u y-torsor 2, whose pushout along
uy C 0y, is the torsor Z;,. The result then follows from the following lemma, where we
use the natural identifications of H*(Bu,u ) and Hom(u, ) =~ A. O

Lemma 2.15. Pullback to i: Bu C % defines a bijection between H (%), 1y)
and A.

Proof. By the general theory of tame stacks [1, Proposition 3.6], the stack %3 can be
written as a quotient [V /u], where V' is a finite Spec(Oy j)-scheme. In particular, there
is a retraction 7 : %3 — Bu of . It follows that the restriction map

H' (X g).un) > H (Bp.py) = A

is surjective. To prove injectivity it suffices to show that a p y-torsor £ which pulls back
to the trivial torsor over B is trivial. Using the Artin approximation theorem, it suffices
to prove that such a torsor is trivial after base change to the completion Spec(ﬁ Y, 5)
and then by the Grothendieck existence theorem it suffices to show that each of the
reductions of .Z to infinitesimal neighbourhoods of By is trivial. Now the deformation
theory of w-torsors is governed by the groups H*(Bu,Lie(uy)). These groups vanish
for ¢ > 0, since w is linearly reductive, which proves the lemma. O

2.16. To further understand the log structure My, we analyse the situation locally.
Replacing Y by some étale neighbourhood of y, we can find a morphism ay : Q > My
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10 M. Olsson

extending the given isomorphism @ =~ Wy.@. Furthermore, as in the proof of Lemma 2.5,
we can arrange it so that we have a chart oy : P > Mx inducing the given isomorphism
P~ Mx ; and that (2.5.1) commutes. Let M, be the log structure associated to @ —
My — Oy, so we have an induced morphism of log structures M}, — My. We can then
apply the construction of Paragraph 2.2 to get another stack #’ — Y, and the natural
map M{, — ¢* Mg, induces a morphism of stacks

g:Y > Y.

This is a morphism of algebraic stacks proper and quasi-finite over Y with finite diagonal
equipped with representable morphisms to % . This implies that ¢ is a representable
morphism and therefore a finite morphism.

Proposition 2.17. Suppose that for every integer m, the base change of g to
Spec(Oy 3/m™) is an isomorphism. Then there exists an étale neighbourhood of y over
which g is an isomorphism and My, — My is an isomorphism.

Proof. Since ¢ is finite, we have % = Spec@/(g*ﬁg/). Under the assumptions in the
proposition, we have that the map of coherent &z/-modules

pulls back to an isomorphism over each of the Spec(Jy ;/m™). By the Grothendieck
existence theorem, it follows that (2.17.1) is an isomorphism in a neighbourhood of ¥,
which implies the first statement in the proposition. The statement that M — My is
an isomorphism over this étale neighbourhood follows from Lemma 2.11. O

Remark 2.18. The formation of the stack % is functorial in the log scheme (Y, My).
If g: (Y,My)— (Y’,My/) is a morphism over (X, Mx) between Kummer (X, Mx)-log
schemes, then there is an induced morphism of stacks

Y >

over £y, where N is chosen appropriately. The fibre of this morphism over h: T — Y is
given by sending a morphism of log structures h* My — M7 defining an object of % (T)
to the composition

h*g*My/ — h*MY —> MT,
which is an object of #'(T).

2.19. We are particularly interested in the case when (Y, My) — (X, Mx) is Kummer
étale. In this case, consideration of (2.9.1) shows that the morphism of log stacks
(¥ My ) — (XN, Mgy) is strict and log étale, and therefore the underlying morphism of
stacks % — Z'n is representable and étale.

If, furthermore, the underlying morphism Y — X is finite, then the representable
morphism % — 2 is also proper and quasi-finite, and therefore a finite étale morphism.

2.20. We can use this to understand morphisms of log étale schemes better. Let

(Y, My) - (X, Mx), i=12,
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Kummer coverings and specialisation 11

be two finite Kummer étale morphisms with associated finite étale morphisms
% 4 %N.

Let € omary (%1, %5) be the functor over 2y which associates to any morphism 17" —
Zn the set of morphisms

%XK%'NT%%X%NT.

Since %] and %5 are finite étale over 2, this functor is representable by a finite étale
morphism h: & — Z. Likewise, define

JComx, mx) (Y1, My,), (Yo, My,))

to be the functor on the category of X-schemes which to any f: T — X associates the
set of morphisms of log schemes

T (Y1, Myy) x(x,my) (T, f*Mx) = (Y1, Myy) X (x,my) (T, f* Mx) (2.20.1)
over (T,f*Mx).

Proposition 2.21. The functor 5€omx my)((Y1, My,), (Y2, My,)) is representable by a
scheme finite and étale over X.

Proof. By the functoriality discussed in Remark 2.18, any morphism (2.20.1) defines a
morphism of stacks

tT:%X%NT—)%X%NT,

and conversely such a morphism of stacks defines a morphism of log schemes (2.20.1) by
passing to coarse moduli spaces. In this way, the functor J27omx vy)((Y1, My,), (Yo, My,))
is identified with the functor H which to any X-scheme T associates the set of sections
s: Xn.r — Hr of the base change of 7 — 2 to T. The result therefore follows from
the following stack-theoretic lemma. O

Lemma 2.22. Let 2 be a tame Artin stack with coarse moduli space w: Z — X and
let h: 5 — Z be a finite étale morphism. Let H be the functor on X-schemes sending
a scheme T to the set of sections s: X1 — Hr of the base change hr : 5 — X1 of h
to T. Then H is representable by a scheme H finite and étale over X .

Proof. The assertion is étale local on X, so by [1, Theorem 3.2] we may assume that
2 =|U/G], where U is a finite X-scheme and G is a finite linearly reductive group
scheme acting on U over X. Let hy : V — U be the fibre product 52 x o~ U, so h is finite
and étale and there is an action of G on V such that 5 = [V /G]. Then giving a section
of ' — Z is equivalent to giving a G-equivariant closed subscheme I' C U x x V such
that the projection I' = U is an isomorphism.

Since U is finite over X, we can, after further localising on X, arrange it so that V is
a trivial étale cover of U. Indeed, by a standard limit argument it suffices to note that
if z > X is a geometric point and Ox ; the strictly Henselian local ring associated to Z,
then

V x x Spec(Ox.3) > U xx Spec(Ox . z)
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12 M. Olsson

is a trivial étale covering, since U x x Spec(€x z) is the spectrum of a product of strictly
Henselian local rings by [26, Tag 04GH].

In this case, H is representable by the set of G-invariant sections of the projection
No(V)—)No(U). O

Remark 2.23. The various functors already considered can also be studied using the
general methods in [22]. However, in my cases we need slightly stronger results, under
stronger hypotheses, than what we get directly from the results in [22].

3. An example

To illustrate the constructions and results of the preceding section, we make them explicit
in this section in the case of a log point. This will also make clear the connection with
infinite root stacks in the sense of [27], and the result [27, Theorem 6.22] can be viewed
as a vast generalisation of (3.2.1) constructed later.

3.1. Let (b, Mp) be a log point with b = Spec(k) the spectrum of a separably closed field
and M, an fs log structure. Let @ denote the monoid M,. Choosing a section of the
projection My, — M}, we get a decomposition My, = k* @ Q with the map to k given by
sending all nonzero elements of @ to 0. For N > 0, let By denote the associated Nth root
stack over Spec(k). The stack By can be described as the stack quotient

By = [Spec(k Qg n k[QD /1 g n]-

In particular, there is a closed immersion defined by a nilpotent ideal
jN : BIu‘Q,N — BN

This enables us to completely describe the category of finite étale covers of By .
Let U — By be a finite étale morphism with U connected. Then Uy :=j; U is connected
and finite étale over B y and therefore isomorphic to

Buy, = Bug n

for some closed subgroup wy, C mg n- Such a subgroup is given by a quotient 2:
Q%P/NQ8P — A. By the invariance of the étale site under infinitesimal thickenings (see,
e.g., [7, Lemma 3.41]), it follows that U — By is isomorphic to the quotient

[Spec(k ®rql. v k@D /1y, ]

with its natural map to By. Let @' C @ be the set of elements ¢’ € ) for which z(¢") =0.
Then the log scheme obtained from U by the construction in Paragraph 2.13 is the scheme

Spec(k @0 k[Q'])

with the natural log structure M¢  induced by @'

Observe also that the projection Q%P — A induces an isomorphism @Q8P/(Q'8P ~ A.
Indeed, it is clear that Q'8P is in the kernel of the map to A, and if ¢ € Q8P is an element
in the kernel, then there exists y € @ such that ¢’ := ¢+ Ny € QN Ker(Q%? —» A) = Q.
Therefore, ¢ = ¢’ — Ny lies in ()’8P.
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Kummer coverings and specialisation 13

It follows that the finite étale cover U — By is the stack obtained by the construction
of Paragraph 2.2 from the morphism of log schemes

(Spec(k ®@p(o k[Q']), Mg) — (b, My).
3.2. If N|M, then there is a natural morphism of stacks
TTM,N : BM - BN.

In fact, if gy : By — b is the structure morphism and « : gy, My — Mp,, the tautological
morphism of log structures over By, then we can consider the stack By p/n over By
classifying M /Nth roots of Mg, , and it follows immediately from the construction that
composition with a defines an isomorphism of stacks

BN,M/N d BM

In particular, we obtain the projection mas y by taking the inverse of this isomorphism
followed by the projection By a/n — Bn. Furthermore, it follows from the preceding
discussion that if U — By is a finite étale morphism with associated Kummer morphism
(¢, M.) = (b, My), then the base change U xp, By is the finite étale morphism over
By also corresponding to (¢, M,). Since every object of Fét((b, My)) is obtained by this
construction for some N prime to the characteristic of k, we obtain an equivalence of
categories

Fét((b, My)) =~ COthEN/Fét(BN), (321)
where the colimit on the right is taken with respect to the morphisms s, x for N|M for
N prime to p.

4. Proof of Theorem 1.2

4.1. We can without loss of generality assume that the log structure Mg is trivial. For an
Z—algebra B, write (Xp, Mx,) for the base change of (X, Mx) to Spec(B), so (X7, Mx,) =
(X,Mx). Let mC 4 be the maximal ideal, and write A,, for the quotient Z/m". First we
show the full faithfulness of (1.2.1):

Proposition 4.2. For any two objects (U, My),(V,My) € Fét(Xg,MXZ), the map
HOHI(X;,,MX;)((U, My),(V, My)) = Homix, my, ) ((Uk, M), (Vie, My,)) (4.2.1)

1s bijective.

Proof. Let H;z — X3 be the finite étale scheme classifying morphisms (U, My) —

(V,My) over (Xg,MXZ) as in Proposition 2.21. We then want to show that a section

of Hy — X lifts uniquely to a section of Hz — X3. This follows from the fact that the
reduction functor

Fét(X5) = Fét(Xp)

is an equivalence of categories [9, Exposé X, Théoreme 2.1]. O
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14 M. Olsson

4.3. To complete the proof of Theorem 1.2, it suffices to show that every object
(Uk, My,) € Fét(Xy, Mx,) is in the essential image of (1.2.1). To see this, recall the
general fact that if ¢ : (1o, Mr1,) — (T, Mr) is an exact closed immersion of fine log
schemes defined by a nilpotent ideal, then the reduction functor

Fét(T, Mr) — Fét(To, M,)

is an equivalence of categories. This follows from the same argument as in the classical
case [9, Exposé I, Théoreéme 8.3, combined with [13, Proposition 3.14]. Therefore, for
each n > 1 there exists a unique lifting (Un, My,,) € Fét(Xa,, Mx, ) of (Uy, My,), so we
have a compatible system {(U,, My, )}, of log schemes. Let N > 0 be an integer as in
Paragraph 2.1. For each n we then obtain, as in Paragraph 2.9, a commutative square of
log stacks

(%TL?M%") an (%An’N’M%An,N)

f
(Un, My,) ——> (Xa,. Mx, ).

The morphisms gy, : %, — Za, n are strict and étale, as noted in Paragraph 2.19.

By the Grothendieck existence theorem for stacks [22, Theorem A.1], the system
{gn : %, —> X4, N} of finite étale morphisms is uniquely algebraisable to a finite étale
morphism ¢: % — 275 y- Let U — X3 be the coarse moduli space of % and let My be
the log structure on U given by pll(])fq*MggZ‘N, where py : % — U is the projection. We
claim that (U, My) is an object of Fét(X;‘,MXZ) reducing to (U, My,).

Note first of all that since % is a tame Deligne-Mumford stack, the formation of its
coarse moduli space commutes with arbitrary base change [1, Corollary 3.3]. This implies
that U reduces to the system {U,} over A,.

The log structure My is an fs log structure. Indeed, since U is proper over ?1, it
suffices to show that every geometric point v — U of the closed fibre admits an étale
neighbourhood over which My is fine and saturated. This follows from Proposition 2.17
and the fact that % reduces to %, by definition.

Furthermore, the log structure My reduces to My, over U,. Indeed, there is a natural
map My |y, = My, ; to verify that this is an isomorphism, it suffices to show that for every
geometric point w — U of the closed fibre, this map induces an isomorphism HU,;J -
My, 5. This follows from Lemma 2.14.

To complete the proof of Theorem 1.2, it now suffices to observe that the morphism
(U, My) —> (Xg,MX;‘) is log étale and Kummer. Indeed, the locus in U where this
morphism is log étale and Kummer is open (this statement for log étale morphisms follows
from Kato’s structure theorem [13, Theorem 3.5] and the corresponding statement for
schemes [9, Exposé I, Proposition 4.5]; the statement that the Kummer type condition is
open follows from the constructibility of the sheaves My and M XZ)’ and since X3 — and
therefore also U — is proper over Spec(z), this open set, which contains the closed fibre,
must be all of U. O
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Kummer coverings and specialisation 15

5. Artin approximation and étale covers

As in [2], Theorem 1.2 can be generalised to the case when A is not necessarily complete
but Henselian. This result in the classical case is [2, Theorem 3.1], and in the log setting
it is due to Lepage. For the convenience of the reader we provide a proof.

Proposition 5.1 ([16, Theorem 2.7]). Let A be a Henselian local ring with residue field
k, and let f : (X4, Mx,) — Spec(A) be an fs log scheme over A with underlying morphism
X4 — Spec(A) proper and locally of finite presentation. Then the pullback functor

Fét(Xa, Mx,) — Fét(Xy, Mx,) (5.1.1)
is an equivalence of categories.

Proof. By a standard reduction, as in the proof of [2, Theorem 3.1], it suffices to consider
the case when A is the strict Henselisation of a finite type affine Z-scheme Spec(S), and
(X4, Mx,) is obtained by base change from a morphism of fs log schemes f : (X, Mx) —
Spec(S ) with underlying morphism of schemes proper. Let k£ denote the residue field and
let A denote the completion of A. Let m C A denote the maximal ideal, and for an integer
n >1let A, denote the quotient A/m ,80 Ay = k.

For an S-algebra B, write (Xp, Mx,) for the base change of (X, Mx) to Spec(B). By
Theorem 1.2, it then suffices to show that the functor

Fét(X4, Mx,) — Fét(Xz, Mx) (5.1.2)

is an equivalence of categories.
To prove this statement we first show that every object of Fét(X3, Mx,) is in the
essential image of (5.1.2). For this, consider the functor

F:Algg — Set

sending an S-algebra B to the set of isomorphism classes of objects in Fét(Xp, Mx,).
This functor is limit preserving; that is, for any filtering inductive system of S-algebras
{B;} with B = colim; B;, the natural map

colim; F'(B;) —» F(B)

is bijective. Indeed, the functor sending an S-algebra R to isomorphism classes of finite
Xpg-schemes is limit preserving by [6, IV, Théoréme 8.5.2 and Proposition 8.5.5], and
since the stacks Zog(x ary) introduced in [23] are locally of finite type, we further
have that the functor sending an S-algebra to isomorphism classes of morphism of log
schemes (Y,My) = (Xg,Mx,) with Y — Xp finite is limit preserving. It therefore
suffices to observe that the property of being Kummer étale is a condition locally of
finite presentation which is immediate.

By the Artin approximation theorem [2, Theorem 1.12], it follows that given (U,M o) E
Fét(X;,MXz), there exists an object (U, My) € Fét(Xa, Mx,) such that (ﬁ, M%) and
(U,My) map to isomorphic objects in Fét(Xy, Mx,). By the bijectivity of (4.2.1), it
follows that in fact (U M) is isomorphic to the image of (U, My) under (5.1.2).
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16 M. Olsson

It remains to show that given two objects (U, My),(V,My) € Fét(X4, Mx,) with
induced objects (U, Mg), (V,My) € Fét(X;x,MXZ), the map

Hom x4 ay ) (U, Myp), (V, My)) = Hom<xZ,MX2><<ﬁ, Mp),(V, M) (5.1.3)

is bijective. Let H4 — X4 be the finite étale X 4-scheme classifying morphisms (U, My) —
(V,My), as in Proposition 2.21. Then the bijectivity of (5.1.3) is equivalent to the
statement that base change gives a bijection between the set of sections of Hy — X4
and the set of sections of H3 — X7. This follows from [2, Theorem 3.1]. This completes
the proof. O

6. Proof of Theorem 1.7 for integral morphisms

In this section we prove Theorem 1.7 in the case when (f,f?) is assumed in addition to
be integral [21, III, Definition 2.5.1].

6.1. Let h: b8 — plog he a morphism of log geometric points over (B, Mg). Then h

factors as
b

I_)/Iog a B//log Blog
where b is strict and given by an extension of separably closed fields and a is an
isomorphism on underlying fields.

6.2. By [12, Theorem A.4.2], any integral morphism of fs log schemes becomes saturated
after a finite Kummer étale base change. Theorem 1.7 for a follows from this and [16,
Theorem 2.15].

6.3. This therefore reduces the proof for integral morphisms to the case when h is strict,
given by an inclusion of separably closed fields k(b) C k(b).

The category of Kummer étale coverings forms a stack for the fppf topology. From
this it follows immediately that (1.7.1) is an equivalence when k(b) C k(V) is a purely
inseparable algebraic extension. Indeed, in this case every object of Fét((X, Mx) joe))
has unique descent data, since the kernel of the surjection

k() @5y k(D) ®ppy - @y k() = k(D)

is nilpotent. It follows that in order to show that (1.7.1) is an equivalence in the case
when £ is strict, we may assume that k(b) is algebraically closed.

6.4. Next we show that (1.7.1) is fully faithful. Consider two objects (U, My),(V,My) €
Fét((X, Mx)plog)), and let (U',My:),(V',My) € Fét((X, Mx) o)) be their base
changes. We show that the natural map

y((U, M), (V,My)) — Hompegy(x, my)

Homper((x, my) ))((U’, My, (V', My+))

(6.4.1)

(l’]log) (l’]/log

is bijective. The injectivity is clear by faithfully flat descent. For surjectivity, let f’ :
(U',My') = (V',My+) be a morphism. By spreading out, we can find an integral finite
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Kummer coverings and specialisation 17

type k(b)-scheme T with function field k(b’) and an extension of the morphism f’ to
a morphism fr : (Ur,My,) = (Vr,My,) between the base changes of (U, My) and
(V,My) to T. Restricting fr to the fibre over a k(b)-point of T', using the fact that k(b)
is algebraically closed, we get a morphism f : (U, My) — (V,My) whose base change
to T agrees with fr at a point. By Proposition 4.2 and the injectivity of (6.4.1) already
shown, it follows that fr agrees everywhere with the map obtained from f by base change
to T. This completes the proof of full faithfulness.

6.5. To show essential surjectivity, let (U’, My) € Fét((X, M) 108)) be an object which
we show is obtained by base change from an object of Fét((X, Mx) jioz)). Spreading out
and looking at a k(b)-point as in the proof of full faithfulness, we find a finite type
k(b)-scheme T, an extension (U’T,MU/T) of (U/,My/) to T and an object (U, My) €
Fét((X, Mx) plog)) whose base change to T is isomorphic to (U7 ,MU/T) at a point. Then by
Proposition 4.2 there exists an extension of k(b’) over which (U’, M) becomes isomorphic
to the base change of (U, My). By the full faithfulness already shown, this implies that
(U’, M) is isomorphic to the base change of (U, My).

This completes the proof of Theorem 1.7 for integral morphisms. O

7. Variations on the log purity theorem

7.1. Local version

In this subsection we consider variants (which follow from the original case) of Kato’s log
purity theorem [18, Theorem 3.3].
We will consider two setups.

7.2. Setup 1. Let k be a field of characteristic p (possibly 0) and let M be an fs monoid
with the torsion subgroup of M®P of order invertible in k. Let F C M be a face and let
(Ar,Ma,) denote the log scheme whose underlying scheme is Spec(k[F]) and whose log
structure is induced by the map

m ifmekF

M — k[F], m> ]
0 otherwise.
Let A% C Ap denote the open subset

Spec(k[FeP]) C Spec(k[F]).

7.3. Setup 2. Let V be a discrete valuation ring with uniformiser 7 and residue field
of characteristic p (possibly 0). Let M be an fs monoid, let F C M be a face of M
and let f € F' be an element. Let (A, M4,) denote the log scheme whose underlying
scheme is

Spec(VI[F|/ (T =),
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18 M. Olsson

where we abusively also write f € V[F] for the “monomial” corresponding to f, and log
structure My, induced by the map of monoids

M= V[F|/(x - ), mo—>{m ifmek

0  otherwise.
Let A% C Ap denote the open subset
Spec(V[FE?]/(x — ) C Spec(V[F]/(t = )).

Note that A% is a scheme over K :=Frac(V).
7.4. Considering either setup, let

(X,Mx)— (Ap,Ma,)
be a strict étale morphism and let

(X°, Mxo) C (X, Mx)
denote the preimage of A%.
Theorem 7.5. The restriction functor

Fét® (X, My) — FétP (X°, Mxo) (7.5.1)

s an equivalence of categories.

Proof. Recall from [21, Theorem 2.1.17 (3)] that a face of a fine monoid is finitely
generated. From this and the definition of a face, it follows that in either setup 1 or setup
2 the face F, viewed as a monoid in its own right, is an fs monoid. From this and [14,
Theorem 4.1], it follows that the underlying scheme X is normal. This implies that if
H — X is a finite étale morphism then, any section X° — H over X° extends uniquely to
a section over X. From this and Proposition 2.21, the full faithfulness of the restriction
functor follows.

With the full faithfulness of the restriction functor already shown, to prove that (7.5.1)
is an equivalence it suffices to show that for every Kummer étale morphism

(U°, Mye) = (X°, Mx-) (7.5.2)
in FétP (X°, Mxo), there exists a Kummer étale covering
(W, Mw) = (X, Mx)
such that the base change
(T°, My2) := (U°, M=) X x. m) (W, M) (7.5.3)
extends to an object (T, M) of
Fét® (W, Mw).

Indeed, by the full faithfulness, the canonical descent data on (71°, Mr.) extends
uniquely to descent data for (7', Mr) relative to the morphism (W, My ) — (X, My).
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Kummer coverings and specialisation 19

By [11, Proposition 3.13] these descent data are effective, and the resulting object of
Fét™® (X, My) is then an extension of (U°, Myo).

From this argument it also follows that it suffices to consider the case when X is quasi-
compact (and even affine, though this is not necessary).

To construct the local extension of (7.5.3), define for an integer n > 1 prime to p a
morphism

xn:(Apn, Mag,) > (Arp, May) (7.5.4)

as follows.

Setup 1. Take (Ap n, May ) to be equal to (Ap, Ma,) and the map xn to be the
morphism induced by multiplication by n on M and F'.

Setup 2. Let V,, be the extension of V obtained by adjoining an nth root m, of m,
setting

AF,n := Spec( VH[F]/(an _f))

with log structure induced by the map M — V,[F] as before and xn induced by the
natural map V — V,,, and multiplication by » on F and M.
We then have a commutative diagram

(AF,n Map ) (Ap, M4,) XSpec(M—2z[M]). xn SPeC(M — Z[M])

(Ap, My ),

where the right vertical morphism is the Kummer étale morphism given by multiplication
by n on M, and the top inclusion is a strict closed immersion defined by a nilpotent ideal.

We claim that there exists an integer n prime to p such that the base change of (7.5.2)
extends to

(X,Mx) XSpec(M_)Z[M])’XnSpeC(M — Z[M]) (755)
By the invariance of the log étale site under nilpotent thickenings and the fact that

(XvMX) X(AF,MAF),XTL(AF,naMAF,n) (756)

is defined by a nilpotent ideal inside (7.5.5), to construct an extension to (7.5.5) it suffices
to construct an extension to (7.5.6).

For this, note that by the definition of a Kummer étale morphism, we can find an
integer n prime to p such that the base change

(U°, Mye) X (ap. My 0 xn (AFn Mag ) (7.5.7)

is a strict étale cover of the base change

(XO,MXO)X(AF,MAF),XH (AF,nvMAFYn) (758)
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Indeed, by the assumed quasi-compactness of X, there exists an integer n prime to p
such that for every geometric point 4 — U° with image £ — X we have

_ 1— _
My-aC—MxzCMy.®Q,
n :

and for such an integer n a direct calculation of pushouts in the category of fs monoids
shows that the base change (7.5.7) is strict over (7.5.8).
Making such a base change, we are reduced to the case when (7.5.2) is strict and étale.
Let (Y, My) be the log scheme with underlying scheme Y = X and log structure My
induced by the map F' — Ox, so we have a morphism of fs log schemes

(X, Mx)— (Y, My).

Since we are now in the case when the morphism (7.5.2) is strict, which implies that
U° — X° is an étale cover and M- is the pullback of My, we can write

(U°, Mye) = (X, Mx) Xy, my) (U°, Nyo),

where Ny is the pullback of My to U°. By the log purity theorem [18, Theorem 3.3],
the cover U° of X° extends to a Kummer étale cover (U, Ny) — (Y, My), and applying
further base change to (X, Mx), we get the desired extension. O

Remark 7.6. In the foregoing proof we could also have considered X étale over the
power series ring k[[F]] or V[[F]]/(r — f). The same result holds with the same proof
(simply take Ap = Spec(k[[F]]) or Spec(V[[F||/(w —f)) in the proof).

7.7. Global version

Let (Ap, M4 ,) be as in the previous section (either setup 1 or setup 2), and let
(Fo ")+ (X, Mx) = (Ap, Ma)

be a log smooth integral morphism of fs log schemes. As before, let (X°, Mx-) denote the
preimage of (A%, M a2,). Then we have the same result:

Theorem 7.8. The restriction functor
FétP (X, My) - FétP (X°, Mxo)
s an equivalence of categories.

Proof. We will reduce the proof to the previous case. We can work étale locally on X, so
by [13, Proposition 4.1] (see also [25, Theorem 2.2.8], where more refined properties that
emerge from the proof of this result are discussed, as well as [21, Chapter, IV, Theorem
3.3.1]) we can assume that we have an integral morphism of fs monoids

60:M— N,
with
Q8P . \f8P _ NE&P
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injective with torsion of M8P/N®8P of order invertible in k, and an étale morphism

X — Spec(R),
where
_ E|F]| ®k(ar) E[N] Setup 1,
(VIF]/(m =) ®vm VIN] Setup 2.

We can further assume that NP is torsion free.

Let Z C Spec(R) be an irreducible component, viewed as a closed subscheme with the
reduced structure. We can describe the coordinate ring &'z as follows.

Setup 1. By definition we have surjections

kE[N] —= R —— 0.

The ideal of Spec(R) in Spec(k[N]) is generated by the monomials corresponding to the
elements 6(M — F) C N. In particular, the D(N&P)-action on Spec(k[N]) restricts to an
action on Spec(R). Since Z is an irreducible component and D(N®P) is connected, this
action further restricts to an action on Z. For s € N8P let 0 s denote the s-eigenspace
for the action (so an element g € Oz lies in 0z, if and only if for all scheme-valued points
u € D(N®P) we have u*g=u(s)-g). Let S C N8 denote those s for which & ; # 0.
Since D(N®P) is diagonalisable we have

Oz =®ses07, 5.

Furthermore, since &7 admits an equivariant surjection from k[N|, we must have S C
N and each 0z ¢ has dimension 1 as a k-vector space whose image is the monomial
corresponding to s. Furthermore, since Z is integral for s,s’ € S, the multiplication map

02,074 — Oz 419 COz

is nonzero, which implies that S is a submonoid of N. Finally, if n,n’ € N are two elements
with corresponding monomials m,,, m,s € k[N], then the image of my,, in Oz is the
product of the images of m,, and m,,. It follows that if n+n’ is in S, then both n and n’
are in §. That is, S C N is a face and

Z = Zg := Spec(k[S)).

Furthermore, we must have SN M C F, since the map Z — Spec(k[M]) factors through
Spec(k[F]). In fact, SN M is a face of M and the map factors through the closed subscheme
of Spec(k[F]) defined by this face. Since

Spec(k[F|®x[ar) k[N]) = Spec(k[F])

is flat (recall from [13, Proposition 4.1] that this follows from the fact that M — N is
integral), Z dominates Spec(k[F]) and therefore we must have SN M = F.

Setup 2. Let S € N be the face of elements whose image in &z is nonzero. Then
SN M=F. Indeed, since 6 is an integral morphism, the map Z — Ap is dominant,
which implies that all elements of F' map to nonzero elements in &z and therefore F' C
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SN M, and the reverse inclusion SN M C F is immediate. Let Zg C Spec(R) be the closed
subscheme given by the surjection

R— V[S]/x =1

induced by the map V[N] — V|[S] sending n € N to n for n € S, and 0 otherwise. By
the definition of S, the surjection R — &z factors through V[S]/(x — f), and therefore
we get an inclusion i : Z < Zg. This inclusion i is in fact an isomorphism. To see this,
write K for the field of fractions of V' and let Mg denote the localisation of M at F'. The
coordinate ring of Spec(R) x 4, A% is given by the ring

R®:= K|F®|/(f =) ® kprp) K[ Nr),

which comes equipped with an action of the diagonalisable group scheme D(N&P/(f))
induced by the standard action on K[Ng]. Proceeding as in setup 1, let S’ C Ng denote
those elements whose associated monomial in k[Np] maps to a nonzero element in
Ozs =0z Qg R°. Since Z° is an integral domain, S’ is a face of Ng with S'N Mp = F&P.
Furthermore, since Z is flat over Ap, we have S =S8’ NN, which in turn implies that
§" = Sp. We conclude that i restricts to an isomorphism over A%, and since Z is flat over
Ap this implies that 4 is an isomorphism.

Returning to the proof of the theorem in either setup 1 or 2, let . denote the set of
faces S C N such that SN M = F, and for § € . let Xg C X be the preimage of

Zs C Ap
and let My, be the restriction of Mx to Xg. Note that for S;, 5> € . we have
Xg, NXg, = Xs1n5,,
and S; NS5 € .. Then the functor induced by restriction
Fét(X, Mx) — limge o Fét(Xg, Mx) (7.8.1)

is an equivalence, and similarly for Fét(X°, Mx.). In the classical case without log
structures this follows from [3, Exposé VIII, Théoreme 9.4]. The logarithmic version can
be deduced from this as follows. Consider the fibred category .# (resp. Fg for S € .#) over
the Kummer étale site of (X, Mx) which to any (U, M) associates the category of finite
étale U-schemes (resp. Ug-schemes, where (Us, Myg) := (U, My) X (x, my) (Xs, Mxg)).
Let #¢ (resp. .#§) be the stack over the Kummer étale site of (X, Mx) associated to .#
(resp. Fg). Then it follows from [11, Proposition 3.13] that we have

Fét(X, Mx) = 7 (X, Mx), Fét(Xs, Mxg) = Fg(X, Mx).
Furthermore, the natural functor
(limgesFs5)* — limge s Fg

is an equivalence (using the fact that there are only finitely many categories in this
limit). To prove that (7.8.1) is an equivalence, it therefore suffices to show that the map
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of prestacks
F — limseyys
is an equivalence, which follows from the case of ordinary schemes.
This reduces the proof to showing that each of the functors

Fét(Xs, Mxg) — Fét(Xg, Myg)

is an equivalence, which follows from Theorem 7.5. O

8. Proof of Theorem 1.9 in the case of an integral morphism

We proceed with the notation of Theorem 1.9. Since B is connected, in order to prove
Theorem 1.9 it suffices to consider the case when B is integral. Furthermore, it suffices
to consider the case when (B, Mp) is defined over a field or a complete discrete valuation
ring.

8.1. We say that a log geometric point b'°¢ — (B, Mp) is quasi-strict if the map
MB,I_) — Hélog

induces an isomorphism M p j 7+ — Moz, where p is the residue charcteristic of b.

For any log geometric point b'°¢ — (B, Mp) there exists a morphism of log geometric
points of (B, Mp)

blog —~ prlos (8.1.1)

N

(B, Mp),

where 0''°8 — (B, Mp) is quasi-strict. Indeed, by the definition of a log geometric point
we get an induced map M 5.2y M yiog. Choose a lifting M 5.2y —> Mplog of this
map, and let Mjioe denote the associated log structure on b. Setting b'°8 := (b, Minog)
gives the desired factorisation (8.1.1).

In particular, by this discussion and Theorem 1.7, it suffices to prove Theorem 1.9 in
the case when b0°¢ — (B, Mp) is quasi-strict.

8.2. Let 5°& — (B, Mp) and bl°g — (B, Mp) be two log geometric points of (B, Mp). A
specialisation 5'°8 ~» bl°8 is a commutative diagram

plog _* o (E, Mg) <L slog

N

(B, M),

where o and B are strict and (E, Mg) is log strictly local in the sense of [19, Paragraph
2.8 (6)], with residue field given by b.
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24 M. Olsson

Given such a specialisation, we get an induced cospecialisation functor
COSp : Fét((X, MX)(Blog)) 4 Fét((X, MX)(glog)) (8.2.1)

defined as follows.

Write b'°8 = (b, Mjiog), and Mjiog = colim, M ;, where Mj;, is an fs log structure
contained in Mg and containing the image of My 3. Let Z_)}lf)g denote (b, Mg ;), so blos =
lim, l_),lxog. Let Mg C Mg be the sublog structure induced by the submonoid My 3 X, ;
M;M, so Mg = colim, Mg, and let M; , C M;iog denote the log structure defined by tﬁe

image of Mg ;. Setting Eiog := (8, M5,5), we then have a commutative diagram for all A:

b8 (B, Mp) <—5'8

]

b (E, Mp ;) <5,
We then get restriction functors

Fét((X7 MX)B)ILOg) é Fét((Xs MX)(E, ME,A)) $ Fét((Xv MX)E}ILOg)v

where u is an equivalence by Proposition 5.1 and Theorem 1.2. The functor vou~! then
is a functor

Fét((X, MX)Blog) - Fét((X, MX)glog).
A S
Passing to the limit over A, we get (8.2.1).

Lemma 8.3. Let & — B be a geometric point. After (B, Mp) s replaced by a strict étale
neighbourhood of x, there exists a morphism of log schemes (B, Mg) — (B, Mp) with the
following properties:

(i)  lifts to a geometric point of B.

(i) B is integral and the morphism B — B is dominant.

(iii) There exists an fs monoid M with a face F C M and a strict étale morphism
(B.Mp) = (Ap, May),

where (Ap, May) is as in setup 1 or setup 2 in Paragraphs 7.2 and 7.3 (for some
discrete valuation ring V).

Proof. We can assume that we have a chart B : P — Op for Mp, with P an fs sharp
monoid. Let I C P be the face of elements whose image in &5 is nonzero, and let Z C B
be the closed subscheme defined by I.

Note that the quotient P8P/I8P is a torsion-free group. Indeed, if a,b € P, ¢,d € I and
n > 0 is an integer such that

n(a—b)=c—d,
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then
n(a+d—>b=c+(n—-1del,

which — since P is saturated and I is a face — implies that a+d—b e I and so a —b € I8P.

We now apply de Jong’s alteration results.

In the case when the base ring is a field k, we apply [5, Theorem 4.1] to find a dominant
morphism Y — B such that Y is smooth over k£ and the preimage of Z is a divisor with
simply normal crossings. Let B; denote an open neighbourhood of a point of Y lying over
the image of Z such that the restriction of the divisor to Bj is given by a morphism N" —
Op,.

By this we mean that the restriction to Bj of the divisor over Z has r irreducible
components cut out by the images in &g, of the standard generators of N”. There is a
morphism of monoids

a:I—>N"

sending an element p € I to the element of N” whose jth entry is the order of zero of p
along the jth divisor in By. Let M, (resp. M) denote the pushout in the category of fine
(resp. fs) monoids of the diagram

I—P
ia
N
By [21, Chapter~I, Proposition 2.2.1] there exists a morphism h: P — N such that
() = I. Let h: M — N be the unique extension which is 0 on N”, and let F ¢ M
denote A71(0). If m=p+f € My, NF, where p € P and f € N”, then we must have p € I
and therefore m € N”. It follows that F' is the saturation of N” in M and that N" is a

face in Mint. The given map N” — O'p, then extends to a map Min — Op, . Let B denote
the fibre product

By Xgpeck|nr)) Spec(k[F]),

and let Mz be the log structure induced by the map M — k[F], so we have a chart
Bg:M— Op.

If «: P— M is the map arising from the construction of M as a pushout, then the
induced diagram

P—2sM
\LﬁB lﬁé
Op — U5

may not commute. By the definition of the map a: I — N', however, after possibly
shrinking on B there exists a homomorphism y : [ — ﬁ*é such that for s € I we have

Bs(s) =y (s)Bpa(s))
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in 0. Now, as noted earlier, the quotient P8P /I8P is torsion free, so we can extend y to
a homomorphism y : P — ﬁ*é, and then the resulting diagram

P oroM
iﬂB J{ B5
Op — 05
does commute. In this way we get the desired morphism of log schemes
(B,Mg) — (B, Mp).

In the case when the base is a complete discrete valuation ring (recall that at the
beginning of the section we reduced to the cases of the base being a field or a complete
discrete valuation ring), we proceed in a very similar manner. By [5, Theorem 6.5] we can
find By — B and an étale map

By — Spec(V[NT]/(w —f))

for some f € N” and a discrete valuation ring V. Now proceeding with the pushout of
monoids as in the previous case, we obtain the desired (B, Mg). O

8.4. Using Lemma 8.3, we are then further reduced to the case when (B, Mp) admits a
strict étale morphism

(B,Mp) = (Ar,Map),

and to showing that for a specialisation of quasi-strict log geometric points 7198 ~ blo8,
with 7'°8 lying over the generic point of B, the cospecialisation functor is an equivalence
of categories (recall that we already reduced to the case when B is integral).

8.5. Let S denote the strict Henselisation of B at b, and for an integer n > 1 prime to p
let Spec(S,,) denote the fibre product of the diagram

AF,n

lxn

Spec(S) — Ap,

where xn: Ap, = Ap is as in the proof of Theorem 7.5, and let Mz denote the log
structure on Spec(gn) induced by that on Ap, ,. The ring En is finite over S, since xn is
a finite morphism, and therefore isomorphic to a product of strictly Henselian local rings.
Choosing a compatible system of lifts of the morphism

b'°8 — (B,Mp) — (Ap, Ma,)

to the (Ap n, Map n), we obtain_a lifting of b to each Spec(gn). These lifts and the
given specialisation from 1n'°¢ to b'°% then also define compatible liftings of 1n'°¢ to each
(Spec(Sy,), Mz, ), which specialise to the liftings of bloe. Let S, denote the local ring of
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Spec(gn) at b, so S, is a finite S-algebra. Denote by Mg, the log structure on Spec(S,,)
obtained by restriction from Mg, .
Let (X,,, Mx,) denote the base change of (X, Mx) to (Spec(S,), Ms, ). Let

(bn, My,,) = (Spec(Sn), Ms,,)

be the closed point with the induced log structure, and let (Spec(K,,), Mk, ) be the generic
point of (Spec(Sy,), Ms,,).
Finally, we can assume that

b8 =lim(b,,, Mj,)

and that 7'°¢ admits a strict morphism

78 — lim(Spec(Ky), Mx,,)
whose underlying morphism of schemes is given by a separable closure of colim,, K.
8.6. We then get a diagram

colimp Fét®) (X, Mx) % (b, 0y (b My,,)) <——— colimp Fét(P) (X, M, ) ——= Fét®) (X, Mx) (logy)

FétP) (X, MX) (jlog))-

By Theorem 1.2 the functor u is an equivalence.
To show that v is an equivalence it suffices to show that for any morphism

pﬁl()g : (Ur_]’MU;]) — (Vr_]sMV;])
in Fét(p)((X,MX)r—llog), there exists an integer n prime to p and a morphism
IOTL : (UnvMUn) — (V’IL’MVn)

in Fét'P (X, M x,) inducing pjlog. Note that such a morphism is necessarily unique by
Theorem 7.8.

By the definition of Fét® (X, Mx)ji05) as a direct limit, there exists an integer m and
a finite extension L/K,, such that if My, is the log structure on Spec(L) obtained by
pullback from Mk, , then there exists a morphism

PL - (ULaMUL) — (VL’MVL)

in Fét™ (X, Mx) X (B, my) (Spec(L), M1)) inducing pglog.
Let T denote the normalisation of S, in L, so we get a finite strict morphism

(Spec(1), M) — (Spec(Sm), Ms,,)

inducing the map (Spec(L), M1) — (Spec(K,,), Mk, ). Applying Lemma 8.3 to a finite
type approximation of (Spec(7T), M), we then obtain a commutative diagram
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j/log i/ log
\
(Spec(S"), Mg/) O(Spec(K'), Mgr) flog
blos (Spec(T), M) O(Spec(L), Mp)
(Spec(Sm), Mg,,) O(Spec(Km), Mk, ,),

where (Spec(S5’), Mg/) admits a strict étale morphism to (Aps, M4, ) for suitable fs monoid
M’ with face F’ (and in setup 2 a discrete valuation ring V’). By the purity theorem we
then get an extension of p; to a morphism in FétP (X, My) X (B, Mp) (Spec(S”), Mg/)).
By Theorem 1.7 the image of this morphism in Fét(p)((X,MX)(B/]og)) is induced by a
morphism in Fét® ((X, Mx)plogy). Using the fact that the reduction functor u is an
equivalence, we therefore obtain a morphism p,, in Fét® (X, M x,,), for some n, whose
image in Fét® ((X, Mx)0e)) agrees with the image of p;log. By Theorem 1.7 we then
conclude that v(p,) = pjlos as desired.

This completes the proof of Theorem 1.9 in the case of an integral morphism. O

Remark 8.7. It is in the application of the log purity theorem [18, Theorem 3.3] that
the prime-to-p assumption is crucial.
9. Invariance under log blowups

To prove Theorems 1.7 and 1.9 in general we will use results of Fujiwara and Kato on
invariance under log blowups of the category of finite Kummer étale covers. Since these
results are not published, we provide a proof.

9.1. Let (X, Mx) be an fs log scheme and let .# C My be a coherent sheaf of ideals
(see [21, Chapter II, Proposition 2.6.1]), all of whose stalks are nonempty. We can then
consider the log blowup

(X, Mx) = (X, Mx)
defined as in [21, Chapter III, Definition 2.6.2].

Theorem 9.2 (Fujiwara-Kato [11, Theorem 6.10 and references therein]). Assume that
X s locally of finite type over a field or an excellent Dedekind ring A, and let L denote
the set of residue characteristics of X. Then the pullback functor

Fétt (X, Myx) — Fét™ (X', Mx/) (9.2.1)

is an equivalence of categories.
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Proof. By [11, Proposition 3.13], the categories of Kummer étale covers of (X, Mx) and
(X', Mx/) form stacks for the Kummer étale topology. It therefore suffices to prove the
theorem after replacing X by an étale cover. We can therefore assume that X = Spec(R)
is affine and that we have a chart P — R such that (X', Mx/) is defined by blowing up a
finitely generated ideal I C P, where P is an fs sharp monoid.

Observe that a log blowup has connected fibres. Indeed, for this it suffices to consider
the case when X = Spec(Z[P]). In this case, 7.0x/ is a coherent sheaf of algebras
corresponding to a finite Z[P]-algebra C which is an integral domain and with Z[P] —» C
an isomorphism over Z[P®P]. Since P is saturated, which implies that Z[P] is normal,
this implies that C = Z[P]; that is, Ox = 7,0 xs. From this and [6, III, Théoréme 4.3.2]
we conclude that the fibres are connected. This, in turn, implies that (9.2.1) is fully
faithful.

To prove that (9.2.1) is an equivalence, it therefore suffices to show that any object

(U, My € Fét¥ (X', Mx1) (9.2.2)

descends to (X, Mx), and using the full faithfulness it suffices to show that it descends
locally in the Kummer étale topology on (X, Mx).

For an integer n > 1 not divisible by the primes in L, let (X,,, Mx, ) = (X, Mx) be the
Kummer étale cover given by the fibre product

Xn =X XSpeC(Z[P]),Xn SpeC(Z[P]), (9.2.3)
where xn : Spec(Z[P]) = Spec(Z[P]) is induced by multiplication by n on P and My, is

induced by the natural log structure on the second factor. Let .%,, C Mx,, be the coherent
sheaf of ideals given by I C P (again on the second factor in (9.2.3)). Let (X}, Mx;) denote

n’

the log blowup of (X,,, Mx,, ) along .7, . Note that the ideal .# generates an invertible sheaf
of ideals in My, , so we obtain a commutative diagram

(X, Mx;) —"= (X', Mx") (9.2.4)

| |

(Xn, Mx,) — (X, Mx).
We can describe this diagram explicitly locally on X'. Let ay, ..., a, € I be generators for
I, and for j =1,...,7 define P; C P8P to denote the saturated submonoid generated by
P and the elements
Zi = 0y — Q5.

Then X’ is covered by the affine schemes

Spec(R Qz[P]| Z[P]])
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Now observe that the diagram of monoids

_

(9.2.5)

~

Xn P
Xn

y — P

s

is a pushout diagram in the category of fs monoids. From this it follows that (9.2.4)
is cartesian, in the category of fs log schemes, and that for any object (U’,My) €
FétY (X', M) there exists an integer n not divisible by primes in L such that the pullback
in the fs category of (U’, My) to (X}, Mx) is given by a finite étale morphism U; — X,
with the pullback log structure (this follows from a similar argument to the one given in
the proof of Theorem 7.5).

Making a base change (X,,, Mx,) = (X, Mx), to prove that (9.2.2) descends to (X, Mx)
we are therefore reduced to the case when (U’, M) — (X', Mx/) is strict — that is, given
by a finite étale covering of schemes U’ — X'.

By a standard limit argument and an application of Artin approximation, we are then
reduced to the variant statement that if R (the coordinate ring of X) is a complete local
ring with separably closed residue field, which is the completion of the strict Henselisation
of a finite type algebra over a field or discrete valuation ring A at a point, then any object
of FétY(X’) descends to a Kummer étale covering of (X, Myx). Let Ry be a finite type
algebra over A such that R is the completion of the local ring Ospec(ry),z at a geometric
point  — Spec(Rp), and choose an epimorphism Sy := A[Xy,...,X;] & Ry for some ¢.
Combining this with the chart P — R, we obtain a morphism

The closed point of Spec(R) maps to a geometric point of Spec(Sy[P]), and we write S
for the completion of the local ring of Spec(Sy[P]) at this geometric point. Since R is
complete, we then get an epimorphism

S —=R.

The natural map P — S defines a log structure Mg on Spec(S), and we define (X, MXé)
to be the log blowup of (Spec(S), Mg) with respect to the ideal I € P. We then have a
cartesian diagram

(X/ ) MXé) Q(le MX/)
(Spec(S), Mg) <——(Spec(R), MR).

Here we write My for the log structure My on Spec(R) = X.
Now observe that the restriction functor

Féth (X4, My,) — Fét™ (X', Mx/)
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is an equivalence of categories, since the further pullback from either of these categories
to the corresponding category of Kummer étale covers of the fibre of (X', Mx/) over the
closed point of Spec(R) is an equivalence by Theorem 1.2. In this way we are further
reduced to the case when the complete local base (X, Mx) = (Spec(R), M) is log regular.
Let Xiiv C X be the maximal open subset over which My is trivial. By the log purity
theorem [18, Theorem 3.3], both the restriction functors

Fét™ (X, My) = FétY(Xiny), Fét™(X', Mx) = Fét™(Xiny)

are equivalences of categories, from which it follows that U’ is obtained from a Kummer
étale covering v : (U, My) = (X, Mx). This completes the proof. O

Remark 9.3. The Kummer étale covering u: (U, My) — (X, Mx) obtained at the end of
the proof must in fact be strict, since the map uw=*M Xp - M [}3 is an isomorphism (since
this can be verified over X'). Therefore U — X is a finite étale covering and consequently

trivial, since R is a complete local ring with separably closed residue field.

10. Lifting étale covers of fibres

10.1. In order to prove Theorems 1.7 and 1.9, it will be useful to have some results about
lifting étale covers from a geometric fibre to the total space of a fibration. In the classical
setting of topology, the problem of finding such liftings can be understood in terms of the
higher homotopy groups of the base, using the long exact sequence of homotopy groups
of a fibration. We use this idea to obtain results in the logarithmic setting.

For a log scheme (T, Mt), write (T, M7)ye for the Kummer étale topos of (T, Mr).
10.2. Let
(f.f") : (X, Mx) = (B, Mp)

be a log smooth integral morphism of fs log schemes, with B connected. Let L be a set
of primes which includes all the residue characteristics of B.

Theorem 10.3. Assume that for any locally constant sheaf of finite abelian groups A
on (B, Mg)yxe of order not divisible by any prime in L and class « € H*((B, Mp)yeét, A),
there exists a finite Kummer étale covering (By, Mp,) = (B, Mp) such that the class o
maps to 0 in H?((By, MB, )xst, A).

Let b8 — (B, Mp) be a log geometric point and let (Uplog, MU,;log) e Féth (X, Mx) jog))
be an object. Then, after possibly replacing (B, Mg) by a covering in Fét(B, Mg), there
exists an object (U, My) € Féth (X, My) inducing (Uglog, MU,;log)' Moreover, any two such
objects become isomorphic after a finite Kummer étale extension of (B, Mp).

Proof. By [11, Theorem 9.9], for any prime £ not in L the sheaf (pushforward for Kummer
étale topos)

Jiewn (2 (D))
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is locally constant constructible on (B, Mpg) and its formation commutes with base change.
Replacing (B, Mp) by a Kummer étale covering over which this locally constant sheaf is
trivial, we are then reduced to the case when the geometric fibres of f are connected,
which we assume for the rest of the proof.

Let G be a finite group of order not divisible by any prime of L. To prove the theorem it
suffices to show the variant statement that if (Ulog, M U;,log) is a covering of the geometric
fibre which is Galois with group G, then after replacing (B, Mp) by a covering as in the
theorem we can find a G-covering (U, My ) of (X, M) inducing the given G-cover in the
fibre.

Let R'fist» G be the sheaf associated to the presheaf on the Kummer étale site
Ket(B, Mp) which to any (U, My) — (B, Mp) associates the pointed set of isomorphism
classes of G-torsors on (X, Mx) X mp) (U, My).

Lemma 10.4. The natural map
(lekét* G)Elog - |FétG((X7 MX)(EIOg))l (1041)

is an isomorphism, where |Fét€ ((X, Mx)plog))| denotes the set of isomorphism classes in
the category of G-coverings FétG((X,MX)(l;log)), defined as in [11, Definition 3.1].

Proof. This is an immediate consequence of Proposition 5.1. U

Let Fjlog C (R fistx G)jlos be the subset obtained from the 7, (b, My), b'°8)-orbit of the
class of (UBlog,MUEIOg) and (10.4.1).

Lemma 10.5. There exists a unique locally constant subsheaf .F C R'fist» G whose
stalk at b8 is Fplog. Furthermore, for any other log geometric point bl — (B, Mp)
with image point (b',My), the stalk Fyioz C (R fuets @)jroz is an orbit for the
71((b, My), b''°8)-action.

Proof. By uniqueness, it suffices to consider the case when B is integral and b'°% maps
to the generic point of B.
Consider the sheaf .# on (B, Mg)yest, which to any (V, My ) — (B, Mp) associates

[T 1P6t9 (X Mx) guog .
p:b108 5 (V, My,)
where the product is taken over lifts to (V, My) of the morphism 58 — (B, Mp). Let
TC |FétG((X,MX)(Blog)| denote the orbit of the class of (Ujog, MU,;log) under the action
of the automorphism group m((b, M), b1°8) of b'°8 over (b, My). Since (UBlog,MUl_)log) is
defined over some finite extension of (b, My), the set T is finite. Let 7 denote the subsheaf
of .# which to any (V,My) — (B, Mp) associates

n -

p:blo8 5 (V, My,)
and let .# C R'fi¢. G denote the preimage of 7 under the natural inclusion

R'fists G — 7.
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It then follows from inspection of the stalks that .# is a locally constant constructible
subsheaf of R fist. G whose restriction to b'°8 is the set T'. O

Returning to the proof of Theorem 10.3, after replacing (B, Mg) by a finite Kummer
étale cover we can assume that % is a constant sheaf. We therefore have a distinguished
section y € H°((B, Mp)kst, R fiet« G) whose image in [Fét% (X, M) progy)| is the class of
(Uptogs My 0 )-

Let ¢, be the fibred catgory on the Kummer étale site of (B, Mp) which to any
(V,My) — (B, Mp) associates the category of G-torsors (P,Mp) = (X, Mx) X(B, mp)
(V,My) whose induced class in HO((V, My), R'fis- G) is the image of the class of y.
Then ¥, is a gerbe with associated band, in the sense of [8, Chapitre IV, §1 and 2], equal
to the band Lg associated to G. Let Z C G be the centre. Then by [8, Chapitre IV, 3.3.3],
the natural action of H2((B, MB)et, Z) on H2((B, MB)wst, L) is simply transitive. This,
combined with our assumption that every class in H2((B, Mp)kst, Z) can be killed by a
finite Kummer étale cover, implies that there exists such a cover of (B, Mp) over which
¢, is trivial. Making such a cover, we obtain the desired global torsor.

Finally, to see that any two such torsors

(Ui, My,) > (X, Mx), i=12,

become isomorphic after a Kummer étale finite extension of (B, Mg), note that it follows
from the foregoing discussion that the sheaf on the Kummer étale site of (B, Mp) of
isomorphisms between these two covers is a locally constant nonempty sheaf.

This completes the proof of Theorem 10.3. O

11. Proofs of Theorems 1.7 and 1.9 in general

11.1. Let f: (X,Mx) » (B,Mp) be a log smooth proper morphism of finite type.
Combining [21, Chapter III, Theorem 2.6.7] and [12, Proposition A.3.4], we know that
étale locally on B there exists a sequence of morphisms

(By, Mp,) —= (By, Mp,) —— (B, M),

where b is a log blowup and ¢ is a Kummer étale covering, such that the base change in
the category of fs log schemes

(le MX1) 4 (Blv MBl)

is integral.

In fact, we can describe this sequence more precisely. Working étale locally on B, we
can assume that B = Spec(R) is affine and that there exists a chart P — R for Mg and
a finitely generated ideal

K={(fi,....fiCP
such that if

b: (B2, Mp,) = (B, Mp)
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is the log blowup with respect to K, then the base change
(X2, Mx,) = (B2, Mp,)

is Q-integral in the sense of [21, Chapter I, Definition 4.7.4]. If we describe the blowup
using charts as in the proof of Theorem 9.2, so that Bs is covered by open sets U; :=
Spec(R ®z(p) Z|P;]) and the restriction My, of Mp, to U; is given by the chart P; —
R®zp) Z|P;], then [12, Proposition A.3.4] implies that we can take ¢ to be the Kummer
étale covering obtained from the finite Kummer étale covers of the (U;, My;) induced by
multiplication by n on P; for a suitable integer n invertible in B. In other words, we can
take ¢ to be the Kummer étale covering

(B,'" M) = (Bo, Mp,)

induced by multiplication by n on P (see also the observations around (9.2.5)).

This implies in particular that in this local setting, when X = Spec(R) with a chart
P — R and b given by the blowup of a finitely generated ideal K, we can reverse the
order of the Kummer étale cover and the log blowup. Let

(BY™ Mgim) — (B, Mg)

be the Kummer étale coverings induced by multiplication by n on P. Then Mp1/» again
admits a chart g, : P — Mg/, and the natural map

(Bg/”,MB%/n) — (BY™ Mgin)

is the log blowup of the target with respect to 8, (K).

Since the assertions of Theorems 1.7 and 1.9 are local for the Kummer étale topology
on (B, Mp), we see that it suffices to prove both results under the further assumption
that there exists a log blowup

(B',Mp) — (B, Mp)
such that the base change
(X', Mx1) = (B, Mp)

is integral.

Note furthermore that B’ — B has geometrically connected fibres, as discussed in the
proof of Theorem 9.2. In particular, if B is connected, then so is B’.

By the case of an integral morphism discussed in Section 8, we know that Theorem 1.9
holds for (X', Mx/) = (B’, Mp/). Using the case of an integral morphism, we reduce the
proof of Theorem 1.9 to Theorem 1.7 as follows. Choose log geometric points

b = (B, Mp)
lying over B;Og, and let Eiog — (B, Mp) denote the composition
b% —— (B, M) — (B, Mp).
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Then by definition we have
Fét™ (X', M) os,) = F&6" (X, Mx) tog)).
Therefore, if we prove Theorem 1.7 in general, we get equivalences

FEt™ (X, M) gios)) — PO (X, M) i) ——= FEE (X', M) i)
1 1 1

Fet (X M) gtos,) — > FH (X', M) _ioe)) —> FEt (X', M) o).
C2 2

(55°%)

where the middle diagonal equivalence is using Theorem 1.9 in the case of an integral
morphism.

To complete the proofs of Theorems 1.7 and 1.9, we are thus reduced to proving
Theorem 1.7 in the case when (B, Mp) = (Spec(k), My,) is a log point and b''°¢ — (B, M)
lifts to (B’, Mp/). We can further assume that we have a chart P — Mp inducing an
isomorphism k*@ P =~ Mg, that (B’, Mp/) is obtained by blowing up a finitely generated
ideal K C P and that k is separably closed. We can further assume that b'°% is given by
the geometric point

(Spec(k), k™ @ Pz, ) — (Spec(k), k" & P).
11.2. For an integer n > 1 invertible in £, let
xn:(B,Mp) = (B,Mp), xn: (B, Mp)— (B, Mp)
be the maps induced by multiplication by n on P, and denote the base changes by
(X, Mx,,) = (X, Mx) X (B, Mp). xn (B, Mp), (X}, Mx;):= (X', Mx') X (B, Mp). xn (B, Mp).

As before, the map xn : (B, Mp/) — (B’,Mp/) can be described explicitly in terms of
the open cover Spec(k ®p) k[P;]) obtained by choosing generators fi,...,f. € K, and the
multiplication by n maps on P;. By the previous discussion, each morphism

(X, Mx;) > (X, Mx,)

is a log blowup. Since the system of log structures
1
k* ®—PC k* D Pz(p)
n

is cofinal among fine log structures in £* @ Pz, containing Mp, it follows from this and
Theorem 9.2 that the pullback functor
Fét® (X, Mx)iog)) = colim, Fét® (X,,, Mx,,) — colim, Fét® (X, Mx;)

is an equivalence of categories.
This reduces to showing that the functor

colim, Fét™ (X, Mx; ) — FétP (X', Mx) o)) (11.2.1)
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is an equivalence of categories for any log geometric point b''°% — (B’, Mp:). For this we
will apply Theorem 10.3 to the morphism

(X', Mx') = (B, Mp).
In order to do so, note that by Theorem 10.3 the pullback functor
FétP (B, M) — Fét'P (B, M) (11.2.2)

is an equivalence of categories, so any locally constant sheaf of finite abelian groups A’
on (B, Mp)e of order prime to p is pulled back from a locally constant sheaf A on
(B, MB)kst, and by [11, Theorem 6.2] the pullback functor

H'((B, Mp)xet, A) = H'((B', Mp), A)

is an isomorphism. Since any class in H2((B, Mp)xst, A) is killed by a finite Kummer étale
covering of (B, Mp), it follows that the same is true for a class in H2((B’, Mp’), 4’), and
the assumptions of Theorem 10.3 hold.

Now since (11.2.2) is an equivalence, the collection of finite Kummer étale covers

(X, Mx;) = (X', Mx»)

are cofinal among finite Kummer étale coverings of (X', Mx/), and therefore we conclude
from Theorem 10.3 that (11.2.1) is an equivalence.
This completes the proofs of Theorems 1.7 and 1.9. O
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