
A Versatile and Flexible Chiplet-based System Design for
Heterogeneous Manycore Architectures

Hao Zheng, Ke Wang, and Ahmed Louri
Department of Electrical and Computer Engineering, George Washington University, Washington D.C.

{haozheng, cory, louri}@gwu.edu

Abstract—Heterogeneous manycore architectures are deployed to si-
multaneously run multiple and diverse applications. This requires various
computing capabilities (CPUs, GPUs, and accelerators), and an efficient
network-on-chip (NoC) architecture to concurrently handle diverse ap-
plication communication behavior. However, supporting the concurrent
communication requirements of diverse applications is challenging due
to the dynamic application mapping, the complexity of handling distinct
communication patterns and limited on-chip resources. In this paper, we
propose Adapt-NoC, a versatile and flexible NoC architecture for chiplet-
based manycore architectures, consisting of adaptable routers and links.
Adapt-NoC can dynamically allocate disjoint regions of the NoC, called
subNoCs, for concurrently-running applications, each of which can be
optimized for different communication behavior. The adaptable routers
and links are capable of providing various subNoC topologies, satisfying
different latency and bandwidth requirements of various traffic patterns
(e.g. all-to-all, one-to-many). Full system simulation shows that Adapt-
NoC can achieve 31% latency reduction, 24% energy saving and 10%
execution time reduction on average, when compared to prior designs.

I. INTRODUCTION

Today’s heterogeneous manycore architectures are running multiple
and diverse applications, requiring various computing (CPUs, GPUs
and accelerators) and communication (cache and memory coherence)
capabilities. However, a majority of these architectures deploy
static network-on-chip (NoC) configurations, which are inefficient
in supporting various traffic patterns of applications running at the
same time. This often results in sub-optimal on-chip communication,
therefore negatively affecting the application performance.

Reconfigurable NoCs [1]–[7] have been introduced to remedy the
sub-optimal on-chip communication through providing application-
specific NoC topologies. For example, prior work either inserts
express links into mesh topology [1] or fully customizes network
connectivity [2], [3] based on communication task graphs. Moreover,
Polymorphic NoC [4] statically configures different router architectures
(e.g. buffer size and crossbar) and network connections. While these
static reconfigurable schemes are beneficial to single application
execution, they have limited applicability for modern manycore archi-
tectures where multiple applications are running. These applications
are often dynamically allocated into different regions of compute
and memory resources [8]–[11], thus leading to frequently changed
application mapping and diverse regional communication behavior. As
a result, a flexible NoC architecture is envisioned to support the diverse
and regional communication requirements of dynamically-allocated
applications.

Designing such a flexible NoC architecture is challenging, as it re-
quires a variety of network topologies to cover different traffic patterns
(e.g. one-to-many, all-to-all), and bandwidth and latency requirements
of diverse applications. The problem is further exacerbated by the
dynamically sized and allocated application mapping, thus leading to
substantially possible network connectivity within different mapped
regions. An intuitive architectural design could exhaust limited on-chip
power, area and wiring budgets, offsetting the performance benefits.
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To this end, we propose Adapt-NoC, a versatile and flexible NoC
design consisting of adaptable routers and links for chiplet-based
manycore architectures. The Adapt-NoC can dynamically allocate the
NoC into different regions, called subNoCs1, each of which can be
optimized in different and diverse subNoC topologies by exploiting
additional routing resources of the interposer. Consequently, there
could be several mesh, cmesh, torus, and tree topologies running
simultaneously, supporting distinct traffic patterns with different
latency and throughput demands.

The main contributions of Adapt-NoC are:
• Adapt-NoC is capable of providing multiple disjoint subNoC

topologies with different configurations of size, bi-section band-
width, and diameter.

• We propose a methodology to synergize various subNoC
topologies to satisfy a variety of application categories and
NoC requirements such as flow control and routing, thereby
maximizing the performance benefits of the Adapt-NoC.

We evaluate the proposed Adapt-NoC using full system simulation
with Parsec and Rodinia benchmark suites. Our simulation results
show that the Adapt-NoC achieves 31% latency reduction, 24% energy
saving, and 10% overall execution time reduction, as compared to
prior NoC designs.

II. BACKGROUND

Chiplet-based manycore architecture: The silicon interposer
enables chip miniaturization, breaking one monolithic chip into
smaller individual chips, called chiplets. As a result, a collection
of chiplets can be placed side by side and stitched together on
a silicon interposer via micro-bumps (µbumps) in a face-down
manner, as illustrated in Fig. 1(a). To connect these chiplets, wires
have to be routed through the interposer, as shown in Fig. 1(b),
called passive interposer. Aside from this limited wiring, most of
the interposer area and wiring resources are underutilized though
having been paid. To exploit the full benefits of the interposer, recent
work [12]–[14] has studied cost-effective ways of implementing
active interposer designs, where both wires and transistors are
deployed in the interposer using maturated and low-cost process

1Each region to which an application is mapped is called a sub-NoC in this
paper.
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technologies (e.g. 65nm technology). Consequently, the miniaturized
chiplet and “minimally active” interposer can offer more economic
and performance benefits than the current monolithic chip designs [14].
Furthermore, the active interposer extends current NoC design to a two-
layer NoC architecture, as shown in Fig. 1(c). The additional routing
capability could efficiently accommodate the growing communication
demands of high-bandwidth in-package memory (e.g. stacked high
bandwidth memory). However, the connectivity between interposer
and chiplet NoCs requires additional router radix at both ends while
inevitably increasing hop count for those packets traversing between
the interposer and the chiplet.

Reconfigurable NoCs: Runtime reconfiguration has also been
proposed to improve NoC performance, reliability and energy saving.
SMART [5] deploys a low-swing clock-less repeated link embedded
within the router crossbar that can bypass packets to several hops
away within a single cycle. A reconfigurable link design [6] can
dynamically allocate channel bandwidth between adjacent routers,
thereby efficiently improving network throughput and reliability.
Panthre [7] reconfigures NoC topology to detour traffic away from
the power-gated routers, improving NoC energy efficiency. All these
techniques are orthogonal to the Adapt-NoC design, which could be
simultaneously deployed to further improve NoC performance and
energy benefits.

III. ADAPT-NOC ARCHITECTURE

A. Overview of Adapt-NoC

In this work, we use a 64-core chiplet-based manycore architecture
as a baseline, which consists of four 4 × 4 mesh-based manycore
chiplets stacked on a silicon interposer, as illustrated in Fig. 1(a,b).
The Adapt-NoC is built on the baseline manycore architecture, with
the goal of supporting the concurrent communication of diverse
applications in different subNoCs. Specifically, the Adapt-NoC can
dynamically provide multiple disjoint subNoCs, each of which can
be configured as different subNoC topologies such as mesh, cmesh,
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torus, and tree. Fig. 2 depicts a 2× 2 allocated subNoC, consisting
of four adaptable routers and eight adaptable links. Each adaptable
router consists of a chiplet router and an interposer switch. Adaptable
links connect the adaptable routers in each row or column through the
interposer. As a result, both chiplet routers and interposer switches are
connected by adaptable links (depicted in different colors), horizontally
or vertically.

B. Adaptable Router

The dynamically-allocated subNoC topology often results in
significantly different router configurations (i.e. router radix and
connection). We, therefore, propose an adaptable router with the
aim of providing desired router radix and connections with other
routers. Specifically, Fig. 3 depicts the proposed micro-architecture
of an adaptable router, which consists of a 5× 5 chiplet router and
2× 2 interposer switch. As compared to prior works [12], [13], we
decompose the high-radix interposer router (i.e. 8× 8 router) to four
low-radix switches (i.e. 2 × 2 switch), each of which is connected
with the crossbar of the chiplet router by two additional muxes (i.e.
3:1 and 5:1 muxes). The rationale behind this design is three-fold: (1)
to reduce chiplet router radix, (2) to mitigate hop count at interposer,
and (3) to compose a high-radix router when required. When the
interposer switch operates independently, it functions as a bypass
switch to support the core-router, inter-router data transmissions. In
these cases, we further add bypass links to the virtual channels of
the inteterposer switch and network interface to avoid buffer delays
when packets bypass the router. In addition to a conventional router
(chiplet router) [15], we implement a power-gating controller to power
off unused ports and crossbars, reducing static power consumption.
Moreover, the link controller is deployed to control the connection
between the chiplet router and different links, and turn on/off link
switches of adaptable links (discussed in the next section).

C. Adaptable Link

The potential for subNoC size and connections to dynamically
change require a variety of link connections between different types
of adaptable routers. For example, in an 8 × 8 Adapt-NoC, each
row/column requires at least 28 (i.e. C2

8 ) bi-directional links to cover
all possible sub-NoC connections, thus exhausting limited wiring
resources. We propose an adaptable link design to provide the sufficient
amount of links for multiple subNoCs. The adaptable link design can
be dynamically segmented to several short wires of different length.
Fig. 4 shows the proposed adaptable link design, which comprises a
number of tri-state transistors [16]. The goal of segmenting a wire is
to avoid signal interference when multiple signals are propagating on a
single wire. The tri-state transistor can cut off the signal propagation
between two routers to avoid signal interference. Specifically, the
link switch (tri-state transistor) is controlled by the link controller
of the router. Upon receiving the off signal (1-bit) from the link
controller, the transistor will be disconnected from GND and Vvdd,
thus terminating the data transmission between the routers. The on
signal reconnects the transistor with the GND and Vvdd. By doing
so, the tri-state transistor resumes the data transmission between the
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two routers and functions as a link repeater. It should be noted that
the link controller is not on the critical path of data transmission.

D. SubNoC Formation

A straightforward deployment or combination of subNoC topologies
could incur flow control and routing issues, which in turn could affect
NoC performance. This requires a synergy of subNoC architecture,
flow control and routing algorithm to take full benefits of the Adapt-
NoC. In this section, we select cmesh, torus and tree as case studies
in a 4× 4 allocated subNoC, to illustrate the methodology of forming
different sub-NoC topologies.

1) CMesh (Concentrated Mesh): Concentration is to connect
multiple nodes to a single router, which can effectively reduce
the network diameter by using fewer number of routers. Previous
designs [17], [18] relied on high-radix routers or external arbitration
logic to realize the network concentration. However, these designs are
difficult to implement in the Adapt-NoC due to insufficient router radix
and inflexibility of external arbitration (fixed grant and request signals).
Therefore, we propose to implement the concentration by utilizing
the interposer switch in the Adapt-NoC. Specifically, Fig.5(a) shows
a 2× 2 Cmesh topology, where four cmesh routers are connected to
sixteen nodes. Each cmesh router (i.e. node D) connects to four nodes
(A,B,C and itself) in a concentrated region. Within each region, we
first connect the injection ports of nodes B and C, which are adjacent
to node D, to the interposer switch of node D using adaptable links.
Since interposer switch of node D has been fully connected by nodes
B and C, node A cannot directly connect to node D. In this case,
node A connects to node D through the interposer switch of node C.
When packet contention happens between nodes A and C, the node
A buffers the packets to the interposer switch of node C. This avoids
fixed grant and request signals required by the external arbitration [18].
We use the cmesh to demonstrate the capability of Adapt-NoC to
reduce network latency (reduced diameter) and power consumption
(fewer number of routers).

2) Torus: Express links [19] are used to connect non-adjacent
routers, which allows packets to bypass the intermediate routers.
Torus is an example of deploying express links to the mesh topology,
where peripheral routers are connected by multiple wrap-around
links, horizontally and vertically. The wrap-around links not only
reduce the network diameter but also increase the number of links
across the network (bi-section bandwidth). In the Adapt-NoC, the
adaptable links are segmented to desired length and connect the
peripheral routers of the allocated subNoC. The torus topology is
used to demonstrate the capability of the Adpat-NoC to simultaneously
improve network latency (reduced diameter) and throughput (improved
bi-section bandwidth), as required by the applications.

3) Tree: The heavy reply traffic (e.g. one-to-many traffic) from
the memory controller (MC) has been identified as a bottleneck

of NoC performance in the throughput processor [20], [21]. The
intensive reply traffic results in packet congestion at the injection port
which significantly increases the queuing latency. Such undesirable
congestion results from insufficient injection bandwidth and poor
load balance in grid-like topologies, such as the mesh topology.
We, therefore, explore the use of Adapt-NoC to configure a tree
topology as a reply network, providing high injection bandwidth at
the MC (i.e. root node) and balanced load distribution. Specifically,
we maximize the fanout of the root router (i.e. MC) to provide
high injection bandwidth, where the reply packets from root router
are directly injected to the input buffers of the intermediate routers.
Furthermore, the root and intermediate routers are connected with their
downstream routers, vertically and horizontally to evenly distribute the
reply traffic. Fig. 5(c,d) illustrates the logical and physical connections
of a fully connected tree topology. As shown in Fig. 5(d), the root,
intermediate and leaf routers are fully connected by a set of links
(mesh and adaptable links), horizontally and vertically. Such link
connections (5(d)) are designed to couple with dimensional routing
(generic routing algorithm). Consequently, the reply traffic from the
MC can be delivered to all routers within two hops in the illustrated
example. We note that the request traffic still goes through the mesh
topology. This implementation could demonstrate the capability of
Adapt-NoC to efficiently handle one-to-many traffic patterns in the
throughput processors.

Tree Scalability: While the example (Fig. 5(d)) shows a fully
connected tree topology, the tree suffers from scalability issues when
the subNoC size increases. In the case of large subNoC size, we
follow the same design principle to maximize injection bandwidth
and distribute reply packets. As a result, we still maximize the fanout
of root router, but connect root and intermediate routers with their
downstream routers at an evenly-spaced distance in each row/column.

4) Possible subNoC topologies: The subNoC formation method-
ology can be generalized to more topologies, including different
configurations of network concentration, express link placements, and
combined topologies. For example, the torus (Fig. 5(b)) and tree
(Fig. 5(d)) could be combined together to simultaneously optimize
both request and reply networks for memory-intensive applications.
Moreover, the wrap-around torus links can be segmented to several
short express links to bypass routers. While a number of topologies can
be generalized, in this work we concentrate on four popular topologies
— mesh, cmesh, torus and tree — to demonstrate the performance
and energy benefits of simultaneously deploying different subNoC
topologies.

IV. IMPLEMENTATION DETAILS

In this section, we specifically discuss the implementation details
of subNoC partitioning and configuration, memory controller imple-
mentation, and deadlock avoidance in the Adapt-NoC.
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A. Dynamic SubNoC Partitioning and Configuration

The nature of dynamic subNoC allocation is to allocate a set of
cache, memory, core and NoC fabric within a region of manycore
architecture. Significant research efforts have been devoted to allo-
cating cache, memory and core within a region by modifying cache
coloring, page replacement, and mapping policy [11], thereby taking
the full advantage of data locality and mitigating inter-application
interference. The remaining challenge of allocating subNoCs is
to timely configure the subNoC topology while maintaining the
dynamic application mapping. To demonstrate the capability of runtime
configuration, we studied the timing overhead of configuring subNoCs.
The configuration overhead consists of three parts, draining all in-flight
packets, powering on router and setting up router connections. We
conducted an experiment to calculate the worst-case timing overhead
of draining packets in a 32-core system. We found, in the worst-
case scenario, the subNoC to be taking about 200 cycles to drain
all in-flight packets due to the intensive traffic of rodinia benchmark.
Turning on a powered-off router (12 cycles/hop) and setting up link
connections (2 cycles/hop) need to take an additional 250 cycles in
the 32-core system. The result showed that Adapt-NoC has great
potential to support dynamic configurations.

B. Memory Controller Implementation

The MCs should be available to each subNoC, supporting cache-
memory communication. We, therefore, implement one MC to each
2 × 4 subNoC. While each subNoC is assigned with an independent
MC, it may not be sufficient for memory intensive applications. To
address this issue, we propose a MC sharing design, in which each
MC can be shared by up to four subNoCs. Fig. 6 illustrates the
MC sharing between subNoC-0 and subNoC-1. When the application
running on subNoC-1 demands additional memory bandwidth, the
subNoC-1 connects with the MC of subNoC-0 using the unused ports
of the peripheral routers in both subNoCs. Moreover, the interposer
switches can also provide inter-subNoC communication.

Memory Controller Scalability: The growing number of MCs could
be lagging behind the increase in core count. As a result, each MC
has to be shared by multiple subNoCs using the mentioned sharing
policy. In this case, eight MCs can be shared by 32 2× 4 subNoCs,
which account for 256 cores. Furthermore, we can allocate one MC
to a larger subNoC size (i.e. 4× 4 subNoC), which can scale to 512
cores. This shows the scalability of Adapt-NoC for handling hundreds
of cores projected in the future.

C. Deadlock Avoidance

The network deadlock incurs due to improper subNoC switching,
protocol deadlock or circular channel dependence. To avoid the
misrouting of packets, we do not alter the subNoC size and topology
until all in-flight packets were drained. Furthermore, we avoid the

protocol deadlock by using multiple virtual networks. Although we
use dimensional-order routing for mesh, cmesh and torus, the circular
channel dependence is inevitable in each tori. Despite the fact that
a number of techniques have been proposed to solve the deadlock
in ring and tori [15], [22]–[24], we select the simple yet effective
dateline [15] to avoid such circular channel dependence. It should be
noted that the prerequisite of forming circular channel dependence is
that a given router is connected to at least two other routers. As each
MC is only allowed to connect to one router of any subNoC, this
precludes the formation of cyclic dependency within any subNoC.

V. EVALUATION

We evaluate the proposed architecture under a full system simulation,
with the combined use of architecture-level and circuit-level simulators.
The cycle-accurate gem5-GPU simulator [25], and GARNET [26]
were used for detailed timing simulation of the memory and NoC.
We use DSENT [27] to evaluate the power consumption and use a
Synopsys Design Compiler with the 45 nm FreePDK45 open cell
library to evaluate the area overheads.

To examine the diverse application behavior, we evaluate the
performance of our proposed design using both the Parsec and
Rodinia applications, in an 8 × 8 chiplet-based heterogeneous
system. We assume that three applications are dynamically mapped to
different regions of the heterogeneous manycore system. The Rodinia
application is mapped to a region with the mix of 4 CPUs, 4 MCs
and 24 GPUs, where each 2× 4 subNoC consists of 1 CPU, 1 MC,
and 6 GPUS. Each GPU core contains 8-wide SIMD lanes and is
equipped with a 64KB private L1 cache and scratch memory. Parsec
applications are mapped to 28 CPUs and 4 MCs, where each 2× 4
subNoC consists of 7 CPUs and 1 MC. Each CPU core also contains
private a 64KB L1 instruction/data cache, and 1 MB shared L2 cache.
Each core or MC is attached to a router. The baseline mesh router has
2 pipeline stages (look-ahead routing and speculative optimizations),
2 VCs per virtual network and 4 buffers per VC.

1) Baseline: We use a mesh topology as the baseline design, where
the chiplets are connected by a passive interposer.

2) Shortcut [1]: We extend the concept of short-cut links to chiplet-
based NoC designs, where the chiplet routers can be connected
by a set of reconfigurable links in the active interposer.

3) ButterDount [13]: We use a state-of-the-art active interposer
design, where the chiplet routers are connected in a mesh
topology, and interposer routers are connected in a Butterdount
topology.

4) Adapt-NoC: The proposed Adapt-NoC design with multiple
disjoint subNoC topologies.

A. Application Category and Mapping Policy

TABLE I
APPLICATION CATEGORIES.

Categories Applications

CPU Blackscholes (BS), Swaptions (SW), X264, Ferret (FR),
Bodytrack (BT), Canneal (CA)

GPU-CPU Guassian (GA), Breath-First-Search (BFS),
Needleman-Wunsch (NW)

GPU Kmeans (KM), Back-propagation (BP), Heart-Wall (HW)

To cover a wide range of application behavior, we selected a
number of applications from the Parsec and Rodinia suites, as shown
in Table I. We profiled all applications and grouped them under
three different categories, namely CPU, GPU-CPU, and GPU. CPU
applications only include inter-CPU communications; GPU-CPU
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applications include a large portion of GPU and CPU co-executions;
GPU applications mainly consist of GPU executions and demand high
memory bandwidth. We use cmesh, torus, and a hybrid topology (mesh
+ tree) to support these different communication demands, thereby
examining the benefits of allocating different subNoC topologies.
We mixed these applications as different workloads, where PARSEC
applications are mapped to a 4× 4 subNoC, and Rodinia applications
are mapped to a 4× 8 subNoC.

B. Performance Analysis

1) Network Latency Analysis: Fig. 7 shows the network latency
analysis of the Adapt-NoC as compared to baseline, shortcut and
butterdount. The Adapt-NoC reduces the network latency of mixed
workloads by 31%, 16%, and 19% on average, when compared to
the baseline, shortcut and butterdount. The reduced latency results
from the hop count and queuing latency reductions in both GPU and
CPU applications. Specifically, Fig. 8 shows the hop count analysis
of CPU applications. The Adapt-NoC reduces the average hop count
of packets by 39% and 24% as compared to baseline and shortcut.
While the Adapt-NoC achieves significant hop count reduction in all
CPU applications, some of CPU applications, Canneal and Swaptions,
only convert such hop reduction to 18-20% network latency reduction
due to their traffic-intensive application phases. The butterdount is
designed for handling intensive memory traffic, and therefore it has
limited latency reduction because of the sparse memory traffic in
CPU applications. We further studied the queuing latency and hop
count reductions of GPU applications as shown in Fig. 9. Both the
Adapt-NoC and butterdount efficiently alleviate the packet congestion
at injection port and reduce the queuing latency in memory-intensive
applications (HW, KM, and BP), as they provide additional network
bandwidth to improve the poor load balance of mesh topology. The
enhanced load balance eventually results in 33% and 45% queuing
latency reductions as compared to baseline. For those applications
involve CPU-GPU co-executions, we observed that the Adapt-NoC
simultaneously optimizes load balancing and reduce hop count. This
turns to 13% and 41% of hop count reduction when compared to
shortcut and the baseline.

2) Execution Time Analysis: Fig. 10 shows the execution time
analysis of the Adapt-NoC. Overall, the Adapt-NoC reduces the
execution time by 10%, 5%, and 8% on average, as compared
to baseline, shortcut, and butterdount. Specifically, the Adapt-NoC
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reduces the execution time of CPU applications up to 14% (x264) and
8% on average, as compared to baseline. Moreover, the Adapt-NoC
reduces the execution time of GPU applications up to 25% (Heartwall)
and 12% on average, as compared to baseline.

3) Energy Analysis: Fig. 11 shows the normalized energy analysis
of the Adapt-NoC. The Adapt-NoC improves overall energy savings
by 24%, 18% and 40%, when compared to baseline, shortcut and
butterdount on average. The energy benefits of the Adapt-NoC are
from the reduced execution time, reduced hop count and the use of
power-gating. Specifically, Fig. 12 shows the dynamic energy analysis,
in which the Adapt-NoC reduces the dynamic energy by 42%, 17%,
37% as compared to baseline, shortcut and butterdount. The dynamic
energy saving benefits from the reduced hop count of packets (39%
and 43% in CPU and GPU applications), because packets traverse
fewer number of routers and reduce the switching activity of those
skipped routers. Fig. 13 shows the static energy analysis, in which the
Adapt-NoC reduces the static energy by 15%, 18%, 42% on average,
as compared with baseline, shortcut, and butterdount. The static energy
saving is from powering off the unused routers and ports in peripheral
routers. The overall energy savings efficiently compensate the energy
overhead caused by additional adaptable links (3.9 mW/link), which
ultimately converts to 24% energy saving when compared to baseline.

C. Area Overhead

We evaluate the area overhead through Synopsis Design Vision
using 45 nm and 65nm technologies for chiplet and interposer
respectively. The baseline chiplet router consists of a crossbar of 17806
um2, a switch allocator of 4589 um2, a virtual channel allocator
of 9066 um2, and buffers of 98740 um2. As a result, the overall
chiplet NoCs account for 8.3 mm2 area. The Adapt-NoC requires 0.3
mm2 additional area in chiplet, which is much smaller than shortcut
and butterdount (1.66 mm2) as they require additional router radix
in chiplet routers. We further evaluate the area of active interposer
design, which shows that Adapt-NoC and butterdount requires 4.41
mm2 and 5.83 mm2 in the interposer. The decomposed low-radix



switches require 24% less area than high-radix interposer router in
the interposer. Both of Adapt-NoC and butterdount consume less than
2% area overhead of interposer, which has minimal side-effects on
the interposer yield.

D. Timing Analysis and Optimization

While the chiplet router radix is reduced in this work, the additional
logic delay of muxes and complicated crossbar switch could have
a negative impact on the chiplet router timing. We use Synopsys to
verify the critical delays of adaptable router. The simulation result
shows that route computation (RC), virtual channel allocation (VA),
switch allocation (SA), and switch traversal (ST) of a conventional
5×5 chiplet router take 164 ps, 370 ps, 243 ps, and 256 ps respectively.
Each mux requires 102 ps critical delay. Therefore, we deploy two
optimizations to solve the potential timing issues. First, we merge mux
logic of input and output ports into RC and ST stages respectively.
As the router frequency is limited by the delay dominant router stage
(VA), the delays of merged RC and ST (266 ps, 350 ps) are still
shorter than that of VA stage (370 ps). This satisfies the timing of
router, thus does not affect router frequency. Second, we optimize VA
delays by reducing the number of input ports at the arbitration stage,
as the number of input ports mainly determines delays of arbitration
at VA stage [28]. To keep the input port number constant in the VA
stage, we connect the interposer switch with injection port of chiplet
router by a 3:1 mux. Thus, the optimized VA stage would not require
additional delays.

E. Physical Constraints of Interposer

As the adaptable routers and links require additional routing
resources (wire and microbump), in this section we verify the proposed
design within the interposer wiring and micro-bump constraints.

Wiring Constraint: We assume four metal layers in the silicon
interposer, and the wire width is 1 µm, and wire height is 1.5 µm,
wire pitch is 2 µm. Typically, half of the wiring resources are reserved
for designing interconnect. For a 2mm tile, the interposer can provide
up to eight 128-bit bi-directional links per tile direction, which satisfies
wiring demands of Adapt-NoC (two 128-bit bi-directional links per
tile direction).

Micro-bump Constraint: We assume 36 µm micro-bump pitch in this
work, and each adaptable router requires seven 128-bit bi-directional
links between interposer and chiplet. This consumes about 33% of
µbump area of an 18 × 24 mm2 interposer, which will be reduced
to 1-6% µbump area when the pitch reduces to the range of 5-15µm.

VI. CONCLUSIONS

In this paper, we propose Adapt-NoC, a versatile and flexible NoC
architecture for chiplet-based manycore architectures, consisting of
adaptable routers and links. Adapt-NoC can dynamically allocate
disjoint regions of the NoC, called subNoCs, with the objective
of supporting concurrent communication requirements of diverse
applications. The adaptable routers and links of each subNoC are
capable of providing various topologies such as mesh, cmesh, torus,
and tree, supporting various traffic patterns (e.g. one-to-many) with
different latency and bandwidth demands. Full system simulation
shows that subNoC topologies can significantly improve application
performance by reducing 31% overall latency, 10% execution time,
and 24% energy when compared to prior NoC designs.
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