A GEOMETRIC CONSTRUCTION OF SEMISTABLE EXTENSIONS OF
CRYSTALLINE REPRESENTATIONS

MARTIN OLSSON

ABSTRACT. We study unipotent fundamental groups for open varieties over p-adic fields
with base point degenerating to the boundary. In particular, we show that the Galois repre-
sentations associated to the étale unipotent fundamental group are semistable.

1. INTRODUCTION

1.1. The purpose of this paper is to explain how p-adic Hodge theory for the unipotent
fundamental group provides examples of extensions of crystalline representations which are
semistable but not crystalline, and where the monodromy operator has a clear geometric
intepretation.

We will use a p-adic analogue of the following construction in the complex analytic situation.
Let X /C be a smooth proper scheme, let D c X be a divisor with normal crossings, and let
X° denote X — D. Let x € D(C) be a point of D. Set

A:={zeC:|z| <1},

and let A* denote A - {0}. Choose a holomorphic map 6 : A - X, sending 0 to x, and such
that 6-1(X°) = A*. This defines a holomorphic family of pointed complex analytic varieties

Xan x A*

Sxid < lpr?

A*

and we can consider the assignment that sends a point y € A* to the group m(X2,,0(y)).
Using for example the universal cover of A* one sees that these fundamental groups of the
fibers form a local system on A*. If y € A* is a point then the corresponding representation

Z ~ 7T1(A*) g AUt(ﬂ_l(X;m 6(y)))

is given by sending the generator 1 € Z to conjugation by the image under §, : m(A*,y) —
T (X2, 0(y)) of 1 € Z ~m(A*,y).

1.2. We will consider this construction in the p-adic context replacing A* by a p-adic field,
and using p-adic Hodge theory for the fundamental group developed by Shiho and others.
The technical differential graded algebra ingredients come from our earlier study of p-adic
Hodge theory for the fundamental group in [17]. Let us review the main result of that paper,
in the simplest case of constant coefficients.

Let p be a prime, and k a perfect field of characteristic p. Let V' denote the ring of Witt

vectors of k and let K be the field of fractions of V. Fix an algebraic closure K < K. The ring
1
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V' comes equipped with a lift of Frobenius o : V — V', which also induces an automorphism
of K, which we denote by the same letter.

Let X/V be a smooth proper scheme, and let D c¢ X be a divisor with normal crossings
relative to V. Denote by X° c X the complement of D in X, and by Xg, X7, etc., the generic
fibers. Let My denote the log structure on X defined by D. For any point x € X°(V'), we
can then consider various realizations of the unipotent completion of the fundamental group
of X7

Etale realization mi*(X+-, v ): This is the Tannaka dual of the category of unipotent étale

Qp-local systems on the geometric generic fiber of X°. The group wft(X%, Tg) IS a pro-

unipotent group scheme over Q, with action of the Galois group G of K over K.

De Rham realization w8 (X3, x): This is the Tannaka dual of the category of unipotent
modules with integrable conection on X3./K. It is a pro-unipotent group scheme over K.

Crystalline realization m""*(X;, x): This is the Tannaka dual of the category of unipotent

log isocrystals on (X, Mx,) over V. It is a pro-unipotent group scheme over K with a
semi-linear Frobenius automorphism ¢.

The main result of [17] in the present situation is then that there is a canonical isomorphism
of group schemes

™' (X k) ®g, Baris (V) = 1™ (X}, ) @k Bais(V),

compatible with the Galois and Frobenius automorphisms. Here B;s(V') denotes Fontaine’s
ring of crystalline periods. This implies in particular that the coordinate ring Oret(xo ;) Is a
K7

direct limit of crystalline representations (see [17, Theorem D.3]). There is also a comparison
isomorphism between 77”* (X7, z) and 7{® (X5, x).

1.3. The goal of the present paper is to explain what happens in the case when the base
point xx € X°(K') specializes to a point of the boundary D in the closed fiber. In this case
T ( X+ v ) and TR (X% 2 ) still make sense with no modification. We explain in this paper
how to make sense of 71*( X7, x) in this setting, and in particular that the coordinate ring of
this group scheme now carries a monodromy operator. After introducing these constructions

we show the following result.

Theorem 1.4. Let By (V') denote Fontaine’s ring of semistable periods. Then there is a
canonical isomorphism of group schemes over Bg (V')

(1.4.1) Wft(X%, Ti) ®g, Bt (V) 2 n17* (X}, 2) @k B (V),

compatible with Galois actions, Frobenius, and monodromy operators. Moreover, the coordi-
nate ring ﬁﬂit( Xz 18 a direct limit of semistable representations.
K

Remark 1.5. We also discuss a more general result about torsors of paths between two
points.

1.6. Since Wft(X%, T ) is a pro-unipotent group scheme, we can write it canonically as a
projective limit (using the derived series)

W(ft(X%,ajK) = Liilﬂ'ft(X%, LEK)N,
N
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where W‘ft(X%, Tk )o is the abelianization, which is isomorphic to H 1(X%, Q,)Y, and such that
the map
T (X vk )N = 1 (X T ) N1
is surjective with abelian kernel. We have a similar description on the crystalline side
m (X ) = Im (X @)y
N
and the isomorphism (1.4.1) induces isomorphisms for all N

™ (X )N ®g, Ba(V) 2 m™(XZ, )y @k B (V).

Passing to Lie algebras this gives examples of finite dimensional semistable extensions which
admit a filtration whose successive quotients are crystalline.

Remark 1.7. In this paper we consider only the unramified case of varieties over the ring of
Witt vectors rather than over a possibly ramified extension. We expect that similar techniques
should yield analogous results in the ramified case, but this requires additional foundational
work (in particular the setting of [17] is in the unramified case).

The paper is organized as follows. Sections 2, 3, and 4 are devoted to the foundational
aspects of defining the monodromy operator on the crystalline fundamental group in our
setting, and to explaining the Hyodo-Kato isomorphism for fundamental groups. In section
5 we discuss the comparison between de Rham and crystalline fundamental groups. Much
of this material can already be extracted from Shiho’s work [22]. In section 6 we review
the necessary facts about semistable representations that we need, and discuss an equivalent
variant of 1.4, which in fact is the result that we prove. The proof is based on various
techniques using differential graded algebras and the methods of [17]. Section 8 contains
some background material on differential graded algebras, and the proof of the main theorem
is given in section 9. Finally the last two sections are devoted to the example of fundamental
groups of punctured curves, and in particular the projective line minus three points.

Remark 1.8. Related to the work in this paper is the work of Andreatta, lovita, and Kim
[2] characterizing good reduction of curves in terms of the crystalline fundamental group.

1.9. (Conventions). We freely use the formalism of Tannkian categories as developed in
[5] and [21]. Let K be a field of characteristic 0. Then a Tannakian category is a K-linear
abelian tensor category T satisfying various properties (see [5, §2]). For such a category T
and K-scheme S a fiber functor from 7 to the category Qcoh(S) of quasi-coherent sheaves
on S is an exact K-linear tensor functor

w: T = Qcoh(S).

One of the axioms for a tensor category to be Tannakian is that there exists a fiber functor
for some S # @ [5, 2.8]. As explained in [5, 2.7] such a functor automatically takes values in
locally free sheaves of finite rank on S.

For a fiber functor w : T — Qcoh(S) and a morphism f : T — S the composition of w
with f*: Qcoh(S) - Qcoh(T) is again a fiber functor, denoted f*w. For two fiber functors
wi,we : T = Qcoh(S) denote by 7(7T,wi,ws) the functor on S-schemes sending f: 7 — S to
the set of isomorphisms f*w; ~ f*wsy of fiber functors 7 — Qcoh(T"). By [5, 6.6] the functor
(T ,wi,ws) is representable by an affine scheme over S. In what follows we somewhat
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abusively use the same notation for this functor and the scheme that represents it. For a
fiber functor w: 7T — Qcoh(S) we write m(7,w) for the group scheme 7(7,w,w).

The crystalline site for log schemes was defined in [13], and the theory was further developed
to included bases a formal log scheme in [22, §4]. We refer to these articles for the basic
definitions of log crystalline cohomology.

1.10. (Acknowledgements) I am grateful to Brian Conrad for helpful correspondence, and
Ishai Dan-Cohen for stimulating conversations. I also want to thank the referee who provided
many useful comments and corrections which greatly improved the paper. This paper was
written over a span of several years during which the author was partially supported by NSF
grants DMS-1303173 and DMS-1601940 and a grant from The Simons Foundation.

2. UNIPOTENT ISOCRYSTALS ON THE LOG POINT

2.1. Let k£ be a perfect field with ring of Witt vectors V. Let M} be the log structure on

Spec(k) associated to the map N — k sending all nonzero elements to 0 (so M}, ~ ﬁs*pec(k) oN).

Let .# denote the category on unipotent isocrystals on (Spec(k), M)/ K, where K denotes
the field of fractions of V.

2.2. Let Modg(N) denote the category of pairs (M, N), where M is a finite dimensional
vector space over K, and N : M — M is an endomorphism. We let Mod}' (N) ¢ Modg (N)
denote the full subcategory of pairs (M, N') for which there exists an N-stable filtration

O=F"cF'lc..cFlcF'=M
such that the endomorphism of F?/F*! induced by N is zero for all i.
2.3. There is a functor
(2.3.1) Mo : & = Mody(N)
defined as follows. Let Ly denote the log structure on Spf(V') induced by the map N - V
sending 1 to 0. The natural closed immersion

(Spec(k), Mi) = (Spf(V'), Lv)

defines an object of the crystalline topos of (Spec(k), My)/V, which we denote by T

If E is an isocrystal on (Spec(k), M)/V we can evaluate E on T to get a K-vector space,
which we denote by &. The crystal structure on E induces an endomorphism Ny : & — &
as follows.

Consider the ring of dual numbers V[e] (so we have €2 = 0, but we suppress this from the
notation), and let Ly denote the log structure on Spf(V[e]) induced by pulling back Ly
along the morphism

p+Spf(Vle]) - Spf(V)

induced by the unique map of V-algebras

So we have
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There is an automorphism ¢ of Ly defined by the map
N= O ©N, 10 (1+61).

Define p} : p*Ly — Ly[q to be the natural map (by definition p*Ly = Lyq and under this
identification p8 is the identity map), and let pj := ¢ o p®. Define

Di- (Spf(v[e])vLV[e]) - (Spf(V),Lv), L= 17 27

to be (p,p?).
Setting € to 0 defines a closed immersion of log schemes

and we obtain a commutative diagram
(2.3.3) (Spec(k), My,)

7

(SPE(V), Ly )= (Spf(V[e]). Lypq)
]
(Spf(V), Lv)
The crystal structure on E therefore defines an isomorphism
o :p3€ = pio,
which reduces to the identity modulo €. Such an isomorphism is simply a map
(2.3.4) 0:& @k K[e] » & @k K[e]

reducing to the identity modulo e. Giving such a map o is equivalent to giving an endomor-
phism Ny : & — &. Indeed, given o we define Ny by the formula

0'(33,0) =.T+N0(l‘)'6650@50'625()@]([([6].
Note also that if E is unipotent then (&, Ny) € Mody' (N). We therefore get the functor 7
by sending E to (&, No).

Remark 2.4. The category Mody (N) is Tannakian with fiber functor the forgetful functor
to Veck. As discussed for example in [21, Chapitre IV, §2.5] the Tannaka dual group is
isomorphic to G,. If (A, N) is an object of Mod}' (N') then the corresponding action of G,
on A is characterized by the element 1 € G, acting by exp(N).

2.5. The category .# can be described explicitly using modules with connection. Consider
the surjection V[t] - V sending ¢ to 0, and let V() denote the p-adically completed divided
power envelope of the composite map

V[t] -V > k.
We write K (t) for V(t)[1/p]. Let My 4y denote the log structure on Spf(V(t)) induced by the

map N - V(t) sending 1 to t. We then have a strict closed immersion

i (SpE(V), Ly) = (SpE(V(t)), My )
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obtained by setting ¢ = 0. For an isocrystal £ on (Spec(k), My)/K let Eyy denote the value
on

(Spec(k), My) = (SpE(V(t)), My ),
which is a free K(t)-module of finite rank. Furthermore, we have a canonical isomorphism
Evity ®K(t),mm0 K = &y,
induced by the closed immersion i.

Remark 2.6. Note that V() can also be viewed as the p-adically completed divided power
envelope of the surjection V[t] - k sending ¢ to 0. This follows from [13, 5.5.1] and [3, 3.20
Remarks (1)].

2.7. There is a differential
d: K(t) > K(t)dlog(t)
sending ¢4 to dtlddlog(t). If M is a K(t)-module, we define a connection on M to be a
K-linear map
V:M - M -dlog(t)
satisfying the Leibnitz rule
v(fm) = (df)-m+ fv(m).
Define Mod (V) to be the category of pairs (M, V), where M is a finitely generated free
K(t)-module and V is a connection on M. Define Mody,, (V) ¢ Modgy(V) to be the
full subcategory of pairs (M, V) for which there exists a finite V-stable filtration by K(t)-
submodules
O=F'cFrlc..cF'=M
such that each successive quotient F'/Fi*! is isomorphic to a finite direct sum of copies of
(K(t), d).
Let J c K(t) denote the kernel of the surjection
K(t) - K, t~0.

Note that for any K (t)-module M with connection V, the connection V induces a K-linear
map

Vo:M/JM - M|]JM,
characterized by the condition that for any m € M we have Vo(m) - dlog(t) equal to the
reduction of V(m). It follows from the construction that we get a functor

IT: Modgy (V) = Mody' (N).

2.8. Now by the standard correspondence between isocrystals and modules with integrable
connection (see for example [13, 6.2]), evaluation on

(Spf(V(£)), My )
defines an equivalence of categories
My S = MOd%n(t)(V)-
Furthermore, the composite II o 7y is the functor 7.
There is also a functor
(2.8.1) Mod' (V) = Modg,y (V)
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defined by sending an object (A, N') € Mody' (N) to the object (M, V) € Mod},,(V) obtained
by setting M = A®x K (t), and defining V to be the unique connection sending a®1 € A®x K (t)
to (N(a) ® 1) -dlog(t).

2.9. If one incorporates also Frobenius then the functor II becomes an equivalence. This is
a consequence of the so-called Hyodo-Kato isomorphism [11, 4.13] (see also [18, Chapter 5]).

Let Mody (¢, N) denote the category of triples (A, N, p4), where (A, N) € Mody' (N) and
pa:0*A — Ais an isomorphism of K-vector spaces such that

ppao N =Nogpy.

The ring V(¢) has a lifting of Frobenius given by o on V" and the map ¢ — t?. We denote this
map by oy, and the induced map on K (t) by o). Let F'=Modj;, (V) denote the category
of triples (M, V, ) consisting of an object (M, V) € Mody (V) and an isomorphism

YMm - U;{(t)(M7 V) e (M7 V)
n MOd}l(n“)(V)

Finally let F' - .# denote the category of F-isocrystals on (Spec(k), My)/K for which the
underlying isocrystal is unipotent.

The previously defined functors then extend to give functors

70

/ﬁv(”/—\

(2.9.1) F - % —=F - Mod}y (V) —— Modj (¢, ).
Proposition 2.10. All the functors in (2.9.1) are equivalences.

Proof. The statement that the functor labelled 7y is an equivalence follows from the cor-
responding statement without the Frobenius structure. It therefore suffices to show that the
functor II in (2.9.1) is an equivalence. This essentially follows from [18, 5.3.24], though some
care has to be taken since loc. cit. gives a statement for a certain category F — Isoc(V(t))
whose underlying modules with connection are in a quotient category Isoc(V(t))g rather than
Modg (V) (see [18, 5.3.20] for the notation). Let F'—Isoc™(V(t)) denote the subcategory of
F —TIsoc(V(t)) whose underlying object in Isoc(V(t))q is a successive extension of the trivial
object. We then have a commutative diagram of functors similar to (2.9.1)

C

/—\

F —TIsoc™(V(t)) — F - Modji;y (V) — Mody' (¢, N)

where the composition ¢ is an equivalence of categories by [18, 5.3.24] and every object of
F' = Modg (V) is in the essential image of a (see [18, 5.3.25]). It therefore suffices to show
that for two objects M, N € F' = Mod,(V) the map

HomF—ModUKn(t)(V)(Ma N) - HomModuKn(%N)(H(M)v H(N))

is injective. This follows from the analogous statement for the category Mod},, (V) of unipo-
tent objects in Mod g ;y(V), which in turn follows from the analogous standard result over the
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power-series ring K[[t]], which can be proven as follows. If (E,Vg) and (F, V) are unipo-
tent modules with integrable log connection over K[[t]], then the set of horizontal maps
between them is given by (EV® F')Vever and therefore it suffices to show that for a unipotent
module with integrable log connection (F,V) the map

EV - E[tE
is injective. Furthermore, if
0- (E,7VE’) - (E7 VE) d (E”,VEH) -0

is a short exact sequence of unipotent modules with integrable log connection over K{[t]]
then we have a commutative diagram

0—— F'Ver — s~ FVE — s [!'VEn
O
00— F'[tE' — E[tE —— E" [tE" — 0,
and a diagram chase implies that if a and ¢ are injective then b is injective. Since every unipo-
tent module with integrable connection over K[[t]] admits a finite filtration with successive

quotients trivial modules with connection we are then reduced to showing that K[[¢]]¢™0 is
equal to the constants K, which is immediate since K has characteristic 0. Il

Remark 2.11. An inverse to the functor IT is given by sending (A, N, ) to the object of
F—~Modg,(V) given by the the pair (M, V) defined by the functor (2.8.1) together with the
Frobenius structure ¢,; given by the isomorphism

TreyM = (07 A) @ K(t) =~ Ay K(t) = M.

Indeed there is a natural isomorphism IT(M, V, ¢y ) ~ (A, N, ¢), and since II is an equivalence
this implies that the functor given by (A, N,¢) — (M, V, ) is a quasi-inverse for II.

3. THE MONODROMY OPERATOR ON ™"
3.1. Let X/V, D c X, and X° c X be as in the introduction, and let x; € X°(K) be a point.
Let Mx denote the fine log structure on X defined by D.
Since X /V is proper, the point zx extends uniquely to a point
x:Spec(V) - X,
and in fact uniquely to a morphism of log schemes
z: (Spec(V), My) — (X, Mx),
where My is the log structure on V associated to the chart N — V sending 1 to p.

3.2. Let (Xj, My, ) denote the reduction modulo p of (X, Mx). Note that the reduction
modulo p of (Spec(V'), My ) is the log point as discussed in section 2.

Let €°¥vs denote the category of unipotent log isocrystals on (X, Mx, )/K. As discussed
in [22, 4.1.4] this is a Tannakian category over K. The point

Y- (Spec(k), Mk) - (Xk” MXk)7



SEMISTABLE EXTENSIONS 9

obtained by reduction from x, defines a functor
y i EY > I,
where .# is defined as in 2.1. Composing with the functor 7y (2.3.1), we get a functor
@y 1 €Y > Mod g (N).
By further composing with the forgetful functor
Mody' (N) — Vecy,

we obtain a functor
crys | Crys
Wyt EY® - Veck.

rys

Proposition 3.3. The functor wy™® is a fiber functor.

Proof. This follows from [17, 8.11]. O
3.4. Let m""*(X7y,, z) denote the Tannaka dual of the category €¥s with respect to the fiber

functor wy™®. This is a pro-unipotent group scheme over K.
It has a Frobenius automorphism defined as follows. First note that there is a commutative

diagram

A

(Spec(k), M) —= (Spec(k), My,)
) |
Fy
(Xk‘aMXk) (Xk‘aMXk)7

where the horizontal arrows are the Frobenius endomorphisms. We therefore have a 2-
commutative diagram

*

(34 ].) & erys Xk; g crys
Ly* ly*
Fy
54 g

It follows for example from [17, 4.26] that the horizontal functors are equivalences of cat-
egories. Since the formal log scheme (Spf(V'), Ly ) also has a lifting of Frobenius given by
o 'V - V and multiplication by p on Ly, there is a natural isomorphism between the
composite functor

forget

Fl: 7o un
I ——= F —— Mod@'(N) — Modk,
and the composite functor

forget (H)®K, K

7 Modi® (N) 2 Mod g 2 Mod.
We therefore obtain an isomorphism of functors
wy o % 2wy @K, K.
This defines an isomorphism of group schemes over K
oy (X x) Ok e K = 1 (X}, x),

which we refer to as the Frobenius endomorphism of m""* (X5, ).
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3.5. There is also a monodromy operator on 7;"** (X5, z) defined as follows. Asin 2.3 let V€]
denote the ring of dual numbers over V. Then the monodromy operator will, by definition,
be an isomorphism of group schemes over V[e]

N (XR w) @ Ke] = m (X, o) @k Ke]

whose reduction modulo € is the identity. Note that, by the discussion in 2.3 such an isomor-
phism is specified by a K-linear map

(351) N : ﬁwirys(Xz,a:) — ﬁﬂ?ys(){z,x)'

The isomorphism .4 is constructed as follows. Let
Kiq ¥ > Modgiq
be the functor evaluating an isocrystal on the object (2.3.2). We then get a fiber functor
Wy * €Y - Modg|q
by taking the composite
govs Lo 7 M Modga,
and we can consider the corresponding Tannaka dual group
T (%, wyrg).
The diagram (2.3.3) induces two isomorphisms of functors
(3.5.2) a;twy O Kle] > wyrg, 1=1,2,

which in turn induce an automorphism of group schemes

(3.5.3) T (XY, x) ®K Ke] = 1 (s, wv[e]) — w‘frys( ,T) @ K[e].
We define the monodromy operator .4#” to be this composite.

3.6. More generally, given x; x € X°(K) for i = 1,2, we get two points
x; : (Spec(V), My) - (X, My),
and reductions y;. Let
CI‘yS(Xk,xl, :CZ)
denote the functor of isomorphisms of fiber functors between the resulting two functors
Wyt € - Vecg.

Then 7e¥s(X7,21,22) is a torsor under the group scheme 77""*(X;,x1) and by a similar
construction to the one in 3.4 and 3.5 comes equipped with a Frobenius automorphism and
monodromy operator.

Remark 3.7. By the general theory of unipotent group schemes the functor taking Lie
algebras induces an equivalence of categories between the category of unipotent group schemes
over K and the category of nilpotent Lie algebras over K. The inverse functor is given by
sending a Lie algebra L to the scheme IL corresponding to L with group structure given by the
Campbell-Hausdorf series. One consequence of this is that the coordinate ring of =7™*( X7, z)
is canonically isomorphic to the symmetric algebra on the dual of Lie(n]”*(Xp,z)). In
particular, the monodromy operator is determined by its action on the Lie algebra.
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Remark 3.8. Elaborating further on remark 3.7, if U is a unipotent group scheme over K
with Lie algebra L then from above we have a canonical identification of the coordinate ring
Oy ~ Sym*®L. There is a variant of this description of the coordinate ring for torsors. Let
P be a torsor under U and let &p denote the coordinate ring of P. The action of U on P
induces an action of U on 0p making &p an (infinite-dimensional) representation of U. Since
U is unipotent this action defines a filtration

Fyckic-F,c--cOp

defined inductively by setting Fy = Op and F,, = (Op/F,-1)V. Then each F, is finite dimen-
sional over K and Op = U, F,,. Indeed a torsor under U over K is necessarily trivial and these
assertions can be verified after choosing a trivialization. The algebra structure is given by
maps of U-representations

Fn ® Fm - Fn+m-
This enables us to describe torsors under U purely in terms of finite-dimensional data.
Remark 3.9. A reformulation of the above construction of the monodromy operator is the

following. The isomorphisms (2.3.4) define an automorphism of the fiber functor wy”*® j K[€],
and therefore an element

a € Lie(m]" (X}, z)) = Ker(n] (X7, ) (K[€]) = 7 (X}, 2) (K)).
We claim that the isomorphism (3.5.3) is given by conjugation by «a.

This follows from the general Tannakian formalism as follows. The map «a; in (3.5.2) is
given, in terms of automorphisms of fiber functors, by the map

Aut®(wy™) 8k K[e] = m™"* (X}, 2) @k K[e] = Aut®(wypq) = m1 (€, wypq)
defined functorially by associating to a scheme f : T — Spec(K[e]) with underlying morphism
fo: T — Spec(K) and automorphism g of fjwg™" the automorphism «;(g) given by

ai(g) = ffaiogo fra;.
Therefore the automorphism (3.5.3) is given by associating to such data (7', ¢) the automor-
phism of f*w;™® given by
frazto frarogo fraito fray = f*(az' car) ogo f*(azt oan) ™!,

or equivalently conjugation by a := a;! o a;.

We can further describe this in terms of the Lie bracket [-,-] on Lie(n{”* (X}, z)) (for
the definition of the Lie bracket see [6, Exposé II, 4.7.2]). The map (3.5.3) is determined by
the associated map of Lie algebras, which by the preceding discussion is given by the adjoint
action

Ad(«) : Lie(n{7 (X3, z)) ®k K[e] - Lie(m™* (X}, x)) ®x K[e].
By [6, Exposé 11, 4.7.1] this map Ad(«) is given by
id+e-[a,—],

so we get a description of (3.5.3) in terms of [a, —].

This implies in particular that for any surjective homomorphism of algebraic groups ©7¥* (X},

H the endomorphism N in (3.5.1) restricts to an endomorphism of 0.

x) -
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4. THE HYyoDO-KATO ISOMORPHISM FOR THE FUNDAMENTAL GROUP
We proceed with the notation of the preceding section.

4.1. Tt will be useful to consider connections on geometric objects such as algebraic groups
or Lie algebras. This can be done in the following manner.

As usual for a ring A let A[e] denote the ring of dual numbers on A. There are two maps
p1.p2: VI[t] > V[t][€]

over V given by sending t to t and t + et respectively. This extends naturally to a morphism
of log schemes and induces a commutative diagram

(SpE(V(t)), My uy) —— (SpE(V (t)[€]), My sy(e))

(Spt(V{t)), My (1))
4.2. Let
iy <~ Mody)
be the functor obtained by evaluating an isocrystal on the object
(Spec(k), My) = (SpECV(8)). My ).
Composing with y* : €Y - & we get a fiber functor
Wity : €Y — Mod g ).

Let

™ (XE wiy)

denote the corresponding Tannaka dual group over K(t).

This group scheme over K(t) comes equipped with the following structure:
(i) An isomorphism
P T (X0 Wk() 8 (1o K(E) = 1 (XE, wkn)-

We refer to this as a Frobenius structure on 7> (X}, wiy)-
(ii) An isomorphism

ercqy  PITy e (Xp Wiqy) = pamy (Xis Wiery)

over K(t)[e] reducing to the identity over K(t). This isomorphism is obtained by
noting that the two functors pjwg ) and pswgy are canonically isomorphic. We refer
to such an isomorphism eg ) as a connection.
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4.3. We have a commutative diagram of rings

By construction we have an isomorphism of group schemes with Frobenius structure and
monodromy operator (notation as in 3.5)

(4.3.1) T (XF W), s €k () @Kty i-0 K = (M (X7, 2), 0, N).

Conversely, we can base change along K — K{(t) to get a group scheme with Frobenius
structure and connection

(ﬂ-crys(Xl:?'r)aSO?N) QK K<t>

Lemma 4.4. There exists a unique isomorphism of group schemes over K(t) with Frobenius
structure and connection

(m1 (X5, 2), 0. N) @k K(t) = (7 (X, wieny), Py €x(ry)
reducing to the isomorphism (4.3.1) after setting t = 0.

Proof. Tt suffices to prove the corresponding statement for the Lie algebras of the quotients
by the derived series (see 1.6 and 3.7). In this case the result follows from the Hyodo-Kato
isomorphism discussed in 2.10 and 2.11 . U

Remark 4.5. Likewise one can consider torsors of paths between two points. With notation
as in 3.6 we can consider the two fiber functors to Mod g obtained by evaluation as in the
preceding construction to get a 77" ( Xy, wiy )-torsor (where m7™° (X7, wi(yy) is defined using
the point )

Wirys(X;c)» T1,K(t)> $2,K(t>)
equipped with a Frobenius structure ¢y and connection €y compatible with the structures
on 7" (X}, wrky). Then by an argument similar to the proof of 4.4 one gets an isomorphism

(451) Crys(Xlszlam?) SOaN) ®K ( ) (Wcrys(Xkaxl K(t)s $2,K(t))790K(t)>EK(t))

of torsors compatible with the isomorphism in 4.4. The main difference is that we cannot
simply pass to Lie algebras but instead use the filtrations on the coordinate rings described
in 3.8.

In more detail, let mx (resp. 7Trqy) denote 777 (X7, 1) (resp. 7" (X}, wi)), and for
n >0 let 7k, (resp TK(tyn) denote the quotient of 7 (resp. T y) by the n-th step of
the derived series. Let PK (resp. Prkyy) denote the mx-torsor mj y (Xk,xl,:r;g) (resp. the
Try-torsor " (X7, 21 k), To,k(1y)), and let Pp (resp. PI@(t)) be the pushout of Py (resp.
Pre(ty) 10 a T p-torsor (resp. Tx () n-torsor). As discussed in 3.8 we then have a filtration Fp
(resp. F I’&t)’.) on Opr (resp. ﬁp;(t)). These filtrations are compatible with the Frobenius
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structures and connections, and to construct the isomorphism (4.5.1) it suffices to construct
isomorphisms
FI@,m QK K<t> = F}é(t),m

compatible with Frobenius and connections, as well as the maps defining the algebra struc-
tures on ﬁp}é and ﬁ’p}@(t) and the maps defined the torsor actions. We obtain such iso-

morphisms from the Hyodo-Kato isomorphism as in the proof of 4.4, combined with the
observation that the base change of the data (7x).n, P}}@))nzo along K (t) - K (setting t = 0)

recovers (7 n, P )nso-

5. CRYSTALLINE AND DE RHAM COMPARISON
We follow the method of [22, Chapter V] with a slight modification to take into account

the specialization of the base point to the boundary.

5.1. Let €"4® denote the category of unipotent modules with integrable connection on X /K.
This is a Tannakian category, and the point zx € X°(K') defines a fiber functor

wgﬁ : MR - Vecg.
We let 7 (X5, 2x) denote the Tannaka dual of €% with respect to the fiber functor wdk.
There is a natural isomorphism
(5.1.1) V(X7 o) = iR (X5 wp)
defined as follows.

5.2. As before, let ¥ denote the category of unipotent log isocrystals on (X, Mx,)/K.
The correspondence between isocrystals and modules with integrable connection furnishes a
natural equivalence of categories
Eeys cng.

Moreover, this equivalence identifies the functor wdl with the fiber functor

wgrys : (gcrys N VeCK
which evaluates an isocrystal on the p-adic enlargement

(Spec(h), My) = (Spf(V'), My).

5.3. On the other hand, we have a commutative diagram

(Spf(V), My)

)
(Spec(k), M)i(spf(‘/(})), My )

y (Spf(V), Ly)

(X, Mx,).
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From this diagram we obtain an isomorphism of fiber functors on €rvs

Crys
Wy wK?t) Ok (1), top 1Y

where the right side is the fiber functor obtained by evaluating on (Spf(V'(t)), My ). This
defines an isomorphism of group schemes over K

crys

T (XE W) Oxe)eep K 2 (X 2k0).

Combining this with the isomorphism 4.4 we obtain the isomorphsim (5.1.1).

5.4. Similarly for two points z; x € X°(K) we can consider the torsor of isomorphisms of
fiber functors wik =~ wiR which we denote by

T2 K
WdR(X;(:ml,Kale)-
Using the preceding isomorphisms of fiber functors for each of the points x; we get an iso-
morphism of torsors

T (X5, 11 K, To i) = TS (XF, 21, 29).

6. REVIEW OF SEMISTABLE REPRESENTATIONS

For the convenience of the reader, and to establish some basic notation, we summarize in
this section some of the basic definitions and results about period rings that we need in the
following sections.

6.1. For a Z,-algebra A with A/pA # 0 and Frobenius surjective on A/pA, we write Agis(A)
for the ring defined in [10, 2.2.2] (a good summary can be found in [26, §1]).

Let R4 denote the perfection of A/pA given by LiI_nFrOb AfpA, and let 6 : W(R4) — A be

the standard map to the p-adic completion of A (see for example [26, p. 387]). This map is
surjective by [26, A1.1]. By [26, Corollary A1.6] we then have

Acris(A) = m Bn(A)7

where

B,,(A) =T ((Spec(A/p"A)[W,)erys, O).

Assume next that we have elements ¢, € A with ¢y = 1, and €., = €, and ¢ # 1. As
discussed in [26, (A2) and (A3)] we get an element t € A.5(A) and we have rings

Bcris(A)+ = Acris(A) ® Q7
and
Bcris(A) = Bcrlb(A)+[1/t]

6.2. Next let us recall the definition of By (V) following [14, §2]. We will only consider the
unramified case, though of course these definitions can be made more generally.

Let V k, K,o, and M}, be as in 1.2 and 2.1. Fix also the following notation:
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My The log structure on Spec(V') defined by the closed fiber.
V. The quotient V /pr+1V.
My, The pullback of My to Spec(V},)
K An algebraic closure of K.
V' The integral closure of V in K.
Msz  The log structure on Spec(V') defined by the closed fiber. Note that My is not fine
but is a colimit of fine log structures.
V. The quotient V/p"+1V.

My The pullback of M to Spec(V,,).
We then have a morphism of log schemes over V,
(Spec(Va), My, ) = (Spec(Vy), My, ),
which induces a morphism of topoi
h: ((Spec(vn), MVn)/Vn)crys - ((SpeC(Vn)7MVn)/Vn)crys-
There is a surjection
V[t] -V
sending t to p. By [3, 3.20 Remarks 1] the divided power envelope of the induced surjection
Valt] = Vo,

is isomorphic to the divided power envelope of the surjection V,,[t] - k sending ¢ to 0, which
we denote by V,,(t). This is the reduction modulo p»*! of the ring V() considered earlier.
There is a log structure My, ) on Spec(V,,(t)) induced by the composite morphism

N5 v, [t] Vi (t).
The resulting strict closed immersion
(Spec(Va), My,) = (Spec(Va(t)), My, )
is an object of the crystalline site Cris((Spec(V,,), My, )/V,). Let Pst denote the value of
MO ($pec(V) M5, ) Vi derys
on this object. The ring Pst is a V,,(t)-algebra, and there is a natural map
Pt =V,
whose kernel is a PD-ideal. This map even extends to a strict closed immersion of log schemes
(Spec(Vn), My, ) = (Spec(Py'), Mpy),
where the log structure Mps is defined as in [14, 3.9].
There is a natural map (where the right side has trivial log structure)
(Spec(Va), My, ) > Spec(V,)
which induces a morphism

Bn(v) - F(((Spec(vn), MVn)/Vn)cry& ﬁ((spec(vn),Mvn)/Vn )-

)crys
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In particular, the structure sheaf

O (Spec(Vu) My, )/ Viderss
has a natural structure of B, (V)-algebra, and hence Pt also has a natural structure of a
B,,(V)-algebra.

The ring P can be described explicitly. It is shown in [14, 3.3] that the choice of a p"*1-th
root 3 of p in V induces an element v € P5%* such that vz —1 lies in the divided power ideal
of Pt and that the resulting map
(6.2.1) B,(V.){z) = P, 20151

is an isomorphism.

6.3. Passing to the limit, define
P :=lim P5*,
P

and let P@t denote Pt @ Q. If we fix a compatible sequence of p™-th roots of p, then the
construction in [14, 3.3] deﬁrﬁs an isomorphism between PS' and the p-adically completed
PD-polynomial algebra A.s(V)(z).
In particular, the ring g is a Besis (V) *-algebra.
6.4. There is an endomorphism
N: Pst = Pst

defined as follows. Let V,(t)[€] denote the ring of dual numbers over V,(t) (so €2 = 0). Let
(Jv,(1y,7) be the divided power ideal of V,,(t). Then the ideal Jy, yy + €V, (t) c Vi, (t)[€] carries
a canonical divided power structure compatible with that on V,,(¢) (this is an immediate

verification). Let My, 4y;q denote the log structure on Spec(V,(t)[€]) obtained by pulling
back the log structure My, ) along the retraction

Va(t) = Vi (t)[€].
Then we obtain a commutative diagram of objects in Cris((Spec(V4;,), My;,)/Vy)
(Spec(Va), My, )

7

(Spec(Viu(t)), My, ) ——= (Spec(Va(t)[€]), My, e

el
(Spec(Va(t)), My, @),

where p; and py are defined similarly to the maps p; and ps in (2.3.3). By [14, 3.1] the sheaf
h,O,
2

(Spec(vn ) 7M7n )/Vn)crys

is a quasi-coherent crystal, and therefore we obtain an isomorphism
(641) Ypst Pst ®v, (1) Vn(t>[€] - Pgt RV, (t) Vn<t>[€]
reducing to the identity modulo e. We define

N : Pt pst
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to be the map characterized by the property that the isomorphism (6.4.1) sends = ® 1 to
r®1+N(x)®e. By passing to the inverse limit over n we then also obtain a connection ~ypst
with associated endomorphism N : Pst — Pst and also an endomorphism of P@t (which we
will again denote by N).

Explicitly, if we fix a p’”l—_st root 3 of p in V, defining an isomorphism (6.2.1), then the
endomorphism A sends B, (V,) to 0, and 2[4 to 2li-Hyg by [14, 3.3].

Define By (V)* ¢ Pg to be the subalgebra of elements z € Py for which there exists an
integer 7 > 1 with N(x) =0 (cf. [14, 3.7]). Finally define
But (V) = Boo(V)'[1/t] = Ba(V)* @, 7y+ Berys(V).
6.5. The ring P&t comes equipped with a Frobenius automorphism
p: Py = By,
which extends the Frobenius endomorphism on Be;s(V)*, and we have the relation
peN = No.

In particular, ¢ restricts to an automorphism of Bst(7)+. There is also an action of the Galois
group Gy = Gal(K/K) on P*, which commutes with the action of ' and ¢. This action
restricts to an action of G on By (V)*.

6.6. Finally for the convenience of the reader let us recall the definition of a semistable
representation (for more details see [10]).

Let Rep(Gk) denote the category of finite dimensional Q,-vector spaces with continuous
action of Gg.

As in 2.9 define Modg (¢, N') to be the category of triples (A, N,p4), where A is a finite
dimensional K-vector space, o4 : A - A is a semilinear automorphism, and N: A - A is a
nilpotent endomorphism satisfying

ppalN = Npa.

There is a functor
D : Rep(Gg) — Modg (o, N)
defined as follows.
Let M be a finite dimensional QQ,-vector space with continuous G g-action. Define
Dst(M) = (M ®Qp Bst(V))GK.

This has a semilinear endomorphism ¢, and a nilpotent operator /N induced by the endomor-
phisms ¢ and A on By (V). We therefore get an object of Modg (i, N).

There is a natural map
anr: Do (M) @ Byt (V) > M ®g, Bt (V)

which is always injective. The representation M is called semistable if oy is an isomorphism.
This is equivalent to the condition that

dimy (Dy (M)) = dimg, (M).
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The notion of a semistable representation can also be described in terms of the rings Py [1/t]
instead of Bg:

Proposition 6.7. Let M € Rep(Gg) be a representation, let (A, N,p4) be an object of
Modx (¢, N), and suppose given an isomorphism

A: Ao PE[1/t] » M &g, PI[1/t].

compatible with Frobenius, monodromy operators, and Galois action. Then M is a semistable
representation and the isomorphism X is induced by an isomorphism over Bg (V).

Proof. The key point is that the inclusion
Ak By (V) = Aoy Py[1/t]

identifies A ® x Bg (V) with the elements A ®g Pg[1/t] on which the monodromy operator
is nilpotent. To verify this claim notice that A admits a finite filtration stable under the
monodromy operator such that the successive quotients have trivial monodromy operator.
Using this one sees that to verify the claim it suffices to show that the inclusion

Bo(V) = P3[1/t]

identifies By (V) with the elements of Pg[1/t] on which the monodromy operator is trivial.

Before inverting ¢ this this follows from our definition of By (V)* in 6.4. To get our variant
statement, note that the monodromy operator on an element z € Pg'[1/t] is nilpotent if and
only if the monodromy operator on t"x is nilpotent for some r > 0. The claim therefore follows
from the definition in 6.4.

To deduce the proposition from this, note that since A is compatible with the monodromy
operators it induces an isomorphism of sets of elements on which the monodromy operator is
nilpotent. We conclude that A restricts to an isomorphism

OJ A QK Bst(V) - M ®Qp Bst(v)
which proves the proposition. Il
6.8. Proposition 6.7 can be generalized to the case of infinite dimensional representations as

follows.

Let M denote a possibly infinite dimensional representation of Gk over Q,, which is con-
tinuous in the sense that M is the union of finite-dimensional continuous representations of
Gk over Qp, and let (A, N,p4) be a triple consisting of a K-vector space A, a semilinear
automorphism ¢4, and a K-linear map N : A - A satisfying po4N = N 4. Suppose further
given an isomorphism

A Aeg PY[1/t] » M ®q, Py[1/t].
compatible with Frobenius, monodromy operators, and Galois action.

Proposition 6.9. In the situation of 6.8 the representation M 1is the union of finite dimen-
sional semistable representations.
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Proof. Since M is a continuous representation we can write M as a union M = u;M; of finite
dimensional representations. By the description of the Galois action on Fg'[1/t] given in [14,
3.3 (4)] the Galois invariants of Fg[1/t] equal K. Let A; denote

(M; ®q, Py[1/t])°%,
so A; is a subspace of A stable under ¢4 and N. We then have a commutative diagram

| X

M; ®g, P[1/t]— M ®q, P3[1/t].

From this it follows that A; is finite dimensional. Indeed since Fg[1/t] is an integral domain
(which follows for example from the description in 6.3) it admits an imbedding into a field,
and we find from the above diagram that there exists a field extension K c €2 such that
A; ®k € embeds into the finite dimensional §2-vector space M; ®q, 2. As noted in (10, 4.2.2]
this implies that the action of N on A; is nilpotent. Since A is the union of the A; this in
turn implies that N acts nilpotently on any element of A, and that (A, N,p4) is a union of
objects of Modg (¢, N'). Then as in the proof of 6.7 restricting A to the set of elements on
which the monodromy operator is nilpotent we get an isomorphism

)\/ : A@K Bst(V) - M ®Qp Bst(v)

Let T; denote the quotient M/M; and let B; denote (7; ®q, B (V))¢%. We then have a
commutative diagram

0—— A; ®x Bo(V) —— A®x By (V) —— B; ®x By (V)
0 —= M,; ®q, Bs(V) —= M ®q, Bs(V) —T; ®q, Bs(V) —= 0.

Here the right vertical arrow is injective by [10, 5.1.2]. From this and a diagram chase it
follows that the map

A; ®x By(V) = M; ®g, Bi(V)

is an isomorphism, and that M; is a semistable representation. O

6.10. The above enables us to reformulate 1.4 as follows. Let the notation be as in 1.4. In
section 9 we will give a proof of the following theorem:

Theorem 6.11. There is an isomorphism of group schemes over P@t[l/t]
(6.11.1) T (X 2i) ®g, Py [1/t] = mi™ (X, wiwy) ®xw Py11/t]
compatible with Galois actions, Frobenius morphisms, and connections.

6.12. Let us explain how theorem 6.11 implies 1.4.
By 4.4 the right side of (6.11.1) is isomorphic to

(X7, @) ©x PYTLI]
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in a manner compatible with Frobenius and connections. Thus giving the isomorphism (1.4.1)
is equivalent to giving an isomorphism

' (X5 vx) @, PG [1/t] = w1 (X}, 2) @ PY[1/t]

compatible with Frobenius and Galois. Furthermore, looking at the Lie algebras using 6.7,
6.8, and 6.9 we get from such an isomorphism the desired isomorphism in 1.4.

7. THE CONVERGENT TOPOS AND FUNDAMENTAL GROUPS

7.1. For the proof of 6.11 we will need to use some results about the convergent topos. The
basic theory of the convergent topos in the logarithmic context was discussed in [16] and [23,
§2.1], to which we refer for the basic result and notation. We summarize here what we need
in what follows.

7.2. With notation as in 3.1, the convergent topos ((X,Mx)/V)conv is defined as in [23,
2.1.3]. Let Ox,my)v denote the structure sheaf in ((X, Mx)/V )cony and let KC(x ary);v denote
O(x,mx)v ®y K. For a sheaf &€ of K(x ay)v-modules and an enlargement (notation as in 23,
2.1.1 (1))

T:= ((T7 MT)7 (Z7 MZ)77:7Z)
we write Ep for the sheaf of Or ® Q-modules given by restricting £ to the étale site of T. We
call £ a pseudo-isocrystal if for every morphism of enlargements

f:T'->T
the pullback map f*Ep — Ep+ is an isomorphism.

Remark 7.3. The terminology “pseudo-isocrystal” is not standard. We use it here as in the
literature the terminology “isocrystal” usually refers to a pseudo-isocrystal in the above sense
for which the &t are furthermore assumed isocoherent.

7.4. Consider a diagram of formal log schemes over V

(Z, My)—— (T, M)

Lz
(X, Mx),

where T is flat over V', 7 is an exact closed immersion, and Z is a subscheme of definition in
T, and the ideal of Z in T is endowed with divided powers. Here we use the notion of formal
scheme in [7, I, 10.4.2], where no noetherian assumptions are used. If £ is a pseudo-isocrystal
on ((X, Mx)/V)econy we claim that there is a natural way to evaluate & on (T, Mr) to get a
sheaf &1 ar,y of Or ®y K-modules on 7.

To see this it suffices to consider the case when 7 is affine (since sheaves can be constructed
locally). Let i: (X, Mx) < (Y, My) be an exact closed immersion with (Y, My ) a formally
log smooth p-adic formal log scheme over V' so we get a sheaf £y ap,) of Oy ®y K-modules
on Y, and choose an extension h: (T, My) — (Y, My) of the given map (T, Mr) — (Y, My ).
We then define &7 s,y to be h*Ey sy y.

A priori this depends on the choices involved, but given two imbeddings
is (X, Mx) = (Y, My,), s=1,2
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and maps
hs : (T7 MT) g (YS) MYS)
we get a map

h=hyxhy: (T, Myp) - (P, Mp) := (Y1, My,) xy (Ya, My,).

The immersion (X, Mx) < (P, Mp) is not an enlargement but by [23, 2.1.22] we can consider
the associated universal enlargement, which is an inductive system of enlargements

{T(XyMX)ﬂ(P7 MP)}nzl-

Now since the ideal of Z in T" has divided powers and 7' is flat over V' the map h factors
through a morphism

B: (ZTI7 MT) g T(X,MX),n(Pa Mp)

for n sufficiently large. Pulling back along h the canonical isomorphism between the two
pullbacks of £ to T x ay)n (P, Mp) we get an isomorphism hi€mi my,) = N5E v, My,)- Using a
similar argument one shows that this isomorphism satisfies the natural cocycle condition for

three choices of data, and therefore £ 1) is well-defined. In what follows we write (7', Mr)
also for I'(T, &1 aiyy)-

7.5. In [22, 5.3.1] (see also [23, 2.1.7]) the preceding techniques are used to construct an
equivalence of categories between the category of unipotent isocrystals on the convergent
site of (X, Mx)/V and the category of unipotent isocrystals on the crystalline site. This
equivalence is functorial in (X, Mx).

In particular, we could have proceeded with the arguments of sections 2 and 3 using the
convergent topos instead of the crystalline topos.

8. DIFFERENTIAL GRADED ALGEBRAS AND CONNECTIONS

We can describe the monodromy operator on 7,""*(X7, ) using differential graded algebras
as follows, following [17].

8.1. For the convenience of the reader let us summarize some of the basic theory relating
differential graded algebras and unipotent fundamental groups as used in [17].

Let R be a Q-algebra, and let dgap denote the category of commutative differential N-
graded R-algebras as in [17, 2.11]. For an object A € dgay, equipped with a map f: A > R
there is an associated unipotent group scheme 71(A, f). The main point for the purposes of
this paper is that the various fundamental groups of interest in this paper, and the compar-
isons between them, can be described using the differential graded algebras obtained from
cohomology.

The construction of 71 (A, f) requires the use of various model category structures. We will
not review that here, but instead refer to [17, Chapter 2]. Let Algﬁ denote the category of
cosimplicial R-algebras, and let SPr(R) denote the category of simplicial presheaves on the
category Affg of affine R-schemes; that is, SPr(R) is the category of functors from R-algebras
to simplicial sets. There is a functor (see [17, 2.21])

D :dgay - Algh
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called denormalization, which induces an equivalence of homotopy categories
Ho(dgaz) = Ho(Algy)

for suitable model category structures. Taking the level-wise spectrum of a cosimplicial
algebra defines a functor

Spec : (Alg?)° - SPr(R),
which can be derived to give a functor
RSpec : Ho(Algs)° — Ho(SPr(R)).
We can also consider algebras with an augmentation to R, which we will denote by dgag g

and Algg /r» and pointed simplicial presheaves SPr.(R). The above functors have pointed
versions

D :Ho(dgag /) ~ Ho(Algﬁ/R), RSpec : Ho(Algp z) = Ho(SPr.(R)).

For a pointed simplicial presheaf * — I we can consider the associated functor
m(F, ) : AffY — (Groups)

sending an affine scheme Spec(S) to m (F'(S), *). It is shown in [25, 2.4.5] that for (A, f) €
dgag /g the functor

1 (RSpec(D(A)), *)
is represented by a pro-unipotent group scheme. We denote this group scheme simply by

m1(A, f).

8.2. We will need a slight variant of the augmentation to R. Namely, let £ € dgap be a
differential N-graded R-algebra such that R — E is an equivalence. We can then consider the
category dgag /p of differential N-graded R-algebras with augmentation to £ and there is a
natural map

dgaR,/R - dgaR,/Ev
which by [17, B.4] induces an equivalence on homotopy categories
Ho(dgaR,/R) - Ho(dgaR,/E)'
Therefore for (A, f) € Ho(dgag /) we can define
RSpec(A) € Ho(SPr,(R)).
8.3. For an affine group scheme U over R, there are U-equivariant variants of the preceding
constructions (see [17, 4.6-4.13]).

We can consider the category of U-equivariant differential graded algebras U - dgap, U-
equivariant cosimplicial algebras U — Algﬁ, U-equivariant simplicial presheaves U - SPr(R),
as well as pointed variants. The preceding functors extend to this setting

D :Ho(U -dgay) - Ho(U - Alg%),
RSpecy; : Ho(U - Alg%) - Ho(U - SPr(R)).

For an object F' € U - SPr(R) one can form the quotient by the U-action, the result of
which we denote by [ F'/U]. It is an object of SPr(R) equipped with a morphism to BU, the



24 MARTIN OLSSON

standard simplicial presheaf presentation of the classifying stack of U (see for example [17,
4.8]). As explained in [15, §1.2], this construction can be derived and gives an equivalence

(8.3.1) [-/U]: Ho(U = SPr(R)) - Ho(SPr(R)|pu).

We can compose this functor with the functor forgetting the map to BU to get a functor
(this notation is not standard; u stands for underlying simplicial presheaf)

[-/U]*: Ho(U - SPr(R)) - Ho(SPr(R)).
Again there are pointed versions as well.

Starting with A € U —dga, we then get a simplicial presheaf
[RSpecy(A)/U]",
which comes equipped with a map
¢ : [RSpecy(A)/UJ* - BU.
8.4. We will apply this theory in the setting of 3.1 as follows.

First let us explain how to describe 77" (X}, wk ). Let
K(xinix, )ik = R

be the standard resolution of the structure sheaf on the convergent site of (Xj, My, ), defined
by the lifting (X, Mx) [23, 2.3.6] (see also [17, 4.33]). Likewise we have a resolution

Ky > S*

of the structure sheaf in the convergent topos of (Spec(k), My )/ K, provided by the embedding
of (Spec(k), M) into the formal log scheme (Spf(V[[t]]), My(g)), defined by taking the
completion of the surjection V[t] - k sending t to 0. Since (X, Mx) is smooth over V we
can find an extension

p = (SpE(VI[]]), My(py) — (X, Mx)

of the given map (Spec(k), My) - (Xi, Mx,). By functoriality of the construction of the
resolution there is a natural map

PR - S°.

The crystals R? are u,-acyclic, where u : ((Xg, Mx,)/V )conv = Xkt is the projection (see
[17, 4.33]). 1t follows that we can obtain an explicit model for RT'((Xk, Mx, )/ K, K(x, vy, )/5)
as follows. Let H, — X} be an étale hypercover with each H, affine, and let My, be the
pullback of Mx, to H,. We then get a cosimplicial differential N-graded K-algebra

[n] = F((Hna MHn)/K’ R.)‘

Applying the functor of Thom-Sullivan cochains [12, 4.1] (see also [17, 2.12]) to this cosimpli-
cial differential graded algebra we obtain A € dgay representing RI'((X, Mx, )/ K, K(x, my,))-

This algebra has an augmentation defined as follows. Let (J,, M;,) be the simplicial log
scheme defined as the fiber product

(He, Mu,) % (x;,0x, ), (Spec(k), My),
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and let (Jy(y.e, Myy,,,) be the unique lifting of (J,,M,,) to a simplicial étale formal log
scheme over (Spf(V(t)), My y). So we have a commutative diagram

(H., MH.) I (‘]07 MJ.)(—> (Jv(t)ﬂ’ MJV(t),-)

| | |

(Xk, Mx, ) =5— (Spec(k), My)—— (Spt(V (t)), My y)-

Let E be the differential N-graded K-algebra obtained by applying the functor of Thom-
Sullivan cochains to the cosimplicial algebra obtained by evaluating S* on (Jy ()¢, M. Jv<t>,.),
and let £ the differential N-graded K-algebra obtained by evaluating S* on (Spf(V'(t)), My ).
Since Jy (1) is an étale hypercover of Spf(V(t)) the natural map £ — E is an equivalence. Fur-
thermore the map p*R* - S* induces a map f : A - E. Finally note that the map K (t) - E is
an equivalence since the crystals S are acyclic for the projection to the étale topos of Spec(k).
Observe that this does not contradict the fact that the cohomology of (Spec(k), My)/K is
the cohomology of the circle; indeed, the cohomology of (Spec(k), M})/K is computed by
the total complex of the double complex given by forming the de Rham complex of each

Si((SPEV (1)), My )-
We therefore get an object

(Aer K(t), f) € Ho(dgay, ,z) ~ Ho(dgakuy k)

and a unipotent group scheme 7 (A®x K(t), f). It follows from the constructions of [19] that
this gives a model for 77*( X}, wky). The isomorphism 71 (A ®x K(t), f) =~ 77 (X7, wiqy)
can be constructed as follows.

Let U denote the unipotent group scheme 77”* (X7, wk (). Right translation on U gives a
left-action of U on the coordinate ring Oy making Oy an (infinitely generated) representation
of U equipped with a right action of U coming from left translation. By Tannaka duality this
in turn corresponds to a colimit of isocrystals Ly. Furthermore, Ly comes equipped with an
isomorphism

wK<t>(LU) ~ ﬁU.
As above, we can then also consider the standard resolution
Ly - Ry

of Ly, which is a resolution of crystals equipped with an action of U [17, 4.33|, which
comes equipped with a map to the standard resolution S§; of 2*Ly, defined by V[[t]] - £,
in the convergent topos of (Spec(k), My)/K. Evaluating this resolution on the hypercover
(H., My,) and applying the functor of Thom-Sullivan cochains we get a U-equivariant dif-
ferential graded algebra Ay, which comes equipped with a map to the differential graded
algebra Ey obtained by evaluating Sty on (Jvsy,es M Ty t),.). Furthermore, there is a natural
U-equivariant equivalence

ﬁU - EU-

In particular, the map Ay ®x K(t) - Ey gives a point of [RSpecy Ay /U] Furthermore the
natural map K(x,, Mx)/K = Ly induces a morphism A - Ay, where the action of U on A is
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This is compatible with the augmentations given by the base point. Putting this all

together we get a diagram in Ho(SPr, (K (t)))

(8.4.1)

[RSpecy (Au ®@x K(t))/U]* —~ BU

|5

RSpec(A @k K(t)).

Now by the same argument as in [19, 2.28] (note that loc. cit. is stated for the case when the
fiber functor takes values in vector spaces over a field, but the same argument works in the
present context) the map [ is an isomorphism and the map « induces an isomorphism on 7.

Let us highlight the key points in this regard. First of all, in [19] a more general situation is
considered with a reductive group G and a surjection G - G with kernel a unipotent group.
In the present situation, the group G is trivial and G = U. The key points are then the
following:

(i)

(8.4.2)

The homotopy fiber of the map « is given by RSpecy(Au ®x K(t)) (the inverse of
(8.3.1) is the functor taking homotopy fiber). To prove that « induces an isomorphism
on 7 it suffices to show that m;(RSpecy (Au) ®x K (t)) is trivial. Since this is a pro-
unipotent group, by [25, 2.4.5], to prove this vanishing it suffices to show that the
first cohomology group is 0 and this cohomology group is given by H'(Ay ®x K(t))
by [25, 2.2.6]. Thus the statement that « induces an isomorphism on ; is reduced
to the statement that H'((Xg, Mx,)/K,Ly) = 0. This follows from noting that by
Tannaka duality we have H'((Xy, Mx,)/K,Ly) ~ H' (U, Oy), and the latter group
is 0 since Oy is an injective U-representation (see for example [19, 2.18]).

Given (i), to prove that  is an isomorphism it suffices by [25, 3.3.2] to show that for
any representation V' of U the induced map on cohomology

H*(RSpec(A ®x K (), V) » H*([RSpecy (Ay ®x K(t))/U], V)

is an isomorphism, where we somewhat abusively write also V' for the local systems
corresponding to the representation V. By filtering V', using that U is pro-unipotent,
the verification of this is reduced to the case when V' is the trivial representation. The
statement that (8.4.2) is an isomorphism is then reduced to a calculation as in [19,
2.33 and 2.34].

We therefore obtain an isomorphism

(8.4.3)

m(A®x K(t), f)~U.

8.5. The construction of the standard resolution R{; depends on the lifting (X, Mx) of
(X, Mx, ), and the isomorphism (8.4.3) depends, a priori, on the choice of the maps p and ¢
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in the diagram

(Spec(k), Mx,)

/

(Xk7 MXk)

i (Spec(V[[t]]), My 1))

(X, Mx).
But in fact the isomorphism is independent of the choices in this diagram. For the convenience
of the reader we sketch an argument for this independence (see also [23], wherein similar issues
are addressed). The key point for this is the fact that in the above diagram it is not necessary
to work with a smooth lifting of (X}, Mx,) but only an exact closed immersion into a log
smooth formal algebraic space over V' (see [23, Corollary 2.3.6]). Given two such imbeddings

ij : (XkaMXk) g (XjaMXj)a j = 1727
we can consider the exactification (see [17, A.14]) of the induced immersion
(Xk, Mx,) = (X1, Mx,) Xspec(v) (X2, Mx,),

and using this one reduces the proof that (8.4.3) is independent of the choices to the obser-
vation that the construction of the isomorphism is functorial in the case of a commutative
diagram

(Spec(k) Mx,)

Xk7 MXk)

(X17MX1) —> (XZ’MXQ)

Similarly, the isomorphism (8.4.3) is compatible with the Frobenius structures, where the
Frobenius structure on the left side is defined as in [17, 4.32].

8.6. If F is a differential N-graded K (t)-algebra we can also talk about a connection on F
using the method of 4.2. Such a connection is simply an isomorphism of differential graded
algebras

Ve P E =P
over K (t)[e] which reduces to the identity. Likewise we can talk about a connection on an

object of Ho(SPr.(K(t))).
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Let E be a differential N-graded K (t)-algebra equipped with a connection g and such that
p: K(t) > E is an equivalence. Let A be a differential graded K-algebra and let f: A - E
be a map of differential graded algebras sending A to the horizontal elements of E. Since A
is defined over K, the algebra A ® K(t) carries a connection

Ta:pi(Aex K(t)) - p;(Aex K(t))

given by the canonical identifications of both sides with A ® x K(t)[€]. The assumption that
f sends A to the horizontal elements of E ensures that the diagram

pi(A®K K(t)) — p3(A®x K(t))
lpm lp;m
i E " nE

commutes. From this and the commutativity of the diagram

Ho(dgag ), /x(1))

Ho(dgag sy /1)

*

Y2

Ho(dgas 1y py )

Ho(dga (¢

YE
k
Ho(dgar (e /oy )

*

Py

Ho(dgaK(t),/K(t))

we see that if [(A® K(t), f)] € Ho(dgayy /y) denotes the object corresponding to (A ®
K(t), f) under the equivalence

Ho(dgaK(t),/E)

Ho(dgax ) k() ~ Ho(dgakyy k)

then g induces an isomorphism

pil(Ae® K(t), /)] =p;[(Ae K(t), f)]

in Ho(dgak ) xmg). APplying the functor RSpec we get a connection on RSpec(A ®
K(t)) e Ho(SPr, (K( ))) which in turn induces a connection on 7 (A ®x K(t), f).

8.7. This enables us to define the monodromy operator on 77* (X}, wrk ) using differential
graded algebras.

With notation as in 8.4, the crystal structure on S* defines a connection on E and also on
E. Since A is obtained by taking global sections of R* over (H,, My,) the map f: A — E
sends A to the horizontal elements of . We therefore get a connection on m (A®x K (t), f) ~

7y (XY, wiy). We claim that this gives the same connection as the one in 4.2 (ii).
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To see this, let vy be the connection on U = 77" (X}, wiyy) defined in 4.2. By the same
argument as in the previous paragraph, we get a connection on Ey such that the augmentation
Ay @k K(t) » EU sends Ay to the horizontal elements. Chasing through the construction
of S{; one also sees that the connection on EU is compatible with the connection vy in the
sense that the isomorphism _ _

pi by — py By
is a yy-linear isomorphism of representations. From this it follows that the diagram (8.4.1)
can be upgraded to a diagram of pointed simplicial presheaves with connections. It follows
that it induces isomorphisms on fundamental groups compatible with the connections. Since
the connection on 71(BU) ~ U is the one defined in 4.2 we conclude that the connection
defined by the above differential graded algebra techniques coincides with the one defined
using Tannaka duality.

9. PROOF OF THEOREM 6.11

The goal of this section is to give a proof of 6.11, and therefore also 1.4.

The approach here is to prove a comparison result for augmented differential graded alge-
bras and then pass to fundamental groups to get 6.11.

9.1. Fix a hypercovering U. - X with each U, very small in the sense of [17, 6.1] and such that
each U, is a disjoint union of open subsets of X, and furthermore assume that each connected
component of U, meets the closed fiber of X. Write U,, = Spec(S,,), with S,, a geometrically
integral V-algebra. Let My denote the log structure on U. obtained by pullback from My,
and let (U”, My~) be the simplicial formal log scheme obtained by p-adically completing
(U, My,). Fix also a geometric generic point

7 :Spec(2) - X
over K = K.

Since each connected component of U, maps isomorphically to an open subset of X, we
can lift the map
x: (Spec(V), My) - (X, Mx)
to (U., My,) to give this simplicial log scheme the structure of a pointed log scheme. However,
we prefer to proceed more canonically as follows. Let E. be the simplicial set with FE,, equal
to the set of connected components of U, with the natural transition maps. Then we have

a canonical morphism
n: E. x Spec(§2) - U.

9.2. Let ny € X be the generic point of the closed fiber. Then O, is a discrete valuation ring
with uniformizer p, and fraction field the function field £(X). Let k(X)" be the completion
of k(X') with respect to the discrete valuation defined by Oy ,,. Fix an algebraic closure Q"
of k(X)", and a commutative diagram of inclusions

k(X)) —— Q)

(X )N 1,
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We then get a morphism of simplicial schemes
7" : E. x Spec(Q") - Spec(S"),

over 7.

Let Agis (EA) be the cosimplicial algebra obtained by applying the functor A.;s(—) to each
S, with respect to the algebraic closure on each connected component e € E,, given by the
map

Spec(Q*) = {e} x Spec(Q")—— E,, x Spec(Q") A Spec(Sy).

Let GC’(U.’\%,AcriS(U,A)) be the Galois cohomology of this cosimplicial Galois module, as
defined in [17, 5.21 and 5.40].

There is a natural map
RP (X3 Q) = GO(U%. Q) » GC(U'g Auis(U)))
induced by the natural map Q, - Acis (ﬁA)

9.3. Next we need to relate the base points. For e € F,,, write Sﬁe) for the coordinate ring of
the connected component of U,, corresponding to e. Define E/ c E,, to be the subset of e € E,

such that Spec(S,(f)) c X contains the point x. The E! are preserved under the simplicial
structure maps, and therefore define a sub-simplicial set £’ c E..

Let y € X(k) be the intersection of z : Spec(V') & X with the closed fiber, and consider
the local ring Ox . Let & %, be the p-adic completion of this ring. There is a natural map

O, ~>V
induced by the map Ox, - V. There is also a natural map
ﬁs\(vy - ﬁé}ﬂ?o

and hence an inclusion 0% < Q". Let (0% )" be the p-adic completion of the integral
closure of Ox, in (2*. Fix a morphism

(9.3.1) (Ox ) -V

extending the map 0% — V. Here V" denotes the p-adic completion of V.
We then get a map
E’ x Spec((ﬁ’§(7y)T) - U",
and hence also a map
E' x Spec(V") - U,
over the natural map
E!x Spec(V) - U.
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9.4. As before let V(t) denote the p-adically completed divided power envelope of the sur-
jection V[t] - V sending ¢ to p. Since (X, Mx) is log smooth, we can find a dotted arrow
filling in the following diagram

(Spec(V), My) —— (Spf(V(t)), My )

—
-
-~
€T -
-
-
“

For example, start by extending = to each of the nilpotent thickenings
(Spec(V), My) = (Spec(V[t]/(t,p)"), Mv(s)/(tp))
using the formal smoothness of (X, My) over V', and then pass to the limit to get a morphism
(SpE(V[[E]]), Mvryy) > (X, Mx)
and then compose with the natural map
(SpE(V(t)), My ) — (SpE(V[2]]), Myqpey)-

Fix one such dotted arrow

At (Spec(V(t)), My ) - (X, Mx).

For e e E,, let ﬁSM denote the spectrum of the p-adic completion of the integral closure of
S in the maximal subextension of Q" which is unramified over Spec(S)}) xx X§. For e € E!,
the map (9.3.1) induces a morphism

—(6),/\

Spec(VA) -U," " .

For every n, let U;\l denote the coproduct

[T

ek,

These schemes form in a natural way a simplicial scheme U" over U*. Let Mzn denote

the pullback of the log structure on U” to U”". We then obtain a commutative diagram of
simplicial log schemes

(9.4.1) E' x (Spec(V"), M) (T, M)

l

B x (Spec(V), My) —— ! x (Spec(V {£)), My ) —— (U, My).

By [1, Corollary 3.6] Frobenius is surjective on the reduction modulo p of the coordinate
A

ring of each U, , and therefore by [10, 2.2.1 and its proof] the ring AcriS(U;\L) is a universal

n’

PD-thickening of U:l From this universal property and the diagram (9.4.1) we therefore get
a map

(9.4.2) E! x Spec(P*) > Spec(Aeis(T)).
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In fact this extends to a morphism of simplicial log schemes. There is a log structure
M A (T O Acris(U,A) defined as in [17, 6.7]. This log structure can be described as follows.
Fix n and for ease of notation write S* for the coordinate ring of a connected component of
U). Fix also one choice of S* = *, and let Q7 c 2" be the compositum of the subsections
L containing S” for which the normalization of S* in L is étale over Spec(S") xx X5.. Let
S" denote the p-adic completion of the integral closure of S in 7. Then Acris(U,A) is a
cosimplicial ring with terms given by products of rings of the form A (EA). So we describe
the log structure M, < on this ring. For a section z € Mg~ with image a(zx) € S* (where we
write Mgn instead of My, ), let 7, denote the set of compatible systems of elements {Zn o1

of §" with ah =x,1 and z1 = a(x). For x,y € Mg there are natural maps

Tox Ty Tony
giving

T = ]_[ T,

xeMgn
the structure of a monoid. There is a natural map
7 - Rg =1imS" /pS"

and therefore composing with the Teichmuller lifting and the natural map W (Rg) - Awis(5")
we get a map

T = Auis(S").

The log structure M, is defined to be the associated log structure.

cris (EA)

This description of the log structure M, makes its functoriality clear. However, if

cris(g/\)
we fix a chart N™ — S for the log structure corresponding to elements ¢,...,t. € S*, and
systems of p-power roots {7;,} for the ¢;’s, then we get an isomorphism

T~ Ro < N

—A —AN

It follows that M, " is a fine log structure inducing Mz+ under the map 6 : Acis(S) - S

cris(g

To extend the map (9.4.2) to a morphism of log schemes, we have to define a map
M, & Mpst, or equivalently (by the definition of (Ps*, Mpst)) we have to define for
every commutative diagram

(A, M) ——— (T, My)

| |

(Spec(S), M) — (Spec(S*), M),
where the top row is an object of the crystalline site of (Spec(V,,), My, )/V;, and the left
(resp. right) vertical map is the composition

— (9.3.1) —A
(A, M) — (Spec(V ), My,,) —= (Spec(S" ), M=)

(resp. the composition of a morphism (7', My) — (Spec(V (t)), My ) with the map induced
by A), a map J — My, compatible with the map Acris(g/\) — Or we get from the map
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Acris(gA) — Pst. Let z € Mg~ be an element and let 7 € .7, be a lifting corresponding to roots
(2p)ns1 of x in S". Now observe that Mipn VA, so the images of the x, under the map

S LV S50 A define sections y, € M4 such that py, = y,_.1 and y; maps to the image of z
in 04. Choose for each n a lifting 7, € My of y,. Because the ideal of A in T has divided
powers, the sequence of elements (p"y,) converges to a lifting of y; in M7 independent of
choices. In this way we get the desired map .7 — M.

In summary, there is a natural map
!/ S 77N
E’ x (Spec(P®), Mpst) — (Spec(Acis(U.)), M, @)

Furthermore, we can extend (9.4.1) to a commutative diagram

E! x (Spec(V"), M) (T, M)

—

E’" x (Spec(Ps'), Mpst) (Spec(AcriS(UA)), MAcris(U.A))

|

E! x (Spec(V'), My) —— E! x (Spec(V (t)), My y) — (U, My.).

In particular, for any isocrystal ' on (Xj, Mx, )/ K we obtain a natural map of cosimplicial
K-spaces

F(Auis(T))) » 2 F(P*) @ Z7.
Observe also that the natural map Z — Z% induces a quasi-isomorphism
¥ F(P%) - 2 F(P*) ® ZF
9.5. Asin 8.7, let
IC(Xk,MXk)/K - R*

be the standard resolution of the structure sheaf, defined by the lifting (X, Mx), and let

K (spec(ry )k = S°

be the resolution of the structure sheaf defined by the surjection V[[t]] — k.

By functoriality of the construction of these resolutions there is a natural map x*R® — S°.
Putting all of this together we obtain the following commutative diagrams of cosimplicial
differential graded algebras:

(9-5.1) GO(U% Q) @ P —"= GO, Acris(T))) ®a vy P |

| |

Pst a Pst @ ZE_’
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952)  GOU*

o
K

Aais(T)) ®a ) P —> GO R (Aers(T))) @) P

l |

Pst ® ZE, b SO(PS(’,) ® ZE’,

(953) GC(U?%JR'(ACHS(U/\))) B Acris(V) Pst c F(((U,kyMUk))/K, R‘) R Pst

| |

S*(Pt) @ ZE! c S*(E x (Spec(V(t)), My)) ®y s P,

d

(954) P(((UJC,MUJC))/K,R') ® K Pst RF((Xk,MXk)/K,]C) Rk Pst

| |

Se(E! x (Spec(V(t)), My uy)) ®yy P pst.

Here the map ¢ is induced by the natural map (the global sections of a crystal map to the
value of the crystal on any object)

F(((UJW MU.,k))/K> R.) - I&.(Acris(U~/\))7

which has image in the Galois invariants, since the image of a global section is invariant under
any automorphism of an object of the site.

Since the geometric realization of E’ is a point, the map a is an equivalence. Furthermore,
the map a induces an equivalence after inverting ¢ € A.,i5(V') (this follows from [9, 5.6] and a
passage to the limit argument as in [20, 12.5]). The map b (resp. b) is an equivalence since

Kok =R (Kagyx = S*)

is an equivalence, and likewise the maps d and d are equivalences (using also that the sheaves
R’ and §' are acyclic for the projection to the étale topos [17, 4.33]). Let dgaps jpst1/
denote the category of commutative differential graded Pst-algebras with an augmentation to
Pt[1/t]. Applying the functor of Thom-Sullivan cochains we then obtain a morphism

(R ((Xi, My, )/, KC) @1 PUL/HSPL/E]) > (GO(U. Q,) ® P/t P{1/1])

in Ho(dgapst[;;),/pst). This morphism is an equivalence by Faltings’ theory of almost étale
extensions. This follows for example from [1, 2.33]. Note that the assumption that there
exists a global deformation in [1, p. 133] holds in our case: There is a commutative diagram
of log schemes

(Spec(jvwv) ™Z_(Spec(V[[Z]]), My(izy)
(Spec(V), 07),

and therefore the base change of (X, Mx), which is defined over (Spec(V'), &%), defines a
lifting to (Spec(V[[Z]]), My[z})) of the base change of (X, Mx) to (Spec(V'), My).
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Applying the m-functor, as described in [17, Chapters 4 and 5], we obtain an isomorphism
m (X, @) @k PU[1/t] 2w (X3, ) ®g, P[1/t].

It follows from the construction that this isomorphism is compatible with the Frobenius
operators, connections (constructed from the differential graded algebras as in 8.7), and the
G g-action.

This completes the proof of 6.11. U

Remark 9.6. By the same argument one gets a comparison isomorphism for torsors of paths.
Given two points z1 i, 2 x € X°(K) we can then consider the torsors of paths
(961) Wi)t(X%, ZEL?,szf)

of isomorphisms between the fiber functors on the category of unipotent Q,-local systems on
X2 defined by the points, and similarly we have the torsor (X}, 21, 22) defined in 5.4.

As discussed in [17, 8.27-8.32] the torsor (9.6.1) is described by the differential graded
algebra GC' (U-TF’ Q,) equipped with the two augmentations defined by the points. Similarly
the torsor 77 ( X}, z1, ) is desribed by the differential graded algebra RT'(( X}, Mx,)/K, K)
equipped with its two augmentations. Chasing through the above proof one obtains an
isomorphism - .
xz,f) ®Qp Bst(v) ~ ﬁﬂ';rys(xz,il,$2) ®K Bst(V)
compatible with Frobenius, monodromy operators, and Galois action. Furthermore, proposi-
tion 6.9 implies that @evs( X¢ is a colimit of semistable representations.

ﬁ”‘ft(x%vxl,?’

T1,22)
10. THE CASE OF CURVES

10.1. Let C'/V be a smooth proper curve, and let s; : Spec(V) - C (i =1,...,r) be a finite
number of distinct sections. Let C° c C' be the complement of the sections, and let D denote
the union of the sections. Let Mg be the log structure on C' defined by D. Let Ly be the
hollow log structure on Spec(V") given by the map N — V' sending all nonzero elements to 0.
The choice of a uniformizer for each section defines morphisms

s;+ (Spec(V), Ly) - (C, M¢).
Also let Lk denote the hollow log structure on Spec(K).

10.2. If (£,V) is a module with integrable connection, we can pull £ back along s; to get a
K-vector space £(s;) together with an endomorphism, called the residue at s;,

R, - E(si) = E(s1)
induced by the connection. This map can be described as follows.

There is a natural inclusion
1 1
QCK/K g Q(CK,MCK)/K

with cokernel canonically isomorphic to &;K,,. The composite map

£ Y. g0t

(CK,MCK)/K _>£ 624 Ksi = g(sz)

is O¢,.-linear, and therefore induces a map £(s;) - £(s;), which by definition is the map R,.
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Lemma 10.3. Let MIC(Ck/K) (resp. MIC((Ck,Mc,.)]K)) denote the category of mod-
ules with integrable connection on Cx[K (resp. (Cx,Mc,. )/ K). Then the natural functor

MIC(Ci/K) ~ MIC((Cie, M, ) K)

is fully faithful with essentially image those objects (€,V) for which the residue mappings R,
are all zero.

Proof. Note that the residues of a module with logarithmic integrable connection (&€,V) are
all zero, if and only if

V(€)céw® Qé‘K/K cé® Q%CKyMC’K)/K'
From this observation the lemma follows. O

10.4. Let (Cy, Mc,)/k be the reduction of (C, M¢). If E is an isocrystal on (Cy, M¢,)/K,
we can evaluate E on the enlargement discussed in 2.3

(Spec(k), Mi)— (Spec(V'), Lv)

|

(CVv MCV)
to get a K-vector space F(s;) with an endomorphism N;: E(s;) - E(s;).

10.5. Let (£,V) be the module with integrable connection on (Cg, Mc, ) associated to E.
From the commutative diagram

(Spec(k), M) — (Spec(V'), Lv)
(Cr, Mc, ) — (C, Mc),
we obtain a canonical isomorphism
E(si) ~ E(sq).
It follows from the construction that this isomorphism identifies NV; with Rq,.
Lemma 10.6. The natural functor
(unip. isocrystals on Cy/K) — (unip. isocrystals on (Cy, Mc, )/ K)
15 fully faithful, with essential image the full subcategory of unipotent isocrystals E for which
the maps N;: E(s;) - E(s;) are are all zero.
Proof. This follows from the fact that there is an equivalence of categories
(unip. isocrystals on (Cy, M, )/K) ~ (unip. modules with connection on (Ck, M¢, )/ K)

compatible with residues, and the corresponding result for modules with integrable connec-
tions. U
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10.7. Fix now a point
z:Spec(V) - C

sending the closed fiber to D and the generic point to C°. Let s € D(V') be the section whose
closed fiber is the closed fiber of x.

As before let € (resp. €M) denote the category of unipotent isocrystals (resp. mod-
ules with integrable connection) on (Cy, M, ) (resp. (Ck,Mc,)). Let JYs ¢ € be a
Tannakian subcategory corresponding to a surjection of affine K-group schemes

ﬂ_irYS(C]:, .CC) — Hcrys.
Denote by H® the quotient of m{®(C%,, x) obtained from H°¥* and the isomorphism
™ (O, @) = 7 (Cg ).
By Tannaka duality, the group HI® corresponds to a Tannakian subcategory J#IR c ¢4k,

It follows from the discussion in 3.9 that the monodromy operator on @r;fys(c;;,x) restricts to
a monodromy operator on Oyeys. In fact, the discussion in 3.9 implies the following. Taking
residues at s defines a tensor functor from the category 7R to the category of K-vector
spaces equipped with a nilpotent endomorphism. Giving such a functor is equivalent to giving
a homomorphism

ps: Gox — HIR,
The monodromy operator on Lie(HYs) ~ Lie(H®) is given by [Lie(ps)(1),-] (see 3.9),
where
Lie(ps) : Gox — Lie(H?)

is the map obtained from p, by passing to Lie algebras.

Corollary 10.8. The monodromy operator on HYS is trivial if and only if the image of ps
is in the center of HIR,

Proof. This follows from the preceding discussion. U

11. EXxAMPLE: P! -{0,1, 00}
To give a very explicit example, we discuss in this section the Kummer torsor following
Deligne in [4, §16].

11.1. Let X =P!, and let D = {0,1,00} c X. For any point z € X°(K), define the Kummer
torsor to be the following torsor under Q,(1)

K (2) = {(4n € K)ol = yn-1, %0 =z}
Equivalently, we can think of K (z) as a class in

K(.CE) € EXt%{epGK(Qp)(@p’ Qp(l))

Let us write
O—>Qp(1)—>lcx—>(@p—>0

for this extension of Gi-representations.
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11.2. The Kummer torsor has the following description in terms of 7§*( X5, x) (see [4, §16]).
There is a natural map

X°® =Gy
which induces a morphism
T: 7' (Xe2) = 151G, 7 ).
Let Uy(z) be the abelianization of Ker(7"). Pushing out the exact sequence

1 — Ker(T) —= m$(X2, 2) —= 78(G,, 0, 2) — 1

along Ker(T") — U (x) and taking Lie algebras, we obtain an exact sequence of G g-representations
0= Us(2) = U(x) > Qy(1) = 0,

where we use the canonical isomorphism Lie(7$*(G,,,x)) ~ Q,(1). Since U;(z) is abelian,
the Lie bracket on U(z) defines an action of Q,(1) on U;(x). Set

Ul (x) ==ad"(Ui(x)).
We then have a natural map
(11.2.1) Q,(1)*" @ Uy(x)/U{ () - U7 (2)/UT ().
Proposition 11.3. (a) The projection map

™' (X, @) = m(Aj — {1}, 2) = Q,(1)

induces an isomorphism

Ur(2)/U{ () = Qy(1).

(b) For every n >1 the map

(11.2.1)

Q,(n+1) ~2- Q,(n) & Uy () U} (2) 22

s an isomorphism.

— U7 (2)/U7 ! (2)

(c) The class of the extension

E(z): 0—=U}(2)/U}(z) —= Ui(2)/U}(x) —= Ur(x)/U} () —=0

Q,(2) Q,(1)
EthGK(Qp(l)v Q,(2)) ~ EXté‘K (Qp,Qy(1))

is the negative of the class of the Kummer torsor K(x).

Proof. Statements (a) and (b) follow from the proof of [4, 16.13].

Statement (c) essentially follows from [4, 14.2 and 16.13]. Let P(y1), denote the space
of isomorphisms of fiber functors between the fiber functor given by x and the one given
by tangential base point at 0 in the direction of 1 (see [4, §15]). This is a torsor under
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m (A - {0},2) ~ Q,(1), and therefore defines a class in Extg, (Q,, Q,(1)). By [4, 16.11.3]
we have

[EC0, )(-1)] = [E(z)(-1) ]+ [Po1).]

in Extg;, (Q,,Q,(1)), where E(0,1) is the extension obtained by the same procedure as E(z)
replacing the fiber functor given by x by the tangential base point at 0 in the direction of 1.
By [4, 16.13] [E(0,1)(-1)] is the zero class by so we conclude that

[E(z)(-1)]=-[Po.a]

Now by [4, 14.2 and 15.51] the class of the torsor K(x) is equal to the class [Po1).], and
therefore we obtain

[E(z)(-1)] = -[K(2)],
proving the theorem. U

Remark 11.4. As discussed in [4, 16.12] the choice of a section a : Uy (z) /Ui (z) — Ui(x)
induces an isomorphism

([1Qu(n)) xQ@,(1) = U(x)

n>1

with trivial Lie bracket on [],s; Q,(n) and action of Q,(1) on [],s; Q,(n) induced by the
maps (11.2.1).

11.5. Suppose now that x reduces modulo the maximal ideal mg of Ok to 0. Let Xj be the
reduction of X modulo mg, and let

y: (Spec(k), My) - (X, Mx,)
be the reduction of z. In our case, Xj = P} with log structure defined by the divisor {0, 1, 00}

and y is the inclusion of 0 € P;. Let (G, Mg,,) denote the scheme P} with log structure
defined by the divisor {0, c0}. We then have a natural map of log schemes

t: (Xk7 MXk) - (gmv Mgm)'
This map induces a morphism of group schemes
T gV Xe, ) = 707 (G, o),

where to denotes the tangential base point at 0 (see for example [17, Chapter 9]). Note that
to is the crystalline fiber functor defined by the closed fiber of the map

(SpeC(V), MV) e (gﬁl? MgnL)
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defined by x. This map is the crystalline realization of the map 7" in 11.2. On the other
hand, it follows from a basic calculation of cohomology that the composite functor

(unip. isocrystals on (G,,, Mg,,))
t){‘
(unip. isocrystals on (Xj, Mx,))

Y

(unip. isocrystals on (Spec(k), My))

Mod#(N)
is an equivalence of categories. We therefore obtain a section
s: 77 (G, to) = 7 (X0, 2)
compatible with Frobenius and the monodromy operator.

11.6. Repeating the previous discussion in the crystalline realization as opposed to the étale
realization, we obtain an extension (¢, NV)-modules

ES: 0 K(2) > U™ (a) /U™ (2) - K(1) > 0,

where K (i) has underlying K-vector space K, trivial monodromy operator, and Frobenius
given by multiplication by 1/p’. Moreover, we have a commutative diagram

S

Terys

Ker(Tev) T (X, My, ) — e 7 (Go, t) = K (1) —— 0

: X |

0 —— U™ (2) JU™*(2) —— U () U} () K(1)

0

0.

By 10.7 the monodromy operator on Uews(x)/U™**(z) is given by the adjoint action of
the image of s, which in particular is nonzero (for example by the crystalline analogue of the
explicit description in 11.4). Since the section s identifies K (1) with a direct summand of
Uerss(z) JUSY(x) we conclude that the monodromy operator on U™ (z) /U™ (z) is also
nontrivial. In particular, the Gg-representation K, is semistable, but not crystalline.

11.7. Of course the extension IC,, and its trivialization over By (V') can be described explicitly.
For the convenience of the reader, let us write out this exercise.

Fix a sequence 8 = (3, )nz0 of elements 3, € V, with By = p and B2,, = B,. As discussed in
[14, 3.3 and 3.5] this sequence defines an element ug € Bg (V') such that the induced map

Bcris(v)[uﬂ] - BSt(V)
is an isomorphism. For g € G, define

)‘g = ()‘g,n)nzo € Zp(l)
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to be the system of roots of unity characterized by the equalities

g(ﬁn) = Ag,nﬂn-

Now recall (see for example [14, 2.2], where the map is called €) that there is a map
a:Zy(1) = Ker(Awis(V)* = V') € Aeis(V)*.

Since the kernel of the map A (V) — V" has a divided power structure, we can take the
logarithm of o to get an additive map

log(a(-)): Zp(l) = Acris(V).
It follows from [14, 3.3] that the action of g € Gx on ug € B4 (V') is given by
uf =log(a(Ag)) +up.
11.8. Consider now our torsor K (z) with associated 2-dimensional G g-representation KC,.

Write x = up®* with u € 0} and z > 1. Note that we may assume that u = 1 (mod p).
Indeed multiplying = by an element of N, (K*)P" gives an isomorphic torsor. Therefore by

multiplying x by the inverse of the Teichmuller lifting of v (mod p) we may assume that u = 1
(mod p).

Fix a sequence of roots & = (2, )nz0, with 2y = z and 2, | = z,,. Then we can write ,, = u,, 32,

p

—_—
where u, €V, up = u, and u, ., = u,.

Let b € K, be the lifting of 1 € Q, given by z, so we have a direct sum decomposition
Ke~Qu(l)®Q,-0.
The action of an element g € Gk is given in terms of this decomposition by sending
(5,t-0)eQy(1)@Q,-b
to
(89 +tey,t-b),
where €, € Z,(1) is the element characterized by
9 = €gnTn.
11.9. The map log(c(-)) induces an isomorphism
Qp(1) ®g, Bt (V) = B (V).
It follows that the base change of K, to Bg (V') is isomorphic to the free module on two
generators
’Cz ® Bst(V) ~ Bst(V) . b1 (&) Bst(V) . bg,
where b; is the element 1 € K = By (V)¢%. An element g € Gk acts by
9y -b1+72-b2) = (7] +log(a(eg)))br +73 - ba.
From this we see that the G g-invariant sections of I, ® By (V') are spanned by b; and an
element
w = pby + by,
where p € Bg (V') is an element such that

log(a(e,)) = p - 0,
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for all g € Gg. Thus K, is semistable if and only there exists such a p, which we now write
down explicitly.

11.10. Let Sy be the perfection of V/pv and let u € S, be the element defined by the
reductions of the u,. We can then consider the image [u] € Ais(V') of the Teichmuller lifting
of u under the natural map

W(Sv) = Auis(V).
Then [u] -1 is in the divided power ideal of As(V') since u =1 (mod p), so we can define
the logarithm log([u]). Moreover, by the definition of €, and A\, we have

) — 9 )\?
Uy, egm—un)\g’n.

This relation implies that in Ags(V) we have
log(a(eg)) = (log[u])? —log([u]) + zlog(a(Ay)).

It follows that we can take

p = ~(log([u]) + 2u5) € By (V).

Remark 11.11. Note that this description of (K, ® By (V))%x also shows that the mon-
odromy operator is nontrivial.
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