
TSA-NoC: Learning-Based
Threat Detection and
Mitigation for Secure
Network-on-Chip
Architecture
Ke Wang, Hao Zheng, and Ahmed Louri
George Washington University

Abstract—Networks-on-chip (NoCs) are playing a critical role inmodernmulticore

architecture, and NoC security has become amajor concern. Maliciously implanted

hardware Trojans (HTs) inject faults into on-chip communications that saturate the

network, resulting in the leakage of sensitive data via side channels and significant

performance degradation.While existing techniques protect NoCs by detecting and

isolating HT-infected components, they inevitably incur occasional inaccurate detection

with considerable network latency and power overheads. We propose TSA-NoC, a learning-

based design framework for secure and efficient on-chip communication. The proposed

TSA-NoC uses an artificial neural network for runtime HT-detectionwith higher accuracy.

Furthermore, we propose a deep-reinforcement-learning-based adaptive routing design for

HTmitigationwith the aim ofminimizing network latency andmaximizing energy efficiency.

Simulation results show that TSA-NoC achieves up to 97%HT-detection accuracy, 70%

improved energy efficiency, and 29% reduced network latency as compared to state-of-the-

art HT-mitigation techniques.

& AS TECHNOLOGY SCALES, modern multiproces-

sors have pushed for a paradigm shift from

computation-centric to communication-centric

systems. Networks-on-Chip (NoCs) are becoming

increasingly critical yet vulnerable to various

security threats,1–4 especially to hardware trojans

(HTs).4 Maliciously implanted HTs inject transient

faults in transmitted flits/packets, causing mis-

routing and unnecessary packet re-transmissions.

Digital Object Identifier 10.1109/MM.2020.3003576

Date of publication 19 June 2020; date of current version

1 September 2020.

Theme Article: Machine Learning for SystemsTheme Article: Machine Learning for Systems

56
0272-1732 � 2020 IEEE Published by the IEEE Computer Society IEEE Micro

Authorized licensed use limited to: The George Washington University. Downloaded on May 19,2021 at 20:35:33 UTC from IEEE Xplore. Restrictions apply.

These retransmissions consume massive NoC

resources (e.g., link and buffer) and saturate the

transmission channels, resulting in data leakage,

significant performance degradation, and even a

denial-of-service.2,3

Significant research has been devoted to

securing NoCs against HT-based attacks.5,6 A

majority of these countermeasures mitigate HTs

by detecting and isolating the HT-infected NoC

components. In the HT-detection aspect, the

existing works use fault history logging (FHL),7

runtime threshold monitoring (RTM) on link-

error/packet-injection rates, or built-in self-test-

ing hardware.6 These techniques monitor fault-

related NoC attributes (e.g., temperature and

buffer/link utilization) at runtime and label the

corresponding component as HT-infected if any

attribute value exceeds its corresponding manu-

ally set threshold. However, since massive NoC

attributes are correlated with transient faults

and interact with each other,8 designing the

thresholds for HT detection is complicated.

These thresholds, if selected carelessly, can

cause false/misdetection, additional power con-

sumption, and increased network latency.

In the HT-isolation aspect, conventional solu-

tions use regional routing algorithms2,3 to isolate

the HT-infected components. Unfortunately,

these techniques limit the network throughput,

forbid communication via certain channels, and

detour the packets to avoid infected regions.

This inevitably increases network latency.

Therefore, the challenge is to design a secure

architecture that promptly and accurately

detects and isolates HTs with minimal perfor-

mance loss.

In this article, we propose TSA-NoC, a learn-

ing-based, high-performance, and energy-effi-

cient NoC design for secured on-chip

communication. In TSA-NoC, we enhance the

router architecture with a learning-based per-

router HT-detection (DetectANN) module,

bypass channel, and a SmartRoute controller for

HT-isolation. The major contributions of this

article include the following.

� Improved HT detection using DetectANN:

DetectANN uses an artificial neural network

(ANN) to automatically identify HT-injected

faults by recognizing abnormal network

behaviors (e.g., unexpected high error rate)

and improve the accuracy of HT detection.

� Improved HT-isolation using SmartRoute: After

HT detection, the routers are dynamically cat-

egorized intoHT-free andHT-infected routers.

A low-cost bypass channel using simple

switch logic is proposed to bypass the HT-

infected routers while maintaining network

connectivity. To balance traffic loads among

low-throughput bypass channels and high-

throughput routers and improve the overall

network performance, SmartRoute controller

uses DRL to handle diverse traffic patterns by

dynamically applying the most suitable rout-

ing algorithms thus minimizing network

latency and power consumption.

We evaluate the performance of the proposed

TSA-NoC architecture with PARSEC benchmark.

Simulation results show that TSA-NoC provides

enhanced HT-detection accuracy and improved

HT mitigation with reduced power consumption

and network latency as compared to conven-

tional HT-mitigation techniques.

BACKGROUND AND MOTIVATION

Transient Faults in NoC

Transient faults may manifest during any

stage of transmission8 in NoCs. To mitigate these

faults in typical NoC architecture, each flit is

encoded with error correction codes (ECCs)

before being propagated to the downstream

router. At each hop of transmission, the ECC

decoder examines the correctness of each flit

and initiates a negative-acknowledgment signal

for data retransmission if an error occurs.

HT Attacks on NoCs

HTs have been shown to infect NoC links9 and

router microarchitectures.5 Typically, HTs are

inserted in the layout during the fabrication phase

of the IC design cycle. After being implanted, they

usually remain dormant and slip past hardware

diagnosis until they are activated by attackers.

Once activated, they inject transient faults by forc-

ing bit-flips in links or disrupting ECC in routers.

These faults can lead to massive retransmission

traffic, back pressures, and network saturation.

September/October 2020 57
Authorized licensed use limited to: The George Washington University. Downloaded on May 19,2021 at 20:35:33 UTC from IEEE Xplore. Restrictions apply.

Conventional HT-Mitigation Techniques

A majority of the existing HT-mitigation techni-

ques use a detect–isolate approach.2,3,6,7 For HT

detection, built-in diagnosis hardware6 periodically

checks the correctness of the circuitry’s logic

operations, which inevitably stalls the application

execution to retain HT-detection accuracy. To miti-

gate this limitation, runtime software-based mech-

anisms such as FHL7 and RTM are proposed to

detect suspicious HT-infected components by

dynamically capturing abnormalities in NoC

behavior. FHL records the pattern of transient

faults in all the transmitted packets to identify HT-

infected channels. Similarly, RTM monitors the

retransmission rate and marks out suspicious HT-

infected components that exceed a certain retrans-

mission rate. However, both techniques rely on

manually-set thresholds to identify suspicious NoC

behavior, thus, often leading to false HT detection.

For HT isolation, SurfNoC3 eliminates the

transmissions between high-security and low-

security domains by alternatively reserving and

scheduling transmission channels in each

dimension exclusively for a specific domain.

NIBR2 partitions the virtual channels of each

router to transmit data flows exclusively with

high-security demands. However, the static net-

work partition results in poor network utiliza-

tion, thus, affecting network performance.

PROPOSED TSA-NoC DESIGN
We propose TSA-NoC, a learning-based HT-

detection and mitigation framework for secure

NoC architecture. In TSA-NoC, we propose an

enhanced router architecture, as shown in

Figure 1, consisting of an improved HT-detection

design using an ANN (DetectANN), a bypass chan-

nel, and an enhanced HT-mitigation mechanism

(SmartRoute) to improve network performance

with DRL.

The overview of the proposed TSA-NoC

framework is shown in Figure 2. DetectANN mon-

itors network attributes, learns from runtime

network activities, and automatically identifies

HT-infected components by recognizing abnor-

mal network behaviors (e.g., high error rate and

retransmission). Based on the HT-detection

results from DetectANN, SmartRoute controller

categorizes packets into ones whose source and

destination nodes are HT-free (high-security

packets) and ones whose source and/or destina-

tion nodes are HT-infected (low-security pack-

ets). For high-security packets, all the

components in the transmission path should be

HT-free for security, while the transmission

paths of the latter packets are allowed to contain

HT-infected nodes. To isolate the HT-infected

routers to protect the high-security packets, a

bypass channel is proposed to bypass the HT-

infected routers while maintaining network con-

nectivity. Since the simple switch logic of the

bypass channel inevitably degrades the network

Figure 1. Proposed TSA-NoC router architecture.

The router comprises a DetectANNdesign for

HT detection, a bypass channel for HT isolation, and a

SmartRoute controller. Solid and dashed arrows

represent data paths and control signals, respectively.

Figure 2. Overview of the proposed TSA-NoC

design.

Machine Learning for Systems

58 IEEE Micro

Authorized licensed use limited to: The George Washington University. Downloaded on May 19,2021 at 20:35:33 UTC from IEEE Xplore. Restrictions apply.

throughput, a routing mechanism that avoids

transmitting intense traffic through bypass

channels should be applied. Moreover, to better

utilize network resources, especially the isolated

routers, a different routing algorithm may be

needed for the low-security packets. To this end,

we propose SmartRoute, which proactively

selects the most suitable routing algorithm to bal-

ance traffic-loads in the low-throughput bypass

channel and high-throughput routers, respec-

tively, and improve overall network performance.

Learning-Based Runtime HT-Detection Using

DetectANN

We implement a per-router DetectANN to per-

form runtime HT-detection with improved accu-

racy withminimized timing and power overheads.

Unlike the static thresholds used by FHL and

RTM, DetectANN eschews the human engineering,

monitors NoC attributes, and automatically

detects HTs by learning how to accurately recog-

nize the abnormal behavior(s) of the local router

through complex and interrelated NoC attributes.

Since HTs are hard to detect when dormant, to

identify activated HTs in a timely manner while

reducing the computational overhead of Detec-

tANN, HT-detection is performed iteratively.

Construction of DetectANN. DetectANN is a

fully connected ANN with an input layer, a mid-

dle layer, and an output layer. Previous works

have shown that some system attributes are

highly correlated with transient faults in NoCs.8

In TSA-NoC, we explore 12 fault-related NoC

attributes as inputs, including buffer utilization

(number of occupied virtual channels) for each

input port (+x, �x, +y, �y, and local core), link

utilization (value of input-flits per cycle) for each

input port (+x, �x, +y, �y, and local core), local

operation temperature, and the previous tran-

sient error rate in the last epoch. Themiddle layer

utilizes all the attribute values and maps them to

the classification of whether the router is HT-

infected. As HT-detection is a binary classification

problem, a single-hidden-layer construction can

mitigate overfitting and is sufficient to deliver

desired accuracy. For optimized detection accu-

racy and computational/storage overhead, we

implement 30 neurons in the single hidden-layer

(detailed discussion is in the “Evaluation and Ana-

lysis” section). The middle layer uses Sigmoid

activation function. For each neuron j in the mid-

dle layer, the output yj ¼ sigmoidðS12
i¼0xi � wiÞ. The

output layer indicates the binary classification

result: HT-free or HT-infected.

Training the Proposed DetectANN. The pro-

posed DetectANN is trained offline. To build the

training set, applications are first executed in an

HT-free system while runtime attributes are

recorded. These attributes are used for the input

layer of DetectANN, and the desired output is

HT-free. Then, the same applications are exe-

cuted multiple times with HT-infected NoC com-

ponents. For a better training result, HTs are

randomly implanted each time. DetectANN moni-

tors the same attributes, and routers with

implanted HTs are labeled as HT-infected.

Avoidance of False-Positives/Negatives. As dis-

cussed, inaccurate HT-detection can lead to per-

formance degradation. False-positives can be a

problem when an HT-free router is always labeled

as HT-infected. In TSA-NoC, even if the HT-free

router is mistakenly labeled as HT-infected, the

detection result will be updated at the next epoch.

As the trained DetectANN has a high HT-detection

accuracy, the wrongly labeled router has a high

chance to be labeled correctly at the next epoch.

By doing so, the penalty of isolating that HT-free

router will be limited to one epoch. Therefore, the

false-positive problem can bemitigated. False-neg-

atives are common in conventional designs, in

which an HT-infected router is labeled as HT-free

when theHT is not activated. The proposed Detec-

tANN resolves this problem by monitoring the

runtime NoC behaviors consecutively and provid-

ing HT-detection results every 2000 cycles. As the

DetectANN utilizes the average attribute values

within the epoch, it is able to sensitively capture

the anomaly behavior of HT-infected routers, even

if the HTs are triggered on for a short period of

time. Therefore, the false-negative problem is

resolved.

Learning-Based Dynamic HT-Mitigation Using

SmartRoute

We propose a learning-based HT-mitigation

mechanism for efficient HT-isolation. We imple-

ment a bypass channel and a per-router Smart-

Route controller to dynamically route high-

security packets without traversing HT-infected

September/October 2020 59
Authorized licensed use limited to: The George Washington University. Downloaded on May 19,2021 at 20:35:33 UTC from IEEE Xplore. Restrictions apply.

components and utilize the bypassed routers to

propagate low-security packets without degrad-

ing network performance. There is no need to

restrict the transmission paths of the low-secu-

rity packets, since they are already HT-infected.

When isolating HT-infected routers with

bypass channels, the simple switch logic of the

bypass channel could limit the throughput of

given path directions. TSA-NoC addresses this

problem by intelligently balancing traffic-loads

with various routing algorithms (O1TURN, West-

First, and Negative-First) using a SmartRoute con-

troller. The rationale behind this design is two-

fold: 1) avoid injecting into bypass channels and

2) optimize the worst case throughput of different

NoC traffic patterns.10 The O1TURN routing

dynamically applies XY or YX routing for each

packet to better utilize the network spatially under

normal traffic loads. West-First and Negative-First

restrict different types of turns and achieve lower

latency and less dynamic power consumption

than O1TURN under intense traffic loads.10 Note

that the TSA-NoC router has multiple virtual chan-

nels to avoid protocol and routing deadlocks.

Since the HT-detection results from Detec-

tANN vary periodically during runtime, selecting

the most suitable routing algorithm that can han-

dle the dynamic interactions between diverse

traffic patterns and limited NoC resources is

complex. Therefore, we propose the use of DRL

to automatically balance the tradeoffs among

the different routing algorithms to achieve bet-

ter system-level performance for high-security

and low-security packets.

DRL-Based Control Policy. The adaptive routing

algorithm is applied iteratively to avoid the timing

overhead incurred by NoC reconfiguration and

packet draining. The length of each iteration

(epoch) is identical to that of DetectANN. At each

epoch, the DRL-based SmartRoute controllermoni-

tors NoC attributes and suggests an action (apply-

ing one of the routing algorithms) with the highest

expected long-term return11 in terms of network

performance and energy efficiency. The network

attributes will change with the action selection,

resulting in a new state at the next epoch. The

changes in performance and energy metrics are

evaluated to update the reward accordingly. The

DRL-based control policy continues to evolve

based on the NoC historical activities and

generates a direct map between the optimal action

and a given state. The problem formulation is as

follows.

State and Action Space. We select a set of net-

work-related attributes to represent the state

vector s for SmartRoute, which include the 12

attributes used in DetectANN, local router label

(HT-free or HT-infected), and packet injection rates

of different network dimensions. The action space

{a1; a2; a3} comprises three routing algorithms:

O1TURN,West-First, andNegative-First.

Reward Function. The goal of the DRL agent is

to select actions that can maximize the long-term

return R for any given state. In SmartRoute, we

use Q-learning11 to estimate the expected long-

term return for each state-action pair, recorded as

R ¼ Qðs; aÞ. At each epoch, the agent selects the

action with the highest Qðs; aÞ. Next, it observes
the immediate reward r and the new state s0. The
Qðs; aÞ value is updated using the following rule:

Qðs; aÞ ¼ ð1� aÞQðs; aÞ þ a½rþ gmax
a0

Qðs;0 a0Þ�:
(1)

The variables a and g are DRL parameters

called learning rate and discount rate, respec-

tively. The immediate reward r impliesminimizing

the latency and power consumption. Therefore,

we define the immediate reward rt in (1) at epoch

t as follows:

rt ¼ ðPowert � LatencytÞ�1
(2)

The Latencyt and Powert values are obtained

by average end-to-end latency and power con-

sumption (static and dynamic), respectively.

The DRL agents select actions according to

the Q-table. To eliminate storing overheads, the

Q-table in conventional RL is replaced with a

neural network.

The working of the DRL of SmartRoute con-

troller is shown in Figure 3. At each epoch, the

router first uses the feature values in the state

vector s as inputs of the expanded ANN. The

ANN then calculates the Q-values of all the possi-

ble state-action pairs in the state entry. The

router suggests an action a, which has the maxi-

mum Qðs; aÞ-value for the next epoch. All routers

vote with their selected actions for packets that

require HT-free transmission paths, and the rout-

ing algorithm with the highest score is selected.

Machine Learning for Systems

60 IEEE Micro

Authorized licensed use limited to: The George Washington University. Downloaded on May 19,2021 at 20:35:33 UTC from IEEE Xplore. Restrictions apply.

Upon taking the action a, the NoC system transi-

tions to a new state s’. The NoC system then pro-

vides an immediate reward r, which is used to

update Qðs; aÞ. We implement a five-cycle win-

dow between two consecutive epochs to inform

routers of the upcoming actions and store on-

the-fly flits in router buffers.

EVALUATION AND ANALYSIS

Simulation Setup

We implement the proposed TSA-NoC architec-

ture in the Gem5 full-system simulator. We imple-

ment 64 out-of-order CPUs with 2-level cache in an

8 � 8 2D-mesh network. Additionally, we imple-

ment a runtime error injection module consisting

of NoC fault and thermalmodels (DSENT, HotSpot,

and VARIUS) to realistically simulate transient

errors. We compare the performance of TSA-NoC

(DetectANN+SmartRoute) with three techniques,

namely FHL+SurfNoC, DetectANN+SurfNoC, and

DetectANN+NIBR, with the PARSEC benchmark.

We train the DetectANN and SmartRoute with a

semi-real dataset generated with synthetic traffic

and part of PARSEC benchmark applications

(dedup, facesim, freqmine, and swaption). The

rest of real applications in PARSEC benchmark are

used in the testing phase.

Before executing each benchmark application,

we randomly select 10% of the total transmission

links in the NoC and implant HTs in them for run-

time fault injection. The testing phase of each

application lasts for the entire application execu-

tion time. The area overhead of TSA-NoC is evalu-

ated using the Synopsys design compiler with the

32-nm library.

For DetectANN and SmartRoute, we set the

epoch size to 2000 cycles. The Q-values are ini-

tialized to 0. The learning rate a and the discount

rate g are set to 0.1 and 0.9, respectively. Addi-

tionally, the DRL agents have a small probability

of � = 0.05 to select a random action for exploring

unvisited state–action pairs.

Performance Analysis

Average Network Latency: Figure 4(a) shows

the normalized average end-to-end packet latency

of all the transmitted packets. TSA-NoC achieves

an average of 29% end-to-end latency reduction

over the baseline. Note that the proposed TSA-

NoC using SmartRoute can improve upon Detec-

tANN+SurfNoCby an additional 13% over baseline.

This illustrates that DRL-based dynamic routing

can further improve overall network latency.

Power Consumption: We evaluate static

and dynamic power consumption for all the

techniques used. For TSA-NoC, the power con-

sumption of the learning-based TSA-router (with

DetectANN and SmartRoute), intermediate links,

and bypass channels are included. We first model

the static power of all components with Synopsys

Design Compiler. Afterward, the captured power

Figure 3.Working of DRL of SmartRoute.

Figure 4. Simulation results of the proposed

TSA-NoC: (a) average end-to-end latency,

(b) average power consumption, and (c) average

energy efficiency. Results are normalized to the

FHL+SurfNoC baseline.

September/October 2020 61
Authorized licensed use limited to: The George Washington University. Downloaded on May 19,2021 at 20:35:33 UTC from IEEE Xplore. Restrictions apply.

parameters are fed to the full-system simulator for

accurate dynamic power simulation. Figure 4(b)

shows that TSA-NoC reduces overall power con-

sumption by an average of 18% over the baseline.

The majority of power saving is from dynamic

power reduction.

Energy Efficiency: Energy efficiency is defined

as: packets�energy�1, where energy equals overall

power consumption (of all NoC components, the

proposed DetectANN, and SmartRoute) multiplies

benchmark execution time. Figure 4(c) shows that

the proposed framework improves energy effi-

ciency by an average of 70% compared to baseline.

HT-Detection Accuracy: The HT-detection accu-

racy is calculated with the ratio of the number of

identified HTs to the total number of implanted

HTs within a full execution of each benchmark. In

this simulation, we vary the middle layer size of

DetectANN. The DetectANN is trainedwith random

distributed HT-generated bit-flips, while in the test-

ing phase, the HT-generated bit-flips follow three

different distributions: normal, uniform, andPois-

son distribution. Figure 5(a) shows that, for all

distributions, the proposed DetectANN improves

HT-detection accuracy by 39% on average over the

FHL baseline, with 30 neurons in themiddle layer.

Sensitivity Analysis

Impact of Middle Layer Size of DetectANN: We

vary the size of the middle layer to study its

impact on HT-detection accuracy in Figure 5(a).

The HT-detection accuracy improves as the size

of the middle layer increases. For the best accu-

racy, area consumption, and timing overhead,

we use 30 neurons in the middle layer.

Impact of Epoch Size of DRL: In this test, we

vary the length of DRL epoch from 1000 to

10 000 clock cycles. As shown in Figure 5(b),

increasing the epoch size negatively impacts

network latency and energy-delay product

(EDP) due to coarse-grain control (lower net-

work latency and EDP indicate better perfor-

mance). Alternatively, aggressively reducing

the length of epochs also leads to performance

degradation, as the timing overhead of DRL

would be notable.

Impact of Discount Rate g of DRL: Figure 5(c)

depicts the impact of the discount rate g on net-

work performance. As shown in Figure 5(c), both

network latency and EDP are initially improved

with larger g. However, aggressively increasing g

can also result in slow DRL convergence, which

leads to performance degradation. The best per-

formance is achievedwhen g equals 0.9.

Impact of Exploration Factor � of DRL: The

impact of � on network performance is shown in

Figure 5(d). As � increases, the agent explores

unvisited state-action pairsmore frequently, which

is beneficial for training DRL. However, when �

equals 1, the router will take actions completely at

random. As shown in Figure 5(d), the best perfor-

mance is achievedwhen � equals 0.05.

Overhead Analysis

Timing Overhead: The timing overhead is

induced by calculating and updating the weights

for DetectANN and SmartRoute. In the worst case,

for each epoch, the computation overheads are 90

and 150 cycles for DetectANN and SmartRoute,

respectively. We use two sets of different epochs

for themonitoring and controlling tominimize the

negative effect of this latency. The two sets of

epochs are offset by the ANN computation time,

which can pipeline the overhead effectively. By

doing so, the calculation of ANNs does not block

monitoring or controlling. Therefore, the use of

ANN does not negatively impact the overall

performance.

Area and Power Overhead: The proposed

DetectANN and Smart-Route require additional

ALUs (adders, multipliers, and Sigmoid function)

and SRAM storage in each router. The proposed

DetectANN consumes additional 425.2-mm2 area

for ALUs and 718.7-mm2 area for SRAM, incurring

0.9% area overhead over a conventional router

Figure 5. Sensitivity study: (a) HT-detection

accuracy, (b) epoch size, (c) discount rate g, and

(d) �-greedy factor.

Machine Learning for Systems

62 IEEE Micro

Authorized licensed use limited to: The George Washington University. Downloaded on May 19,2021 at 20:35:33 UTC from IEEE Xplore. Restrictions apply.

in total. The DRL logics consume 956.7-mm2 ALU

area and 1617.2-mm2 SRAM area, which implies

2.1% area overhead. Furthermore, the power

overheads of DetectANN and DRL are 0.086 and

0.195 MW, respectively.

CONCLUSIONS
In this article, we proposedTSA-NoC, a learning-

enabled, high-performance, and energy-efficient

design framework for secure on-chip communica-

tion. The TSA-NoC consists of an ANN-based HT-

detection design (DetectANN) and a DRL-based

adaptive routing mechanism (SmartRoute). The

proposed DetectANN detects HT-infected NoC

components promptly and accurately at runtime.

SmartRoute isolates the HT-infected components

and deploys dynamic routing algorithms to opti-

mize system-level performance. Full-systemevalua-

tions show that TSA-NoC improves HT-detection

accuracy, network latency, and energy efficiency

over existing techniques.

ACKNOWLEDGMENTS
This work was supported by NSF under

Grants CCF-1547035 and CCF-1702980.

& REFERENCES

1. H. Wassel et al., “Networks on chip with provable

security properties,” IEEE Micro, vol. 34, no. 3,

pp. 57–68, May/Jun. 2014.

2. T. Boraten and A. K. Kodi, “Securing NoCs against

timing attacks with non-interference based adaptive

routing,” in Proc. 12th IEEE/ACM Int. Symp.

Network-on-Chip, 2018, pp. 1–8.

3. H. Wassel et al., “SurfNoC: A low latency and provably

non-interfering approach to secure networks-on-chip,”

in Proc. 40th Annu. Int. Symp. Comput. Archit., 2013,

pp. 583–594.

4. M. Tehranipoor and F. Koushanfar, “A survey of

hardware trojan taxonomy and detection,” IEEEDes.

Test Comput., vol. 27, no. 1, pp. 10–25, Jan./Feb. 2010.

5. D. M. Ancajas, K. Chakraborty, and S. Roy, “Fort-NoCs:

Mitigating the threat of a compromisedNoC,” inProc.

51st ACM/EDAC/IEEEDes. Autom. Conf., 2014, pp. 1–6.

6. K. Xiao and M. Tehranipoor, “BISA: Built-in self-

authentication for preventing hardware Trojan

insertion,” in Proc. IEEE Int. Symp. Hardware-Oriented

Secur. Trust, 2013, pp. 45–50.

7. H. Salmani, “COTD: Reference-free hardware trojan

detection and recovery based on controllability and

observability in gate-level netlist,” IEEE Trans. Inf.

Forensics Secur., vol. 12, no. 2, pp. 338–350, Feb.

2017.

8. K. Wang et al., “IntelliNoC: A holistic design

framework for energy-efficient and reliable on-chip

communication for manycores,” in Proc. 46th Annu.

Int. Symp. Comput. Archit., 2019, pp. 1–12.

9. Q. Yu and J. Frey, “Exploiting error control approaches

for hardware Trojans on network-on-chip links,” in

Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI

Nanotechnol. Syst., 2013, pp. 266–271.

10. A. Singh. “Load-balanced routing in interconnection

networks,” Ph.D. thesis, Stanford Univ., Stanford, CA,

USA, 2005.

11. R. Sutton et al., Reinforcement Learning: An

Introduction. Cambridge, MA, USA: MIT Press, 2018.

KeWang is currentlyworking toward thePh.D. degree

in computer engineering with George Washington Uni-

versity. His research work focuses on high-perfor-

mance, energy-efficient, and reliable interconnect

designs using machine learning-based optimization.

Contact him at cory@gwu.edu.

Hao Zheng is currently working toward the Ph.D.

degree in computer engineering with GeorgeWashing-

ton University. His research interests are in the areas of

computer architecture and parallel computing, with

emphasis on on-chip interconnects. Contact him at

haozheng@gwu.edu.

Ahmed Louri is currently the David and Marilyn

Karlgaard Endowed Chair Professor of Electrical and

Computer Engineering with George Washington Uni-

versity. Louri received the Ph.D. degree in computer

engineering from the University of Southern California

in 1988. He conducts research in the broad area of

computer architecture and parallel computing. He is

a Fellow of IEEE, and currently serves as the Editor-

in-Chief of the IEEE TRANSACTIONS ON COMPUTERS. Con-

tact him at louri@gwu.edu.

September/October 2020 63
Authorized licensed use limited to: The George Washington University. Downloaded on May 19,2021 at 20:35:33 UTC from IEEE Xplore. Restrictions apply.

