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NETWORK REPRESENTATION USING GRAPH ROOT DISTRIBUTIONS
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Exchangeable random graphs serve as an important probabilistic frame-
work for the statistical analysis of network data. In this work, we develop an
alternative parameterization for a large class of exchangeable random graphs,
where the nodes are independent random vectors in a linear space equipped
with an indefinite inner product, and the edge probability between two nodes
equals the inner product of the corresponding node vectors. Therefore, the
distribution of exchangeable random graphs in this subclass can be repre-
sented by a node sampling distribution on this linear space, which we call the
graph root distribution. We study existence and identifiability of such rep-
resentations, the topological relationship between the graph root distribution
and the exchangeable random graph sampling distribution and estimation of
graph root distributions.

1. Introduction. In recent years, network analysis has been the focus of many theoreti-
cal and applied research efforts in the scientific community, due to the increasing popularity
of relational data. Generally speaking, a network records the presence and absence of pairwise
interactions among a group of individuals, and statistical network analysis aims at recovering
properties of the underlying population of individuals from their pairwise interactions. There
is a vast literature on network analysis, and we refer to [20, 30, 40] for more detailed review
of this field from a statistical perspective.

Exchangeable random graphs [4, 24, 26] are an important class of probabilistic models
for network data. The exchangeability requirement is quite natural: The individuals recorded
in the network are somewhat like random sample points, and the data distribution remains
unchanged under permutation of the nodes. Many popularly studied network models are spe-
cial cases of exchangeable random graphs, including the stochastic block model [7, 23], the
degree-corrected block model [27], the mixed-membership block model [2], the random dot-
product graph model [5, 41, 46] and random geometric graphs [44].

A central piece of the theoretical foundation of exchangeable random graphs is the cele-
brated Aldous—Hoover theorem [4, 24, 26], which says that any exchangeable random graph
of infinite size can be generated by first sampling independent node variables (s; : i > 1) uni-
formly on [0, 1], and then connect each pair of nodes (i, j) independently with probability
W(si, s;), for some symmetric W : [0, 11?2 — [0, 1]. The representation theory also says that
two functions Wy, W lead to the same distribution of exchangeable random graphs if and
only if there exist measure-preserving mappings %1, k2, both from [0, 1] to [0, 1], such that
Wi(h1(s), hi(t)) = Wa(ha(s), ha(t)) almost everywhere over (s, t) € [0, 1]2. Other random
graph models have been proposed, such as exchangeable random measures [10], edge ex-
changeability [16] and ideas using a Bayesian framework [43]. A notable difference is that
these models can cover sparse networks while the Aldous—Hoover type exchangeable arrays
must be dense. Nevertheless, when a finite sample is concerned, one can add a sparsity pa-
rameter to generate a sparse network using the Aldous—Hoover type exchangeable array. See
Section 4.4 for further discussion on sparse networks.
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The purpose of this work is to develop an alternative parametrization for a subclass of ex-
changeable random graphs and corresponding estimators. This new parameterization is based
on a representation of nodes as independent random vectors in a separable Krein space IC,
and the edge probability is the inner product of the two node vectors. A Krein space is iso-
morphic to a Hilbert space, but has an indefinite inner product. With such a Krein space node
embedding, we shift the information hidden in the function W to the probability measure on
IC, which can exhibit salient structures in a transparent and geometric manner.

We highlight a few key contributions:

1. We provide a constructive proof for the correspondence between a subclass of ex-
changeable random graphs and probability distributions on the Krein space K. Our construc-
tion starts from viewing W as an integral operator and considering its spectral decomposition.
The variable s ~ Unif(0, 1) is treated as the input variable in an infinite-dimensional inverse
transform sampling. The induced measure is thus invariant under measure-preserving trans-
forms of s. The existence and identifiability of such a representation is established for a
wide class of exchangeable random graphs. In our construction, it becomes apparent that the
induced measure is closely related to the square root of the integral operator W, with appro-
priate treatment of negative eigenvalues. Thus we call this induced measure the graph root
distribution (GRD).

2. We show that the Wasserstein distance between two graph root distributions on /C pro-
vides an upper bound of the cut-distance between sampling distributions of the corresponding
exchangeable random graphs. This result is further extended to a modified version of Wasser-
stein distance that is suitable for measuring the distance between two equivalence classes of
graph root distributions.

3. We show that a truncated adjacency spectral embedding weighted by the square roots of
the absolute eigenvalues can approximate the empirical distribution of the latent node vectors
in /C with vanishing Wasserstein distance error when the network size n goes to infinity, under
suitable regularity conditions. This in turn implies that such a weighted truncated spectral
embedding can also consistently estimate the underlying graph root distribution when the
truncation dimension is chosen appropriately.

4. As demonstrated in our numerical examples, the new parameterization allows for a
simple, theoretically justifiable estimator, which can reveal salient geometric features in the
network data.

Related work. The GRD parameterization is closely related to latent space network mod-
els. The idea of modeling the edge probability between a pair of nodes by the inner product
of the corresponding latent vectors is studied by [22] under the name of “latent eigenmodel,”
and further developed by [5, 46] under the name of “random dot-product graph.” The GRD
framework extends this idea to a population perspective and connects it with the graphon
literature.

The GRD parameterization and estimation are also related to spectral methods in random
graphs. The spectral approach has been used in graphon estimation by [12, 29, 51]. The
GRD estimation method considered in Section 4 uses a similar singular value thresholding of
the adjacency matrix, but takes a further step of weighted spectral embedding to recover the
latent vectors corresponding to each node, with the target parameter being a distribution in the
latent Krein space. Besides spectral methods, graphon estimation has also been studied using
histogram and smoothing methods, including theoretical analysis [17, 28, 50] and practical
algorithms [3, 11, 53]. GRD estimation and graphon (or probability matrix) estimation are
different, as the target parameters are in different spaces with different error metrics (see
Sections 4.4 and 5.2 for further discussion and comparison). Some potential benefits of using
GRD are discussed in Section 2.3, and visualized in some simulated and real data examples
in Section 5.
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2. Background.

2.1. Exchangeable random graphs and the graphon parameterization. Consider a ran-
dom symmetric two-way binary array

A=(Aij21§i<j)
such that A;; =0 and satisfies the row-column joint exchangeability
. . d . .
(A,'j > 1,] > I)Z(Ag(l')a(j) 1> 1,] > 1)
for all finite index permutation mapping o : for some 1 <ip < jo,
i ifi ¢ {io, jo},
o) =1jo ifi=io,
ip ifi = jo.

Here, «“L» means that two random objects have the same distribution.

Analogous to the de Finetti theorem, the Aldous—Hoover theorem [4, 24, 26] says that
any symmetric exchangeable binary array A of infinite size can be generated by sampling
independent (s; : i > 1) from Unif(0, 1) (the uniform distribution on [0, 1]), and sampling
A;j independently from a Bernoulli distribution with probability W (s;, s;) for a symmetric
measurable function W (-, -) : [0, 112 — [0, 1]. Here, W is a random object measurable in the
doubly-exchangeable o-field. For any given realization of A, we can simply treat W as a
nonrandom parameter.

Once W is given, the distribution of A is completely determined. However, the converse
is not true. Let 4 : [0, 1] — [0, 1] be a measure-preserving mapping in the sense that

u(h~'(B)) = u(B) VB e B,

where 1(-) denotes the Lebesgue measure and By, 1] is the Borel o-field. Two functions W
and W, generate the same distribution of exchangeable arrays if and only if there exist two
measure-preserving mappings /1, i such that

(1) Wi (hl(s), hl(sl)) = Wz(hz(s), hz(s,)) a.e.
When (1) holds, we say Wy and W, are weakly isomorphic, denoted as

Wi = W,.

The notion “"2" defines an equivalence relation on the space of all symmetric functions that

map [0, 112 to [0, 1]. We use W to denote the equivalence class containing W.

When W; and W, are not weakly isomorphic, then they lead to different distributions of
exchangeable random graphs. In this case, the subgraph counts have different distributions
under W and W;. Such a sampling distribution difference can be linked to the cut-distance,
defined as

So(Wq, W)
= inf  sup / [W1(h1(s), hi(s')) — Wa(ha(s), ha(s'))] ds ds'|,
hi,ho SXS/:Q[O,I]Z Sx S

where /1, h, range over all measure-preserving mappings. It can be shown that W '= Wz if
and only if §g(W1, W3) = 0. Therefore, the cut-distance (-, -) can also be used to measure
the distance between two equivalence classes W, and W,. We will also adopt the terminology
used in [37] to call the function W a graphon (abbreviation for “graph function”). In the rest
of this paper, we will often use a graphon W to represent its equivalence class.
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2.2. Graph root distributions. The focus of this paper is to develop an alternative charac-
terization of a subclass of exchangeable random graphs. The construction involves probability
distributions on a separable Krein space, which we introduce first.

DEFINITION 1 (Krein space). A Krein space K = H © H_ is the direct sum of two
Hilbert spaces H. and H_. For each (x, y), (x', y') e K with x, x’ € H4 and y, y' € H_, the
Krein inner product is

2 (e, ), (0 Y e = e x )y, = (903 )y

The space K is also a linear normed space isomorphic to the Hilbert space H 4 & H — equipped
with norm

[ e = (xli3,, +Ivl3,) 72

The notation “&” is used to emphasize the nonpositive definite inner product associated
with the space K, and H., H_ represent the subspaces containing the positive and negative
components, respectively. This notation has been used in existing machine learning litera-
ture involving Krein spaces [42]. The traditional notation “@” is saved for the direct sum of
Hilbert spaces in the usual sense, where the direct sum is still a Hilbert space with a positive
definite inner product.

Now we define graph root distributions.

DEFINITION 2 (Graph root distribution (GRD)). We call a probability measure F' on XC
a graph root distribution, if for two independent samples Z; and Z, from F,

P((Zl, Zz);( € [0, ]]) =1.

Let F be a GRD on K. We can generate an exchangeable random graph by first generating
independent random vectors (Z; : i > 1) from F and then generating A;; independently from
a Bernoulli distribution with parameter (Z;, Z ;). We call this sampling procedure the graph
root sampling with F. In contrast, the graphon based sampling scheme is called graphon
sampling with W.

The embedding of network nodes in a Krein space K has a clear interpretation. Suppose
each node i (1 <i <n) corresponds to a Z; = (X;, Y;) € K, with X;, ¥; being the positive
and negative components, respectively. Then two nodes i and j are more likely to connect
if (X;, X ;) is large, or equivalently, ||.X; ||| X ; ||(X,,X ) is large (where X Xi /I Xil). The
quantities || X;||, || X ;|| measure how “active” the individuals i, j are, respectively, while the
normalized inner product (X;, X ;j) measures how well the two individuals match each other.
Analogous interpretations can be given to the negative components Y;, Y.

Now we list how some commonly considered network models fit in the framework of
GRD. Further explanations of the correspondence are given in the Supplementary Material
[36]. Simulations based on these models are reported in Section 5.1.

Stochastic block models: Point mass mixture. A stochastic block model (SBM, [23]) with £
blocks is parameterized by (, B), where r is in the (k — 1)-dimensional simplex and B is a
k x k symmetric matrix with entries in [0, 1]. The exchangeable random graph is generated
by sampling (e; : i > 1) independently from a multinomial distribution with parameter 7,
and connecting nodes i, j independently with probability B, .;. The corresponding GRD is
a mixture of no more than k point masses in a k-dimensional space K, with the point mass
locations determined by B and the point mass weights determined by 7.
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For example, consider an SBM with k =3, = = (1/3,1/3,1/3), and

1/4 172 1/4
3) B=(1/2 1/4 1/4),
14 1/4 1/6

which corresponds to three blocks, but the rank is only 2, with one positive eigenvalue and
one negative eigenvalue. Then a corresponding GRD is (after rounding)

F = (1/3)80.61;0.35 + (1/3)d(0.61;—0.35) + (1/3)8(0.41;0)

where §; = §x.y) denotes the point mass at z = (x; y) and the semicolon is used to delineate
positive and negative components.

Degree corrected block models: 1-D subspace mixture. The degree-corrected block model
(DCBM, [27]) is parameterized by (7, B, ®) where 7, B are the same as in SBM and © is a
distribution on (0, c0). The random graph is generated similarly as in SBM, except that it also
generates (6; : i > 1) independently from ® and the connection probability of nodes i, j is
0i0; Be, ¢; - In this case, the corresponding GRD is a mixture of distributions, each supported
on a line connecting one of the SBM point masses and the origin.

For example, if we use the same k, w and B as in the SBM example above, and set ® to
be the uniform distribution on [0, 1], then a GRD for this DCBM is

F=(1/3)U(0,(0.61;0.35)) + (1/3)U(0, (0.61; —0.35)) + (1/3)U (0, (0.41; 0)),

where U (z, z’) denotes the uniform distribution on the line segment between z and z'. Other
distributions ® are allowed, and can be chosen differently for each mixture component. This
will lead to different ending points of line segments and the distributions on them.

Mixed membership block models: Convex polytope. The mixed membership block model
(MMBM, [2]) allows each node to have a mixture of memberships. Given a matrix B as in
the SBM, and a Dirichlet distribution Dir(a) with parameter a € (0, o)X, the random graph
is generated by sampling (g; : i > 1) from Dir(a) independently, and connecting nodes (i, j)
with probability giT Bg . In this case, the corresponding GRD is a distribution supported on
the convex polytope with extreme points given by the SBM point masses determined by B.

For example, using the same B matrix as in the previous examples for SBM and DCBM,
and choosing a = (1, 1, 1) so that the Dirichlet distribution is uniform on the simplex, a GRD
for this MMBM is

F =U((0.61;0.35), (0.61; —0.35), (0.41; 0)),
where U (z1, 22, z3) denotes the uniform distribution on the convex hull of {z1, z2, z3}.

Random dot-product graphs: Finite-dimensional subspace. The random dot-product graph
[41] and generalized random dot-product graph [46] generate the random graph by connect-
ing nodes (7, j) independently with probability (X;, X;), where (X; : 1 <i <n) are node
covariate vectors in an Euclidean space. The original random dot-product graph only con-
siders positive semidefinite inner products, while the generalized model allows for indefinite
inner products in a similar fashion as we have defined for Krein spaces. In principle, a gen-
eralized random dot-product graph can be viewed as a finite-sample realization of a GRD
supported on a finite-dimensional space.

2.3. Potential features and benefits of the graph root parameterization. As we will see
in the following section, GRDs can be used to parameterize exchangeable random graphs
under some mild regularity conditions. Here, we list some features and potential benefits of
the GRD parameterization.
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GRD:s are identifiable up to orthogonal transforms. Roughly speaking, two GRDs that dif-
fer by a pair of orthogonal transforms can lead to the same distribution of exchangeable
random graphs. The choice of orthogonal transforms used in GRD estimation is straightfor-
ward: It diagonalizes the covariance operator of the embedded node vectors. Moreover, many
important geometric features of the distribution, such as clusters, pairwise distances, and the
shape of support, are invariant under orthogonal transforms. In contrast, graphon estimators
that do not attempt to recover the ordering of the nodes cannot reveal the same geometric
structures in the data. This difference is illustrated in our numerical examples in Sections 5.1,
5.3 and 5.4.

GRD provides new tools for some inference problems. The embedding of network nodes as
independent realizations of a common latent distribution makes it possible to apply the meth-
ods and tools developed for i.i.d. data to network related problems. For example, suppose we
observe an exchangeable random graph with n nodes, where each node i is associated with a
covariate vector U; € R?. Here, the nodes can be students in a school, edges represent friend-
ship and covariates are demographic information. A question of interest is to test whether the
covariate and the network are independent. In the GRD parameterization, the problem can
be formulated as testing independence of two random vectors (U;, Z;) in a paired sample,
where Z; is the Krein space embedding of node i. In a second example, suppose we have
two exchangeable random graphs on two disjoint set of individuals. Here, the two networks
can be student friendship networks from different middle schools. Then one may want to test
whether these two networks have the same distribution. In GRD parameterization, this re-
duces to testing equality (up to orthogonal transform) of two distributions using independent
samples. Moreover, if the underlying GRDs are the same, it is even possible to aggregate
two independently estimated GRDs, as well as to predict edge probabilities between nodes in
different samples.

GRD provides connection between the graphon, spectral embedding and latent space per-
spectives. Spectral embedding of network vertices has been an active research topic related
to exchangeable random graphs, especially stochastic block models [15, 25, 38, 45, 48]. Ex-
amples of spectral embeddings beyond stochastic block models include the random dot prod-
uct graph [5, 46] and the latent eigenmodel [22]. The GRD parameterization shows that such
embeddings exist in an infinite-dimensional space for all trace-class graphons, partially rec-
onciling the graphon, spectral embedding and latent space model literature.

3. Existence, identifiability and topology of GRD. From now on, we only consider
separable Krein spaces, where C=H, O H_, Hy =H_={x e R™:}; sz- < oo} with
inner product (x,x")y, =Y. j=1X jx}. These spaces are associated with the Borel o -field.

3.1. Existence of GRD for exchangeable random graphs. To find an underlying GRD for
an exchangeable random graph, we consider the spectral decomposition of the corresponding
graphon. We will show that such GRDs exist for graphons whose spectral series converge in
a strong sense.

Recall that a graphon W is a symmetric function from [0, 172 to [0, 1]. We can view W as
an integral operator on L2([0, 1]):

Wf)() = /[0 JWESfE)ds V€ L2(0.1).

Since f[o, 12 W(s, s’ )2 dsds’ <1, W is a Hilbert-Schmidt operator, and hence admits a spec-
tral decomposition

) W (s Zx D () (s’ Z yivi ) vi(s’

j=1
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where Af > A2 >...>0,y1 >y, >...>0,and (¢; : j > 1) U (¢¥; : j = 1) are orthonormal
functions in L?([0, 1]). The convergence in (4) shall be interpreted as L2—convergence. In
general, almost everywhere convergence does not hold without further assumptions.

DEFINITION 3 (Strong spectral decomposition). We say a graphon W admits strong
spectral decomposition if the eigencomponents (A, ¢;) j>1, (¥j, V) j>1 in (4) satisfy

3) Z[)»ﬂﬁf(s) + ijjg(s)] <00 ae.

jz1

Strong spectral decomposition implies, among other things, that the sum in (4) converges
almost everywhere.

The spectral decomposition of a graphon has been considered in the mathematical side of
the literature, such as in [9, 26, 37], and recently in graphon estimation in [51]. Here, we use
the spectral decomposition to define a mapping from [0, 1] to a pair of infinite sequences:
[\/)TJ-¢> j(s),j > 1] and [V7ivj(s), j = 1], and our key object, the graph root distribution
(GRD), is the corresponding induced probability measure on the infinite-dimensional space.
Such an induced probability measure carries all the information about the corresponding ex-
changeable random graph, and removes the ambiguity caused by measure preserving trans-
forms.

THEOREM 3.1 (Graph root representation). Any exchangeable random graph generated
by a graphon that admits strong spectral decomposition can be generated by a GRD on K.

PROOF OF THEOREM 3.1. For a graphon W, consider its spectral decomposition (4),
and define Z(s) = (X (s), Y (s)) as
1/2 .
Xj(s)=22pj(s) ¥j=1,
1/2 .
Yi)=v; () izl

If s ~ Unif(0, 1), the resulting Z(s) = (X (s), Y (s)) is a random object. By the strong spectral
decomposition assumption, || X [|3;, and ||Y [3_ are finite with probability one, so Z is a well-
defined random vector in K. Moreover,

(Z(), Z(5"))e = D_[2j b5 ()9 (5) = v () (5)]

J

(6)

converges almost everywhere since for s, s’ we have

lyiv OV ()| < (i vi () + v (s),
and the summability is ensured for all s and s’ satisfying (5).

Let F be the probability measure induced by Z(s) : [0, 1] — K with s ~ Unif(0, 1). By
construction, W (s, s") = (Z(s), Z(s")) . almost everywhere, so that the graphon W and GRD
F lead to the same sampling distribution of exchangeable random graph. [J

The examples given in Section 2.2 are special cases of Theorem 3.1. We provide more
detailed explanation of the correspondence in the Supplementary Material [36].
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3.2. How stringent is strong spectral decomposition?. The requirement of strong spectral
decomposition is, indeed, quite mild. The following proposition states that trace-class integral
operators admit strong spectral decomposition.

PROPOSITION 3.2.  [f W is trace-class, in the sense that 3~ (Lj + y;) < 00 with A,
y;j defined in (4), then W admits strong spectral decomposition, and the GRD constructed
from the spectral decomposition of W is square-integrable.

Trace-class integral operators are well studied in functional analysis [19, 32]. Some im-
portant subclasses are the following:

1. Finite rank graphons. If W has finite rank, then it only has finitely many nonzero eigen-
values, and hence strong spectral decomposition holds trivially. Important examples covered
by this case include the stochastic block models, the degree corrected block models, and the
mixed membership block models.

2. Smooth graphons. If a graphon W, or an element in its equivalence class, is in «-Holder
class:

|[W(x,y)—W(x,y)| <Cly—y'"

for constants C > 0, « > 1/2 and all x, y, y" € [0, 1], then it is trace-class, and hence admits
strong spectral decomposition.

3. Continuous positive graphons. If W is positive semidefinite and continuous, then W
is trace-class, and hence admits strong spectral decomposition. This is the famous Mercer’s
theorem. One can relax the requirement of positivity by instead requiring W = W, — W_
with W4, W_ both being positive semidefinite and continuous. An example covered in this
case is

_ 1 : 2
W= fogertogeryy €O

and W(x,y) =0if x =0 or y = 0. This graphon is not in any Holder class but is trace-class.

The second case in the list above has a useful consequence. Even though not all continuous
graphons are trace-class, one can approximate any continuous graphon arbitrarily well using
trace-class graphons.

PROPOSITION 3.3. Let W be a continuous graphon. For any € > 0, there exists a trace-
class graphon W' such that

SD(W, W’) <e.

Moreover, the set of trace-class continuous graphons is a dense subset of continuous
graphons.

If a continuous graphon W does not satisfy strong spectral decomposition, the approxima-
tion W' given in Proposition 3.3 with a small approximation error € may have a very large
trace, and its eigenvalues may decay very slowly. This can pose challenges in estimation. We
make further discussion in Section 4.2.

3.3. Identifiability of GRD. When do two graph root distributions F; and F, on K lead
to the same exchangeable random graph distribution? We first exclude some trivial sources
of ambiguity.
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Ambiguity by concatenation. Let (X, Y) be arandom vector on /C, and let R be any random
variable in an Euclidean space or separable Hilbert space, the random vector (X', Y’) in the
augmented space with X’ = (X, R), Y’ = (Y, R) leads to the same random graph sampling
distribution as (X, Y).

Ambiguity by rotation. Let Q be an inner product preserving mapping from K to K:
(z,2)c =(0z, Q') Vz,7' eK.

Then, in terms of the generated exchangeable random graph, a GRD F is indistinguishable
from Fgp, the measure induced by transforming Z ~ F' +— QZ. An obvious example of Q
is the direct sum of two orthogonal transforms Q, Q_ on H,, H_, respectively, such that
O(x,y)=(Q4+x, O_y).Such a Q preserves the inner product (-, -)x because it preserves the
inner products in both the positive and negative components. However, due to the indefinite
inner product, this is not the only type of inner product preserving transforms on K. Other
transforms, such as hyperbolic rotations, can also preserve the indefinite inner product. See
[46] for some examples of hyperbolic rotations under the context of random dot-product
graphs.

To resolve the identifiability issue, a key observation is that both concatenation and hyper-
bolic rotation necessarily mix up the positive and negative components. So these ambiguities
can be precluded by the requiring uncorrelated positive and negative components. In this sub-
section, we show that the direct sum of a pair of orthogonal transforms is the only possible
ambiguity in identifying a square-integrable GRD with uncorrelated positive and negative
components.

DEFINITION 4 (Equivalence up to orthogonal transforms). We say two distributions F7,

F> on K are equivalent up to orthogonal transform, written as F %L F,, if there exist orthog-
onal transforms Q4 on H4 and Q_ on H_, such that (X,Y) ~ F| < (Q+X,Q0_Y) ~ F.

THEOREM 3.4 (Identifiability of GRD). Two square-integrable GRDs Fy, F» with un-
correlated positive and negative components give the same exchangeable random graph sam-

pling distribution if and only if Fi = F;.

The main idea of the proof is to establish a direct connection between a GRD F and its
corresponding graphon W. Now F' is a probability measure on K, while W is a function
from [0, 11> — [0, 1]. Our idea is to use an inverse transform sampling mapping to relate the
distribution F to a measurable function on [0, 1].

DEFINITION 5 (Inverse transform sampling (ITS)). Let F be a distribution on IC. A
measurable function Z : [0, 1] — K is called an inverse transform sampling mapping of F if

s ~Unif(0,1) = Z(s)~F.

In other words, an ITS induces the Lebesgue measure on [0, 1] to F on K. The mapping
Z(-) given by (6) in the proof of Theorem 3.1 is an example of an ITS of the GRD F. If £
is one-dimensional, then a well-known example of ITS is the inverse cumulative distribution
function. It is also straightforward to see that ITS’s are not unique since if Z(-) is an ITS of F
and &(-) is measure-preserving then Z (4(-)) is also an ITS of F. The following result ensures
that ITS’s always exist for distributions on a separable Hilbert space.

PROPOSITION 3.5 (Existence of ITS). Let F be a distribution on a separable Hilbert
space, then there exists an ITS of F .
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Here, we give a sketch of proof of Theorem 3.4. Fori =1, 2, let Z;(s) = (X;(s), Yi(s)) be
an ITS of F; and define graphon

(7) Wi(s,s") =(Zi(s), Zi(s")) -
By assumption that F; and F, lead to the same exchangeable random graph sampling
distribution, we have W; "= W,. Also, by choosing appropriate orthogonal rotations in

the positive and negative components we can make the covariance of Z; diagonal so that
Wi(s,s") =(Zi(s), Zi(s"))x indeed corresponds to the spectral decomposition of W;. Then
the desired result follows by invoking an exchangeable array representation theorem in the
form of spectral decompositions due to Kallenberg [26].

We summarize our representation results in the following corollary.

COROLLARY 3.6 (Correspondence between graphon and GRD). There exists a one-to-

. . w.i.
one correspondence between trace-class graphons (under the equivalence relation “'="")

and square-integrable GRD’s with uncorrelated positive and negative components (under the

. . o.t.
equivalence relation “="

Canonical GRD. Since any square-integrable GRD with uncorrelated positive and negative
components is identifiable up to a pair of orthogonal transforms, we can choose appropriate
orthogonal transforms so that the covariance of the GRD is diagonalized. Such a choice
can be used as a canonical representation. If all eigenvalues of the covariance operator have
multiplicity one, then the canonical GRD F is determined up to the sign of each coordinate.
As we will see in Section 4 below, our estimator recovers one of the canonical GRD’s.

3.4. Topology of the GRD space: Orthogonal Wasserstein distance. Having established
the GRD representation of exchangeable random graphs, we can study the closeness of graph
sampling distributions by looking at the closeness of GRD’s. To this end, we consider a metric
on the quotient space of square-integrable distributions on /C with respect to the equivalence
relation ““, which we call the orthogonal Wasserstein metric. We will show that conver-
gence of a sequence of GRD’s in this metric implies convergence of corresponding graphons
in cut-distance.

We start by recalling the Wasserstein distance. We will only use a special case of the
Wasserstein distance suitable for our purpose. Given two probability distributions Fp, F> on
IC, the Wasserstein distance between Fy, F is

dyw(F1, F2) = _inf Kz, z,)~vZ1 — 22|,
veV(F1,F)
where V(F1, F3) is the collection of all distributions on C x K with Fj and F; being its two
marginal distributions.

The following lemma says that if two square-integrable GRD’s are close in Wasserstein

distance, then the corresponding graphons are close in cut-distance.

LEMMA 3.7 (Wasserstein and cut distances). Let F| and F, be two square-integrable
GRD’s on KC, with corresponding graphons Wi, W defined using ITS as in (7). Then

So(Wi, W2) < (Ez~R 1 ZI| + Ez~ R, | Z||)dw (F1, F2).

Since we do not distinguish two GRD’s differing only by orthogonal transforms on positive
and negative components, we consider the orthogonal Wasserstein distance

8 dow(F1, F?) := inf inf E ~vlZ1 — V4
(8) ow(F1, F?) vevl(%l,Fz)Qf,lQ, 1.z | Z1 — (Q+ ® 0-)Z,

’
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where O, Q_ range over all orthogonal transforms on ., H_, respectively, and (O &
Q_) denotes the orthogonal transform as the direct sum of Q4 and Q_: (Q+ b Q_)(x,y) =
(Q+X ’ Q -y ) .

We can improve Lemma 3.7 to the orthogonal Wasserstein distance, which says that or-
thogonal Wasserstein distance induces a stronger topology than cut-distance.

THEOREM 3.8. Let F1, F be two square-integrable GRD’s on IC, with corresponding
graphons W1, W as obtained by ITS in (7). Then

SoWi, W) < (Ez~r I ZIl + Ez~FII Z 1) dow (F1, F).

As a consequence, if (Fy : N > 1) are square-integrable GRD’s on K with corresponding
graphons (Wy : N > 1), then

dow(Fy.F)—>0 = oWy, W)—0.

4. Estimation of graph root distributions. Given n > 1, suppose we have observed
an n X n block of A: A, = (A;; : 1 <1i, j <n), where A is generated from a GRD F'. In
such finite sample scenarios, GRD and graphon are used as modeling tools and are no longer
linked to the infinite exchangeability, since the Aldous—Hoover theorem is only applicable to
the infinite case. We consider the following two inference questions:

1. Node embedding: Can we recover the realized sample of node vectors Z1, .., Z, in K?
2. Distribution estimation: Can we recover the GRD F with small orthogonal Wasserstein
distance?

Notation. For an infinite vector x, xP) denotes the first p elements of x. For a matrix
M with countably infinite number of columns, M(”) denotes the submatrix consisting of

the first p columns. For a matrix Z = (X, Y) with n rows and each row taking value in /C,
ZP1-p2) = (X(PV Y(P2)y,

4.1. Truncated weighted spectral embedding. Write A, in its eigendecomposition

n—ni

ni
An =) Ajaaja ZyJ bib}
j=1

where il,A > )12,,4 > > inl,A > 0 are the nonnegative eigenvalues of A, and y; o > - >
Yn—n,,A > 0 are the absolute negative eigenvalues of A.

Let p, p» < n be nonnegative integers to be specified later. We consider the weighted
(p1 + p2)-dimensional spectral embedding of the nodes

2A _ [X([)l), ‘A(gpz)]’

>(p1) 12 2172 A A A A 1)2
9) X ! [A A 1,...,Ap1 A“pl] [al""’apl]Apl,A’
v (p2) 127 ~1/2 ~oon/2
Y, 2 [ylAb ---’szA pz] [bl,... by ]sz,A’
where f\m,A is the p; x p; diagonal matrix with diagonal entries being ()AqvA, e, 5‘[’1,14)’

and I’ p,A 18 defined similarly.
We use the rows of Z 4 to estimate the realized sample points Zy, ..., Z, as follows:

> 1/2 ~ 1/2 A

w0 Xia=(/Ra. ... 5 4ap,0.0...) € Hy,
> ~ ~1/2
Yi,A:(Vl,Abli""vaz/Abpzl’ . )E'H_
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In other words, X; 4, ¥; 4 are the ith row of )A(gp D SA(X’ 2), padded with zeros in the tails.
The same weighted spectral embedding has been considered in random dot-product graphs
in finite-dimensional spaces and at the sample level [5, 41, 46]. Here, we focus more on
the infinite-dimensional case, where pi, p> need to grow with n, and study the statistical
properties of the embeddings at a population level with a goal of estimating the GRD F'.

4.2, Reconstruction error of sample points. In order to show that the estimated node vec-
tors (X; a, Yi a) are close to the true but hidden realized node vectors (X;, Y;), it is necessary
to identify a particular orthogonal transform Q = Q1 @& Q_ to work with. To this end, we
make the following assumption to clear the identifiability issue:

(Al) Forall j, j'>1,Ex y)~r(X;Xj) =2;1(j = j), Ex,v)~r(Y;Y;) = yj1(j = j"),
Ex,v)~r(X;Y;) =0.

This assumption is nontechnical, it merely says that we pick a canonical element among all
possible orthogonal transforms on the positive and negative spaces.
Our next assumption is a polynomial eigendecay and eigengap condition.

(A2) There exist positive numbers c; < c2, | <« < g such that forall j > 1,
j YAy SjVy) <cj Tl

()\,j — )\.j_i_l) AN (Vj - Vj-i—l) = Clj_ﬁ»

with A ;, y; defined in assumption (A1).

Assumption (A2) is often used in the literature of functional data analysis, where one needs
to control the estimation error of individual eigenvectors for random variables in Hilbert
spaces, using a truncated empirical eigen decomposition [21, 33, 39]. When A; o j~¢, the
eigengap condition usually holds with 8 = @ 4 1. The random vector Z = (X,Y) ~ F is
square-integrable if o > 1.

Assumption (A2) may seem a bit too stringent. Indeed we only need to consider the first
p1+ 1 (p2+1) positive (negative) eigenvalues. The estimation error bound can be given as a
function of all individual gaps between these eigenvalues, where equal or nearly equal eigen-
values can be treated by considering the corresponding principal subspace. This will make
the presentation too cumbersome and will not change much of the nature of our argument.
Another simplification made in Assumption (A2) is that the positive eigenvalues (A; : j > 1)
and negative eigenvalues (y; : j > 1) decay at the same speed. Our analysis does allow for
different decay speeds for the positive and negative eigenvalues. That will require choosing
p1 and p; separately, which involves a heavier notation. We choose to work with the version
of Assumption (A2) stated above for presentation simplicity.

As mentioned in the discussion after Proposition 3.3, if we use a trace-class graphon W’ to
approximate a continuous graphon W that does not satisfy strong spectral decomposition, the
eigenvalues of W’ may decay slowly, which corresponds to a small value of « in Assumption
(A2), and leads to a slower rate of convergence of the estimation error bound.

Finally, our procedure requires accurate estimation of the eigenvectors, which in turn re-
quires accurate estimation of the covariance operator. We assume that the GRD has finite
fourth moment.

(A3) Ez~rllZ||* < oco.

THEOREM 4.1 (Sample points recovery). Let A, be generated from a GRD F satisfying
(A1-A3). Let Z = (X, Y) be the hidden node data matrix with the ith row being (X;,Y;) € K
(I1<i<n).If

1

pl :p2 :p :0(n2ﬂ+0¢),
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then the estimator 7. given in (9) satisfies
N _a-l
n N 2a 200 = 0p(n™ T 4 pPH ),

r(p)

where || - || p denotes the Frobenius norm. As a consequence, let F " be the empirical distri-

bution putting 1/n probability mass at each row of Z4, and FP) putting 1/n mass at each
row of ZP-P) | then

A A a—1
dw(Fép), F(p)) =O0p(n~ % +p/3+1/2n—1/2)_

The main technical task in the proof is to control the difference between the true realized
random vectors (X;, ¥;) and their projections on principal subspaces obtained from several
approximations of the gram matrix. Thus the tools used are similar to those in functional data
analysis [21, 39]. However, the additional challenge here is that we do not observe any of
the empirical covariance matrices, and the adjacency matrix we observe is actually a noisy
version of the indefinite gram matrix, which is the difference of two positive semidefinite
gram matrices, one in the positive space and one in the negative space. This issue does not
exist in the ordinary functional data analysis literature and requires more delicate spectral
perturbation analysis.

4.3. Estimating the GRD. The second part of Theorem 4.1 gives the possibility of esti-
mating the GRD F using ﬁ/gp ), According to Theorem 4.1, we only need to show that F® is
close to F. To this end, we consider an intermediate object F (P) | the distribution of truncated

vector (X(P) yP)) with (X, Y) ~ F. The argument proceeds in two steps.
The first step is to compare F and F(P), which is straightforward.

LEMMA 4.2. Under assumptions (A1)-(A2),
dy(F, F(p)) < Cp—(a—l)/Z_

The second part is comparing the population truncated distribution F (P) and its empiri-
cal version FP). We apply the result of [35] which provides Wasserstein error bounds for
empirical distributions. Here, we state a special case, which is suitable for our purpose.

LEMMA 4.3 (Adapted from [35]). Under assumptions (A1)—(A3), there exists a constant
¢ independent of n, p, such that

Edy(FP, FP) < cn=YPV2[1 4 (ogn)1(p =2)],

where 1(-) is the indicator function.

Combining the above two lemmas with Theorem 4.1, we have the following result on
estimating the GRD.

THEOREM 4.4 (GRD estimation error). Under assumptions (A1)—(A3), we have, when
p > 3 satisfies the conditions in Theorem 4.1,

A a—1
dy(ESP F) = 0p[n™ % + pPrin=2 4 p=@ D12 4 y=11p],
The right-hand side is op (1) if p — oo and p = o(logn).

This result seems to suggest that one must have p — oo to have a vanishing error. The term
p~ @ 1/2 comes from Lemma 4.2 which corresponds to the truncation error. It is necessary
only because we assumed a particular eigenvalue sequence in Assumption (A2). What really
matters here is the sum of absolute eigenvalues beyond p: (A, y; : j > p). When the graphon
is nearly low rank or the GRD is supported close to a finite-dimensional space, there is no
need to use a large value of p.



758 J.LEI

4.4. Estimation for sparse graphs. One limitation of the theoretical framework of ex-
changeable random graphs is that they can only model dense graphs. The total number of
edges in A,, will concentrate around n? |; (0.112 W In reality, the number of edges in a network
rarely grows as the squared number of nodes. Therefore, sparse networks are of greater prac-
tical interest. To this end, for a given graphon W and a node sample size n one can consider
adding a “sparsity parameter” to the network sampling scheme [7, 8, 28, 50, 52]:

A, i j ~Bernoulli(p, W (s;,s;)) V1<i<j<n.

This sparsity parameter can be carried over to the graph root sampling scheme. Let F
be a GRD. For a node sample size n and sparsity parameter p,, the corresponding sparse
graph root sampling scheme is equivalent to generating node sample points from a scaled
distribution:

(11) Ani,j ~ Beroulli((oy/? Zi, pA? Z;)),

where Z; i F. For notational simplicity, for scalar a and distribution F we use a F' to denote
the distribution obtained by scaling the distribution F by a factorof a: Z ~ F <& aZ ~aF.

In the SBM and DCBM literature, it is well known that consistent estimation of network
communities is possible only if np, — oo. Our estimation theory developed in the previous
subsections can be extended to cover sparse sampling schemes. One technical challenge is
that when np,, = o(logn), spectral methods tend to be sensitive to overly large node degrees.
In the spectral clustering literature [14, 15], a common approach is to zero out rows and
columns of A, for which the degrees are too high. Some data-driven degree thresholding rules
are developed, for example, in [6, 18]. In the following, we consider an adaptive trimmed
spectral embedding method.

Letd; =) 1<j<, An,i,j be the degree of node i. Let /, be the set of nodes whose degrees

nn—1)
n

Zizl di
the columns and rows in [,,. Let Zi‘p P and F 4 be the corresponding embeddings and GRD
estimate defined in Section 4.1 and Theorem 4.1, respectively, with A, replaced by A,.

are among the | ] largest, and A, be the adjacency matrix obtained by zeroing out

THEOREM 4.5. Under assumptions (A1)—(A3), assuming sparse sampling scheme (11),
the following hold.

1. If npy, — 0o and p1 = pr = p = o[n"/ PP+ A (np,)V/CP)], then

Pl G

o=l _
— OP(pZ/S—Ol"rl(npn)—l +n 28 +p2/3+1n 1).
2. If in addition we assume p > 3, then

dw (o, /2 Fa, F)
—al a—1
:OP(Pﬂ_(a_l)/z(npn)_l/z—l—n 7 —I—pﬂH/zn_l/z—l—p_T—i—n_l/p),

where the error bound is op(1) if p — oo and p = o(logn A (n,on)l/(zﬂ)).

Comparison to graphon estimation using spectral methods. Graphon estimation using sin-
gular value thresholding has been considered in [12, 29, 51]. For specificity of discussion,
we focus on [51]. The method first performs a singular value decomposition of the adjacency
matrix A,, and keeps only the components whose singular values exceed a threshold 7. Then
the remaining low-rank approximation is multiplied by p, ! and entrywise trimmed to [0, 1]
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to obtain G, as an approximation of the probability matrix G, = p,; 'EA,,, which can be
further used as a piecewise constant approximation to the graphon. The error rates reported
in [51] and discussed here refer to the probability matrix estimation error.

We first explain the difference between the GRD estimation problem and probability ma-
trix estimation problem. In GRD estimation, an intermediate error quantity is the empirical
distribution approximation error n~! pIy ||Z,- — Zi ||, where Z;’s are the true latent vec-
tors sampled from the underlying GRD and Z;’s are the estimated versions. The total GRD
estimation error bound needs to add another term due to the empirical distribution approxima-
tion. On the other hand, the probability matrix estimation is concerned with the error metric

_2||f} -G, ||2 Assuming that the GRD estimation and spectral probability matrix esti-
mation use the same rules to select s1gn1ﬁcant eigen components, and ignoring the trimming
step in obtaining G,,, we have Gn ij= (Z,, Z i xc. Using Cauchy—Schwarz, we obtain

-2 2
n ”Gn - Gn“F

(12) no n no
< 2[:1—1 Y NZi~z ||2} {n—l YNz +nm Y] ||z,-||2].
i=1 i=1 i=1
If we accept the assumption that n~! Y ||Z |% is close to n~! Y Z; 12 ~ E||Z |3,
then the GRD empirical distribution approximation error provides an upper bound of the
probability matrix estimation error, up to a multiplicative factor.

Our requirement of polynomially decaying eigenvalues (first part of Assumption A2) im-
plies the tail sum condition of eigenvalue sequence in [51]. In addition, we require a lower
bound of the eigenvalue gap (second part of Assumption A2), which is not required in [51].
This is because in GRD estimation we need to recover the eigenvectors, and the use of sub-
space perturbation theory (Davis—Kahan sin ® theorem) involves a multiplicative factor of
the inverse of eigenvalue gap near the threshold. This multiplicative factor of inverse eigen-
value gap leads to a slower convergence rate. When A; = ¢j~ for some @ > 1, Assumption
A2 holds with 8 = « + 1. In the moderately sparse case, np, is only a polynomial of logn,

__a—l1
then Theorem 4.5 implies a GRD empirical distribution estimation error rate of (np,) 2@+D,

while the probability matrix estimation error rate in [51] is (npn)_%. In Section 5.2, we
will empirically observe that when the underlying graphon is low rank (e.g., a stochastic
block model with a small number of blocks), then the GRD empirical distribution approxi-
mation error and probability matrix estimation error roughly differ by a multiplicative factor;
and when the underlying graphon is high rank, such as a graphon whose eigenvalues decay
polynomially, then the GRD empirical distribution approximation error exhibits a slower rate
of convergence than the corresponding probability matrix estimation error.

4.5. Choice of embedding dimensions. In practice, the value of p can affect the quality of
the estimated GRD. If p is too small, the estimate may not have sufficient dimensionality to
carry all useful structures in the GRD. If p is too large, the estimation becomes less stable and
there would be a waste on computing and storage resources. Moreover, in many applications
it may make sense to use different values of p; and p3, since the effective dimensionality can
be different for the positive and negative components as seen in the numerical examples in
Section 5.

One potential way of choosing (p1, p2) is to follow a common practice in functional data
analysis, where one chooses the leading principal subspace that explain a certain fraction
(such as 90%) of the total variance. In network data, this approach has limited success due to
the low-rank and high-noise nature of the adjacency matrix. Real-world network data often
have low rank structures, but are observed with an entrywise Bernoulli noise.
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Another way to choose pi, p» is singular value thresholding [12], where p; and p; are the
number of positive and negative eigenvalues whose absolute value exceeds a threshold, re-
spectively. In particular, [12] suggests the threshold 2.01+v/n52, where 52 > max;, j Var(A;j)
is an upper bound of the maximum entrywise variance of the adjacency matrix. When &2 is
unavailable, one may use the conservative bound Var(A;;) < 1/4 = &2, which results in the
conservative singular value threshold 1.005./n ~ /n. We find this simple rule of singular
value thresholding working quite well for some real data sets.

5. Numerical examples.

5.1. Simulation 1: Dense SBM, DCBM and MMBM. We apply the truncated weighted
spectral embedding for SBM, DCBM and MMBM. For comparison, we also apply the
graphon estimation method based on stochastic block model approximation (SBA) [3]. .

The GRD estimator # and the graphon estimator W are in different spaces, where F' is
a probability measure on an Euclidean space and Wisa symmetric function defined on the
unit square. Thus they may reveal different underlying structures about the network data. We
shall see that the GRD estimator is able to reveal the clustering and subspace clustering of
the network nodes, while the graphon estimator is less visually informative without a cor-
rect ordering of the nodes. Estimation errors and convergence rates in more general settings,
including sparse networks and infinite-dimensional GRDs, are considered in Section 5.2.

Following the notation in Section 2.2, we set k = 3 and B given in (3). The remaining
parameters are set as follows:

e 7 =(1/3,1/3,1/3) for the SBM and DCBM.

e ® = Unif(0.7, 1.4) for the DCBM, so the effects of node activeness parameter 6;’s range
from halving to doubling the corresponding SBM edge probabilities.

e a=(0.5,0.5,0.5) for the MMBM, so that the mixed memberships are not too close to the
extreme points.

For each model, we generate a random graph with n = 1000 nodes, and apply the truncated
weighted spectral embedding. The number of eigencomponents is determined by the singular
value thresholding rule as described in Section 4.5 with threshold ./n, which chooses top
two absolute eigenvalues in all three cases, with one positive component and one negative
component. The smooth graphon estimation method requires two independent realizations of
the adjacency matrix on the same set of nodes. To make it a fair comparison, we generate two
adjacency matrices of size 708 x 708 to use in the smooth graphon estimation algorithm, so
that the number of independent observations is the same as a 1000 x 1000 adjacency matrix.

A typical output of GRD estimation and the SBA algorithm are visualized in Figure 1,
Figure 2 and Figure 3 for the SBM, DCBM and MMBM, respectively. The SBA algorithm re-
quires a tuning parameter § for grouping similar nodes. Here, we use § = 0.1 since it achieves
the smallest probability matrix estimation error. In each figure, the left plot shows the trun-
cated and weighted spectral embedding of network nodes. The red dots, line segments and
triangles are corresponding supports of the true GRD as theoretically predicted in Section 2.2.
The embedded empirical distributions exhibit reasonable approximations to the underlying
graph root distributions. On the other hand, the graphon estimation method SBA outputs an
estimated probability matrix.

5.2. Simulation 2: Sparse and infinite-dimensional graphons. In this simulation study,
we demonstrate GRD estimation in sparse and infinite-dimensional settings, and compare
with the simulation results in corresponding graphon estimation using singular value thresh-
olding (USVT, [12, 51]). We adopt two simulation settings in [51]: a stochastic block model
with four communities and a smooth graphon.
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FiG. 1. Simulation 1, SBM. Left: truncated and weighted spectral embedding output by the GRD estimation
algorithm. The red dots are the point masses theoretically predicted in Section 2.2. Right: heatmap of estimated
probability matrix output by the smooth graphon estimation algorithm with original output node ordering. The
heatmap is shown at a lower resolution (1 : 7) for better visibility.
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FIG. 2. Simulation 1, DCBM. Left: truncated and weighted spectral embedding output by the GRD estimation
algorithm. The red line segments are the subspace clusters theoretically predicted in Section 2.2. Right: heatmap
of estimated probability matrix output by the smooth graphon estimation algorithm with original output node
ordering. The heatmap is shown at a lower resolution (1 : 7) for better visibility.
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FI1G. 3. Simulation 1, MMBM. Left. truncated and weighted spectral embedding output by the GRD estimation
algorithm. The red triangle is the convex polytope theoretically predicted in Section 2.2. Right: heatmap of esti-
mated probability matrix output by the smooth graphon estimation algorithm with original output node ordering.
The heatmap is shown at a lower resolution (1 : 7) for better visibility.
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F1G. 4. Simulation 2: SBM. Logarithm of estimation error as function of logarithm of signal strength in stochas-
tic block model with k = 4.

Stochastic block model. 1In the stochastic block model setting, we consider stochastic block
models with k =4 equal sized communities, and the B matrices have randomly generated
entries from the uniform distribution on [0, 1] subject to symmetry. We consider four different
values of p: 0.4, 0.2, 0.1, 0.05 and six values of n such that log(np/k) takes equally spaced
values between 2.2 and 3.2. For each combination of (n, p), the simulation is repeated 30
times with independently generated B, community membership, and A,,. The singular value
thresholding algorithm for probability matrix estimation uses threshold 2.01,/np. This is to
make sure we can reproduce the results in [51]. For GRD estimation, we choose p; and p, by
thresholding the absolute eigenvalues at 2.014/np(1 — p), following the suggestion in [12].
The results are summarized in Figure 4. The error metrics reported here are empirical GRD
approximation error and the probability matrix estimation error as introduced in Section 4.4.
The similar slopes between empirical GRD errors and probability matrix estimation errors
seem to suggest that in this low-dimensional case, the two estimation errors roughly differ by
a constant factor.

Smooth graphon. In the smooth graphon setting, we use W (x, y) = min(x, y), whose jth
eigenvalue is ﬁ. We consider the same values of p: 0.4, 0.2, 0.1, 0.05. Given the small
eigenvalues, we consider larger values of log(np;), which are equally spaced between 4 and
8.5. Due to the computer memory limit, we carry out the experiment when n < 1.5 x 10%,
That is, for p = 0.4 the experiment covers n such that log(np) € [4, 8.5]; for p = 0.2, it covers
log(np) € [4, 8]; for p = 0.1, it covers log(np) € [4,7]; for p = 0.05, it covers log(np) €
[4, 6.5]. The results are summarized in the left plot of Figure 5. The plot seems to confirm a
slower rate of convergence for GRD estimation error.

The estimation errors of both the empirical GRD and probability matrix exhibits a sharp
drop when log(np) ~ 7. To better understand this, we decompose the total estimation error
into two parts:

1. The finite-dimensional estimation error: This is the error in approximating the low-
rank component of the probability matrix G, = p, 'EA,,. For empirical GRD estimation,

this corresponds to n =1 Y7, ||p_1/22i(’2’p2) - Zl.(pl’p2)||2, where 21-(’2'"72) is the estimated
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FI1G. 5. Simulation 2, smooth graphon. Logarithm of estimation error as a function of logarithm of signal
strength in smooth graphon. Left: total estimation error; middle: finite-dimensional estimation error; right: trun-
cation error.

latent vector Z; truncated to retain p; and p; coordinates in the positive and negative
parts, respectively, as given in (10). For probability matrix estimation, this corresponds to

n—? ||G,, — G,(f ) 2., where Gflp ) is the best rank- p approximation to G, in Frobenius norm,
and p is the number of singular values used in the USVT method.

2. The truncation error: This is the error incurred by ignoring the eigencomponents of G,
with smaller absolute eigenvalues. In empirical GRD estimation, this error is n ™! Y2 —
Z}p 1:P2)|12_ I probability matrix estimation, this error is n~2(|Gy — G I1%.

The finite-dimensional error and truncation error are plotted in the middle and right plots
in Figure 5, respectively. Near the point log(np) = 7, the signal becomes strong enough
to pick up the second eigenvalue of the underlying probability matrix, therefore, the finite-
dimensional approximation error increases for both methods, because there are more eigen-
components to estimate. After this increase, the finite-dimensional approximation errors start
dropping again with a similar linear slope. The behavior of the truncation error matches
the intuition, as it stays constant until a new eigencomponent is picked up when the signal
strength increases. In this example, the truncation error is larger and decays more slowly for
the empirical GRD estimation than for the probability matrix estimation.

5.3. The political blogs data. The political blogs data [1] is one of the most widely stud-
ied network data sets with a well-believed degree-corrected community structure [13, 25,
27, 34, 54]. The data set records undirected hyperlinks among 1222 political blogs during
the 2004 presidential election, and the nodes have been manually classified as “liberal” and
“conservative.”

Among many statistical methods applied to this data set, spectral methods are quite pop-
ular and have used the top two singular vectors of the adjacency matrix. Here, we apply the
truncated and weighted spectral embedding to this data set. The singular value thresholding
rule suggests two significant eigencomponents, both of which correspond to the positive com-
ponent. The embedded nodes in the two-dimensional Krein space reflects a mixture of two
components each on a one-dimensional subspace, with each mixture component correspond-
ing to a labeled class. For this data set, we only have one realization of the adjacency matrix
so the SBA algorithm is no longer applicable. For comparison, we apply the sorting-and-
smoothing (SAS) estimator developed by [11], which adapts the SBA method by sorting the
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FI1G. 6. Political blogs data. Left: node embedding output by the GRD estimation method, colored by the ground
truth manual labeling. Middle: estimated probability matrix with nodes sorted by the sorting-and-smoothing al-
gorithm. Right: estimated probability matrix using USVT with random node ordering. The heatmaps are shown at
a lower resolution (1 : 10) for better visibility.

nodes according to the degrees. We also apply the USVT method to estimate the probability
matrix, with the singular value threshold 1.005./7.

The results are visualized in Figure 6, in a similar fashion as in the simulated examples in
Section 5.1. The GRD node embedding scatter plot is colored according to the ground truth
of manual labeling of the blogs. It clearly shows that each group is represented by a one-
dimensional subspace on which the GRD is supported. The SAS estimator sorts the nodes
according to the degrees, and misses the subspace clustering hidden in the data. The USVT
probability matrix estimation output is similar to that of SAS, with a different but random
sorting of the nodes.

5.4. The political books data. The political books data records undirected links among
105 political books with links defined by the co-purchase records on Amazon.com. This data
set, available on Mark Newman’s website,! was collected by Krebs [31] during the 2004
presidential election. The nodes have been manually labeled as one of the three categories:
“neutral,” “liberal” and “conservative.”

Given the three labeled classes, it seems natural to assume three significant eigen-
components. However, the singular value thresholding rule indicates only two significant
components, both with positive eigenvalues. Again, we also apply the SAS algorithm and the
USVT probability matrix estimator with the threshold 1.005+/ to this data set.

As shown in Figure 7, the truncated weighted spectral embedding of the first two compo-
nents (left plot of Figure 7) shows a two-component mixture with each component supported
on a one-dimensional subspace, which strongly indicates a two-block DCBM. The “neutral”
class, plotted as green square points, appears near the intersection of the other two classes.
The SAS estimator and the USVT probability matrix estimator do not explicitly indicate such
subspace clustering structure.

6. Discussion.

Kernel based learning. A side result of our theory is the relationship between the generating
distribution of a random sample and the distribution of the corresponding kernel/gram matrix.
Let F be a probability measure on a separable Hilbert space A'. Let (X; : i > 1) be a sequence
of independent samples from F, and G = ((X;, X),7, j > 1) be the (infinite size) gram
matrix. The perspective of viewing G as an exchangeable random array allows us to establish

1 http://www-personal.umich.edu/~mejn/netdata/
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FI1G. 7. Political books data. Left: node embeddings output by the GRD estimation method, colored by the
ground truth manual labeling. Middle: estimated probability matrix with nodes sorted by the sorting-and-smooth-
ing algorithm. Right: estimated probability matrix using USVT with random node ordering.

the correspondence between F and the distribution of G. The result essentially says that the
gram matrix carries all information about F' up to an orthogonal transform. We believe that
this result is elementary and highly intuitive, but are not able to find it in the literature.

COROLLARY 6.1. Let F be a probability measure on a separable Hilbert space X . De-
note G the distribution of the corresponding infinite gram matrix G. Then for two probability
measures Fy, > on X, Gr, = GF, if and only if F 2L F, provided that one of the following
holds:

1. X is finite dimensional,
2. Ex~p [IX|* < 00;
3. Ex~plIX|? < oco.

Here, the equivalence relation “ZL is defined as in Definition 4 by treating H4+ = X and

H_=0a.

Modeling and inference for relational data. The framework of graph root representation
can be extended in several interesting directions. First, one can model the connection prob-
ability with a logistic link function so that the two nodes i, j connect with probability
(1 + e—$%-Zj)x)=1 With such a logistic transform, each distribution on K can be used to
generate an exchangeable random graph and, therefore, can model a wider collection of struc-
tures. Moreover, one can also use the same framework to model relational data beyond binary
observations. For example, one may observe event counting between a pair of nodes, such as
number of email correspondences and frequency of research article citations. In applications
such as multivariate time series and multimodal imaging, one may even observe a vector for
each pair of nodes.

The graph root embedding also facilitates many subsequent inferences. We have discussed
two examples in Section 2.3. There are other potential uses of GRD representations of net-
works. For example, in addition to clustering the embedded nodes as in SBM and DCBM,
one can also test for specific structures of the graph root distribution, or compare the graph
root distributions for multiple networks. See [49] for an example of two-sample comparison
for random dot-product graphs. Another way to make use of the graph root embedding is
to model the node movement in temporal networks. A challenge is to find the orthogonal
transforms to match the embeddings at different time points. See [47] for an example using a
similar idea with a different latent space model.
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