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Abstract. We study unipotent fundamental groups for open varieties over p-adic fields
with base point degenerating to the boundary. In particular, we show that the Galois repre-
sentations associated to the étale unipotent fundamental group are semistable.

1. Introduction

1.1. The purpose of this paper is to explain how p-adic Hodge theory for the unipotent
fundamental group provides examples of extensions of crystalline representations which are
semistable but not crystalline, and where the monodromy operator has a clear geometric
intepretation.

We will use a p-adic analogue of the following construction in the complex analytic situation.
Let X/C be a smooth proper scheme, let D ⊂ X be a divisor with normal crossings, and let
X○ denote X −D. Let x ∈D(C) be a point of D. Set

∆ ∶= {z ∈ C ∶ ∣z∣ < 1},
and let ∆∗ denote ∆− {0}. Choose a holomorphic map δ ∶∆→Xan sending 0 to x, and such
that δ−1(X○) =∆∗. This defines a holomorphic family of pointed complex analytic varieties

Xan ×∆∗

pr2
��

∆∗
δ×id

::

and we can consider the assignment that sends a point y ∈ ∆∗ to the group π1(X○an, δ(y)).
Using for example the universal cover of ∆∗ one sees that these fundamental groups of the
fibers form a local system on ∆∗. If y ∈∆∗ is a point then the corresponding representation

Z ≃ π1(∆∗)→ Aut(π1(X○an, δ(y)))
is given by sending the generator 1 ∈ Z to conjugation by the image under δ∗ ∶ π1(∆∗, y) →
π1(X○an, δ(y)) of 1 ∈ Z ≃ π1(∆∗, y).
1.2. We will consider this construction in the p-adic context replacing ∆∗ by a p-adic field,
and using p-adic Hodge theory for the fundamental group developed by Shiho and others.
The technical differential graded algebra ingredients come from our earlier study of p-adic
Hodge theory for the fundamental group in [17]. Let us review the main result of that paper,
in the simplest case of constant coefficients.

Let p be a prime, and k a perfect field of characteristic p. Let V denote the ring of Witt
vectors of k and let K be the field of fractions of V . Fix an algebraic closure K ↪K. The ring
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V comes equipped with a lift of Frobenius σ ∶ V → V , which also induces an automorphism
of K, which we denote by the same letter.

Let X/V be a smooth proper scheme, and let D ⊂ X be a divisor with normal crossings
relative to V . Denote by X○ ⊂X the complement of D in X, and by XK , X○K etc., the generic
fibers. Let MX denote the log structure on X defined by D. For any point x ∈ X○(V ), we
can then consider various realizations of the unipotent completion of the fundamental group
of X○K :

Etale realization πet
1 (X○K , xK): This is the Tannaka dual of the category of unipotent étale

Qp-local systems on the geometric generic fiber of X○. The group πet
1 (X○K , xK) is a pro-

unipotent group scheme over Qp with action of the Galois group GK of K over K.

De Rham realization πdR
1 (X○K , x): This is the Tannaka dual of the category of unipotent

modules with integrable conection on X○K/K. It is a pro-unipotent group scheme over K.

Crystalline realization πcrys
1 (X○k , x): This is the Tannaka dual of the category of unipotent

log isocrystals on (Xk,MXk) over V . It is a pro-unipotent group scheme over K with a
semi-linear Frobenius automorphism ϕ.

The main result of [17] in the present situation is then that there is a canonical isomorphism
of group schemes

πet
1 (X○K , xK)⊗Qp Bcris(V ) ≃ πcrys

1 (X○k , x)⊗K Bcris(V ),
compatible with the Galois and Frobenius automorphisms. Here Bcris(V ) denotes Fontaine’s
ring of crystalline periods. This implies in particular that the coordinate ring Oπet

1 (X
○
K
,xK) is a

direct limit of crystalline representations (see [17, Theorem D.3]). There is also a comparison
isomorphism between πcrys

1 (X○k , x) and πdR
1 (X○K , x).

1.3. The goal of the present paper is to explain what happens in the case when the base
point xK ∈ X○(K) specializes to a point of the boundary D in the closed fiber. In this case
πet

1 (X○K , xK) and πdR
1 (X○K , xK) still make sense with no modification. We explain in this paper

how to make sense of πcrys
1 (X○k , x) in this setting, and in particular that the coordinate ring of

this group scheme now carries a monodromy operator. After introducing these constructions
we show the following result.

Theorem 1.4. Let Bst(V ) denote Fontaine’s ring of semistable periods. Then there is a
canonical isomorphism of group schemes over Bst(V )
(1.4.1) πet

1 (X○K , xK)⊗Qp Bst(V ) ≃ πcrys
1 (X○k , x)⊗K Bst(V ),

compatible with Galois actions, Frobenius, and monodromy operators. Moreover, the coordi-
nate ring Oπet

1 (X
○
K
,xK) is a direct limit of semistable representations.

Remark 1.5. We also discuss a more general result about torsors of paths between two
points.

1.6. Since πet
1 (X○K , xK) is a pro-unipotent group scheme, we can write it canonically as a

projective limit (using the derived series)

πet
1 (X○K , xK) = lim←Ð

N

πet
1 (X○K , xK)N ,
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where πet
1 (X○K , xK)0 is the abelianization, which is isomorphic to H1(X○

K
,Qp)∨, and such that

the map
πet

1 (X○K , xK)N → πet
1 (X○K , xK)N−1

is surjective with abelian kernel. We have a similar description on the crystalline side

πcrys
1 (X○k , x) = lim←Ð

N

πcrys
1 (X○k , x)N

and the isomorphism (1.4.1) induces isomorphisms for all N

πet
1 (X○K , xK)N ⊗Qp Bst(V ) ≃ πcrys

1 (X○k , x)N ⊗K Bst(V ).
Passing to Lie algebras this gives examples of finite dimensional semistable extensions which
admit a filtration whose successive quotients are crystalline.

Remark 1.7. In this paper we consider only the unramified case of varieties over the ring of
Witt vectors rather than over a possibly ramified extension. We expect that similar techniques
should yield analogous results in the ramified case, but this requires additional foundational
work (in particular the setting of [17] is in the unramified case).

The paper is organized as follows. Sections 2, 3, and 4 are devoted to the foundational
aspects of defining the monodromy operator on the crystalline fundamental group in our
setting, and to explaining the Hyodo-Kato isomorphism for fundamental groups. In section
5 we discuss the comparison between de Rham and crystalline fundamental groups. Much
of this material can already be extracted from Shiho’s work [22]. In section 6 we review
the necessary facts about semistable representations that we need, and discuss an equivalent
variant of 1.4, which in fact is the result that we prove. The proof is based on various
techniques using differential graded algebras and the methods of [17]. Section 8 contains
some background material on differential graded algebras, and the proof of the main theorem
is given in section 9. Finally the last two sections are devoted to the example of fundamental
groups of punctured curves, and in particular the projective line minus three points.

Remark 1.8. Related to the work in this paper is the work of Andreatta, Iovita, and Kim
[2] characterizing good reduction of curves in terms of the crystalline fundamental group.

1.9. (Conventions). We freely use the formalism of Tannkian categories as developed in
[5] and [21]. Let K be a field of characteristic 0. Then a Tannakian category is a K-linear
abelian tensor category T satisfying various properties (see [5, §2]). For such a category T
and K-scheme S a fiber functor from T to the category Qcoh(S) of quasi-coherent sheaves
on S is an exact K-linear tensor functor

ω ∶ T → Qcoh(S).
One of the axioms for a tensor category to be Tannakian is that there exists a fiber functor
for some S ≠ ∅ [5, 2.8]. As explained in [5, 2.7] such a functor automatically takes values in
locally free sheaves of finite rank on S.

For a fiber functor ω ∶ T → Qcoh(S) and a morphism f ∶ T → S the composition of ω
with f∗ ∶ Qcoh(S) → Qcoh(T ) is again a fiber functor, denoted f∗ω. For two fiber functors
ω1, ω2 ∶ T → Qcoh(S) denote by π(T , ω1, ω2) the functor on S-schemes sending f ∶ T → S to
the set of isomorphisms f∗ω1 ≃ f∗ω2 of fiber functors T → Qcoh(T ). By [5, 6.6] the functor
π(T , ω1, ω2) is representable by an affine scheme over S. In what follows we somewhat
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abusively use the same notation for this functor and the scheme that represents it. For a
fiber functor ω ∶ T → Qcoh(S) we write π(T , ω) for the group scheme π(T , ω, ω).

The crystalline site for log schemes was defined in [13], and the theory was further developed
to included bases a formal log scheme in [22, §4]. We refer to these articles for the basic
definitions of log crystalline cohomology.

1.10. (Acknowledgements) I am grateful to Brian Conrad for helpful correspondence, and
Ishai Dan-Cohen for stimulating conversations. I also want to thank the referee who provided
many useful comments and corrections which greatly improved the paper. This paper was
written over a span of several years during which the author was partially supported by NSF
grants DMS-1303173 and DMS-1601940 and a grant from The Simons Foundation.

2. Unipotent isocrystals on the log point

2.1. Let k be a perfect field with ring of Witt vectors V . Let Mk be the log structure on
Spec(k) associated to the map N→ k sending all nonzero elements to 0 (so Mk ≃ O∗

Spec(k)
⊕N).

Let I denote the category on unipotent isocrystals on (Spec(k),Mk)/K, where K denotes
the field of fractions of V .

2.2. Let ModK(N ) denote the category of pairs (M,N), where M is a finite dimensional
vector space over K, and N ∶ M →M is an endomorphism. We let Modun

K (N ) ⊂ ModK(N )
denote the full subcategory of pairs (M,N) for which there exists an N -stable filtration

0 = F n ⊂ F n−1 ⊂ ⋯ ⊂ F 1 ⊂ F 0 =M
such that the endomorphism of F i/F i+1 induced by N is zero for all i.

2.3. There is a functor

(2.3.1) η̃0 ∶I →Modun
K (N )

defined as follows. Let LV denote the log structure on Spf(V ) induced by the map N → V
sending 1 to 0. The natural closed immersion

(Spec(k),Mk)↪ (Spf(V ), LV )
defines an object of the crystalline topos of (Spec(k),Mk)/V , which we denote by T .

If E is an isocrystal on (Spec(k),Mk)/V we can evaluate E on T to get a K-vector space,
which we denote by E0. The crystal structure on E induces an endomorphism N0 ∶ E0 → E0

as follows.

Consider the ring of dual numbers V [ε] (so we have ε2 = 0, but we suppress this from the
notation), and let LV [ε] denote the log structure on Spf(V [ε]) induced by pulling back LV
along the morphism

p ∶ Spf(V [ε])→ Spf(V )
induced by the unique map of V -algebras

V → V [ε].

So we have
LV [ε] ≃ O∗Spf(V [ε]) ⊕N.
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There is an automorphism ι of LV [ε] defined by the map

N→ O∗Spf(V [ε]) ⊕N, 1↦ (1 + ε,1).

Define pb1 ∶ p∗LV → LV [ε] to be the natural map (by definition p∗LV = LV [ε] and under this
identification pb1 is the identity map), and let pb2 ∶= ι ○ pb1. Define

pi ∶ (Spf(V [ε]), LV [ε])→ (Spf(V ), LV ), i = 1,2,

to be (p, pbi).
Setting ε to 0 defines a closed immersion of log schemes

(2.3.2) j ∶ (Spf(V ), LV )↪ (Spf(V [ε]), LV [ε]),
and we obtain a commutative diagram

(2.3.3) (Spec(k),Mk)
hH

uu

dD

rr

mM

{{

(Spf(V ), LV )
id

))

� � j // (Spf(V [ε]), LV [ε])
p1

��
p2

��
(Spf(V ), LV )

The crystal structure on E therefore defines an isomorphism

σ ∶ p∗2E0 → p∗1E0,

which reduces to the identity modulo ε. Such an isomorphism is simply a map

(2.3.4) σ ∶ E0 ⊗K K[ε]→ E0 ⊗K K[ε]
reducing to the identity modulo ε. Giving such a map σ is equivalent to giving an endomor-
phism N0 ∶ E0 → E0. Indeed, given σ we define N0 by the formula

σ(x,0) = x +N0(x) ⋅ ε ∈ E0 ⊕ E0 ⋅ ε ≃ E0 ⊗K K[ε].
Note also that if E is unipotent then (E0,N0) ∈ Modun

K (N ). We therefore get the functor η̃0

by sending E to (E0,N0).

Remark 2.4. The category Modun
K (N ) is Tannakian with fiber functor the forgetful functor

to VecK . As discussed for example in [21, Chapitre IV, §2.5] the Tannaka dual group is
isomorphic to Ga. If (A,N) is an object of Modun

K (N ) then the corresponding action of Ga

on A is characterized by the element 1 ∈ Ga acting by exp(N).

2.5. The category I can be described explicitly using modules with connection. Consider
the surjection V [t]→ V sending t to 0, and let V ⟨t⟩ denote the p-adically completed divided
power envelope of the composite map

V [t]→ V → k.

We write K⟨t⟩ for V ⟨t⟩[1/p]. Let MV ⟨t⟩ denote the log structure on Spf(V ⟨t⟩) induced by the
map N→ V ⟨t⟩ sending 1 to t. We then have a strict closed immersion

i ∶ (Spf(V ), LV )↪ (Spf(V ⟨t⟩),MV ⟨t⟩)
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obtained by setting t = 0. For an isocrystal E on (Spec(k),Mk)/K let EV ⟨t⟩ denote the value
on

(Spec(k),Mk)↪ (Spf(V ⟨t⟩),MV ⟨t⟩),
which is a free K⟨t⟩-module of finite rank. Furthermore, we have a canonical isomorphism

EV ⟨t⟩ ⊗K⟨t⟩,t↦0 K ≃ E0,

induced by the closed immersion i.

Remark 2.6. Note that V ⟨t⟩ can also be viewed as the p-adically completed divided power
envelope of the surjection V [t] → k sending t to 0. This follows from [13, 5.5.1] and [3, 3.20
Remarks (1)].

2.7. There is a differential
d ∶K⟨t⟩→K⟨t⟩dlog(t)

sending t[i] to it[i]dlog(t). If M is a K⟨t⟩-module, we define a connection on M to be a
K-linear map

∇ ∶M →M ⋅ dlog(t)
satisfying the Leibnitz rule

∇(fm) = (df) ⋅m + f∇(m).
Define ModK⟨t⟩(∇) to be the category of pairs (M,∇), where M is a finitely generated free
K⟨t⟩-module and ∇ is a connection on M . Define Modun

K⟨t⟩(∇) ⊂ ModK⟨t⟩(∇) to be the
full subcategory of pairs (M,∇) for which there exists a finite ∇-stable filtration by K⟨t⟩-
submodules

0 = F n ⊂ F n−1 ⊂ ⋯ ⊂ F 0 =M
such that each successive quotient F i/F i+1 is isomorphic to a finite direct sum of copies of
(K⟨t⟩, d).

Let J ⊂K⟨t⟩ denote the kernel of the surjection

K⟨t⟩→K, t↦ 0.

Note that for any K⟨t⟩-module M with connection ∇, the connection ∇ induces a K-linear
map

∇0 ∶M/JM →M/JM,

characterized by the condition that for any m ∈ M we have ∇0(m̄) ⋅ dlog(t) equal to the
reduction of ∇(m). It follows from the construction that we get a functor

Π ∶Modun
K⟨t⟩(∇)→Modun

K (N ).
2.8. Now by the standard correspondence between isocrystals and modules with integrable
connection (see for example [13, 6.2]), evaluation on

(Spf(V ⟨t⟩),MV ⟨t⟩)
defines an equivalence of categories

η̃V ⟨t⟩ ∶I →Modun
K⟨t⟩(∇).

Furthermore, the composite Π ○ η̃V ⟨t⟩ is the functor η̃0.

There is also a functor

(2.8.1) Modun
K (N )→Modun

K⟨t⟩(∇)
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defined by sending an object (A,N) ∈Modun
K (N ) to the object (M,∇) ∈Modun

K⟨t⟩(∇) obtained
by setting M = A⊗KK⟨t⟩, and defining ∇ to be the unique connection sending a⊗1 ∈ A⊗KK⟨t⟩
to (N(a)⊗ 1) ⋅ dlog(t).

2.9. If one incorporates also Frobenius then the functor Π becomes an equivalence. This is
a consequence of the so-called Hyodo-Kato isomorphism [11, 4.13] (see also [18, Chapter 5]).

Let Modun
K (ϕ,N ) denote the category of triples (A,N,ϕA), where (A,N) ∈Modun

K (N ) and
ϕA ∶ σ∗A→ A is an isomorphism of K-vector spaces such that

pϕA ○N = N ○ϕA.

The ring V ⟨t⟩ has a lifting of Frobenius given by σ on V and the map t↦ tp. We denote this
map by σV ⟨t⟩, and the induced map on K⟨t⟩ by σK⟨t⟩. Let F −Modun

K⟨t⟩(∇) denote the category
of triples (M,∇, ϕM) consisting of an object (M,∇) ∈Modun

K⟨t⟩(∇) and an isomorphism

ϕM ∶ σ∗K⟨t⟩(M,∇)→ (M,∇)

in Modun
K⟨t⟩(∇).

Finally let F −I denote the category of F -isocrystals on (Spec(k),Mk)/K for which the
underlying isocrystal is unipotent.

The previously defined functors then extend to give functors

(2.9.1) F −I
η̃V ⟨t⟩ //

η̃0

))
F −Modun

K⟨t⟩(∇)
Π // Modun

K (ϕ,N ).

Proposition 2.10. All the functors in (2.9.1) are equivalences.

Proof. The statement that the functor labelled η̃V ⟨t⟩ is an equivalence follows from the cor-
responding statement without the Frobenius structure. It therefore suffices to show that the
functor Π in (2.9.1) is an equivalence. This essentially follows from [18, 5.3.24], though some
care has to be taken since loc. cit. gives a statement for a certain category F − Isoc(V ⟨t⟩)
whose underlying modules with connection are in a quotient category Isoc(V ⟨t⟩)Q rather than
ModK⟨t⟩(∇) (see [18, 5.3.20] for the notation). Let F −Isocun(V ⟨t⟩) denote the subcategory of
F − Isoc(V ⟨t⟩) whose underlying object in Isoc(V ⟨t⟩)Q is a successive extension of the trivial
object. We then have a commutative diagram of functors similar to (2.9.1)

F − Isocun(V ⟨t⟩) a //

c

**
F −Modun

K⟨t⟩(∇)
Π // Modun

K (ϕ,N )

where the composition c is an equivalence of categories by [18, 5.3.24] and every object of
F −Modun

K⟨t⟩(∇) is in the essential image of a (see [18, 5.3.25]). It therefore suffices to show
that for two objects M,N ∈ F −Modun

K⟨t⟩(∇) the map

HomF−Modun
K⟨t⟩(∇)(M,N)→ HomModun

K (ϕ,N )
(Π(M),Π(N))

is injective. This follows from the analogous statement for the category Modun
K⟨t⟩(∇) of unipo-

tent objects in ModK⟨t⟩(∇), which in turn follows from the analogous standard result over the



8 MARTIN OLSSON

power-series ring K[[t]], which can be proven as follows. If (E,∇E) and (F,∇F ) are unipo-
tent modules with integrable log connection over K[[t]], then the set of horizontal maps
between them is given by (E∨⊗F )∇E∨⊗F and therefore it suffices to show that for a unipotent
module with integrable log connection (E,∇) the map

E∇ → E/tE
is injective. Furthermore, if

0→ (E′,∇E′)→ (E,∇E)→ (E′′,∇E′′)→ 0

is a short exact sequence of unipotent modules with integrable log connection over K[[t]]
then we have a commutative diagram

0 // E′∇E′ //

a

��

E∇E //

b
��

E′′∇E′′

c

��
0 // E′/tE′ // E/tE // E′′/tE′′ // 0,

and a diagram chase implies that if a and c are injective then b is injective. Since every unipo-
tent module with integrable connection over K[[t]] admits a finite filtration with successive
quotients trivial modules with connection we are then reduced to showing that K[[t]]d=0 is
equal to the constants K, which is immediate since K has characteristic 0. �

Remark 2.11. An inverse to the functor Π is given by sending (A,N,ϕ) to the object of
F −Modun

K⟨t⟩(∇) given by the the pair (M,∇) defined by the functor (2.8.1) together with the
Frobenius structure ϕM given by the isomorphism

σ∗
K⟨t⟩

M ≃ (σ∗A)⊗K K⟨t⟩
ϕA // A⊗K K⟨t⟩ =M.

Indeed there is a natural isomorphism Π(M,∇, ϕM) ≃ (A,N,ϕ), and since Π is an equivalence
this implies that the functor given by (A,N,ϕ)↦ (M,∇, ϕM) is a quasi-inverse for Π.

3. The monodromy operator on πcrys
1

3.1. Let X/V , D ⊂X, and X○ ⊂X be as in the introduction, and let xK ∈X○(K) be a point.
Let MX denote the fine log structure on X defined by D.

Since X/V is proper, the point xK extends uniquely to a point

x ∶ Spec(V )→X,

and in fact uniquely to a morphism of log schemes

x ∶ (Spec(V ),MV )→ (X,MX),
where MV is the log structure on V associated to the chart N→ V sending 1 to p.

3.2. Let (Xk,MXk) denote the reduction modulo p of (X,MX). Note that the reduction
modulo p of (Spec(V ),MV ) is the log point as discussed in section 2.

Let C crys denote the category of unipotent log isocrystals on (Xk,MXk)/K. As discussed
in [22, 4.1.4] this is a Tannakian category over K. The point

y ∶ (Spec(k),Mk)→ (Xk,MXk),
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obtained by reduction from x, defines a functor

y∗ ∶ C crys →I ,

where I is defined as in 2.1. Composing with the functor η̃0 (2.3.1), we get a functor

ω̃crys
0 ∶ C crys →Modun

K (N ).
By further composing with the forgetful functor

Modun
K (N )→ VecK ,

we obtain a functor
ωcrys

0 ∶ C crys → VecK .

Proposition 3.3. The functor ωcrys
0 is a fiber functor.

Proof. This follows from [17, 8.11]. �

3.4. Let πcrys
1 (X○K , x) denote the Tannaka dual of the category C crys with respect to the fiber

functor ωcrys
0 . This is a pro-unipotent group scheme over K.

It has a Frobenius automorphism defined as follows. First note that there is a commutative
diagram

(Spec(k),Mk)
y

��

Fk // (Spec(k),Mk)
y

��
(Xk,MXk)

FY // (Xk,MXk),
where the horizontal arrows are the Frobenius endomorphisms. We therefore have a 2-
commutative diagram

(3.4.1) C crys
F ∗Xk //

y∗
��

C crys

y∗
��

I
F ∗k // I .

It follows for example from [17, 4.26] that the horizontal functors are equivalences of cat-
egories. Since the formal log scheme (Spf(V ), LV ) also has a lifting of Frobenius given by
σ ∶ V → V and multiplication by p on LV , there is a natural isomorphism between the
composite functor

I
F ∗k // I

η̃0 // Modun
K (N )

forget // ModK ,

and the composite functor

I
η̃0 // Modun

K (N )
forget // ModK

(−)⊗K,σK// ModK .

We therefore obtain an isomorphism of functors

ωcrys
0 ○ F ∗Xk ≃ ω

crys
0 ⊗K,σ K.

This defines an isomorphism of group schemes over K

ϕ ∶ πcrys
1 (X○k , x)⊗K,σ K → πcrys

1 (X○k , x),
which we refer to as the Frobenius endomorphism of πcrys

1 (X○K , x).
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3.5. There is also a monodromy operator on πcrys
1 (X○K , x) defined as follows. As in 2.3 let V [ε]

denote the ring of dual numbers over V . Then the monodromy operator will, by definition,
be an isomorphism of group schemes over V [ε]

N ∶ πcrys
1 (X○k , x)⊗K K[ε]→ πcrys

1 (X○k , x)⊗K K[ε]
whose reduction modulo ε is the identity. Note that, by the discussion in 2.3 such an isomor-
phism is specified by a K-linear map

(3.5.1) N ∶ Oπcrys
1 (X○

k
,x) → Oπcrys

1 (X○
k
,x).

The isomorphism N is constructed as follows. Let

ηK[ε] ∶I →ModK[ε]

be the functor evaluating an isocrystal on the object (2.3.2). We then get a fiber functor

ωV [ε] ∶ C crys →ModK[ε]

by taking the composite

C crys
y∗ // I

ηV [ε] // ModK[ε],

and we can consider the corresponding Tannaka dual group

π1(C crys, ωV [ε]).
The diagram (2.3.3) induces two isomorphisms of functors

(3.5.2) αi ∶ ωcrys
0 ⊗K K[ε]→ ωV [ε], i = 1,2,

which in turn induce an automorphism of group schemes

(3.5.3) πcrys
1 (X○k , x)⊗K K[ε]

α1 // π1(C crys, ωV [ε])
α−12 // πcrys

1 (X○k , x)⊗K K[ε].

We define the monodromy operator N to be this composite.

3.6. More generally, given xi,K ∈X○(K) for i = 1,2, we get two points

xi ∶ (Spec(V ),MV )→ (X,MX),
and reductions yi. Let

πcrys(X○k , x1, x2)
denote the functor of isomorphisms of fiber functors between the resulting two functors

ωcrys
xi,0
∶ C crys → VecK .

Then πcrys(X○k , x1, x2) is a torsor under the group scheme πcrys
1 (X○k , x1) and by a similar

construction to the one in 3.4 and 3.5 comes equipped with a Frobenius automorphism and
monodromy operator.

Remark 3.7. By the general theory of unipotent group schemes the functor taking Lie
algebras induces an equivalence of categories between the category of unipotent group schemes
over K and the category of nilpotent Lie algebras over K. The inverse functor is given by
sending a Lie algebra L to the scheme L corresponding to L with group structure given by the
Campbell-Hausdorf series. One consequence of this is that the coordinate ring of πcrys

1 (X○k , x)
is canonically isomorphic to the symmetric algebra on the dual of Lie(πcrys

1 (X○k , x)). In
particular, the monodromy operator is determined by its action on the Lie algebra.
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Remark 3.8. Elaborating further on remark 3.7, if U is a unipotent group scheme over K
with Lie algebra L then from above we have a canonical identification of the coordinate ring
OU ≃ Sym●L. There is a variant of this description of the coordinate ring for torsors. Let
P be a torsor under U and let OP denote the coordinate ring of P . The action of U on P
induces an action of U on OP making OP an (infinite-dimensional) representation of U. Since
U is unipotent this action defines a filtration

F0 ⊂ F1 ⊂ ⋯Fn ⊂ ⋯ ⊂ OP

defined inductively by setting F0 = OU
P and Fn = (OP /Fn−1)U. Then each Fn is finite dimen-

sional over K and OP = ∪nFn. Indeed a torsor under U over K is necessarily trivial and these
assertions can be verified after choosing a trivialization. The algebra structure is given by
maps of U-representations

Fn ⊗ Fm → Fn+m.

This enables us to describe torsors under U purely in terms of finite-dimensional data.

Remark 3.9. A reformulation of the above construction of the monodromy operator is the
following. The isomorphisms (2.3.4) define an automorphism of the fiber functor ωcrys

0 ⊗KK[ε],
and therefore an element

α ∈ Lie(πcrys
1 (X○k , x)) = Ker(πcrys

1 (X○k , x)(K[ε])→ πcrys
1 (X○k , x)(K)).

We claim that the isomorphism (3.5.3) is given by conjugation by α.

This follows from the general Tannakian formalism as follows. The map αi in (3.5.2) is
given, in terms of automorphisms of fiber functors, by the map

Aut⊗(ωcrys
0 )⊗K K[ε] = πcrys

1 (X○k , x)⊗K K[ε]→ Aut⊗(ωV [ε]) = π1(C crys, ωV [ε])
defined functorially by associating to a scheme f ∶ T → Spec(K[ε]) with underlying morphism
f0 ∶ T → Spec(K) and automorphism g of f∗0 ω

crys
0 the automorphism αi(g) given by

αi(g) ∶= f∗αi ○ g ○ f∗α−1
i .

Therefore the automorphism (3.5.3) is given by associating to such data (T, g) the automor-
phism of f∗ωcrys

0 given by

f∗α−1
2 ○ f∗α1 ○ g ○ f∗α−1

1 ○ f∗α2 = f∗(α−1
2 ○ α1) ○ g ○ f∗(α−1

2 ○ α1)−1,

or equivalently conjugation by α ∶= α−1
2 ○ α1.

We can further describe this in terms of the Lie bracket [−,−] on Lie(πcrys
1 (X○k , x)) (for

the definition of the Lie bracket see [6, Exposé II, 4.7.2]). The map (3.5.3) is determined by
the associated map of Lie algebras, which by the preceding discussion is given by the adjoint
action

Ad(α) ∶ Lie(πcrys
1 (X○k , x))⊗K K[ε]→ Lie(πcrys

1 (X○k , x))⊗K K[ε].
By [6, Exposé II, 4.7.1] this map Ad(α) is given by

id + ε ⋅ [α,−],
so we get a description of (3.5.3) in terms of [α,−].

This implies in particular that for any surjective homomorphism of algebraic groups πcrys
1 (X○k , x)→

H the endomorphism N in (3.5.1) restricts to an endomorphism of OH .
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4. The Hyodo-Kato isomorphism for the fundamental group

We proceed with the notation of the preceding section.

4.1. It will be useful to consider connections on geometric objects such as algebraic groups
or Lie algebras. This can be done in the following manner.

As usual for a ring A let A[ε] denote the ring of dual numbers on A. There are two maps

p1, p2 ∶ V [t]→ V [t][ε]

over V given by sending t to t and t + εt respectively. This extends naturally to a morphism
of log schemes and induces a commutative diagram

(Spf(V ⟨t⟩),MV ⟨t⟩) � � ι // (Spf(V ⟨t⟩[ε]),MV ⟨t⟩[ε])
p2

��
p1

��
(Spf(V ⟨t⟩),MV ⟨t⟩).

4.2. Let

ηK⟨t⟩ ∶I →ModK⟨t⟩

be the functor obtained by evaluating an isocrystal on the object

(Spec(k),Mk)↪ (Spf(V ⟨t⟩),MV ⟨t⟩).

Composing with y∗ ∶ C crys →I we get a fiber functor

ωK⟨t⟩ ∶ C crys →ModK⟨t⟩.

Let

πcrys
1 (X○k , ωK⟨t⟩)

denote the corresponding Tannaka dual group over K⟨t⟩.
This group scheme over K⟨t⟩ comes equipped with the following structure:

(i) An isomorphism

ϕK⟨t⟩ ∶ πcrys
1 (X○k , ωK⟨t⟩)⊗K⟨t⟩,σK⟨t⟩ K⟨t⟩→ πcrys

1 (X○k , ωK⟨t⟩).

We refer to this as a Frobenius structure on πcrys
1 (X○k , ωK⟨t⟩).

(ii) An isomorphism

εK⟨t⟩ ∶ p∗1πcrys
1 (X○k , ωK⟨t⟩)→ p∗2π

crys
1 (X○k , ωK⟨t⟩)

over K⟨t⟩[ε] reducing to the identity over K⟨t⟩. This isomorphism is obtained by
noting that the two functors p∗1ωK⟨t⟩ and p∗2ωK⟨t⟩ are canonically isomorphic. We refer
to such an isomorphism εK⟨t⟩ as a connection.
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4.3. We have a commutative diagram of rings

K
p2 //

p1
// K[ε]

K⟨t⟩

t=0

OO

p2 //

p1
// K⟨t⟩[ε]

t=0

OO

K

id

@@

OO

p2 //

p1
// K[ε]

OO
id

]]

By construction we have an isomorphism of group schemes with Frobenius structure and
monodromy operator (notation as in 3.5)

(4.3.1) (πcrys
1 (X○k , ωK⟨t⟩), ϕK⟨t⟩, εK⟨t⟩)⊗K⟨t⟩,t=0 K ≃ (πcrys

1 (X○k , x), ϕ,N ).
Conversely, we can base change along K → K⟨t⟩ to get a group scheme with Frobenius
structure and connection

(πcrys
1 (X○k , x), ϕ,N )⊗K K⟨t⟩.

Lemma 4.4. There exists a unique isomorphism of group schemes over K⟨t⟩ with Frobenius
structure and connection

(πcrys
1 (X○k , x), ϕ,N )⊗K K⟨t⟩ ≃ (πcrys

1 (X○k , ωK⟨t⟩), ϕK⟨t⟩, εK⟨t⟩)
reducing to the isomorphism (4.3.1) after setting t = 0.

Proof. It suffices to prove the corresponding statement for the Lie algebras of the quotients
by the derived series (see 1.6 and 3.7). In this case the result follows from the Hyodo-Kato
isomorphism discussed in 2.10 and 2.11 . �

Remark 4.5. Likewise one can consider torsors of paths between two points. With notation
as in 3.6 we can consider the two fiber functors to ModK⟨t⟩ obtained by evaluation as in the
preceding construction to get a πcrys

1 (X○k , ωK⟨t⟩)-torsor (where πcrys
1 (X○k , ωK⟨t⟩) is defined using

the point x1)

πcrys
1 (X○k , x1,K⟨t⟩, x2,K⟨t⟩)

equipped with a Frobenius structure ϕK⟨t⟩ and connection εK⟨t⟩ compatible with the structures
on πcrys

1 (X○k , ωK⟨t⟩). Then by an argument similar to the proof of 4.4 one gets an isomorphism

(4.5.1) (πcrys
1 (X○k , x1, x2), ϕ,N )⊗K K⟨t⟩ ≃ (πcrys

1 (X○k , x1,K⟨t⟩, x2,K⟨t⟩), ϕK⟨t⟩, εK⟨t⟩)
of torsors compatible with the isomorphism in 4.4. The main difference is that we cannot
simply pass to Lie algebras but instead use the filtrations on the coordinate rings described
in 3.8.

In more detail, let πK (resp. πK⟨t⟩) denote πcrys
1 (X○k , x1) (resp. πcrys

1 (X○k , ωK⟨t⟩)), and for
n ≥ 0 let πK,n (resp. πK⟨t⟩,n) denote the quotient of πK (resp. πK⟨t⟩) by the n-th step of
the derived series. Let PK (resp. PK⟨t⟩) denote the πK-torsor πcrys

1 (X○k , x1, x2) (resp. the
πK⟨t⟩-torsor πcrys

1 (X○k , x1,K⟨t⟩, x2,K⟨t⟩)), and let P n
K (resp. P n

K⟨t⟩
) be the pushout of PK (resp.

PK⟨t⟩) to a πK,n-torsor (resp. πK⟨t⟩,n-torsor). As discussed in 3.8 we then have a filtration F n
K,●

(resp. F n
K⟨t⟩,●

) on OPnK
(resp. OPn

K⟨t⟩). These filtrations are compatible with the Frobenius
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structures and connections, and to construct the isomorphism (4.5.1) it suffices to construct
isomorphisms

F n
K,m ⊗K K⟨t⟩ ≃ F n

K⟨t⟩,m

compatible with Frobenius and connections, as well as the maps defining the algebra struc-
tures on OPnK

and OPn
K⟨t⟩ and the maps defined the torsor actions. We obtain such iso-

morphisms from the Hyodo-Kato isomorphism as in the proof of 4.4, combined with the
observation that the base change of the data (πK⟨t⟩,n, P n

K⟨t⟩
)n≥0 along K⟨t⟩→K (setting t = 0)

recovers (πK,n, P n
K)n≥0.

5. Crystalline and de Rham comparison

We follow the method of [22, Chapter V] with a slight modification to take into account
the specialization of the base point to the boundary.

5.1. Let C dR denote the category of unipotent modules with integrable connection on X○K/K.
This is a Tannakian category, and the point xK ∈X○(K) defines a fiber functor

ωdR
xK
∶ C dR → VecK .

We let πdR
1 (X○K , xK) denote the Tannaka dual of C dR with respect to the fiber functor ωdR

xK
.

There is a natural isomorphism

(5.1.1) πcrys
1 (X○k , x) ≃ πdR

1 (X○K , xK)
defined as follows.

5.2. As before, let C crys denote the category of unipotent log isocrystals on (Xk,MXk)/K.
The correspondence between isocrystals and modules with integrable connection furnishes a
natural equivalence of categories

C crys → C dR.

Moreover, this equivalence identifies the functor ωdR
xK

with the fiber functor

ωcrys
x ∶ C crys → VecK

which evaluates an isocrystal on the p-adic enlargement

(Spec(k),Mk)↪ (Spf(V ),MV ).
5.3. On the other hand, we have a commutative diagram

(Spf(V ),MV )
t↦p

��
(Spec(k),Mk)

y

��

( �

55

� � //
� v

))

(Spf(V ⟨t⟩),MV ⟨t⟩)

(Spf(V ), LV )
t↦0

OO

(Xk,MXk).



SEMISTABLE EXTENSIONS 15

From this diagram we obtain an isomorphism of fiber functors on C crys

ωcrys
x ≃ ωcrys

K⟨t⟩
⊗K⟨t⟩,t↦pK,

where the right side is the fiber functor obtained by evaluating on (Spf(V ⟨t⟩),MV ⟨t⟩). This
defines an isomorphism of group schemes over K

πcrys
1 (X○k , ωK⟨t⟩)⊗K⟨t⟩,t↦pK ≃ πdR

1 (X○K , xK).

Combining this with the isomorphism 4.4 we obtain the isomorphsim (5.1.1).

5.4. Similarly for two points xi,K ∈ X○(K) we can consider the torsor of isomorphisms of
fiber functors ωdR

x1,K
≃ ωdR

x2,K
which we denote by

πdR(X○K , x1,K , x2,K).

Using the preceding isomorphisms of fiber functors for each of the points xi we get an iso-
morphism of torsors

πdR(X○K , x1,K , x2,K) ≃ πcrys(X○k , x1, x2).

6. Review of semistable representations

For the convenience of the reader, and to establish some basic notation, we summarize in
this section some of the basic definitions and results about period rings that we need in the
following sections.

6.1. For a Zp-algebra A with A/pA ≠ 0 and Frobenius surjective on A/pA, we write Acris(A)
for the ring defined in [10, 2.2.2] (a good summary can be found in [26, §1]).

Let RA denote the perfection of A/pA given by lim←ÐFrob
A/pA, and let θ ∶ W (RA) → Â be

the standard map to the p-adic completion of A (see for example [26, p. 387]). This map is
surjective by [26, A1.1]. By [26, Corollary A1.6] we then have

Acris(A) = lim←Ð
n

Bn(A),

where

Bn(A) ∶= Γ((Spec(A/pnA)/Wn)crys,O).

Assume next that we have elements εm ∈ A with ε0 = 1, and εpm+1 = εm, and ε1 ≠ 1. As
discussed in [26, (A2) and (A3)] we get an element t ∈ Acris(A) and we have rings

Bcris(A)+ ∶= Acris(A)⊗Q,

and

Bcris(A) ∶= Bcris(A)+[1/t].

6.2. Next let us recall the definition of Bst(V ) following [14, §2]. We will only consider the
unramified case, though of course these definitions can be made more generally.

Let V, k,K,σ, and Mk be as in 1.2 and 2.1. Fix also the following notation:
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MV The log structure on Spec(V ) defined by the closed fiber.
Vn The quotient V /pn+1V .
MVn The pullback of MV to Spec(Vn)
K An algebraic closure of K.

V The integral closure of V in K.

MV The log structure on Spec(V ) defined by the closed fiber. Note that MV is not fine
but is a colimit of fine log structures.

V n The quotient V /pn+1V .

MV n
The pullback of MV to Spec(V n).

We then have a morphism of log schemes over Vn

(Spec(V n),MV n
)→ (Spec(Vn),MVn),

which induces a morphism of topoi

h ∶ ((Spec(V n),MV n
)/Vn)crys → ((Spec(Vn),MVn)/Vn)crys.

There is a surjection

V [t]→ V

sending t to p. By [3, 3.20 Remarks 1] the divided power envelope of the induced surjection

Vn[t]→ Vn,

is isomorphic to the divided power envelope of the surjection Vn[t]→ k sending t to 0, which
we denote by Vn⟨t⟩. This is the reduction modulo pn+1 of the ring V ⟨t⟩ considered earlier.
There is a log structure MVn⟨t⟩ on Spec(Vn⟨t⟩) induced by the composite morphism

N 1↦t // Vn[t] // Vn⟨t⟩.

The resulting strict closed immersion

(Spec(Vn),MVn)↪ (Spec(Vn⟨t⟩),MVn⟨t⟩)
is an object of the crystalline site Cris((Spec(Vn),MVn)/Vn). Let P st

n denote the value of

h∗O((Spec(V n),MV n
)/Vn)crys

on this object. The ring P st
n is a Vn⟨t⟩-algebra, and there is a natural map

P st
n → V n,

whose kernel is a PD-ideal. This map even extends to a strict closed immersion of log schemes

(Spec(V n),MV n
)↪ (Spec(P st

n ),MP st
n
),

where the log structure MP st
n

is defined as in [14, 3.9].

There is a natural map (where the right side has trivial log structure)

(Spec(V n),MV n
)→ Spec(V n)

which induces a morphism

Bn(V )→ Γ(((Spec(V n),MV n
)/Vn)crys,O((Spec(V n),MV n

)/Vn)crys
).
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In particular, the structure sheaf

O
((Spec(V n),MV n

)/Vn)crys

has a natural structure of Bn(V )-algebra, and hence P st
n also has a natural structure of a

Bn(V )-algebra.

The ring P st
n can be described explicitly. It is shown in [14, 3.3] that the choice of a pn+1-th

root β of p in V induces an element νβ ∈ P st,∗
n such that νβ − 1 lies in the divided power ideal

of P st
n , and that the resulting map

(6.2.1) Bn(V n)⟨z⟩→ P st
n , z ↦ νβ − 1

is an isomorphism.

6.3. Passing to the limit, define
P st ∶= lim←Ð

n

P st
n ,

and let P st
Q denote P st ⊗ Q. If we fix a compatible sequence of pn-th roots of p, then the

construction in [14, 3.3] defines an isomorphism between P st and the p-adically completed
PD-polynomial algebra Acris(V )⟨z⟩.

In particular, the ring P st
Q is a Bcris(V )+-algebra.

6.4. There is an endomorphism
N ∶ P st → P st

defined as follows. Let Vn⟨t⟩[ε] denote the ring of dual numbers over Vn⟨t⟩ (so ε2 = 0). Let
(JVn⟨t⟩, γ) be the divided power ideal of Vn⟨t⟩. Then the ideal JVn⟨t⟩ + εVn⟨t⟩ ⊂ Vn⟨t⟩[ε] carries
a canonical divided power structure compatible with that on Vn⟨t⟩ (this is an immediate
verification). Let MVn⟨t⟩[ε] denote the log structure on Spec(Vn⟨t⟩[ε]) obtained by pulling
back the log structure MVn⟨t⟩ along the retraction

Vn⟨t⟩→ Vn⟨t⟩[ε].
Then we obtain a commutative diagram of objects in Cris((Spec(Vn),MVn)/Vn)

(Spec(Vn),MVn)
gG

tt

cC

qq

kK

yy

(Spec(Vn⟨t⟩),MVn⟨t⟩)
id

**

� � j // (Spec(Vn⟨t⟩[ε]),MVn⟨t⟩[ε])
p1

��
p2

��
(Spec(Vn⟨t⟩),MVn⟨t⟩),

where p1 and p2 are defined similarly to the maps p1 and p2 in (2.3.3). By [14, 3.1] the sheaf

h∗O((Spec(V n),MV n
)/Vn)crys

is a quasi-coherent crystal, and therefore we obtain an isomorphism

(6.4.1) γP st
n
∶ P st

n ⊗Vn⟨t⟩ Vn⟨t⟩[ε]→ P st
n ⊗Vn⟨t⟩ Vn⟨t⟩[ε]

reducing to the identity modulo ε. We define

N ∶ P st
n → P st

n
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to be the map characterized by the property that the isomorphism (6.4.1) sends x ⊗ 1 to
x⊗ 1+N (x)⊗ ε. By passing to the inverse limit over n we then also obtain a connection γP st

with associated endomorphism N ∶ P st → P st, and also an endomorphism of P st
Q (which we

will again denote by N ).

Explicitly, if we fix a pn+1-st root β of p in V , defining an isomorphism (6.2.1), then the
endomorphism N sends Bn(V n) to 0, and z[i] to z[i−1]νβ by [14, 3.3].

Define Bst(V )+ ⊂ P st
Q to be the subalgebra of elements x ∈ P st

Q for which there exists an
integer i ≥ 1 with N i(x) = 0 (cf. [14, 3.7]). Finally define

Bst(V ) ∶= Bst(V )+[1/t] = Bst(V )+ ⊗Acris(V )+ Bcrys(V ).

6.5. The ring P st
Q comes equipped with a Frobenius automorphism

ϕ ∶ P st
Q → P st

Q ,

which extends the Frobenius endomorphism on Bcris(V )+, and we have the relation

pϕN = Nϕ.
In particular, ϕ restricts to an automorphism of Bst(V )+. There is also an action of the Galois
group GK ∶= Gal(K/K) on P st, which commutes with the action of N and ϕ. This action
restricts to an action of GK on Bst(V )+.
6.6. Finally for the convenience of the reader let us recall the definition of a semistable
representation (for more details see [10]).

Let Rep(GK) denote the category of finite dimensional Qp-vector spaces with continuous
action of GK .

As in 2.9 define ModK(ϕ,N ) to be the category of triples (A,N,ϕA), where A is a finite
dimensional K-vector space, ϕA ∶ A → A is a semilinear automorphism, and N ∶ A → A is a
nilpotent endomorphism satisfying

pϕAN = NϕA.

There is a functor

Dst ∶ Rep(GK)→ModK(ϕ,N )
defined as follows.

Let M be a finite dimensional Qp-vector space with continuous GK-action. Define

Dst(M) ∶= (M ⊗Qp Bst(V ))GK .
This has a semilinear endomorphism ϕ, and a nilpotent operator N induced by the endomor-
phisms ϕ and N on Bst(V ). We therefore get an object of ModK(ϕ,N ).

There is a natural map

αM ∶Dst(M)⊗K Bst(V )→M ⊗Qp Bst(V )
which is always injective. The representation M is called semistable if αM is an isomorphism.
This is equivalent to the condition that

dimK(Dst(M)) = dimQp(M).
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The notion of a semistable representation can also be described in terms of the rings P st
Q [1/t]

instead of Bst:

Proposition 6.7. Let M ∈ Rep(GK) be a representation, let (A,N,ϕA) be an object of
ModK(ϕ,N ), and suppose given an isomorphism

λ ∶ A⊗K P st
Q [1/t]→M ⊗Qp P

st
Q [1/t].

compatible with Frobenius, monodromy operators, and Galois action. Then M is a semistable
representation and the isomorphism λ is induced by an isomorphism over Bst(V ).

Proof. The key point is that the inclusion

A⊗K Bst(V )↪ A⊗K P st
Q [1/t]

identifies A ⊗K Bst(V ) with the elements A ⊗K P st
Q [1/t] on which the monodromy operator

is nilpotent. To verify this claim notice that A admits a finite filtration stable under the
monodromy operator such that the successive quotients have trivial monodromy operator.
Using this one sees that to verify the claim it suffices to show that the inclusion

Bst(V )↪ P st
Q [1/t]

identifies Bst(V ) with the elements of P st
Q [1/t] on which the monodromy operator is trivial.

Before inverting t this this follows from our definition of Bst(V )+ in 6.4. To get our variant
statement, note that the monodromy operator on an element x ∈ P st

Q [1/t] is nilpotent if and
only if the monodromy operator on trx is nilpotent for some r > 0. The claim therefore follows
from the definition in 6.4.

To deduce the proposition from this, note that since λ is compatible with the monodromy
operators it induces an isomorphism of sets of elements on which the monodromy operator is
nilpotent. We conclude that λ restricts to an isomorphism

σ′ ∶ A⊗K Bst(V )→M ⊗Qp Bst(V )

which proves the proposition. �

6.8. Proposition 6.7 can be generalized to the case of infinite dimensional representations as
follows.

Let M denote a possibly infinite dimensional representation of GK over Qp, which is con-
tinuous in the sense that M is the union of finite-dimensional continuous representations of
GK over Qp, and let (A,N,ϕA) be a triple consisting of a K-vector space A, a semilinear
automorphism ϕA, and a K-linear map N ∶ A → A satisfying pϕAN = NϕA. Suppose further
given an isomorphism

λ ∶ A⊗K P st
Q [1/t]→M ⊗Qp P

st
Q [1/t].

compatible with Frobenius, monodromy operators, and Galois action.

Proposition 6.9. In the situation of 6.8 the representation M is the union of finite dimen-
sional semistable representations.
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Proof. Since M is a continuous representation we can write M as a union M = ∪iMi of finite
dimensional representations. By the description of the Galois action on P st

Q [1/t] given in [14,
3.3 (4)] the Galois invariants of P st

Q [1/t] equal K. Let Ai denote

(Mi ⊗Qp P
st
Q [1/t])GK ,

so Ai is a subspace of A stable under ϕA and N . We then have a commutative diagram

Ai ⊗K P st
Q [1/t]

� � //

��

A⊗K P st
Q [1/t]

≃

��
Mi ⊗Qp P

st
Q [1/t]

� � // M ⊗Qp P
st
Q [1/t].

From this it follows that Ai is finite dimensional. Indeed since P st
Q [1/t] is an integral domain

(which follows for example from the description in 6.3) it admits an imbedding into a field,
and we find from the above diagram that there exists a field extension K ⊂ Ω such that
Ai ⊗K Ω embeds into the finite dimensional Ω-vector space Mi ⊗Qp Ω. As noted in [10, 4.2.2]
this implies that the action of N on Ai is nilpotent. Since A is the union of the Ai this in
turn implies that N acts nilpotently on any element of A, and that (A,N,ϕA) is a union of
objects of ModK(ϕ,N ). Then as in the proof of 6.7 restricting λ to the set of elements on
which the monodromy operator is nilpotent we get an isomorphism

λ′ ∶ A⊗K Bst(V )→M ⊗Qp Bst(V ).

Let Ti denote the quotient M/Mi and let Bi denote (Ti ⊗Qp Bst(V ))GK . We then have a
commutative diagram

0 // Ai ⊗K Bst(V )� _

��

// A⊗K Bst(V )
≃

��

// Bi ⊗K Bst(V )� _

��

0 // Mi ⊗Qp Bst(V ) // M ⊗Qp Bst(V ) // Ti ⊗Qp Bst(V ) // 0.

Here the right vertical arrow is injective by [10, 5.1.2]. From this and a diagram chase it
follows that the map

Ai ⊗K Bst(V )→Mi ⊗Qp Bst(V )
is an isomorphism, and that Mi is a semistable representation. �

6.10. The above enables us to reformulate 1.4 as follows. Let the notation be as in 1.4. In
section 9 we will give a proof of the following theorem:

Theorem 6.11. There is an isomorphism of group schemes over P st
Q [1/t]

(6.11.1) πét
1 (X○K , xK)⊗Qp P

st
Q [1/t] ≃ πcrys

1 (X○k , ωK⟨t⟩)⊗K⟨t⟩ P st
Q [1/t]

compatible with Galois actions, Frobenius morphisms, and connections.

6.12. Let us explain how theorem 6.11 implies 1.4.

By 4.4 the right side of (6.11.1) is isomorphic to

πcrys
1 (X○k , x)⊗K P st

Q [1/t]
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in a manner compatible with Frobenius and connections. Thus giving the isomorphism (1.4.1)
is equivalent to giving an isomorphism

πét
1 (X○K , xK)⊗Qp P

st
Q [1/t] ≃ πcrys

1 (X○k , x)⊗K P st
Q [1/t]

compatible with Frobenius and Galois. Furthermore, looking at the Lie algebras using 6.7,
6.8, and 6.9 we get from such an isomorphism the desired isomorphism in 1.4.

7. The convergent topos and fundamental groups

7.1. For the proof of 6.11 we will need to use some results about the convergent topos. The
basic theory of the convergent topos in the logarithmic context was discussed in [16] and [23,
§2.1], to which we refer for the basic result and notation. We summarize here what we need
in what follows.

7.2. With notation as in 3.1, the convergent topos ((X,MX)/V )conv is defined as in [23,
2.1.3]. Let O(X,MX)/V denote the structure sheaf in ((X,MX)/V )conv and let K(X,MX)/V denote
O(X,MX)/V ⊗V K. For a sheaf E of K(X,MX)/V -modules and an enlargement (notation as in [23,
2.1.1 (1)])

T ∶= ((T,MT ), (Z,MZ), i, z)
we write ET for the sheaf of OT ⊗Q-modules given by restricting E to the étale site of T . We
call E a pseudo-isocrystal if for every morphism of enlargements

f ∶ T′ → T

the pullback map f∗ET → ET′ is an isomorphism.

Remark 7.3. The terminology “pseudo-isocrystal” is not standard. We use it here as in the
literature the terminology “isocrystal” usually refers to a pseudo-isocrystal in the above sense
for which the ET are furthermore assumed isocoherent.

7.4. Consider a diagram of formal log schemes over V

(Z,MZ)
z

��

� � i // (T,MT )

(X,MX),
where T is flat over V , i is an exact closed immersion, and Z is a subscheme of definition in
T , and the ideal of Z in T is endowed with divided powers. Here we use the notion of formal
scheme in [7, I, 10.4.2], where no noetherian assumptions are used. If E is a pseudo-isocrystal
on ((X,MX)/V )conv we claim that there is a natural way to evaluate E on (T,MT ) to get a
sheaf E(T,MT )

of OT ⊗V K-modules on T .

To see this it suffices to consider the case when T is affine (since sheaves can be constructed
locally). Let i ∶ (X,MX) ↪ (Y,MY ) be an exact closed immersion with (Y,MY ) a formally
log smooth p-adic formal log scheme over V so we get a sheaf E(Y,MY )

of OY ⊗V K-modules
on Y , and choose an extension h ∶ (T,MT ) → (Y,MY ) of the given map (T,MT ) → (Y,MY ).
We then define E(T,MT )

to be h∗E(Y,MY )
.

A priori this depends on the choices involved, but given two imbeddings

is ∶ (X,MX)↪ (Ys,MYs), s = 1,2
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and maps

hs ∶ (T,MT )→ (Ys,MYs)
we get a map

h = h1 × h2 ∶ (T,MT )→ (P,MP ) ∶= (Y1,MY1) ×V (Y2,MY2).
The immersion (X,MX)↪ (P,MP ) is not an enlargement but by [23, 2.1.22] we can consider
the associated universal enlargement, which is an inductive system of enlargements

{T(X,MX),n(P,MP )}n≥1.
Now since the ideal of Z in T has divided powers and T is flat over V the map h factors
through a morphism

h̄ ∶ (T,MT )→ T(X,MX),n(P,MP )
for n sufficiently large. Pulling back along h̄ the canonical isomorphism between the two
pullbacks of E to T(X,MX),n(P,MP ) we get an isomorphism h∗1E(Y1,MY1

) ≃ h∗2E(Y2,MY2
). Using a

similar argument one shows that this isomorphism satisfies the natural cocycle condition for
three choices of data, and therefore E(T,MT )

is well-defined. In what follows we write E(T,MT )
also for Γ(T,E(T,MT )

).

7.5. In [22, 5.3.1] (see also [23, 2.1.7]) the preceding techniques are used to construct an
equivalence of categories between the category of unipotent isocrystals on the convergent
site of (X,MX)/V and the category of unipotent isocrystals on the crystalline site. This
equivalence is functorial in (X,MX).

In particular, we could have proceeded with the arguments of sections 2 and 3 using the
convergent topos instead of the crystalline topos.

8. Differential graded algebras and connections

We can describe the monodromy operator on πcrys
1 (X○k , x) using differential graded algebras

as follows, following [17].

8.1. For the convenience of the reader let us summarize some of the basic theory relating
differential graded algebras and unipotent fundamental groups as used in [17].

Let R be a Q-algebra, and let dgaR denote the category of commutative differential N-
graded R-algebras as in [17, 2.11]. For an object A ∈ dgaR equipped with a map f ∶ A → R
there is an associated unipotent group scheme π1(A,f). The main point for the purposes of
this paper is that the various fundamental groups of interest in this paper, and the compar-
isons between them, can be described using the differential graded algebras obtained from
cohomology.

The construction of π1(A,f) requires the use of various model category structures. We will
not review that here, but instead refer to [17, Chapter 2]. Let Alg∆

R denote the category of
cosimplicial R-algebras, and let SPr(R) denote the category of simplicial presheaves on the
category AffR of affine R-schemes; that is, SPr(R) is the category of functors from R-algebras
to simplicial sets. There is a functor (see [17, 2.21])

D ∶ dgaR → Alg∆
R
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called denormalization, which induces an equivalence of homotopy categories

Ho(dgaR) ≃ Ho(Alg∆
R)

for suitable model category structures. Taking the level-wise spectrum of a cosimplicial
algebra defines a functor

Spec ∶ (Alg∆
R)op → SPr(R),

which can be derived to give a functor

RSpec ∶ Ho(Alg∆
R)op → Ho(SPr(R)).

We can also consider algebras with an augmentation to R, which we will denote by dgaR,/R
and Alg∆

R,/R, and pointed simplicial presheaves SPr∗(R). The above functors have pointed
versions

D ∶ Ho(dgaR,/R)→ Ho(Alg∆
R,/R), RSpec ∶ Ho(AlgR,/R)op → Ho(SPr∗(R)).

For a pointed simplicial presheaf ∗→ F we can consider the associated functor

π1(F,∗) ∶ Affop
R → (Groups)

sending an affine scheme Spec(S) to π1(F (S),∗). It is shown in [25, 2.4.5] that for (A,f) ∈
dgaR,/R the functor

π1(RSpec(D(A)),∗)
is represented by a pro-unipotent group scheme. We denote this group scheme simply by
π1(A,f).
8.2. We will need a slight variant of the augmentation to R. Namely, let E ∈ dgaR be a
differential N-graded R-algebra such that R → E is an equivalence. We can then consider the
category dgaR,/E of differential N-graded R-algebras with augmentation to E and there is a
natural map

dgaR,/R → dgaR,/E,

which by [17, B.4] induces an equivalence on homotopy categories

Ho(dgaR,/R)→ Ho(dgaR,/E).
Therefore for (A,f) ∈ Ho(dgaR,/E) we can define

RSpec(A) ∈ Ho(SPr∗(R)).
8.3. For an affine group scheme U over R, there are U-equivariant variants of the preceding
constructions (see [17, 4.6-4.13]).

We can consider the category of U-equivariant differential graded algebras U − dgaR, U-
equivariant cosimplicial algebras U −Alg∆

R , U-equivariant simplicial presheaves U − SPr(R),
as well as pointed variants. The preceding functors extend to this setting

D ∶ Ho(U − dgaR)→ Ho(U −Alg∆
R),

RSpecU ∶ Ho(U −Alg∆
R)→ Ho(U − SPr(R)).

For an object F ∈ U − SPr(R) one can form the quotient by the U-action, the result of
which we denote by [F /U]. It is an object of SPr(R) equipped with a morphism to BU, the
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standard simplicial presheaf presentation of the classifying stack of U (see for example [17,
4.8]). As explained in [15, §1.2], this construction can be derived and gives an equivalence

(8.3.1) [−/U] ∶ Ho(U − SPr(R))→ Ho(SPr(R)∣BU).
We can compose this functor with the functor forgetting the map to BU to get a functor
(this notation is not standard; u stands for underlying simplicial presheaf)

[−/U]u ∶ Ho(U − SPr(R))→ Ho(SPr(R)).
Again there are pointed versions as well.

Starting with A ∈U − dgaR we then get a simplicial presheaf

[RSpecU(A)/U]u,
which comes equipped with a map

ε ∶ [RSpecU(A)/U]u → BU.

8.4. We will apply this theory in the setting of 3.1 as follows.

First let us explain how to describe πcrys
1 (X○k , ωK⟨t⟩). Let

K(Xk,MXk
)/K → R●

be the standard resolution of the structure sheaf on the convergent site of (Xk,MXk), defined
by the lifting (X,MX) [23, 2.3.6] (see also [17, 4.33]). Likewise we have a resolution

K(k,Mk)/V → S●

of the structure sheaf in the convergent topos of (Spec(k),Mk)/K, provided by the embedding
of (Spec(k),Mk) into the formal log scheme (Spf(V [[t]]),MV [[t]]), defined by taking the
completion of the surjection V [t] → k sending t to 0. Since (X,MX) is smooth over V we
can find an extension

ρ ∶ (Spf(V [[t]]),MV [[t]])→ (X,MX)
of the given map (Spec(k),Mk) → (Xk,MXk). By functoriality of the construction of the
resolution there is a natural map

ρ∗R● → S●.

The crystals Ri are u∗-acyclic, where u ∶ ((Xk,MXk)/V )conv → Xk,ét is the projection (see
[17, 4.33]). It follows that we can obtain an explicit model for RΓ((Xk,MXk)/K,K(Xk,MXk

)/K)
as follows. Let H● → Xk be an étale hypercover with each Hn affine, and let MH● be the
pullback of MXk to H●. We then get a cosimplicial differential N-graded K-algebra

[n]↦ Γ((Hn,MHn)/K,R●).
Applying the functor of Thom-Sullivan cochains [12, 4.1] (see also [17, 2.12]) to this cosimpli-
cial differential graded algebra we obtain A ∈ dgaK representingRΓ((Xk,MXk)/K,K(Xk,MXk

)).
This algebra has an augmentation defined as follows. Let (J●,MJ●) be the simplicial log

scheme defined as the fiber product

(H●,MH●) ×(Xk,MXk
),x (Spec(k),Mk),
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and let (JV ⟨t⟩,●,MJV ⟨t⟩,●) be the unique lifting of (J●,MJ●) to a simplicial étale formal log

scheme over (Spf(V ⟨t⟩),MV ⟨t⟩). So we have a commutative diagram

(H●,MH●)

��

(J●,MJ●)oo

��

� � // (JV ⟨t⟩,●,MJV ⟨t⟩,●)

��
(Xk,MXk) (Spec(k),Mk)x

oo � � // (Spf(V ⟨t⟩),MV ⟨t⟩).

Let Ẽ be the differential N-graded K-algebra obtained by applying the functor of Thom-
Sullivan cochains to the cosimplicial algebra obtained by evaluating S● on (JV ⟨t⟩,●,MJV ⟨t⟩,●),
and let E the differential N-gradedK-algebra obtained by evaluating S● on (Spf(V ⟨t⟩),MV ⟨t⟩).
Since JV ⟨t⟩,● is an étale hypercover of Spf(V ⟨t⟩) the natural map E → Ẽ is an equivalence. Fur-

thermore the map ρ∗R● → S● induces a map f ∶ A→ Ẽ. Finally note that the map K⟨t⟩→ E is
an equivalence since the crystals Si are acyclic for the projection to the étale topos of Spec(k).
Observe that this does not contradict the fact that the cohomology of (Spec(k),Mk)/K is
the cohomology of the circle; indeed, the cohomology of (Spec(k),Mk)/K is computed by
the total complex of the double complex given by forming the de Rham complex of each
Si((Spf(V ⟨t⟩),MV ⟨t⟩)).

We therefore get an object

(A⊗K K⟨t⟩, f) ∈ Ho(dgaK⟨t⟩,/Ẽ) ≃ Ho(dgaK⟨t⟩,/K⟨t⟩)

and a unipotent group scheme π1(A⊗KK⟨t⟩, f). It follows from the constructions of [19] that
this gives a model for πcrys

1 (X○k , ωK⟨t⟩). The isomorphism π1(A⊗K K⟨t⟩, f) ≃ πcrys
1 (X○k , ωK⟨t⟩)

can be constructed as follows.

Let U denote the unipotent group scheme πcrys
1 (X○k , ωK⟨t⟩). Right translation on U gives a

left-action of U on the coordinate ring OU making OU an (infinitely generated) representation
of U equipped with a right action of U coming from left translation. By Tannaka duality this
in turn corresponds to a colimit of isocrystals LU. Furthermore, LU comes equipped with an
isomorphism

ωK⟨t⟩(LU) ≃ OU.

As above, we can then also consider the standard resolution

LU → R●U
of LU, which is a resolution of crystals equipped with an action of U [17, 4.33], which
comes equipped with a map to the standard resolution S●U of x∗LU, defined by V [[t]] → k,
in the convergent topos of (Spec(k),Mk)/K. Evaluating this resolution on the hypercover
(H●,MH●) and applying the functor of Thom-Sullivan cochains we get a U-equivariant dif-
ferential graded algebra AU, which comes equipped with a map to the differential graded
algebra ẼU obtained by evaluating S●U on (JV ⟨t⟩,●,MJV ⟨t⟩,●). Furthermore, there is a natural
U-equivariant equivalence

OU → ẼU.

In particular, the map AU⊗KK⟨t⟩→ ẼU gives a point of [RSpecUAU/U]u. Furthermore the
natural map K(Xk,MXk

)/K → LU induces a morphism A → AU, where the action of U on A is
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trivial. This is compatible with the augmentations given by the base point. Putting this all
together we get a diagram in Ho(SPr∗(K⟨t⟩))

(8.4.1) [RSpecU(AU ⊗K K⟨t⟩)/U]u α //

β
��

BU

RSpec(A⊗K K⟨t⟩).

Now by the same argument as in [19, 2.28] (note that loc. cit. is stated for the case when the
fiber functor takes values in vector spaces over a field, but the same argument works in the
present context) the map β is an isomorphism and the map α induces an isomorphism on π1.

Let us highlight the key points in this regard. First of all, in [19] a more general situation is

considered with a reductive group G and a surjection G̃→ G with kernel a unipotent group.
In the present situation, the group G is trivial and G̃ = U. The key points are then the
following:

(i) The homotopy fiber of the map α is given by RSpecU(AU ⊗K K⟨t⟩) (the inverse of
(8.3.1) is the functor taking homotopy fiber). To prove that α induces an isomorphism
on π1 it suffices to show that π1(RSpecU(AU)⊗K K⟨t⟩) is trivial. Since this is a pro-
unipotent group, by [25, 2.4.5], to prove this vanishing it suffices to show that the
first cohomology group is 0 and this cohomology group is given by H1(AU ⊗K K⟨t⟩)
by [25, 2.2.6]. Thus the statement that α induces an isomorphism on π1 is reduced
to the statement that H1((Xk,MXk)/K,LU) = 0. This follows from noting that by
Tannaka duality we have H1((Xk,MXk)/K,LU) ≃ H1(U,OU), and the latter group
is 0 since OU is an injective U-representation (see for example [19, 2.18]).

(ii) Given (i), to prove that β is an isomorphism it suffices by [25, 3.3.2] to show that for
any representation V of U the induced map on cohomology

(8.4.2) H∗(RSpec(A⊗K K⟨t⟩), V )→H∗([RSpecU(AU ⊗K K⟨t⟩)/U]u, V )

is an isomorphism, where we somewhat abusively write also V for the local systems
corresponding to the representation V . By filtering V , using that U is pro-unipotent,
the verification of this is reduced to the case when V is the trivial representation. The
statement that (8.4.2) is an isomorphism is then reduced to a calculation as in [19,
2.33 and 2.34].

We therefore obtain an isomorphism

(8.4.3) π1(A⊗K K⟨t⟩, f) ≃U.

8.5. The construction of the standard resolution R●U depends on the lifting (X,MX) of
(Xk,MXk), and the isomorphism (8.4.3) depends, a priori, on the choice of the maps ρ and i
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in the diagram

(Spec(k),MXk)
xk

uu

� _

��

(Xk,MXk)� _

i

��

(Spec(V [[t]]),MV [[t]])
ρ

uu
(X,MX).

But in fact the isomorphism is independent of the choices in this diagram. For the convenience
of the reader we sketch an argument for this independence (see also [23], wherein similar issues
are addressed). The key point for this is the fact that in the above diagram it is not necessary
to work with a smooth lifting of (Xk,MXk) but only an exact closed immersion into a log
smooth formal algebraic space over V (see [23, Corollary 2.3.6]). Given two such imbeddings

ij ∶ (Xk,MXk)↪ (Xj,MXj), j = 1,2,

we can consider the exactification (see [17, A.14]) of the induced immersion

(Xk,MXk)↪ (X1,MX1) ×Spec(V ) (X2,MX2),
and using this one reduces the proof that (8.4.3) is independent of the choices to the obser-
vation that the construction of the isomorphism is functorial in the case of a commutative
diagram

(Spec(k),MXk)
xk

uu

� _

��

(Xk,MXk)� _

i2

��

o O

i1

��

(Spec(V [[t]]),MV [[t]])

ρ2uu

ρ1

rr
(X1,MX1) f

// (X2,MX2).

Similarly, the isomorphism (8.4.3) is compatible with the Frobenius structures, where the
Frobenius structure on the left side is defined as in [17, 4.32].

8.6. If E is a differential N-graded K⟨t⟩-algebra we can also talk about a connection on E
using the method of 4.2. Such a connection is simply an isomorphism of differential graded
algebras

γE ∶ p∗1E → p∗2E

over K⟨t⟩[ε] which reduces to the identity. Likewise we can talk about a connection on an
object of Ho(SPr∗(K⟨t⟩)).



28 MARTIN OLSSON

Let E be a differential N-graded K⟨t⟩-algebra equipped with a connection γE and such that
ρ ∶ K⟨t⟩ → E is an equivalence. Let A be a differential graded K-algebra and let f ∶ A → E
be a map of differential graded algebras sending A to the horizontal elements of E. Since A
is defined over K, the algebra A⊗K K⟨t⟩ carries a connection

γA ∶ p∗1(A⊗K K⟨t⟩)→ p∗2(A⊗K K⟨t⟩)
given by the canonical identifications of both sides with A⊗K K⟨t⟩[ε]. The assumption that
f sends A to the horizontal elements of E ensures that the diagram

p∗1(A⊗K K⟨t⟩)
γA //

p∗1(f)
��

p∗2(A⊗K K⟨t⟩)
p∗2(f)

��
p∗1E

γE // p∗2E

commutes. From this and the commutativity of the diagram

Ho(dgaK⟨t⟩,/K⟨t⟩)

p∗2

��

ρ // Ho(dgaK⟨t⟩,/E)

p∗2
��

Ho(dgaK⟨t⟩[ε],/p∗2E)

Ho(dgaK⟨t⟩[ε],/K⟨t⟩[ε])

p∗2ρ
55

p∗1ρ ))
Ho(dgaK⟨t⟩[ε],/p∗1E)

γE

OO

Ho(dgaK⟨t⟩,/K⟨t⟩)

p∗1

OO

ρ // Ho(dgaK⟨t⟩,/E)

p∗1

OO

we see that if [(A ⊗K⟨t⟩, f)] ∈ Ho(dgaK⟨t⟩,/K⟨t⟩) denotes the object corresponding to (A ⊗
K⟨t⟩, f) under the equivalence

Ho(dgaK⟨t⟩,/K⟨t⟩) ≃ Ho(dgaK⟨t⟩,/E)
then γE induces an isomorphism

p∗1[(A⊗K⟨t⟩, f)] ≃ p∗2[(A⊗K⟨t⟩, f)]
in Ho(dgaK⟨t⟩[ε],/K⟨t⟩[ε]). Applying the functor RSpec we get a connection on RSpec(A ⊗K
K⟨t⟩) ∈ Ho(SPr∗(K⟨t⟩)), which in turn induces a connection on π1(A⊗K K⟨t⟩, f).

8.7. This enables us to define the monodromy operator on πcrys
1 (X○k , ωK⟨t⟩) using differential

graded algebras.

With notation as in 8.4, the crystal structure on S● defines a connection on Ẽ and also on
E. Since A is obtained by taking global sections of R● over (H●,MH●) the map f ∶ A → Ẽ

sends A to the horizontal elements of Ẽ. We therefore get a connection on π1(A⊗KK⟨t⟩, f) ≃
πcrys

1 (X○k , ωK⟨t⟩). We claim that this gives the same connection as the one in 4.2 (ii).
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To see this, let γU be the connection on U = πcrys
1 (X○k , ωK⟨t⟩) defined in 4.2. By the same

argument as in the previous paragraph, we get a connection on ẼU such that the augmentation
AU ⊗K K⟨t⟩ → ẼU sends AU to the horizontal elements. Chasing through the construction

of S●U one also sees that the connection on ẼU is compatible with the connection γU in the
sense that the isomorphism

p∗1ẼU → p∗2ẼU

is a γU-linear isomorphism of representations. From this it follows that the diagram (8.4.1)
can be upgraded to a diagram of pointed simplicial presheaves with connections. It follows
that it induces isomorphisms on fundamental groups compatible with the connections. Since
the connection on π1(BU) ≃ U is the one defined in 4.2 we conclude that the connection
defined by the above differential graded algebra techniques coincides with the one defined
using Tannaka duality.

9. Proof of theorem 6.11

The goal of this section is to give a proof of 6.11, and therefore also 1.4.

The approach here is to prove a comparison result for augmented differential graded alge-
bras and then pass to fundamental groups to get 6.11.

9.1. Fix a hypercovering U⋅ →X with each Un very small in the sense of [17, 6.1] and such that
each Un is a disjoint union of open subsets of X, and furthermore assume that each connected
component of Un meets the closed fiber of X. Write Un = Spec(Sn), with Sn a geometrically
integral V -algebra. Let MU⋅ denote the log structure on U⋅ obtained by pullback from MX ,
and let (U∧

⋅
,MU∧⋅ ) be the simplicial formal log scheme obtained by p-adically completing

(U⋅,MU⋅). Fix also a geometric generic point

η̄ ∶ Spec(Ω)→X

over K ↪K.

Since each connected component of Un maps isomorphically to an open subset of X, we
can lift the map

x ∶ (Spec(V ),MV )→ (X,MX)
to (U⋅,MU⋅) to give this simplicial log scheme the structure of a pointed log scheme. However,
we prefer to proceed more canonically as follows. Let E⋅ be the simplicial set with En equal
to the set of connected components of Un, with the natural transition maps. Then we have
a canonical morphism

η̄ ∶ E⋅ × Spec(Ω)→ U⋅.

9.2. Let η0 ∈X be the generic point of the closed fiber. Then OX,η0 is a discrete valuation ring
with uniformizer p, and fraction field the function field k(X). Let k(X)∧ be the completion
of k(X) with respect to the discrete valuation defined by OX,η0 . Fix an algebraic closure Ω∧

of k(X)∧, and a commutative diagram of inclusions

k(X) � � η̄ //
� _

��

Ω� _

��
k(X)∧ � � η̄

∧
// Ω∧.
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We then get a morphism of simplicial schemes

η̄∧ ∶ E⋅ × Spec(Ω∧)→ Spec(S∧
⋅
),

over η̄.

Let Acris(U
∧

⋅
) be the cosimplicial algebra obtained by applying the functor Acris(−) to each

Sn with respect to the algebraic closure on each connected component e ∈ En given by the
map

Spec(Ω∧) = {e} × Spec(Ω∧) � � // En × Spec(Ω∧) η̄∧ // Spec(Sn).

Let GC(U∧○
⋅,K
,Acris(U

∧

⋅
)) be the Galois cohomology of this cosimplicial Galois module, as

defined in [17, 5.21 and 5.40].

There is a natural map

RΓ(X○
K,et

,Qp) = GC(U ○
⋅,K
,Qp)→ GC(U∧○

⋅,K
,Acris(U

∧

⋅
))

induced by the natural map Qp → Acris(U
∧

⋅
).

9.3. Next we need to relate the base points. For e ∈ En, write S
(e)
n for the coordinate ring of

the connected component of Un corresponding to e. Define E′n ⊂ En to be the subset of e ∈ En
such that Spec(S(e)n ) ⊂ X contains the point x. The E′n are preserved under the simplicial
structure maps, and therefore define a sub-simplicial set E′

⋅
⊂ E⋅.

Let y ∈ X(k) be the intersection of x ∶ Spec(V ) ↪ X with the closed fiber, and consider
the local ring OX,y. Let O∧X,y be the p-adic completion of this ring. There is a natural map

O∧X,y → V

induced by the map OX,y → V . There is also a natural map

O∧X,y → O∧X,η0

and hence an inclusion O∧X,y ↪ Ω∧. Let (O∧X,y)† be the p-adic completion of the integral
closure of OX,y in Ω∧. Fix a morphism

(9.3.1) (O∧X,y)† → V
∧

extending the map O∧X,y → V . Here V
∧

denotes the p-adic completion of V .

We then get a map

E′
⋅
× Spec((O∧X,y)†)→ U∧

⋅
,

and hence also a map

E′
⋅
× Spec(V ∧)→ U∧

⋅
,

over the natural map

E′
⋅
× Spec(V )→ U⋅.
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9.4. As before let V ⟨t⟩ denote the p-adically completed divided power envelope of the sur-
jection V [t] → V sending t to p. Since (X,MX) is log smooth, we can find a dotted arrow
filling in the following diagram

(Spec(V ),MV )
x

��

� � // (Spf(V ⟨t⟩),MV ⟨t⟩)

uu
(X,MX).

For example, start by extending x to each of the nilpotent thickenings

(Spec(V ),MV )↪ (Spec(V [t]/(t, p)n),MV [t]/(t,p)n)
using the formal smoothness of (X,MX) over V , and then pass to the limit to get a morphism

(Spf(V [[t]]),MV [[t]])→ (X,MX)
and then compose with the natural map

(Spf(V ⟨t⟩),MV ⟨t⟩)→ (Spf(V [[t]]),MV [[t]]).
Fix one such dotted arrow

λ ∶ (Spec(V ⟨t⟩),MV ⟨t⟩)→ (X,MX).

For e ∈ En let U
(e),∧

n denote the spectrum of the p-adic completion of the integral closure of
S∧n in the maximal subextension of Ω∧ which is unramified over Spec(S∧n)×X X○K . For e ∈ E′n
the map (9.3.1) induces a morphism

Spec(V ∧)→ U
(e),∧

n .

For every n, let U
∧

n denote the coproduct

∐
e∈En

U
(e),∧

n .

These schemes form in a natural way a simplicial scheme U
∧

⋅
over U∧

⋅
. Let M

U
∧
⋅

denote

the pullback of the log structure on U∧
⋅

to U
∧

⋅
. We then obtain a commutative diagram of

simplicial log schemes

(9.4.1) E′
⋅
× (Spec(V ∧),M

V
∧)

��

// (U∧
⋅
,M

U
∧
⋅
)

��
E′
⋅
× (Spec(V ),MV ) // E′

⋅
× (Spec(V ⟨t⟩),MV ⟨t⟩) // (U⋅,MU⋅).

By [1, Corollary 3.6] Frobenius is surjective on the reduction modulo p of the coordinate

ring of each U
∧

n, and therefore by [10, 2.2.1 and its proof] the ring Acris(U
∧

n) is a universal

PD-thickening of U
∧

n. From this universal property and the diagram (9.4.1) we therefore get
a map

(9.4.2) E′
⋅
× Spec(P st)→ Spec(Acris(U

∧

⋅
)).
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In fact this extends to a morphism of simplicial log schemes. There is a log structure

M
Acris(U

∧
⋅ )

on Acris(U
∧

⋅
) defined as in [17, 6.7]. This log structure can be described as follows.

Fix n and for ease of notation write S∧ for the coordinate ring of a connected component of
U∧n . Fix also one choice of S∧ ↪ Ω∧, and let Ω∧1 ⊂ Ω∧ be the compositum of the subsections
L containing S∧ for which the normalization of S∧ in L is étale over Spec(S∧) ×X X○K . Let

S
∧

denote the p-adic completion of the integral closure of S∧ in Ω∧1 . Then Acris(U
∧

⋅
) is a

cosimplicial ring with terms given by products of rings of the form Acris(S
∧). So we describe

the log structure M
Acris(S

∧
)

on this ring. For a section x ∈MS∧ with image α(x) ∈ S∧ (where we

write MS∧ instead of MU∧n ), let Tx denote the set of compatible systems of elements {xn}n≥1
of S

∧

with xpn = xn−1 and x1 = α(x). For x, y ∈MS∧ there are natural maps

Tx ×Ty → Tx+y

giving
T ∶= ∐

x∈MS∧
Tx

the structure of a monoid. There is a natural map

T → R
S
∧ ∶= lim←Ð

n

S
∧/pS∧

and therefore composing with the Teichmuller lifting and the natural map W (R
S
∧)→ Acris(S

∧)
we get a map

T → Acris(S
∧).

The log structure M
Acris(S

∧
)

is defined to be the associated log structure.

This description of the log structure M
Acris(S

∧
)

makes its functoriality clear. However, if

we fix a chart Nr → S∧ for the log structure corresponding to elements t1, . . . , tr ∈ S∧, and
systems of p-power roots {τi,n} for the ti’s, then we get an isomorphism

T ≃ R∗
S
∧ ×Nr.

It follows that M
Acris(S

∧
)

is a fine log structure inducing M
S
∧ under the map θ ∶ Acris(S

∧)→ S
∧

.

To extend the map (9.4.2) to a morphism of log schemes, we have to define a map
M

Acris(S
∧
)
→ MP st , or equivalently (by the definition of (P st,MP st)) we have to define for

every commutative diagram

(A,MA) � � u //

��

// (T,MT )

��
(Spec(S∧),M

S
∧) // (Spec(S∧),MS∧),

where the top row is an object of the crystalline site of (Spec(V m),MVm)/Vm and the left
(resp. right) vertical map is the composition

(A,MA) // (Spec(V m),MVm)
(9.3.1)

// (Spec(S∧),M
S
∧)

(resp. the composition of a morphism (T,MT ) → (Spec(V ⟨t⟩),MV ⟨t⟩) with the map induced

by λ), a map T → MT , compatible with the map Acris(S
∧) → OT we get from the map



SEMISTABLE EXTENSIONS 33

Acris(S
∧)→ P st. Let x ∈MS∧ be an element and let x̃ ∈ Tx be a lifting corresponding to roots

(xn)n≥1 of x in S
∧

. Now observe that M
V
∧ ⊂ V ∧, so the images of the xn under the map

S
∧ → V

∧ → OA define sections yn ∈ MA such that pyn = yn−1 and y1 maps to the image of x
in OA. Choose for each n a lifting ỹn ∈ MT of yn. Because the ideal of A in T has divided
powers, the sequence of elements (pnỹn) converges to a lifting of y1 in MT independent of
choices. In this way we get the desired map T →MT .

In summary, there is a natural map

E′
⋅
× (Spec(P st),MP st)→ (Spec(Acris(U

∧

⋅
)),M

Acris(U
∧
⋅ )
).

Furthermore, we can extend (9.4.1) to a commutative diagram

E′
⋅
× (Spec(V ∧),M

V
∧)

��

� w

**

// (U∧
⋅
,M

U
∧
⋅
)

��

� v

))

E′
⋅
× (Spec(P st),MP st) //

��

(Spec(Acris(U
∧

⋅
)),M

Acris(U
∧
⋅ )
)

E′
⋅
× (Spec(V ),MV ) // E′

⋅
× (Spec(V ⟨t⟩),MV ⟨t⟩) // (U⋅,MU⋅).

In particular, for any isocrystal F on (Xk,MXk)/K we obtain a natural map of cosimplicial
K-spaces

F (Acris(U
∧

⋅
))→ x∗F (P st)⊗ZE′⋅ .

Observe also that the natural map Z→ ZE′⋅ induces a quasi-isomorphism

x∗F (P st)→ x∗F (P st)⊗ZE′⋅ .

9.5. As in 8.7, let

K(Xk,MXk
)/K → R●

be the standard resolution of the structure sheaf, defined by the lifting (X,MX), and let

K(Spec(k),Mk)/K → S●

be the resolution of the structure sheaf defined by the surjection V [[t]]→ k.

By functoriality of the construction of these resolutions there is a natural map x∗R● → S●.
Putting all of this together we obtain the following commutative diagrams of cosimplicial
differential graded algebras:

(9.5.1) GC(U ○
⋅,K
,Qp)⊗ P st ã //

��

GC(U∧○
⋅,K
,Acris(U

∧

⋅
))⊗Acris(V ) P

st

��
P st a // P st ⊗ZE′⋅

,
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(9.5.2) GC(U∧○
⋅,K
,Acris(U

∧

⋅
))⊗Acris(V ) P

st

��

b̃ // GC(U∧○
⋅,K
,R●(Acris(U

∧

⋅
)))⊗Acris(V ) P

st

��
P st ⊗ZE′⋅ b // S●(P st)⊗ZE′⋅ ,

(9.5.3) GC(U∧○
⋅,K
,R●(Acris(U

∧

⋅
)))⊗Acris(V ) P

st

��

Γ(((U⋅,k,MU⋅,k))/K,R●)⊗K P stc̃oo

��
S●(P st)⊗ZE′⋅ S●(E′

⋅
× (Spec(V ⟨t⟩),MV ⟨t⟩))⊗V ⟨t⟩ P st,

coo

(9.5.4) Γ(((U⋅,k,MU⋅,k))/K,R●)⊗K P st

��

RΓ((Xk,MXk)/K,K)⊗K P std̃oo

��
S●(E′

⋅
× (Spec(V ⟨t⟩),MV ⟨t⟩))⊗V ⟨t⟩ P st P st.

doo

Here the map c̃ is induced by the natural map (the global sections of a crystal map to the
value of the crystal on any object)

Γ(((U⋅,k,MU⋅,k))/K,R●)→ R●(Acris(U
∧

⋅
)),

which has image in the Galois invariants, since the image of a global section is invariant under
any automorphism of an object of the site.

Since the geometric realization of E′
⋅

is a point, the map a is an equivalence. Furthermore,
the map ã induces an equivalence after inverting t ∈ Acris(V ) (this follows from [9, 5.6] and a

passage to the limit argument as in [20, 12.5]). The map b̃ (resp. b) is an equivalence since

K(Xk,MXk
)/K → R●, (K(k,Mk)/K → S●)

is an equivalence, and likewise the maps d and d̃ are equivalences (using also that the sheaves
Ri and Si are acyclic for the projection to the étale topos [17, 4.33]). Let dgaP st,/P st[1/t]

denote the category of commutative differential graded P st-algebras with an augmentation to
P st[1/t]. Applying the functor of Thom-Sullivan cochains we then obtain a morphism

(RΓ((Xk,MXk)/K,K)⊗K P st[1/t]y
∗
→P st[1/t])→ (GC(U ○

⋅,K
,Qp)⊗ P st[1/t]x

∗
→P st[1/t])

in Ho(dgaP st[1/t],/P st). This morphism is an equivalence by Faltings’ theory of almost étale
extensions. This follows for example from [1, 2.33]. Note that the assumption that there
exists a global deformation in [1, p. 133] holds in our case: There is a commutative diagram
of log schemes

(Spec(V ),MV )

��

π↤Z (Spec(V [[Z]]),MV [[Z]])

tt
(Spec(V ),O∗V ),

and therefore the base change of (X,MX), which is defined over (Spec(V ),O∗V ), defines a
lifting to (Spec(V [[Z]]),MV [[Z]]) of the base change of (X,MX) to (Spec(V ),MV ).
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Applying the π1-functor, as described in [17, Chapters 4 and 5], we obtain an isomorphism

πcrys
1 (X○K , x)⊗K P st[1/t] ≃ πet

1 (X○K , x)⊗Qp P
st[1/t].

It follows from the construction that this isomorphism is compatible with the Frobenius
operators, connections (constructed from the differential graded algebras as in 8.7), and the
GK-action.

This completes the proof of 6.11. �

Remark 9.6. By the same argument one gets a comparison isomorphism for torsors of paths.
Given two points x1,K , x2,K ∈X○(K) we can then consider the torsors of paths

(9.6.1) πet
1 (X○K , x1,K , x2,K)

of isomorphisms between the fiber functors on the category of unipotent Qp-local systems on
X○
K

defined by the points, and similarly we have the torsor πcrys
1 (X○k , x1, x2) defined in 5.4.

As discussed in [17, 8.27-8.32] the torsor (9.6.1) is described by the differential graded
algebra GC(U ○

⋅,K
,Qp) equipped with the two augmentations defined by the points. Similarly

the torsor πcrys
1 (X○k , x1, x2) is desribed by the differential graded algebra RΓ((Xk,MXk)/K,K)

equipped with its two augmentations. Chasing through the above proof one obtains an
isomorphism

Oπet
1 (X

○
K
,x

1,K
,x

2,K
)
⊗Qp Bst(V ) ≃ Oπcrys

1 (X○
k
,x1,x2) ⊗K Bst(V )

compatible with Frobenius, monodromy operators, and Galois action. Furthermore, proposi-
tion 6.9 implies that Oπcrys

1 (X○
k
,x1,x2) is a colimit of semistable representations.

10. The case of curves

10.1. Let C/V be a smooth proper curve, and let si ∶ Spec(V ) → C (i = 1, . . . , r) be a finite
number of distinct sections. Let C○ ⊂ C be the complement of the sections, and let D denote
the union of the sections. Let MC be the log structure on C defined by D. Let LV be the
hollow log structure on Spec(V ) given by the map N→ V sending all nonzero elements to 0.
The choice of a uniformizer for each section defines morphisms

si ∶ (Spec(V ), LV )→ (C,MC).
Also let LK denote the hollow log structure on Spec(K).
10.2. If (E ,∇) is a module with integrable connection, we can pull E back along si to get a
K-vector space E(si) together with an endomorphism, called the residue at si,

Rsi ∶ E(si)→ E(si)
induced by the connection. This map can be described as follows.

There is a natural inclusion
Ω1
CK/K

↪ Ω1
(CK ,MCK

)/K

with cokernel canonically isomorphic to ⊕iKsi . The composite map

E ∇ // E ⊗Ω1
(CK ,MCK

)/K
// E ⊗Ksi = E(si)

is OCK -linear, and therefore induces a map E(si)→ E(si), which by definition is the map Rsi .
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Lemma 10.3. Let MIC(CK/K) (resp. MIC((CK ,MCK)/K)) denote the category of mod-
ules with integrable connection on CK/K (resp. (CK ,MCK)/K). Then the natural functor

MIC(CK/K)→MIC((CK ,MCK)/K)

is fully faithful with essentially image those objects (E ,∇) for which the residue mappings Rsi

are all zero.

Proof. Note that the residues of a module with logarithmic integrable connection (E ,∇) are
all zero, if and only if

∇(E) ⊂ E ⊗Ω1
CK/K

⊂ E ⊗Ω1
(CK ,MCK

)/K .

From this observation the lemma follows. �

10.4. Let (Ck,MCk)/k be the reduction of (C,MC). If E is an isocrystal on (Ck,MCk)/K,
we can evaluate E on the enlargement discussed in 2.3

(Spec(k),Mk) � � //

si
��

(Spec(V ), LV )

(CV ,MCV )

to get a K-vector space E(si) with an endomorphism Ni ∶ E(si)→ E(si).

10.5. Let (E ,∇) be the module with integrable connection on (CK ,MCK) associated to E.
From the commutative diagram

(Spec(k),Mk) � � //

si
��

(Spec(V ), LV )
si

��
(Ck,MCk)

� � // (C,MC),

we obtain a canonical isomorphism

E(si) ≃ E(si).

It follows from the construction that this isomorphism identifies Ni with Rsi .

Lemma 10.6. The natural functor

(unip. isocrystals on Ck/K)→ (unip. isocrystals on (Ck,MCk)/K)

is fully faithful, with essential image the full subcategory of unipotent isocrystals E for which
the maps Ni ∶ E(si)→ E(si) are are all zero.

Proof. This follows from the fact that there is an equivalence of categories

(unip. isocrystals on (Ck,MCk)/K) ≃ (unip. modules with connection on (CK ,MCK)/K)

compatible with residues, and the corresponding result for modules with integrable connec-
tions. �
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10.7. Fix now a point

x ∶ Spec(V )→ C

sending the closed fiber to D and the generic point to C○. Let s ∈D(V ) be the section whose
closed fiber is the closed fiber of x.

As before let C crys (resp. C dR) denote the category of unipotent isocrystals (resp. mod-
ules with integrable connection) on (Ck,MCk) (resp. (CK ,MCK)). Let H crys ⊂ C crys be a
Tannakian subcategory corresponding to a surjection of affine K-group schemes

πcrys
1 (C○k , x) // // Hcrys.

Denote by HdR the quotient of πdR
1 (C○K , x) obtained from Hcrys and the isomorphism

πcrys
1 (C○k , x) ≃ πdR

1 (C○K , x).
By Tannaka duality, the group HdR corresponds to a Tannakian subcategory H dR ⊂ C dR.

It follows from the discussion in 3.9 that the monodromy operator on Oπcrys
1 (C○

k
,x) restricts to

a monodromy operator on OHcrys . In fact, the discussion in 3.9 implies the following. Taking
residues at s defines a tensor functor from the category H dR to the category of K-vector
spaces equipped with a nilpotent endomorphism. Giving such a functor is equivalent to giving
a homomorphism

ρs ∶ Ga,K →HdR.

The monodromy operator on Lie(Hcrys) ≃ Lie(HdR) is given by [Lie(ρs)(1),−] (see 3.9),
where

Lie(ρs) ∶ Ga,K → Lie(HdR)
is the map obtained from ρs by passing to Lie algebras.

Corollary 10.8. The monodromy operator on Hcrys is trivial if and only if the image of ρs
is in the center of HdR.

Proof. This follows from the preceding discussion. �

11. Example: P1 − {0,1,∞}

To give a very explicit example, we discuss in this section the Kummer torsor following
Deligne in [4, §16].

11.1. Let X = P1, and let D = {0,1,∞} ⊂ X. For any point x ∈ X○(K), define the Kummer
torsor to be the following torsor under Qp(1)

K(x) ∶= {(yn ∈K)n≥0∣ypn = yn−1, y0 = x}.
Equivalently, we can think of K(x) as a class in

K(x) ∈ Ext1
RepGK

(Qp)(Qp,Qp(1)).

Let us write

0→ Qp(1)→ Kx → Qp → 0

for this extension of GK-representations.
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11.2. The Kummer torsor has the following description in terms of πet
1 (X○K , x) (see [4, §16]).

There is a natural map

X○ ↪ Gm

which induces a morphism

T ∶ πet
1 (X○K , x)→ πet

1 (Gm,K , x).
Let U1(x) be the abelianization of Ker(T ). Pushing out the exact sequence

1 // Ker(T ) // πet
1 (X○K , x)

T // πet
1 (Gm,K , x) // 1

along Ker(T )→ U1(x) and taking Lie algebras, we obtain an exact sequence of GK-representations

0→ U1(x)→ U(x)→ Qp(1)→ 0,

where we use the canonical isomorphism Lie(πet
1 (Gm, x)) ≃ Qp(1). Since U1(x) is abelian,

the Lie bracket on U(x) defines an action of Qp(1) on U1(x). Set

Un
1 (x) ∶= adn(U1(x)).

We then have a natural map

(11.2.1) Qp(1)⊗n ⊗U1(x)/U1
1 (x)→ Un

1 (x)/Un+1
1 (x).

Proposition 11.3. (a) The projection map

πet
1 (X○K , x)→ π1(A1

K − {1}, x) ≃ Qp(1)
induces an isomorphism

U1(x)/U1
1 (x) ≃ Qp(1).

(b) For every n ≥ 1 the map

Qp(n + 1) (a)
// Qp(n)⊗U1(x)/U1

1 (x)
(11.2.1)

// Un
1 (x)/Un+1

1 (x)

is an isomorphism.

(c) The class of the extension

E(x) ∶ 0 // U1
1 (x)/U2

1 (x)
≃

��

// U1(x)/U2
1 (x) // U1(x)/U1

1 (x)
≃

��

// 0

Qp(2) Qp(1)

in

Ext1
GK
(Qp(1),Qp(2)) ≃ Ext1

GK
(Qp,Qp(1))

is the negative of the class of the Kummer torsor K(x).

Proof. Statements (a) and (b) follow from the proof of [4, 16.13].

Statement (c) essentially follows from [4, 14.2 and 16.13]. Let P(0,1),x denote the space
of isomorphisms of fiber functors between the fiber functor given by x and the one given
by tangential base point at 0 in the direction of 1 (see [4, §15]). This is a torsor under
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π1(A1 − {0}, x) ≃ Qp(1), and therefore defines a class in Ext1
GK
(Qp,Qp(1)). By [4, 16.11.3]

we have

[E(0,1)(−1)] = [E(x)(−1)] + [P(0,1),x]

in Ext1
GK
(Qp,Qp(1)), where E(0,1) is the extension obtained by the same procedure as E(x)

replacing the fiber functor given by x by the tangential base point at 0 in the direction of 1.
By [4, 16.13] [E(0,1)(−1)] is the zero class by so we conclude that

[E(x)(−1)] = −[P(0,1),x].

Now by [4, 14.2 and 15.51] the class of the torsor K(x) is equal to the class [P(0,1),x], and
therefore we obtain

[E(x)(−1)] = −[K(x)],

proving the theorem. �

Remark 11.4. As discussed in [4, 16.12] the choice of a section a ∶ U1(x)/U1
1 (x) → U1(x)

induces an isomorphism

(∏
n≥1

Qp(n)) ⋊Qp(1) ≃ U(x)

with trivial Lie bracket on ∏n≥1 Qp(n) and action of Qp(1) on ∏n≥1 Qp(n) induced by the
maps (11.2.1).

11.5. Suppose now that x reduces modulo the maximal ideal mK of OK to 0. Let Xk be the
reduction of X modulo mK , and let

y ∶ (Spec(k),Mk)→ (Xk,MXk)

be the reduction of x. In our case, Xk = P1
k with log structure defined by the divisor {0,1,∞}

and y is the inclusion of 0 ∈ P1
k. Let (Gm,MGm) denote the scheme P1

k with log structure
defined by the divisor {0,∞}. We then have a natural map of log schemes

t ∶ (Xk,MXk)→ (Gm,MGm).

This map induces a morphism of group schemes

T crys ∶ πcrys
1 (X○k , x)→ πcrys

1 (Gm, t0),

where t0 denotes the tangential base point at 0 (see for example [17, Chapter 9]). Note that
t0 is the crystalline fiber functor defined by the closed fiber of the map

(Spec(V ),MV )→ (Gm,MGm)
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defined by x. This map is the crystalline realization of the map T in 11.2. On the other
hand, it follows from a basic calculation of cohomology that the composite functor

(unip. isocrystals on (Gm,MGm))
t∗

��
(unip. isocrystals on (Xk,MXk))

y∗
��

(unip. isocrystals on (Spec(k),Mk))

��
Modun

K (N )
is an equivalence of categories. We therefore obtain a section

s ∶ πcrys
1 (Gm, t0)→ πcrys

1 (X○, x)
compatible with Frobenius and the monodromy operator.

11.6. Repeating the previous discussion in the crystalline realization as opposed to the étale
realization, we obtain an extension (ϕ,N)-modules

Ecrys
x ∶ 0→K(2)→ U crys

1 (x)/U crys,2
1 (x)→K(1)→ 0,

where K(i) has underlying K-vector space K, trivial monodromy operator, and Frobenius
given by multiplication by 1/pi. Moreover, we have a commutative diagram

0 // Ker(T crys)

����

// πcrys
1 (Xk,MXk)

κ
����

T crys
// πcrys

1 (Gm, t0) ≃K(1)

s

~~
//

=

��

0

0 // U crys
1 (x)/U crys,2

1 (x) // U crys(x)/U crys,2
1 (x) // K(1) // 0.

By 10.7 the monodromy operator on U crys(x)/U crys,2
1 (x) is given by the adjoint action of

the image of s, which in particular is nonzero (for example by the crystalline analogue of the
explicit description in 11.4). Since the section s identifies K(1) with a direct summand of
U crys(x)/U crys,2

1 (x) we conclude that the monodromy operator on U crys
1 (x)/U crys,2

1 (x) is also
nontrivial. In particular, the GK-representation Kx is semistable, but not crystalline.

11.7. Of course the extension Kx, and its trivialization over Bst(V ) can be described explicitly.
For the convenience of the reader, let us write out this exercise.

Fix a sequence β = (βn)n≥0 of elements βn ∈ V , with β0 = p and βpn+1 = βn. As discussed in

[14, 3.3 and 3.5] this sequence defines an element uβ ∈ Bst(V ) such that the induced map

Bcris(V )[uβ]→ Bst(V )
is an isomorphism. For g ∈ GK , define

λg = (λg,n)n≥0 ∈ Zp(1)
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to be the system of roots of unity characterized by the equalities

g(βn) = λg,nβn.
Now recall (see for example [14, 2.2], where the map is called ε) that there is a map

α ∶ Zp(1)→ Ker(Acris(V )∗ → V
∧∗) ⊂ Acris(V )∗.

Since the kernel of the map Acris(V ) → V
∧

has a divided power structure, we can take the
logarithm of α to get an additive map

log(α(−)) ∶ Zp(1)→ Acris(V ).
It follows from [14, 3.3] that the action of g ∈ GK on uβ ∈ Bst(V ) is given by

ugβ = log(α(λg)) + uβ.

11.8. Consider now our torsor K(x) with associated 2-dimensional GK-representation Kx.
Write x = upz with u ∈ O∗K and z ≥ 1. Note that we may assume that u ≡ 1 (mod p).

Indeed multiplying x by an element of ∩n(K∗)pn gives an isomorphic torsor. Therefore by
multiplying x by the inverse of the Teichmuller lifting of u (mod p) we may assume that u ≡ 1
(mod p).

Fix a sequence of roots x = (xn)n≥0, with x0 = x and xpn+1 = xn. Then we can write xn = unβzn,

where un ∈ V
∗

, u0 = u, and upn+1 = un.

Let b ∈ Kx be the lifting of 1 ∈ Qp given by x, so we have a direct sum decomposition

Kx ≃ Qp(1)⊕Qp ⋅ b.
The action of an element g ∈ GK is given in terms of this decomposition by sending

(s, t ⋅ b) ∈ Qp(1)⊕Qp ⋅ b
to

(sg + tεg, t ⋅ b),
where εg ∈ Zp(1) is the element characterized by

xgn = εg,nxn.
11.9. The map log(α(−)) induces an isomorphism

Qp(1)⊗Qp Bst(V ) ≃ Bst(V ).
It follows that the base change of Kx to Bst(V ) is isomorphic to the free module on two
generators

Kx ⊗Bst(V ) ≃ Bst(V ) ⋅ b1 ⊕Bst(V ) ⋅ b2,

where b1 is the element 1 ∈K = Bst(V )GK . An element g ∈ GK acts by

g(γ1 ⋅ b1 + γ2 ⋅ b2) = (γg1 + log(α(εg)))b1 + γg2 ⋅ b2.

From this we see that the GK-invariant sections of Kx ⊗ Bst(V ) are spanned by b1 and an
element

w = ρb1 + b2,

where ρ ∈ Bst(V ) is an element such that

log(α(εg)) = ρ − ρg,
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for all g ∈ GK . Thus Kx is semistable if and only there exists such a ρ, which we now write
down explicitly.

11.10. Let SV be the perfection of V /pV and let ū ∈ S∗V be the element defined by the
reductions of the un. We can then consider the image [u] ∈ Acris(V ) of the Teichmuller lifting
of ū under the natural map

W (SV )→ Acris(V ).
Then [u] − 1 is in the divided power ideal of Acris(V ) since u ≡ 1 (mod p), so we can define
the logarithm log([u]). Moreover, by the definition of εg and λg we have

un ⋅ εg,n = ugnλzg,n.
This relation implies that in Acris(V ) we have

log(α(εg)) = (log[u])g − log([u]) + z log(α(λg)).
It follows that we can take

ρ = −(log([u]) + zuβ) ∈ Bst(V ).

Remark 11.11. Note that this description of (Kx ⊗ Bst(V ))GK also shows that the mon-
odromy operator is nontrivial.
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