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Abstract—Networks-on-chip (NoCs) are playing a critical role in modern multicore
architecture, and NoC security has become a major concern. Maliciously implanted
hardware Trojans (HTs) inject faults into on-chip communications that saturate the
network, resulting in the leakage of sensitive data via side channels and significant
performance degradation. While existing techniques protect NoCs by detecting and
isolating HT-infected components, they inevitably incur occasional inaccurate detection
with considerable network latency and power overheads. We propose TSA-NoC, a learning-
based design framework for secure and efficient on-chip communication. The proposed
TSA-NoC uses an artificial neural network for runtime HT-detection with higher accuracy.
Furthermore, we propose a deep-reinforcement-learning-based adaptive routing design for
HT mitigation with the aim of minimizing network latency and maximizing energy efficiency.
Simulation results show that TSA-NoC achieves up to 97% HT-detection accuracy, 70%
improved energy efficiency, and 29% reduced network latency as compared to state-of-the-
art HT-mitigation techniques.
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B As TECHNOLOGY scALES, modern multiproces-
sors have pushed for a paradigm shift from
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computation-centric to communication-centric
systems. Networks-on-Chip (NoCs) are becoming
increasingly critical yet vulnerable to various
security threats,'™ especially to hardware trojans
(HTs).* Maliciously implanted HTs inject transient
faults in transmitted flits/packets, causing mis-
routing and unnecessary packet re-transmissions.
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These retransmissions consume massive NoC
resources (e.g., link and buffer) and saturate the
transmission channels, resulting in data leakage,
significant performance degradation, and even a
denial-of-service ??

Significant research has been devoted to
securing NoCs against HT-based attacks.>® A
majority of these countermeasures mitigate HT's
by detecting and isolating the HT-infected NoC
components. In the HT-detection aspect, the
existing works use fault history logging (FHL),’
runtime threshold monitoring (RTM) on link-
error/packet-injection rates, or built-in self-test-
ing hardware.® These techniques monitor fault-
related NoC attributes (e.g., temperature and
buffer/link utilization) at runtime and label the
corresponding component as HT-infected if any
attribute value exceeds its corresponding manu-
ally set threshold. However, since massive NoC
attributes are correlated with transient faults
and interact with each other,® designing the
thresholds for HT detection is complicated.
These thresholds, if selected carelessly, can
cause false/misdetection, additional power con-
sumption, and increased network latency.

In the HT-isolation aspect, conventional solu-
tions use regional routing algorithms®? to isolate
the HT-infected components. Unfortunately,
these techniques limit the network throughput,
forbid communication via certain channels, and
detour the packets to avoid infected regions.
This inevitably increases network latency.
Therefore, the challenge is to design a secure
architecture that promptly and accurately
detects and isolates HTs with minimal perfor-
mance loss.

In this article, we propose TSA-NoC, a learn-
ing-based, high-performance, and energy-effi-
cient NoC design for secured on-chip
communication. In TSA-NoC, we enhance the
router architecture with a learning-based per-
HT-detection (DetectANN) module,
bypass channel, and a SmartRoute controller for
HT-isolation. The major contributions of this
article include the following.

router

« Improved HT detection using DetectANN:
DetectANN uses an artificial neural network
(ANN) to automatically identify HT-injected
faults by recognizing abnormal network
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behaviors (e.g., unexpected high error rate)
and improve the accuracy of HT detection.

« Improved HT-isolation using SmartRoute: After
HT detection, the routers are dynamically cat-
egorized into HT-free and HT-infected routers.
A low-cost bypass channel using simple
switch logic is proposed to bypass the HT-
infected routers while maintaining network
connectivity. To balance traffic loads among
low-throughput bypass channels and high-
throughput routers and improve the overall
network performance, SmartRoute controller
uses DRL to handle diverse traffic patterns by
dynamically applying the most suitable rout-
ing algorithms thus minimizing network
latency and power consumption.

We evaluate the performance of the proposed
TSA-NoC architecture with PARSEC benchmark.
Simulation results show that TSA-NoC provides
enhanced HT-detection accuracy and improved
HT mitigation with reduced power consumption
and network latency as compared to conven-
tional HT-mitigation techniques.

BACKGROUND AND MOTIVATION

Transient Faults in NoC

Transient faults may manifest during any
stage of transmission® in NoCs. To mitigate these
faults in typical NoC architecture, each flit is
encoded with error correction codes (ECCs)
before being propagated to the downstream
router. At each hop of transmission, the ECC
decoder examines the correctness of each flit
and initiates a negative-acknowledgment signal
for data retransmission if an error occurs.

HT Attacks on NoCs

HTs have been shown to infect NoC links® and
router microarchitectures.® Typically, HTs are
inserted in the layout during the fabrication phase
of the IC design cycle. After being implanted, they
usually remain dormant and slip past hardware
diagnosis until they are activated by attackers.
Once activated, they inject transient faults by forc-
ing bit-flips in links or disrupting ECC in routers.
These faults can lead to massive retransmission
traffic, back pressures, and network saturation.
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Figure 1. Proposed TSA-NoC router architecture.
The router comprises a DetectANN design for

HT detection, a bypass channel for HT isolation, and a
SmartRoute controller. Solid and dashed arrows
represent data paths and control signals, respectively.

Conventional HT-Mitigation Techniques

A majority of the existing HT-mitigation techni-
ques use a detect-isolate approach.>>%7 For HT
detection, built-in diagnosis hardware® periodically
checks the correctness of the circuitry’s logic
operations, which inevitably stalls the application
execution to retain HT-detection accuracy. To miti-
gate this limitation, runtime software-based mech-
anisms such as FHL’ and RTM are proposed to
detect suspicious HT-infected components by
dynamically capturing abnormalities in NoC
behavior. FHL records the pattern of transient
faults in all the transmitted packets to identify HT-
infected channels. Similarly, RTM monitors the
retransmission rate and marks out suspicious HT-
infected components that exceed a certain retrans-
mission rate. However, both techniques rely on
manually-set thresholds to identify suspicious NoC
behavior, thus, often leading to false HT detection.

For HT isolation, SurfNoC® eliminates the
transmissions between high-security and low-
security domains by alternatively reserving and
scheduling transmission channels in each
dimension exclusively for a specific domain.
NIBR? partitions the virtual channels of each
router to transmit data flows exclusively with
high-security demands. However, the static net-
work partition results in poor network utiliza-
tion, thus, affecting network performance.

PROPOSED TSA-NoC DESIGN
We propose TSA-NoC, a learning-based HT-

detection and mitigation framework for secure

Proposed TSA-NoC Framework

¥
Enhanced Router Architecture
with Two-Step HT-Mitigation
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Figure 2. Overview of the proposed TSA-NoC
design.

NoC architecture. In TSA-NoC, we propose an
enhanced router architecture, as shown in
Figure 1, consisting of an improved HT-detection
design using an ANN (DetectANN), a bypass chan-
nel, and an enhanced HT-mitigation mechanism
(SmartRoute) to improve network performance
with DRL.

The overview of the proposed TSA-NoC
framework is shown in Figure 2. DetectANN mon-
itors network attributes, learns from runtime
network activities, and automatically identifies
HT-infected components by recognizing abnor-
mal network behaviors (e.g., high error rate and
retransmission). Based on the HT-detection
results from DetectANN, SmartRoute controller
categorizes packets into ones whose source and
destination nodes are HT-free (high-security
packets) and ones whose source and/or destina-
tion nodes are HT-infected (low-security pack-
ets). For high-security packets, all the
components in the transmission path should be
HT-free for security, while the transmission
paths of the latter packets are allowed to contain
HT-infected nodes. To isolate the HT-infected
routers to protect the high-security packets, a
bypass channel is proposed to bypass the HT-
infected routers while maintaining network con-
nectivity. Since the simple switch logic of the
bypass channel inevitably degrades the network
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throughput, a routing mechanism that avoids
transmitting intense traffic through bypass
channels should be applied. Moreover, to better
utilize network resources, especially the isolated
routers, a different routing algorithm may be
needed for the low-security packets. To this end,
we propose SmartRoute, which proactively
selects the most suitable routing algorithm to bal-
ance traffic-loads in the low-throughput bypass
channel and high-throughput routers, respec-
tively, and improve overall network performance.

Learning-Based Runtime HT-Detection Using
DetectANN

We implement a per-router DetectANN to per-
form runtime HT-detection with improved accu-
racy with minimized timing and power overheads.
Unlike the static thresholds used by FHL and
RTM, DetectANN eschews the human engineering,
monitors NoC attributes, and automatically
detects HTs by learning how to accurately recog-
nize the abnormal behavior(s) of the local router
through complex and interrelated NoC attributes.
Since HTs are hard to detect when dormant, to
identify activated HTs in a timely manner while
reducing the computational overhead of Detec-
tANN, HT-detection is performed iteratively.

Construction of DetectANN. DetectANN is a
fully connected ANN with an input layer, a mid-
dle layer, and an output layer. Previous works
have shown that some system attributes are
highly correlated with transient faults in NoCs.®
In TSA-NoC, we explore 12 fault-related NoC
attributes as inputs, including buffer utilization
(number of occupied virtual channels) for each
input port (+x, —x, +y, —y, and local core), link
utilization (value of input-flits per cycle) for each
input port (+x, —x, +y, —y, and local core), local
operation temperature, and the previous tran-
sient error rate in the last epoch. The middle layer
utilizes all the attribute values and maps them to
the classification of whether the router is HT-
infected. As HT-detection is a binary classification
problem, a single-hidden-layer construction can
mitigate overfitting and is sufficient to deliver
desired accuracy. For optimized detection accu-
racy and computational/storage overhead, we
implement 30 neurons in the single hidden-layer
(detailed discussion is in the “Evaluation and Ana-
lysis” section). The middle layer uses Sigmoid
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activation function. For each neuron j in the mid-
dle layer, the output y; = sigmoid(EiUmq; *w;). The
output layer indicates the binary classification
result: HT-free or HT-infected.

Training the Proposed DetectANN. The pro-
posed DetectANN is trained offline. To build the
training set, applications are first executed in an
HT-free system while runtime attributes are
recorded. These attributes are used for the input
layer of DetectANN, and the desired output is
HT-free. Then, the same applications are exe-
cuted multiple times with HT-infected NoC com-
ponents. For a better training result, HTs are
randomly implanted each time. Detect ANN moni-
tors the same attributes, and routers with
implanted HTs are labeled as HT-infected.

Avoidance of False-Positives/Negatives. As dis-
cussed, inaccurate HT-detection can lead to per-
formance degradation. False-positives can be a
problem when an HT-free router is always labeled
as HT-infected. In TSA-NoC, even if the HT-free
router is mistakenly labeled as HT-infected, the
detection result will be updated at the next epoch.
As the trained DetectANN has a high HT-detection
accuracy, the wrongly labeled router has a high
chance to be labeled correctly at the next epoch.
By doing so, the penalty of isolating that HT-free
router will be limited to one epoch. Therefore, the
false-positive problem can be mitigated. False-neg-
atives are common in conventional designs, in
which an HT-infected router is labeled as HT-free
when the HT is not activated. The proposed Detec-
tANN resolves this problem by monitoring the
runtime NoC behaviors consecutively and provid-
ing HT-detection results every 2000 cycles. As the
DetectANN utilizes the average attribute values
within the epoch, it is able to sensitively capture
the anomaly behavior of HT-infected routers, even
if the HTs are triggered on for a short period of
time. Therefore, the false-negative problem is
resolved.

Learning-Based Dynamic HT-Mitigation Using
SmartRoute

We propose a learning-based HT-mitigation
mechanism for efficient HT-isolation. We imple-
ment a bypass channel and a per-router Smart-
Route controller to dynamically route high-
security packets without traversing HT-infected
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components and utilize the bypassed routers to
propagate low-security packets without degrad-
ing network performance. There is no need to
restrict the transmission paths of the low-secu-
rity packets, since they are already HT-infected.

When isolating HT-infected routers with
bypass channels, the simple switch logic of the
bypass channel could limit the throughput of
given path directions. TSA-NoC addresses this
problem by intelligently balancing traffic-loads
with various routing algorithms (O1TURN, West-
First, and Negative-First) using a SmartRoute con-
troller. The rationale behind this design is two-
fold: 1) avoid injecting into bypass channels and
2) optimize the worst case throughput of different
NoC traffic patterns.! The OI1TURN routing
dynamically applies XY or YX routing for each
packet to better utilize the network spatially under
normal traffic loads. West-First and Negative-First
restrict different types of turns and achieve lower
latency and less dynamic power consumption
than O1TURN under intense traffic loads.!’ Note
that the TSA-NoC router has multiple virtual chan-
nels to avoid protocol and routing deadlocks.

Since the HT-detection results from Detec-
tANN vary periodically during runtime, selecting
the most suitable routing algorithm that can han-
dle the dynamic interactions between diverse
traffic patterns and limited NoC resources is
complex. Therefore, we propose the use of DRL
to automatically balance the tradeoffs among
the different routing algorithms to achieve bet-
ter system-level performance for high-security
and low-security packets.

DRL-Based Control Policy. The adaptive routing
algorithm is applied iteratively to avoid the timing
overhead incurred by NoC reconfiguration and
packet draining. The length of each iteration
(epoch) is identical to that of DetectANN. At each
epoch, the DRL-based SmartRoute controller moni-
tors NoC attributes and suggests an action (apply-
ing one of the routing algorithms) with the highest
expected long-term return'! in terms of network
performance and energy efficiency. The network
attributes will change with the action selection,
resulting in a new state at the next epoch. The
changes in performance and energy metrics are
evaluated to update the reward accordingly. The
DRL-based control policy continues to evolve
based on the NoC historical activities and

generates a direct map between the optimal action
and a given state. The problem formulation is as
follows.

State and Action Space. We select a set of net-
work-related attributes to represent the state
vector s for SmartRoute, which include the 12
attributes used in DetectANN, local router label
(HT-free or HT-infected), and packet injection rates
of different network dimensions. The action space
{a1,a9,a3} comprises three routing algorithms:
O1TURN, West-First, and Negative-First.

Reward Function. The goal of the DRL agent is
to select actions that can maximize the long-term
return R for any given state. In SmartRoute, we
use Q-earning'! to estimate the expected long-
term return for each state-action pair, recorded as
R = Q(s,a). At each epoch, the agent selects the
action with the highest Q(s,a). Next, it observes
the immediate reward r and the new state s'. The
Q(s, a) value is updated using the following rule:

Qls,0) = (1= 0)Q(s,0) +alr + ymaxQ(s/ ).
©®

The variables « and y are DRL parameters
called learning rate and discount rate, respec-
tively. The immediate reward r implies minimizing
the latency and power consumption. Therefore,
we define the immediate reward r; in (1) at epoch
t as follows:

ry = (Power; - Latency,) " (2

The Latency, and Power,; values are obtained
by average end-to-end latency and power con-
sumption (static and dynamic), respectively.
The DRL agents select actions according to
the Q-table. To eliminate storing overheads, the
Q-table in conventional RL is replaced with a
neural network.

The working of the DRL of SmartRoute con-
troller is shown in Figure 3. At each epoch, the
router first uses the feature values in the state
vector s as inputs of the expanded ANN. The
ANN then calculates the Q-values of all the possi-
ble state-action pairs in the state entry. The
router suggests an action a, which has the maxi-
mum Q(s, a)-value for the next epoch. All routers
vote with their selected actions for packets that
require HT-free transmission paths, and the rout-
ing algorithm with the highest score is selected.
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Figure 3. Working of DRL of SmartRoute.

Upon taking the action a, the NoC system transi-
tions to a new state s’. The NoC system then pro-
vides an immediate reward r, which is used to
update Q(s,a). We implement a five-cycle win-
dow between two consecutive epochs to inform
routers of the upcoming actions and store on-
the-fly flits in router buffers.

EVALUATION AND ANALYSIS

Simulation Setup

We implement the proposed TSA-NoC architec-
ture in the Gemb full-system simulator. We imple-
ment 64 out-of-order CPUs with 2-level cache in an
8 x 8 2D-mesh network. Additionally, we imple-
ment a runtime error injection module consisting
of NoC fault and thermal models (DSENT, HotSpot,
and VARIUS) to realistically simulate transient
errors. We compare the performance of TSA-NoC
(DetectANN+SmartRoute) with three techniques,
namely FHL+SurfNoC, DetectANN+SurfNoC, and
DetectANN+NIBR, with the PARSEC benchmark.
We train the DetectANN and SmartRoute with a
semi-real dataset generated with synthetic traffic
and part of PARSEC benchmark applications
(dedup, facesim, freqmine, and swaption). The
rest of real applications in PARSEC benchmark are
used in the testing phase.

Before executing each benchmark application,
we randomly select 10% of the total transmission
links in the NoC and implant HTs in them for run-
time fault injection. The testing phase of each
application lasts for the entire application execu-
tion time. The area overhead of TSA-NoC is evalu-
ated using the Synopsys design compiler with the
32-nm library.
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Figure 4. Simulation results of the proposed
TSA-NoC.: (a) average end-to-end latency,

(b) average power consumption, and (c) average
energy efficiency. Results are normalized to the
FHL+SurfNoC baseline.

For DetectANN and SmartRoute, we set the
epoch size to 2000 cycles. The Q-values are ini-
tialized to 0. The learning rate « and the discount
rate y are set to 0.1 and 0.9, respectively. Addi-
tionally, the DRL agents have a small probability
of € = 0.05 to select a random action for exploring
unvisited state-action pairs.

Performance Analysis

Average Network Latency: Figure 4(a) shows
the normalized average end-to-end packet latency
of all the transmitted packets. TSA-NoC achieves
an average of 29% end-to-end latency reduction
over the baseline. Note that the proposed TSA-
NoC using SmartRoute can improve upon Detec-
tANN+SurfNoC by an additional 13% over baseline.
This illustrates that DRL-based dynamic routing
can further improve overall network latency.

Power Consumption: We evaluate static
and dynamic power consumption for all the
techniques used. For TSA-NoC, the power con-
sumption of the learning-based TSA-router (with
DetectANN and SmartRoute), intermediate links,
and bypass channels are included. We first model
the static power of all components with Synopsys
Design Compiler. Afterward, the captured power
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Figure 5. Sensitivity study: (a) HT-detection
accuracy, (b) epoch size, (c) discount rate y, and
(d) e-greedy factor.

parameters are fed to the full-system simulator for
accurate dynamic power simulation. Figure 4(b)
shows that TSA-NoC reduces overall power con-
sumption by an average of 18% over the baseline.
The majority of power saving is from dynamic
power reduction.

Energy Efficiency: Energy efficiency is defined
as: packets x energy !, where energy equals overall
power consumption (of all NoC components, the
proposed DetectANN, and SmartRoute) multiplies
benchmark execution time. Figure 4(c) shows that
the proposed framework improves energy effi-
ciency by an average of 70% compared to baseline.

HT-Detection Accuracy: The HT-detection accu-
racy is calculated with the ratio of the number of
identified HTs to the total number of implanted
HTs within a full execution of each benchmark. In
this simulation, we vary the middle layer size of
DetectANN. The DetectANN is trained with random
distributed HT-generated bit-flips, while in the test-
ing phase, the HT-generated bit-flips follow three
different distributions: normal, uniform, andPois-
son distribution. Figure 5(a) shows that, for all
distributions, the proposed DetectANN improves
HT-detection accuracy by 39% on average over the
FHL baseline, with 30 neurons in the middle layer.

Sensitivity Analysis

Impact of Middle Layer Size of DetectANN: We
vary the size of the middle layer to study its
impact on HT-detection accuracy in Figure 5(a).
The HT-detection accuracy improves as the size
of the middle layer increases. For the best accu-
racy, area consumption, and timing overhead,
we use 30 neurons in the middle layer.

Impact of Epoch Size of DRL: In this test, we
vary the length of DRL epoch from 1000 to
10 000 clock cycles. As shown in Figure 5(b),
increasing the epoch size negatively impacts
network latency and energy-delay product
(EDP) due to coarse-grain control (lower net-
work latency and EDP indicate better perfor-
mance). Alternatively, aggressively reducing
the length of epochs also leads to performance
degradation, as the timing overhead of DRL
would be notable.

Impact of Discount Rate y of DRL: Figure 5(c)
depicts the impact of the discount rate y on net-
work performance. As shown in Figure 5(c), both
network latency and EDP are initially improved
with larger y. However, aggressively increasing y
can also result in slow DRL convergence, which
leads to performance degradation. The best per-
formance is achieved when y equals 0.9.

Impact of Exploration Factor ¢ of DRL: The
impact of ¢ on network performance is shown in
Figure 5(d). As ¢ increases, the agent explores
unvisited state-action pairs more frequently, which
is beneficial for training DRL. However, when ¢
equals 1, the router will take actions completely at
random. As shown in Figure 5(d), the best perfor-
mance is achieved when e equals 0.05.

Overhead Analysis

Timing Overhead: The timing overhead is
induced by calculating and updating the weights
for DetectANN and SmartRoute. In the worst case,
for each epoch, the computation overheads are 90
and 150 cycles for DetectANN and SmartRoute,
respectively. We use two sets of different epochs
for the monitoring and controlling to minimize the
negative effect of this latency. The two sets of
epochs are offset by the ANN computation time,
which can pipeline the overhead effectively. By
doing so, the calculation of ANNs does not block
monitoring or controlling. Therefore, the use of
ANN does not negatively impact the overall
performance.

Area and Power QOverhead: The proposed
DetectANN and Smart-Route require additional
ALUs (adders, multipliers, and Sigmoid function)
and SRAM storage in each router. The proposed
DetectANN consumes additional 425.2-um? area
for ALUs and 718.7-um? area for SRAM, incurring
0.9% area overhead over a conventional router
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in total. The DRL logics consume 956.7-um? ALU
area and 1617.2-um> SRAM area, which implies
2.1% area overhead. Furthermore, the power
overheads of DetectANN and DRL are 0.086 and
0.195 MW, respectively.

CONCLUSIONS

In this article, we proposed TSA-NoC, a learning-
enabled, high-performance, and energy-efficient
design framework for secure on-chip communica-
tion. The TSA-NoC consists of an ANN-based HT-
detection design (DetectANN) and a DRL-based
adaptive routing mechanism (SmartRoute). The
proposed DetectANN detects HT-infected NoC
components promptly and accurately at runtime.
SmartRoute isolates the HT-infected components
and deploys dynamic routing algorithms to opti-
mize system-level performance. Full-system evalua-
tions show that TSA-NoC improves HT-detection
accuracy, network latency, and energy efficiency
over existing techniques.
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