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Abstract—Least-recently-used (LRU) caching and its variants
have conventionally been used as a fundamental and critical
method to ensure fast and efficient data access in computer and
communication systems. Emerging data-intensive applications
over unreliable channels, e.g., mobile edge computing and wire-
less content delivery networks, have imposed new challenges in
optimizing LRU caching in environments prone to failures. Most
existing studies focus on reliable channels, e.g., on wired Web
servers and within data centers, which have already yielded good
insights and successful algorithms. Surprisingly, we show that
these insights do not necessarily hold true for unreliable channels.
We consider a single-hop multi-cache distributed system with
data items being dispatched by random hashing. The objective
is to design efficient cache organization and data placement
that minimize the miss probability. The former allocates the
total memory space to each of the involved caches. The latter
decides data routing and replication strategies. Analytically, we
characterize the asymptotic miss probabilities for unreliable
LRU caches, and optimize the system design. Remarkably,
these results sometimes are counterintuitive, differing from the
ones obtained for reliable caches. We discover an interesting
phenomenon: allocating the cache space unequally can achieve
a better performance, even when channel reliability levels are
equal. In addition, we prove that splitting the total cache space
into separate LRU caches can achieve a lower asymptotic miss
probability than organizing the total space in a single LRU cache.
These results provide new and even counterintuitive insights
that motivate novel designs for caching systems over unreliable
channels.

Index Terms—LRU caching, reliability, memory space alloca-
tion.

I. INTRODUCTION

Caching is a fundamental and critical method in modern
computer and communication systems that can efficiently
accelerate data access [1], [2], [3], [4], [5] at the expense
of a dedicated fast memory space. As default algorithms, the
least-recently-used (LRU) caching and its variants [6], [7], [8]
have been predominantly used to manage the allocated cache
space in various computer systems [3], [4], [9]. Under the LRU
algorithm, only the most recently used data items are stored
in the cache. If the cache is full and the requested data cannot
be found therein, the data item that has not been used for the
longest time will be moved out of the cache to make room for
the newly requested one. To design efficient caching systems
that minimize the miss ratios, a fundamental problem is to
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optimize cache organization and data placement. The former
decides the optimal memory allocation to the involved caches
and the latter dispatches data requests to the right caches.

The existing work on cache optimization almost focuses on
improving the performance over reliable channels, e.g., within
data centers and on wired Web servers [10], [11], [12], [13].
These studies have yielded good insights with successful algo-
rithms in real systems [3], [14]. However, with the increasing
popularity of emerging data applications over wireless and
mobile networks, e.g., mobile edge computing and content de-
livery networks, cached data delivered over unreliable channels
become substantial in data-intensive applications [15], [16],
[17], [18]. Due to mobility, fading, communication errors, etc,
the access to caches could fail intermittently or be significantly
delayed. Consequently, a high fetching cost can be incurred
on unreliable channels even when the requested data items
are indeed in the cache. This fact is significantly different
from reliable channels. Thus, caching the same data item in
multiple caches, i.e., data replications, should almost always be
considered in presence of channel failures. All these features
impose new challenges in optimizing cache organization and
data placement in environments prone to failures. It merits a
deeper investigation on whether the insights and engineering
practices that are optimized for reliable caches can still work
well in unreliable environments. If not, what to change?

We consider a single-hop multi-cache distributed system
with data items being dispatched through random hashing to
multiple caches. One important decision is to route the data
items to the right cache. The current practice unanimously
relies on an effective scale-out method that is called consistent
hashing [19]. Under consistent hashing, data requests are
routed to different caches according to a hash function. To be
general and analytically tractable for our modeling analysis,
we consider a dispatching scheme based on hashing that
satisfies the Simple Uniform Hashing Assumption (SUHA). To
support data replication for unreliable channels, we assume the
random hash function maps each data item to a set of caches
instead of a single one. Then, we optimize the data replications
by carefully designing the hash functions and the cache space
allocation. In particular, we make the following contributions
to the literature on LRU caching:
• We propose a tractable model for LRU caching over

unreliable channels, which considers cache organization
and data placement simultaneously. More importantly, we
derive the asymptotic miss probability in a closed form,
which provides an effective tool to optimize caching
system performance.

• We characterize the property of the optimal cache space
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allocation and the data replication. Surprisingly, the re-
sults are quite different from those for reliable channels.
A counterintuitive phenomenon is discovered: allocating
the cache spaces unequally is better than the equal
arrangement even when the channels have identical re-
liability levels. Moreover, we propose an explicit non-
identical separation policy that outperforms the identical
separation policy. We also generalize the results for
channels with heterogenous reliability levels. These new
insights deepen our understanding of LRU caching over
unreliable channels and can potentially be applied in real
practice to further improve the system performance.

Related work: For reliable LRU caches, the miss probability
can be accurately approximated when the cache space is
large [10], [20], [21], [22], [23], [24], [25], [26]. Extensive
studies have been done to optimize cache space allocation
with different objectives. In order to maximize the hit ratio
based utility functions, it is proved in [11] that splitting the
total memory space into separate LRU caches is at least as
good as resource pooling which allocates the whole memory
space to a single LRU cache. A complex version of this
problem considering routing decisions in reliable environments
is investigated in [13]. In addition, when data sizes, popularity
distributions, request rates and data overlaps are considered
jointly, complex results are obtained such that cache space
separation can be asymptotically better than, equal to or
worse than resource pooling depending on the afore-mentioned
four factors [10]. For caching over unreliable channels, most
existing studies focus on optimizing data placement to improve
caching gains [17], [27], [28]. In [29], it is shown that the
ubiquitous path replication algorithm combined with LRU re-
placement policy is suboptimal in caching networks, and novel
adaptive algorithms with optimality guarantees are proposed to
decide which data item should be stored in the cache. However,
few existing work considers cache space allocation and data
placement simultaneously in unreliable environments. How
to allocate cache space and dispatch data requests for LRU
caching over unreliable channels still remains unexplored and
deserves a thorough investigation. The conference version of
this paper [30] was published in IEEE INFOCOM 2019.

II. MODEL DESCRIPTION

Consider a set of infinite data items D = {d1, d2, · · · } and
a data flow which is a sequence of data requests on the data
set D. Assume the size of each data item is identical and
normalized to 1. Assume the requests arrive according to a
Poisson process. Let {τn,−∞ < n < +∞} denote the time
points that the requests arrive. Define Rn as the data item
that is requested at time τn, Rn ∈ D. Assume Rn’s are
i.i.d random variables and define P[Rn = di] = qi, i ≥ 1
as the popularity distribution. Empirical studies on real data
traces have shown that the popularities often follow a Zipf’s
distribution. Therefore, we assume

qi ∼ c/iα, α > 1, i ≥ 1.

Note that f(z) ∼ g(z) means limz→∞ f(z)/g(z) = 1. To
characterize the miss ratio of the system, it is sufficient to focus

on the request at one time point saying τ0 when the system
reaches stationarity, because the requests are assumed to be
independent. Consider a set of M LRU caches C = {Cm : 1 ≤

Fig. 1. Distributed caching over unreliable channels.

m ≤M}. To model the channel unreliability, we assume that
the cache Cm can be accessed (i.e., the corresponding channel
is reliable) with a probability p independently at time τn. The
probability p represents the channel reliability level. Define a
hash function H : D → 2C \ ∅ which hashes a data item to a
nonempty subset of all M caches. For example, in Fig. 1, the
data request d2 is hashed to {C1, CM−1}, but only C1 can be
accessed at that time. Let Ni denote the number of elements
in the set H(di), i ≥ 1. We assume H(·) is randomly selected
from a set of hash functions H = {hw(·), w = 1, 2, · · · }
that satisfies Assumption 1 (i.e., SUHA property). Note that
although H(·) is random, once a hash function hw(·) is
selected, each data item will be mapped to a subset of caches
deterministically.

Assumption 1 (SUHA). Assume Ni’s are i.i.d. random vari-
ables with P[Ni = m] = µm, 1 ≤ m ≤ M ,

∑M
m=1 µm = 1.

Given Ni, assume H(di)’s are randomly chosen from all
(
M
Ni

)
possible subsets of C that contain Ni caches with an equal
probability, i.e., 1/

(
M
Ni

)
.

Let In , H(Rn), In ⊆ C. Let Jn = {Cm : Cm ∈
In, Cm is accessible at τn, 1 ≤ m ≤ M}. When the request
arrives at time τn, the system will fetch the data item Rn from
the caches in the set Jn. A cache hit occurs if and only if Rn
is stored in at least one cache of Jn. Otherwise, we call it a
miss. Only the caches in Jn will be updated by the request Rn
according to the LRU algorithm. We assume that the updating
process can be completed as long as the cache is accessible
when the request arrives. Let x denote the total cache space
and xm = bmx denote the space of cache Cm, 0 < bm < 1,∑M
m=1 bm = 1, 1 ≤ m ≤ M . Without loss of generality, we

assume the caches are sorted such that bm is non-increasing
with m. The objective of this paper is to characterize the
optimal hashing mechanism ~µ∗ (see Assumption 1) and cache
space allocation ~b∗ under different settings.

III. COUNTERINTUITIVE INSIGHTS FROM ANALYSIS

The performance of reliable LRU caching (p = 1) has been
investigated for a long time. Consider a single LRU cache with
a cache space x and data items following Zipf’s popularity
distributions (i.e., qi ∼ c/iα, α > 1). According to Theorem 3
of [21], we have, as x→∞

P[Miss for R0] ∼ Γ(1− 1/α)α

α

c

xα−1
, Q(x), (1)
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where Γ(1− 1/α) =
∫∞
0
t−1/αe−tdt is the gamma function.

For multiple LRU caches over reliable channels organized
by the hashing mechanism described in Section II, the miss
probability of the system can be accurately approximated
by [26]. In Lemma 1, we show that, for reliable channels,
pooling the total cache space into a single LRU cache can
achieve a better asymptotic miss probability than splitting the
cache space to multiple caches.

Lemma 1. Consider M LRU caches organized by the hashing
mechanism described in Section II. If p = 1, then as x→∞,
we have almost surely for all H ,

P[Miss for R0|H] & Q(x),

where the equality holds asymptotically if and only if bm =
1/M , 1 ≤ m ≤M , and Q(x) is defined in Equation (1).

Note that f(z) & g(z) means limz→∞ f(z)/g(z) ≥ 1. The
proof is provided in Section VIII-A. Lemma 1 implies two
insights for LRU caching over reliable channels:
• The asymptotic miss ratio under resource pooling is

always better than or equal to that under resource sep-
aration.

• Allocating cache space unequally will achieve a worse
asymptotic miss probability than allocating equally.

Interestingly, when channels are unreliable (i.e., p < 1),
these insights will not hold. In Section IV, we rigorously prove
the following counterintuitive results for distributed LRU
caching over unreliable channels, all building on Theorem 1.
• When the cache spaces are required to be the same,

splitting the total memory space into multiple LRU caches
can achieve a better miss probability than resource pool-
ing (cf. Theorem 2). We further characterize the splitting
required to minimize the miss probability as a function
of the channel reliability level and the total available
memory space (cf. Theorem 3).

• When the cache spaces are allowed to be different,
allocating the total memory space unequally to the caches
can achieve a better miss probability than the equal
cache space allocation, even when the reliability level
is identical for each channel (cf. Theorem 4). We further
develop a cache allocation policy that can yield signifi-
cant improvements on the miss probability compared to
the equal cache space allocation (cf. Theorem 5).

These contradictory results for reliable and unreliable chan-
nels indicate the importance to consider channel reliability
when organizing caching systems. They reveal that previously
successful engineering methods for optimizing caches over re-
liable channels may not work well in unreliable environments.
Fortunately, new insights are provided in this paper and can be
potentially exploited to modify existing algorithms and further
improve the system performance.

IV. PERFORMANCE ANALYSIS

In this section, we first derive the asymptotic miss probabil-
ity for the distributed LRU caching over unreliable channels
modeled in Section II, and then characterize the optimal cache
space allocation and hashing mechanism with the objective to
minimize the miss probability.

A. Miss probability

In this section, we derive accurate approximations for the
cache miss probability. Given a set C of M caches, there are(
M
m

)
different subsets that contain m caches, 1 ≤ m ≤ M .

Let S(m)
k , 1 ≤ k ≤

(
M
m

)
denote the subsets that contain m

caches, and I
(m)
k,i , 1 ≤ i ≤ m be the indices of the caches

in set S(m)
k . Assume that I(m)

k,i are sorted as an increasing
sequence with i. For example, if S(3)k = {C9, C4, C10},
then (I

(3)
k,1, I

(3)
k,2, I

(3)
k,3) = (4, 9, 10). Define W

(m)
k , P[I0 =

S(m)
k |H] =

∑
i∈{i:H(di)=S(m)

k } qi. We derive the miss proba-
bility in Theorem 1.

Theorem 1. Under the model described in Section II, as the
total cache space x→∞, we have almost surely for all H ,

P[Miss for R0|H]−
M∑
m=1

(Mm)∑
k=1

(1− p)mW (m)
k

∼

(
M∑
m=1

L
(
m,~b

)
µm

)(
M∑
m=1

mµm

)α−1
Q(x),

and

P[Miss for R0]−
M∑
m=1

(1− p)mµm

∼

(
M∑
m=1

L
(
m,~b

)
µm

)(
M∑
m=1

mµm

)α−1
Q(x),

where Q(x) is defined in (1) and

L
(
m,~b

)
=

1(
M
m

) (Mm)∑
k=1

∑
(j,l):S(l)

j ⊆S
(m)
k

 pl(1− p)m−l

·

(
l∑
i=1

(1− p)i−1
(
Mb

I
(l)
j,i

)α)1/α−1 .

The proof is presented in Section VIII-B. For a given
total memory space x, a hashing mechanism ~µ and a space
allocation strategy ~b, the asymptotic miss probability can be
explicitly approximated by the function

P (x; ~µ,~b) ,

(
M∑
m=1

L
(
m,~b

)
µm

)(
M∑
m=1

mµm

)α−1
Q(x)

+
M∑
m=1

(1− p)mµm. (2)

With this effective tool, next we characterize the optimal
LRU caching policy over unreliable channels. Specifically,
for a given total cache space x, let ~µ∗(x), ~b∗(x) denote
the optimal hashing mechanism and the optimal cache space
allocation that minimize the miss probability. We aim to
characterize the asymptotic behavior of the optimal solutions,
i.e., limx→∞ ~µ∗(x) and limx→∞~b

∗(x).
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B. Equal cache space allocation

In this section, assuming the total memory space is equally
allocated to each cache, i.e., b1 = b2 = · · · = bM = 1/M , we
optimize the hashing mechanism ~µ as well as the cache space
allocation by determining the number of caches M .

Applying Theorem 1, we derive the asymptotic miss prob-
ability for equal cache space allocation in Corollary 1.

Corollary 1. For b1 = b2 = · · · = bM = 1/M , as the total
caches space x→∞, we have almost surely for all H ,

P[Miss for R0]−
M∑
m=1

(1− p)mµm

∼

(
M∑
m=1

L(m,~b)µm

)(
M∑
m=1

mµm

)α−1
Q(x)

where

L(m,~b) =

m∑
i=1

(
m

i

)
pi(1− p)m−i

(
p

1− (1− p)i

)1−1/α

.

Next, assuming the number of caches M is finite and
fixed, we optimize the hashing mechanism by considering the
following optimization problem.

min
~µ

P (x; ~µ, (1/M, · · · , 1/M))

subject to
M∑
m=1

µm = 1, (3)

0 ≤ µm ≤ 1, m = 1, 2, · · · ,M.

Let ~µ∗(x) denote the optimal solution to Problem (3) for a
given total cache space x. We will show that hashing the
request to all caches is asymptotically optimal.

Theorem 2. The optimal solution to Problem (3) satisfies

lim
x→∞

µ∗m(x) = 0 for 1 ≤ m ≤M − 1,

lim
x→∞

µ∗M (x) = 1.

The proof of Theorem 2 is presented in Section VIII-C. For
sufficiently large cache space, simply hashing the data item to
all M caches can achieve the optimal miss probability. This
should hold for any cache space allocation, because we have
limx→∞Q(x) = 0, and the miss probability approximated in
(2) will be dominated by the term

∑M
m=1(1 − p)mµm. For

the sake of rigor, in this paper, we investigate the optimal
caching in the asymptotic regime, where the optimal hashing
is simple as shown in Theorem 2. However, if the total cache
size is small, simply hashing the request to all caches may not
necessarily be optimal. Moreover, simulations in Section VI
verify that the miss probability approximated by (2) is accurate
for small cache sizes. How to leverage (2) to optimize caching
performance for small caches deserves a separate investigation.

We define two policies as:
Resource Pooling (RP) Policy: Allocate the total cache space
to a single LRU cache, and dispatch all data requests to this
cache.
Equal Allocation (EA) Policy: Given M ≥ 2, set bm = 1/M
for 1 ≤ m ≤M , µm = 0 for 1 ≤ m ≤M − 1 and µM = 1.

Let P RP
miss and P EA

miss denote the miss probability under
the RP policy and the EA policy, respectively. We have
limx→∞ P RP

miss = 1− p and limx→∞ P EA
miss = (1− p)M . As the

total cache space goes to infinity, the miss ratio of RP and EA
policies will converge to the probability that all channels fail
when the request arrives. Consequently, compared to resource
pooling, allocating the total cache space to multiple caches
can reduce the miss probability dramatically. This conclusion
is contradictory to the results for reliable caches in Lemma 1,
where the asymptotic miss probability achieved by resource
pooling is always smaller than or equal to that achieved by
resource separation. In addition, the limiting miss probability
of the EA policy decreases exponentially with the number of
caches M . Does it indicates that a larger number of caches
can always guarantee a better miss probability for a given
total memory space? The answer is no. Let M∗(x) denote the
optimal number of caches for the EA policy given the total
cache space x. We characterize the limiting behavior of M∗(x)
in the following theorem.

Theorem 3. Assuming the data items are hashed to all M
caches and limx→∞ x/M =∞, we have, as x→∞

M∗(x) ∼ 1− α
log(1− p)

log x.

The proof is presented in Section VIII-D. When the number
of caches increases, although the probability that channels
fail decreases, a miss will be more likely to happen in each
cache. The optimal cache number M∗(x) balances this trade-
off. Theorem 3, in conjunction with Theorem 2, implies that
the miss probability under the EA policy tends to zero for
large x, which is better than the RP policy that will always
have a positive lower limit (i.e., 1− p).

C. Unequal cache space allocation

In this section, we answer the following question. Given
a total memory space and M caches, if the cache spaces are
allowed to be unequal, can we achieve a better miss probability
than allocating the total memory space equally? For LRU
caching over reliable channels (p = 1), it is shown in Lemma 1
that bm = 1/M , 1 ≤ m ≤ M is the optimal solution. Will
this result still hold when channels are not reliable (p < 1)? In
this section, we show that if p < 1, choosing bm’s unequally
can further reduce the asymptotic miss probability.

For a fixed M and any given space allocation method
~b satisfying bm 6= 0 for ∀1 ≤ m ≤ M , similar to the
equal allocation case (Theorem 2), the asymptotically optimal
hashing mechanism is µ∗M = 1, µ∗m = 0, 1 ≤ m ≤ M − 1,
when the total memory space x is large enough. To minimize
P (x; ~µ∗,~b) which is defined in (2), we formulate the following
problem.

min
~b

P
(
x; (0, · · · , 0, 1),~b

)
subject to

M∑
m=1

bm = 1, (4)

0 ≤ bm ≤ 1, m = 1, 2, · · · ,M.
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It can be verified that Problem (4) is nonconvex. Finding the
global optimum~b∗(x) still remains an open problem. However,
we prove that allocating cache space equally is not the optimal
solution and provide an easy-to-implement policy to improve
the performance of equal allocation.

Theorem 4. For M caches with p ∈ (0, 1), the optimal
solution to Problem (4) satisfies b∗i (x) > b∗j (x) for ∀1 ≤ i <
j ≤M .

See Section VIII-E for the proof. Theorem 4 shows a
counterintuitive result that unequal cache space allocation can
achieve a better miss probability than equal allocation, even
when the unreliable probability p is identical for each channel.
To understand why equal allocation is not the optimal, we
investigate the optimal static caching policy. Under a static
policy, the popularity of each data item is pre-known, based
on which the cache space allocation and the data placement
are designed. For reliable channels, the optimal static policy
stores the most popular data items in one of the caches.
For unreliable caches, however, the static optimal policy is
nontrivial due to the potential benefits of data replications.
Let x◦m, 1 ≤ m ≤ M , denote the memory space allocated
to the cache Cm under the optimal static policy. Define
b◦m = x◦m/

∑M
i=1 x

◦
i , 1 ≤ m ≤ M . The solution of x◦m,

1 ≤ m ≤ M , is not unique. In the following lemma, we
present one optimal static policy for unreliable channels. In
order to have compact descriptions, we assume that x◦m’s are
non-negative integers in the following lemma.

Lemma 2 (An Optimal Static Policy). If the popularity of
each content were known a priori, the following static policy
minimizes the miss probability for M caches with a total
memory space x:
Cache space allocation: Set x◦1 ≥ x◦2 ≥ · · · ≥ x◦M , satisfying

(1− p)j−1

(x◦j )
α ≥ (1− p)k−1

(x◦k + 1)α
for ∀x◦j ≥ 1, x◦k ≥ 1,

M∑
m=1

x◦m = bxc;

Data placement: Store data items {di : 1 ≤ i ≤ x◦m} in cache
Cm, if x◦m ≥ 1.

A proof of this lemma is presented in Section VIII-F. As
the cache space goes to infinity, the optimal static allocation
can be explicitly calculated as

lim
x→∞

b◦m(x) = (1− p)(m−1)/α 1− (1− p)1/α

1− (1− p)M/α
. (5)

Based on Lemma 2, we summarize the following key insights,
which intuitively explain why unequal allocation can achieve
better miss ratios than equal allocation.
Key Insights: The above optimal static policy explicitly char-
acterizes how many caches that each item must be stored in.
While the most popular items in the set {di : 1 ≤ i ≤ bx◦Mc}
are stored in all M caches, progressively less popular items
are stored in a decreasing number of caches, as described in
Lemma 2. As such, this policy optimally balances the trade-
off between the cost of storing the same item in multiple

caches and the likelihood of finding a requested item in at least
one of the connected caches. Despite its optimality guarantee,
the optimal static policy is not directly implementable since
it requires the knowledge of the popularity of each item to
determine the cache allocation and data placement. However,
it provides useful insights for the design of dynamic cache
management policies where the popularity of the items are
unknown. In particular, by allocating cache space unequally,
as dictated by the static design, and by using LRU cache
management at each of the cache, which adaptively maintains
more popular requests in its cache, we can obtain a counter-
intuitive design of a dynamic unequal caching policy over
unreliable channels.

Next, we propose an unequal cache space allocation policy
that significantly improves the performance of equal cache
space allocation in a large range of channel reliability levels.
Unequal Allocation (UA) Policy: Set ~µ = (0, 0, · · · , 1) and

~b(x) =

{
~b◦(x), if p > pth,
~bEA, otherwise,

where ~bEA = (1/M, · · · , 1/M) is the equal allocation vector,
pth is the unique solution to L(M,~bEA) = L(M,~b◦(x)). Let
P UA

miss denote the miss probability of the UA policy.
Note that as the total cache space goes to infinity, the

miss probabilities under the EA and the UA policies will all
converge to the probability that no cache is accessible when
the request arrives, i.e., to (1 − p)M . The following theorem
characterizes how much faster the UA policy converges to this
limit compared to the EA policy.

Theorem 5. Define ρ , lim
x→∞

P UA
miss − (1− p)M

P EA
miss − (1− p)M

, which mea-

sures how much faster the unequal cache space allocation
policy converges to the limit (1− p)M compared to the equal
cache space allocation policy. Then, we have

ρ = min

1,
L
(
M, lim

x→∞
~b◦(x)

)
L(M,~bEA)

 ,

which is strictly less than 1 if p > pth.

The proof is provided in Section VIII-G. Setting α = 1.4,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Channel reliability level: p

0.6

0.7

0.8

0.9

1

1.1

ρ

 M = 2

 M = 3

 M = 4

 M = 5

Fig. 2. Benefits of the UA policy over the EA policy.

we plot ρ as a function of p for different M ’s in Fig. 2. It can
be observed that in a large range of channel reliabilities, e.g.,
p ∈ (0.6, 0.9), ρ is much smaller than 1, which indicates that
the UA policy gains considerable improvements over equal
cache space allocation.
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V. GENERALIZATION TO HETEROGENOUS CHANNELS

In this section, we first generalize our model for heteroge-
nous channel reliability levels and derive the asymptotic miss
probabilities. Then, we leverage the optimal static caching
policy to guide the cache space allocation for LRU caches
and propose a generalized UA policy.

A. Miss probability

Consider the model described in Section II. Assume that
the channels have heterogenous reliability levels. Specifically,
let pm denote the probability that cache Cm is accessible,
1 ≤ m ≤ M . To obtain compact descriptions, we set p0 = 0

and I
(m)
k,0 = 0 for 1 ≤ m ≤ M , 1 ≤ k ≤

(
M
m

)
. Recall

that I(m)
k,i ’s are defined in Section IV-A as the indices of the

caches in the set S(m)
k . Assume without loss of generality that

bm
α/pm is non-increasing with respect to m, 1 ≤ m ≤ M .

We derive the asymptotic miss probability in the following
theorem.

Theorem 6. For M caches with heterogenous channel relia-
bility levels, as the total cache size x→∞, we have, almost
surely for all H ,

P[Miss for R0|H]−
M∑
m=1

(Mm)∑
k=1

W
(m)
k

m∏
i=1

(
1− p

I
(m)
k,i

)

∼

(
M∑
m=1

L
(
m,~b

)
µm

)(
M∑
m=1

mµm

)α−1
Q(x),

and

P[Miss for R0]−
M∑
m=1

µm(
M
m

) (Mm)∑
k=1

m∏
i=1

(
1− p

I
(m)
k,i

)

∼

(
M∑
m=1

L
(
m,~b

)
µm

)(
M∑
m=1

mµm

)α−1
Q(x),

where Q(x) is defined in (1) and

L
(
m,~b

)
=

1(
M
m

) (Mm)∑
k=1

∑
(j,l):S(l)

j ⊆S
(m)
k


∏m
i=1

(
1− p

I
(m)
k,i

)
∏l
i=1

(
1− p

I
(l)
j,i

)
·
l∏
i=1

p
I
(l)
j,i

(
l∑
i=1

(
Mb

I
(l)
j,i

)α i−1∏
k=0

(
1− p

I
(i)
j,k

))1/α−1 .

The proof is presented in Section VIII-H. For a given total
memory size x, a hashing mechanism ~µ and a space allocation
strategy ~b, the asymptotic miss probability can be explicitly
approximated by the function

P (x; ~µ,~b) ,

(
M∑
m=1

L
(
m,~b

)
µm

)(
M∑
m=1

mµm

)α−1
Q(x)

+
M∑
m=1

µm(
M
m

) (Mm)∑
k=1

m∏
i=1

(
1− p

I
(m)
k,i

)
. (6)

As expected, (6) will degenerate to (2) when all channels have
the same reliability level. Moreover, using a similar approach
that proves Theorem 2, it is easy to verify that for large x, the
optimal hashing mechanism is to hash the data to all caches.

B. Cache space allocation

In this section, we will investigate the cache space allocation
for general channel reliability levels under the assumption that
the data items are hashed to all caches. Similar to the analysis
in Section IV-C, we leverage the optimal static caching policy
to guide our design for LRU caches, and use the same
notations defined therein.

Lemma 3 (An Optimal Static Policy for General Channels).
Assume that the channel reliability pm is non-increasing
with respect to m. If the popularity of each content were
known a priori, the following static policy minimizes the miss
probability for M caches with a total memory space x:
Cache space allocation: Set x◦1 ≥ x◦2 ≥ · · · ≥ x◦M , satisfying

pjΠ
j−1
i=0 (1− pi)
(x◦j )

α ≥ pkΠk−1
i=0 (1− pi)

(x◦k + 1)α
for ∀x◦j ≥ 1, x◦k ≥ 1,

M∑
m=1

x◦m = bxc;

Data placement: Store data items {di : 1 ≤ i ≤ x◦m} in cache
Cm, if x◦m ≥ 1.

The proof of Lemma 3 is presented in Section VIII-I As
the cache space goes to infinity, the optimal static allocation
can be explicitly calculated as

lim
x→∞

b◦m(x) =
pmΠm−1

i=0 (1− pi)∑M
k=1 pkΠk−1

i=0 (1− pi)
. (7)

Key Insights: For channels with heterogenous reliability
levels, the optimal static cache space allocation (7) is even
more skewed than the one for identical channels (5), because
more benefits can be obtained by utilizing the most reliable
channels. Moreover, the key insights revealed for homogenous
channels in Section IV-C also hold for heterogenous channels.
Using a similar approach that proves Theorem 4, we can verify
that the optimal allocation is also unequal for LRU caching
over heterogenous channels.

We will use the optimal static solution as the allocation
method for LRU caches.
Generalized Unequal Allocation (UA-G) Policy: Set ~µ =
(0, 0, · · · , 1) and

~b(x) =

{
~b◦(x), if L(M,~b◦(x)) < L(M,~bEA),
~bEA, otherwise,

where ~b◦(x) can be obtained from Lemma 3, ~bEA =
(1/M, 1/M, · · · , 1/M) is the equal allocation vector, and the
function L(M,~b) is defined in Theorem 6.

The UA-G policy is a generalized UA policy designed for
general channel reliability levels. It is verified in Experiment 5
that, the UA-G policy outperforms the UA policy when the
channel reliability levels are heterogenous. In addition, a
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performance guarantee can be derived for the UA-G policy
by simply replacing the function L(M,~b) in Theorem 5 by
the generalized L(M,~b) function defined in Theorem 6. Due
to the limited space, we omit this theorem.

VI. EXPERIMENTS

To validate our theoretical analysis, we conduct 5 experi-
ments. In Experiment 1, we simulate 5 caches with general
~b and ~µ, which validates Theorem 1. In Experiments 2 and
3, we compare the equal cache space allocation with resource
pooling and unequal cache space allocation, respectively. In
Experiment 4, we evaluate the proposed policies using real
data traces. In Experiment 5, we compare the UA-G policy
with the UA policy when the channels have heterogenous
reliability levels. Experiment results successfully validate the
counterintuitive insights revealed by theoretical analyses.

Experiment 1. In this experiment, we validate Theorem 1
by simulating 5 caches over unreliable channels. Let ~b =
(0.3, 0.2, 0.2, 0.15, 0.15), ~µ = (0.1, 0.15, 0.2, 0.25, 0.3). Set
qi = c/i1.8 for 1 ≤ i ≤ 107, where c = 1/

∑107

i=1 i
−1.8 ≈

0.5313. In Fig 3, we plot the miss probabilities for p =

500 1500 2500 3500 4500 5500 6500 7500 8500

Total cache size: x
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Fig. 3. Multiple unreliable caches accessed by hashing.

0.8, 0.85, 0.9, respectively. The theoretical results approxi-
mated by Theorem 1 match very well with the empirical ones
obtained by simulations, even when the total cache space is
relatively small.

Experiment 2. In this experiment, we compare the miss
probabilities achieved by the RP policy with that achieved by
the EA policy. Set p = 0.9 and qi = c/i1.8 for 1 ≤ i ≤ 107,
where c = 1/

∑107

i=1 i
−1.8 ≈ 0.5313. In Fig. 4, we plot the

100 200 300 400 500 600 700 800 900

Total cache space: x
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P
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M = 1, theoretical

M = 2, theoretical

M = 3, theoretical

M = 4, theoretical

M = 1, empirical

M = 2, empirical

M = 3, empirical

M = 4, empirical

Fig. 4. Resource pooling v.s. equal cache space allocation.

miss probabilities for M = 1, 2, 3, 4, respectively. It can be

observed that resource separation (M ≥ 2) achieves much
better miss probabilities than resource pooling (M = 1), which
validates our statements in Theorem 2. Moreover, as what
we comment in Theorem 3, allocating the total cache space
to more caches may not guarantee a better miss probability
(e.g., allocating the total cache space to 3 caches achieves
lower miss probabilities than allocating to 4 caches when
x ∈ (100, 900)). In fact, since the theoretical approximations
for miss probabilities are sufficiently accurate even when
the cache space is relatively small (e.g., x = 200), the
optimal number of caches can be theoretically calculated by
minimizing L(M, (1/M, · · · , 1/M)) over M .

Experiment 3. In this experiment, we compare the EA
policy with the UA policy. Let M = 5, qi = c/i2 for
1 ≤ i ≤ 107, where c = 1/

∑107

i=1 i
−2 ≈ 0.6079. First,

setting the total cache space x = 500 and applying Theorem 5,
we compute ρ under different channel reliability levels and
plot the results in Fig.5[left]. Then, setting p = 0.7, we plot
the miss probabilities achieved by the EA policy and the UA
policy in Fig. 5[right]. All empirical results match well with
theoretical ones. It can be observed from Fig. 5[left] that when

0.1 0.3 0.5 0.7 0.9
Channel reliability level: p

0.4
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0.8

1

1.2
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thoeretical
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200 400 600 800
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UA Policy, theoretical
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Fig. 5. Equal v.s. unequal cache space allocation.

p is greater than the threshold pth (≈ 0.4), ρ will be strictly
less than one (i.e., the UA policy outperforms the EA policy).
Furthermore, by setting p = 0.7, it is shown in Fig. 5[right]
that the miss probabilities achieved by the UA policy (unequal
cache space allocation) can be significantly smaller than that
achieved by the EA policy (equal cache space allocation). For
p > 0.7, an even larger improvement is expected.

Experiment 4. In this experiment, we compare the RP, EA
and UA policies using a data trace collected on a content deliv-
ery network. The trace is also used for evaluation and labeled
as cdn1 in [31], [32]. Our objective is to check whether our

Fig. 6. Popularity of trace data.

designs perform well under popularity distributions obtained
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from real-world traces. In this experiment, we compare the
miss ratios of 20 million requests 1 under different policies. We
plot the empirical popularities in Fig. 6, as well as the Zipf’s
approximation (i.e., 0.0273/i0.897, 1 ≤ i ≤ 3417123). The UA
policy is designed using Equation (5) with α = 0.897. Notably,
α = 0.897 is less than 1 and therefore beyond the scope of this
paper (see [23] for LRU caching with α < 1). However, the in-
sights revealed by our theoretical analyses still hold according
to the following experiment results. Set M = 2. For a fixed
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Fig. 7. Performance evaluation based on real-world data traces.

x = 20000, we first compare the miss ratios of the RP, EA and
UA policies under different channel reliability levels, and plot
the results in Fig. 7[left]. It can be observed that the UA policy
always achieves the best miss ratios. Moreover, when p is
relatively large (respectively small), the EA (respectively RP)
policy achieves much worse performance, which validates the
insights revealed by Theorem 5. Next, for a fixed p = 0.8, we
compare the proposed policies under different cache spaces.
The results are plotted in Fig. 7[right]. It can be observed
that the UA policy outperforms the RP and EA policies in the
whole range of x.

Experiment 5. In this experiment, we consider heterogenous
channel reliability levels and compare the miss probabili-
ties achieved by the UA-G policy and the UA policy. Let
x = 400,M = 5, qi = c/i2 for 1 ≤ i ≤ 107, where
c = 1/

∑107

i=1 i
−2 ≈ 0.6079. Let the channel reliability levels

be pm = −a(m−3)+0.7, 1 ≤ m ≤ 5, a ∈ (0, 0.15). Note that
the average reliability level

∑5
m=1 pm/5 = 0.7 is a constant

and the parameter a represents the skewness of the reliability
levels. When a = 0, the channels are homogenous and all
have the same reliablity level 0.7. When a = 1.5, we have
p1 = 1 and p5 = 0.4, i.e., the skewness is maximized. We
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b
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Fig. 8. Generalized unequal cache space allocation for heterogenous channels.

1Use the first 20 million requests of the trace with item sizes set to be 1.

apply the UA-G policy for different channel reliability levels
and compare it to the UA policy that is computed by setting
p = 0.7. In Fig. 8[left], we plot the cache space allocation
of the UA-G policy. Note that when a = 0, the allocation of
the UA-G policy is the same as that of the UA policy, since
the channels have identical reliability levels. As the skewness
a increases, more cache space will be allocated to the most
reliable cache. When a = 0.15 (i.e., the first channel is always
reliable), all cache space will be allocated to the first cache. In
Fig. 8[right], we compare the miss probability achieved by the
UA-G and the UA policies. It can be observed that, the UA-G
policy achieves better miss probabilities than the UA policy
when a > 0 (i.e., the channels are heterogenous). And the
gain is increasing with respect to the reliability skewness a.
Moreover, the empirical results match well with the theoretical
ones, which validates Theorem 6.

VII. CONCLUSION

In this work, we studied the distributed LRU caching
over unreliable channels by explicitly approximating the miss
probability and discovering counterintuitive insights in opti-
mizing the cache space allocation and the data placement. Our
investigation revealed two counterintuitive insights that are in
stark contrast with the principles of distributed LRU caching
under reliable conditions: (i) that resources-pooling is no
longer optimal in the presence of channel unreliabilities, and
(ii) that, even under symmetric unreliabilities, it is necessary to
allocate unequal cache spaces to otherwise identical distributed
caches. Our analysis framework also allowed us to develop an
explicit unequal allocation policy which outperforms the equal
allocation in a large range of channel reliability levels. These
insights and designs are expected to help with the development
and implementation of efficient distributed caching solutions
under unreliable conditions.

VIII. PROOFS

A. Proof of Lemma 1

Proof. If p = 1, i.e., the caches are always accessible, storing
the same data item in multiple caches will waste the cache
space and bring no additional benefits. Therefore, the optimal
hashing vector is ~µ∗ = (1, 0, · · · , 0) i.e., hashing each data
item to only one cache. Then, applying Theorem 2 of [26],
we have P[Miss for R0|H] ∼ Q(x̄), where

x̄ =

(
M∑
m=1

bm
1−αM−α

)−1/(α−1)
x.

Moreover, applying the Hoeffding’s inequality, we have∑M
m=1 bm

1−αM−α ≥ 1, where the equality holds if and only
if bm = 1/M for 1 ≤ m ≤M . Since Q(x) is decreasing with
x, we finish the proof.

B. Proof of Theorem 1

To prove Theorem 1, we establish the following lemmas.

Lemma 4. Consider M caches organized in the system
described in Section II. Let the data items be hashed to all
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caches. Assume J0 = {C1, · · · , Cm}, 1 ≤ m ≤ M (i.e., the
first m caches are accessible at τ0). As the total cache space
x→∞, we have

P[Miss for R0|J0 = {C1, . . . , Cm}, H] ∼ Q(x̄)

where x̄ =
(∑m

k=1(1− p)k−1bkα
)1/α

x.

Proof. For 1 ≤ k ≤ M , let τ−σk denote the last time before
τ0 when the data item R0 was requested and the cache Ck
was accessible then. Define

Tk(n) =
∑
i≥1

1
(
∪nj=1{{R−j = di} ∩ {Ck ∈ I−j}}

)
,

where 1(E) is the indicator function having the value 1 when
the event E happens and the value 0 otherwise. Tk(n) rep-
resents the number of distinct data requests that successfully
access cache Ck between time τ−n and time τ−1. We also
define the inverse of Tk(n) as T←k (x) = min{n : Tk(n) ≥ x}.

It can be verified that

{Miss for R0|J0 = {C1, · · · , Cm}, H}
⇔ ∩mk=1{σk > T←k (bkx)}. (8)

Note that, according to the definition of τ−σk and the LRU
policy, R0 is cached in Ck right after τ−σk . On the one hand,
if a miss happens at τ0, i.e., R0 is not stored in any caches
at τ0, then there must be sufficient requests arriving between
τ−τk and τ0 such that R0 was evicted from the cache. On
the other hand, if the size of all distinct data requests arriving
between τ−τk and τ0 exceeds the cache size, then a miss will
happen at time τ0.

The rest of the proof is consisted of two steps. In Step 1,
we will estimate P[∩mk=1{σk > nk}], where nk’s are given
constants. In Step 2, we show that P[∩mk=1{σk > T←k (bkx)}]
can be approximated by P[∩mk=1{σk > T̄←(bkx)}], where

T̄←(x) ≈ Γ(1− 1/α)−αc−1p−1xα.

Step 1: For constants n1 > n2 > · · · > nm > nm+1 = 0 and
∀di ∈ D, we have

P[∩mk=1{σk > nk}|R0 = di]

= P[∩mk=1{σk > nm}|R0 = di]

· P[∩mk=1{σk > nk}| ∩mk=1 {σk > nm}, R0 = di]

= P[∩mk=1{σk > nm}|R0 = di]

· P[∩m−1k=1 {σk > nk − nm}|R0 = di]

= P[∩mk=1{σk > nm}|R0 = di]

·Πm−1
j=1 P[∩jk=1{σk > nj − nj+1}|R0 = di]

= Πm
j=1P[∩jk=1{σk > nj − nj+1}|R0 = di], (9)

where the second equality holds since the requests are assumed
to arrive according to independent Poisson processes. For
∀n ≥ 1, let Yi(n) =

∑n
j=1 1({R−j = di}), 1 ≤ i ≤ N . Yi(n)

represents the number of requests that fetch data di during τ−n
and τ−1, and follows a binomial distribution. We have,

P[∩mk=1{σk > n}|R0 = di]

=
n∑
j=0

P[Yi(n) = j]P[∩mk=1{σk > n}|Yi(n) = j]

=
n∑
j=0

P[Yi(n) = j](1− p)mj

= E [exp(m log(1− p)Yi(n))]

=MYi(n)(m log(1− p)),

whereMYi(n)(t) , E[exp(tYi(n))] is the moment generating
function of Yi(n). Recalling that Yi(n) follows a binomial
distribution B(n, qi), we have MYi(n)(t) = (1− qi + qie

t)
n,

which implies

P[∩mk=1{σk > n}|R0 = di] = (1− qi + qi(1− p)m)
n
. (10)

By combining (9) and (10), we have

P[∩mk=1{σk > nk}] =

∞∑
i=1

qiP[∩mk=1{σk > nk}|R0 = di]

=
∞∑
i=1

qiΠ
m
k=1

(
1− qi + qi(1− p)k

)nk−nk+1
.

Assume that there exist c1 > c2 > · · · > cm−1 > cm = 1
such that

nk = cknm, for 1 ≤ k ≤ m. (11)

Define nm+1 = cm+1 = 0. We will show that, as nm →∞,

P[∩mk=1{σk > nk}]

∼
∞∑
i=1

qi exp

(
−qi

m∑
k=1

(1− (1− p)k)(nk − nk+1)

)

∼ c1/αΓ(2− 1/α)

α− 1

(
p

m∑
k=1

(1− p)k−1nk

)−1+1/α

. (12)

On the one hand, due to the fact that 1 − x < e−x for
x ∈ (0, 1), we have

P[∩mk=1{σk > nk}]

=
∞∑
i=1

qiΠ
m
k=1

(
1− qi + qi(1− p)k

)nk−nk+1

<

∞∑
i=1

qi exp

(
−qi

m∑
k=1

(1− (1− p)k)(nk − nk+1)

)

=
∞∑
i=1

qi exp

(
−qip

m∑
k=1

(1− p)k−1nk

)
. (13)

According to Theorem 3.6 in [10], we have, as n→∞
∞∑
i=1

qi (1− qi)n ∼
∞∑
i=1

qi exp (−qin)

∼ Γ(2− 1/α)

α− 1
c1/αn−1+1/α. (14)
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Combining (13) and (14) implies

P[∩mk=1{σk > nk}]

.
c1/αΓ(2− 1/α)

α− 1

(
p
m∑
k=1

(1− p)k−1nk

)−1+1/α

, (15)

as nm →∞.
On the other hand, for any δ ∈ (0, 1), there exists xδ > 0

such that 1−x > e−(1+δ)x for 0 < x < xδ . Selecting iδ such
that qiδ < xδ , we have, as nm →∞,

P[∩mk=1{σk > nk}]

≥
∞∑
i=iδ

qiΠ
m
k=1

(
1− qi + qi(1− p)k

)nk−nk+1

≥
∞∑
i=iδ

qi exp

(
−qi

m∑
k=1

(1− (1− p)k)(nk − nk+1)(1 + δ)

)

=
∞∑
i=1

qi exp

(
−qi

m∑
k=1

(1− (1− p)k)(nk − nk+1)(1 + δ)

)

−
iδ−1∑
i=1

qi exp

(
−qi

m∑
k=1

(1− (1− p)k)(nk − nk+1)(1 + δ)

)

∼ c1/αΓ(2− 1/α)

α− 1

(
p
m∑
k=1

(1− p)k−1nk(1 + δ)

)−1+1/α

.

Therefore, we have, as nm →∞ and δ → 0,

P[∩mk=1{σk > nk}]

&
c1/αΓ(2− 1/α)

α− 1

(
p
m∑
k=1

(1− p)k−1nk

)−1+1/α

. (16)

Combining (15) and (16) implies (12). Up to now, we have
finished the first step of the proof.
Step 2: Next, we will show that

P[Miss for R0|J0 = C, H]

∼ c1/αΓ(2− 1/α)

α− 1

(
p

m∑
k=1

(1− p)k−1T̄←(bkx)

)−1+1/α

,

where

T̄ (n) ,
∞∑
i=1

(1− (1− qi + qi(1− p))n)

T̄←(x) , min{n : T̄ (n) ≥ x}.

We have, as n→∞

T̄ (n) ∼
∞∑
i=1

(1− exp(−qipn)) ∼ Γ

(
1− 1

α

)
(cpn)1/α,

and as x→∞

T̄←(x) ∼ Γ(1− 1/α)−αc−1p−1xα. (17)

Applying Lemma 7.1 in [10], we can prove that for ∀ε > 0,

P
[
T←k (x) < T̄←

(
x

1 + ε

)]
≤ exp

(
− ε2x

4(1 + ε)

)
, (18)

P
[
T←k (x) > T̄←

(
x

1− ε

)]
≤ exp

(
− ε2x

4(1− ε)

)
.

Combining (8), (12), (17) and (18), we have for ∀ε > 0, there
exists an x0 such that, for x ≥ x0

P[Miss for R0|I0 = J0 = {C1, · · · , Cm}, H]

≤ P[σ1 > T̄←(b1x/(1 + ε)), · · · , σm > T̄←(bmx/(1 + ε))]

+
m∑
k=1

P[T←k (bkx) < T̄←(bkx/(1 + ε))]

≤ Q

( m∑
k=1

(1− p)k−1bkα
)1/α

x

1 + ε


+

m∑
k=1

exp

(
− ε2bkx

4(1 + ε)

)
= Q (x̄/(1 + ε)) + o(Q(x̄)), (19)

where x̄ =
(∑m

k=1(1− p)k−1bkα
)1/α

x. Similarly, we can
prove for large x

P[Miss for R0|I0 = J0 = {C1, · · · , Cm}, H]

≥ Q (x̄/(1− ε))− o(Q(x̄)). (20)

Combining (19) and (20) then letting x→∞ finish the proof.

Lemma 5. Data items that are hashed to the cache set S(m)
k

asymptotically follow a Zipf’s distribution c
(m)
k /iα,i ≥ 1

almost surely for all H , where

c
(m)
k =

cµm
α

W
(m)
k

(
M
m

)α .
Proof. Let X(m)

i,k = 1 indicate that H(di) = S(m)
k . Otherwise,

X
(m)
i,k = 0. Define I(m)

n,k =
∑n
i=1X

(m)
i,k . Applying the Bern-

stein’s inequality (Theorem 2.8 in [33]), we can prove that for
∀0 < ε < 1, there exists n1 such that for ∀n > n1,

P

[∣∣∣∣∣ I
(m)
n,k

nµm/
(
M
m

) − 1

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−

n2µm
2ε2/

(
M
m

)2
2nµm/

(
M
m

)
+ 2ε/3

)

≤ 2 exp

(
− µmn

3
(
M
m

)) .
Therefore,

P

⋂
i≥n

{∣∣∣∣∣ I
(m)
i,k

nµm/
(
M
m

) − 1

∣∣∣∣∣ ≤ ε
}

≥ 1−
∑
i≥n

P

[∣∣∣∣∣ I
(m)
i,k

nµm/
(
M
m

) − 1

∣∣∣∣∣ > ε

]

≥ 1− 2
∑
i≥n

exp

(
− µmi

3
(
M
m

))

≥ 1− 2

∫ ∞
n−1

exp

(
− µmt

3
(
M
m

)) dt.
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There exist a large integer n2 and a constant c1 such that
2
∫∞
n−1 exp

(
−µmt/

(
3
(
M
m

)))
dt < c1/n

2 for all n > n2,
which implies

P

⋂
i≥n

{∣∣∣∣∣ I
(m)
i,k

nµm/
(
M
m

) − 1

∣∣∣∣∣ ≤ ε
} ≥ 1− c1

n2
.

Since
∑∞
n=1 c1/n

2 <∞, by the Borel-Cantelli lemma, for any
ε, there always exists an integer nH = max {n1, n2} such that
for ∀n > nH ⋂

i≥n

{∣∣∣∣∣ I
(m)
i,k

iµm/
(
M
m

) − 1

∣∣∣∣∣ ≤ ε
}

holds almost surely for any H .
Let q

(m)
i,k denote the popularity of the data item with

the index I
(m)
i,k . We have almost surely for all H , q(m)

i,k ∼
c
/(

i
(
M
m

)/
µm

)α
. Then normalizing q

(m)
i,k by P[I0 =

S(m)
k ] = W

(m)
k finishes the proof.

Lemma 6 (Theorem 4.1 of [10]). Consider K flows of
independent data requests sharing a LRU cache. For each
flow k, 1 ≤ k ≤ K, the data popularity follows a Zipf’s
distribution ck/i

α, α > 1, i ≥ 1 asymptotically. Assume the
size of each data item is 1. Let νk denote the probability that
a request is from flow k, then as the cache space x goes to
infinity, we have

P[Miss for R0|R0 is from flow k] ∼ Q (x̄k) ,

where

x̄k =
(ckνk)1/αx∑K
i=1(ciνi)1/α

. (21)

With the established lemmas, now we are ready to prove
Theorem 1.

Proof of Theorem 1. Under the model described in Section II,
we have,

P[Miss for R0|H]

=
M∑
m=1

(Mm)∑
k=1

P[I0 = S(m)
k ]P[Miss for R0|I0 = S(m)

k , H]

=
M∑
m=1

(Mm)∑
k=1

P[I0 = S(m)
k ]

(
(1− p)m

+
∑

(i,j):S(j)
i ⊆S

(m)
k

(
P[J0 = S(j)i |I0 = S(m)

k , H]

· P[Miss for R0|J0 = S(j)i , I0 = S(m)
k , H]

))
. (22)

We can view the data requests that are hashed to the same
set of caches as a data flow. Then, each cache is shared by
multiple data flows. For example, consider a system with 2
caches (C1 and C2). There are three possible hashing results,
and therefore three data flows, i.e., data requests that are
hashed to only C1, only C2, and both C1 and C2. In this
example, each cache is shared by two data flows.

Lemma 5 implies that the popularity of each data flow is
asymptotically a Zipf’s distribution. Then, applying Lemma 6,
we know that for multiple flows sharing a LRU cache with
a total memory space x, it is equivalent (in terms of miss
probabilities) to the case where each data flow (e.g., flow k)
is served by a separate LRU cache with a virtual cache space
(x̄k defined in (21)). Specifically, consider the data flow with
requests that are hashed to S(m)

k . Assume without loss of
generality that C1 ∈ S(m)

k . Let N (m)
k denote the set of all

flows that are served by C1. Then the fraction of the cache
space of C1 allocated to the flow is(

cµm
α

W
(m)
k (Mm)

α ·W (m)
k

)1/α

∑
(j,l)∈N (m)

k

(
cµlα

W
(l)
j (Ml )

α ·W (l)
j

)1/α
=

µm/
(
M
m

)∑
(j,l)∈N (m)

k

µl/
(
M
l

)
=

µm/
(
M
m

)∑M
l=1

(
M−1
l−1
)
µl/
(
M
l

) =
Mµm(

M
m

)∑M
l=1 l · µl

. (23)

Note that this fraction is independent with C1 and therefore
should for all caches in S(m)

k . Combining Lemma 4, Lemma 5
and Lemma 6 yields

P[Miss for R0|J0 = S(j)i , I0 = S(m)
k , H]

∼ Γ(1− 1/α)α

α

cµm
α

W
(m)
k

(
M
m

)α (
x̄
(j)
i

)α−1 (24)

as x→∞, where

x̄
(j)
i =

(
j∑
l=1

(1− p)l−1b
I
(j)
i,l

α

)1/α

Mµmx(
M
m

)∑M
l=1 l µl

.

Reorganizing (24) yields that as x→∞,

P[Miss for R0|J0 = S(j)i , I0 = S(m)
k , H]

∼

(
M∑
i=1

iµi

)α−1
µm

W
(m)
k

(
M
m

)
·

(
j∑
l=1

(1− p)l−1
(
Mb

I
(j)
i,l

)α)1/α−1

Q(x). (25)

Plugging P[I0 = S(m)
k |H] = W

(m)
k , P[J0 = S(j)i |I0 =

S(m)
k , H] = pj(1 − p)m−j and (25) into (22) finishes the

proof.

C. Proof of Theorem 2

Proof. Recall that

P
(
x; ~µ,~b

)
=

M∑
m=1

(1− p)mµm

+

(
M∑
m=1

L(m,~b)µm

)(
M∑
m=1

mµm

)α−1
Q(x),

where

L(m,~b) =
m∑
i=1

(
m

i

)
pi(1− p)m−i

(
p

1− (1− p)i

)1−1/α

.
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Since limx→∞Q(x) = 0, we have limx→∞ P (x; ~µ,~b) =∑M
m=1(1 − p)mµm, which implies limx→∞ µ∗m(x) = 0 for

1 ≤ m ≤M − 1, and limx→∞ µ∗M (x) = 1.

D. Proof of Theorem 3

Proof. Assuming the data items are hashed to all caches, we
have I0 = C, which is no longer a random variable. Therefore,
Theorem 1 as well as Corollary 1 still holds even when M
scales with x as long as limx→∞ x/M = ∞. Corollary 1
yields P

(
x; ~µ,~b

)
= (1− p)M + L(M,~b)Mα−1Q(x) where

L(M,~b) =
M∑
i=1

(
M

i

)
pi(1− p)M−i

(
p

1− (1− p)i

)1−1/α

.

Since limM→∞ L(M,~b) = p1−1/α, we have for any ε ∈ (0, 1),
there exists M0, such that, for M ≥M0,

P−ε(x; ~µ,~b) ≤ P (x; ~µ,~b) ≤ Pε(x; ~µ,~b)

where

Pε(x; ~µ,~b) , (1− p)M + (1 + ε)p1−1/αMα−1Q(x),

P−ε(x; ~µ,~b) , (1− p)M + (1− ε)p1−1/αMα−1Q(x).

Without loss of generality, we assume that M can take real val-
ues in Pε(x; ~µ,~b) and P−ε(x; ~µ,~b). For a given x, let M∗ε (x)
and M∗−ε(x) be the values of M that minimize Pε(x; ~µ,~b) and
P−ε(x; ~µ,~b), respectively. Solving ∂Pε(x; ~µ,~b)/∂M = 0 and
∂P−ε(x; ~µ,~b)/∂M = 0, we obtain

M∗ε (x) ∼M∗−ε(x) ∼ (1− α) log x/ log(1− p)

as x→∞ for any ε ∈ (0, 1), which completes the proof.

E. Proof of Theorem 4

Proof. Suppose towards contradictions that there exists 1 ≤
i < j ≤ M such that b∗i = b∗j . Then, we consider a new
optimization problem as follows.

min
bi,bj

P (x; (0, · · · , 0, 1),~b)

subject to
M∑
m=1

bm = 1, (26)

bm = b∗m, 1 ≤ m ≤M,m 6= i, j,

0 ≤ bm ≤ 1, 1 ≤ m ≤M.

Recall that b∗m is the optimal solution of the original prob-
lem (4). In this new problem (26), we restrict bm = b∗m for all
bm’s except bi and bj , and minimize the miss probability over
bi and bj . Thus, b∗i and b∗j should also be the optimal solution
of Problem (26), and satisfy the optimal condition

∂P (x; ~µ,~b)

∂bi

∣∣∣∣∣
bi=b∗i

=
∂P (x; ~µ,~b)

∂bj

∣∣∣∣∣
bj=b∗j

,

which is equivalent to

∂L(M,~b)

∂bi

∣∣∣∣∣
bi=b∗i

=
∂L(M,~b)

∂bj

∣∣∣∣∣
bj=b∗j

. (27)

Moreover, we have

∂L(M,~b)

∂bi

∣∣∣∣∣
bi=(b∗i+b

∗
j )/2

>
∂L(M,~b)

∂bj

∣∣∣∣∣
bj=(b∗i+b

∗
j )/2

,

which indicate that bi = bj = (b∗i +b∗j )/2 does not satisfy (27)
and is not the optimal solution of Problem (26). Therefore, we
must have b∗i 6= b∗j for the original problem. Furthermore, since
we assume bi ≥ bj , the proof is completed.

F. Proof of Lemma 2
Proof. Note that, if the channel reliability levels are all equal,
the miss probability of any static policy only depends on the
number of replications of each data item and is irrelevant to
how these replications are placed on caches. After deciding
replication strategy, we can simply store the data item to the
first m caches, where m is the number of replications for the
item. Therefore, in order to design an optimal static policy
that minimizes the miss probability, we only need to find the
optimal cache space allocation.

If the data item di is stored in m caches, the miss probability
of di is (1 − p)m. Now, if we store one more copy of di in
the system, the overall miss probability of the system will be
reduced by

∆i(m) , qi((1− p)m − (1− p)m+1) = qip(1− p)m.

In other words, ∆i(m) represents the marginal gain to store
one more di in the system when there are already m copies.
The optimal static policy can be found by starting with empty
caches and gradually adding items with the largest marginal
gains.

G. Proof of Theorem 5
Proof. Recalling the EA and UA policies and Theorem 1, we
have

P EA
miss ∼ (1− p)M + L

(
M,~bEA

)
Mα−1Q(x),

P UA
miss ∼ (1− p)M + L

(
M,~b◦(x)

)
Mα−1Q(x) for p > pth,

P UA
miss = P EA

miss for p ≤ pth.

Therefore, we have

P UA
miss − (1− p)M

P EA
miss − (1− p)M

=

{
L(M,~b◦(x))/L(M,~bEA) for p > pth,
1 for p ≤ pth.

Moreover, since pth is the unique solution to L(M,~b◦(x)) =
L(M,~bEA), the proof is completed.

H. Proof of Theorem 6
The proof of Theorem 6 is similar to the proof of Theorem 1

(see Section VIII-B). First, we will modify Lemma 4 for
heterogenous channels.

Lemma 7. Consider M caches with heterogenous channels.
Assume that the data items are hashed to all caches. Condi-
tional on J0 = {C1, · · · , Cm} (i.e., the first m caches are
accessible at τ0), as the total cache space x→∞, we have

P[Miss for R0|J0 = {C1, . . . , Cm}, H] ∼ Q(x̄)
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where x̄ =
(∑m

k=1

∏k−1
j=0 (1− pj)bkα

)1/α
x.

Proof. The proof is similar to the proof of Lemma 4. Applying
(8), we have

P[Miss for R0|J0 = {C1, . . . , Cm}, H]

= P[∩mk=1{σk > T←k (bkx)}].

In Step 1 we will estimate P[∩mk=1{σk > nk}], where
nk’s are given constants. In Step 2, we will show
that P[∩mk=1{σk > T←k (bkx)}] can be approximated by
P[∩mk=1{σk > T̄←k (bkx)}], where

T̄←k (x) ≈ Γ(1− 1/α)−αc−1pk
−1xα.

Step 1: For ∀n ≥ 1, let Yi(n) =
∑n
j=1 1({R−j = di}), 1 ≤

i ≤ N . Yi(n) represents the number of requests that fetch data
di during τ−n and τ−1, and follows a binomial distribution.
We have,

P[∩mk=1{σk > n}|R0 = di]

=

n∑
j=0

P[Yi(n) = j]P[∩mk=1{σk > n}|Yi(n) = j]

=

n∑
j=0

P[Yi(n) = j]Πm
k=1(1− pk)j

= E [exp (Yi(n) · log (Πm
k=1(1− pk)))]

=MYi(n) (log (Πm
k=1(1− pk)))

= (1− qi + qiΠ
m
k=1(1− pk))

n
, (28)

whereMYi(n)(t) , E[exp(tYi(n))] is the moment generating
function of Yi(n).

By combining (9) and (28), we have

P[∩mk=1{σk > nk}] =
∞∑
i=1

qiP[∩mk=1{σk > nk}|R0 = di]

=
∞∑
i=1

qiΠ
m
k=1

(
1− qi + qiΠ

k
j=1(1− pj)

)nk−nk+1
.

Using the same technique that proves (12), we can show that
as nm →∞,

P[∩mk=1{σk > nk}]

∼
∞∑
i=1

qi exp

(
−qi

m∑
k=1

(1−Πk
j=1(1− pj))(nk − nk+1)

)

∼ c1/αΓ(2− 1/α)

α− 1

(
p
m∑
k=1

Πk−1
j=0 (1− pj)nk

)−1+1/α

. (29)

Step 2: Define

T̄m(n) ,
∞∑
i=1

(1− (1− qi + qi(1− pm))
n
)

T̄←m (x) , min{n : T̄m(n) ≥ x}.

We have, as n→∞

T̄m(n) ∼
∞∑
i=1

(
1− e−qipmn

)
∼ Γ

(
1− 1

α

)
(cnpm)

1/α
,

and as x→∞

T̄←m (x) ∼ Γ(1− 1/α)−αc−1pm
−1xα.

Then, applying (29) and using the same technique that
proves (20) and (19), we can show that, as x→∞,

P[Miss for R0|J0 = {C1, . . . , Cm}, H]

= P[∩mk=1{σk > T←k (bkx)}]

∼ c1/αΓ(2− 1/α)

α− 1

(
p
m∑
k=1

Πk−1
j=0 (1− pj)T←k (bkx)

)−1+1/α

∼ c1/αΓ(2− 1/α)

α− 1

(
p
m∑
k=1

Πk−1
j=0 (1− pj)T̄←k (bkx)

)−1+1/α

∼ Γ(1− 1/α)α

α

c

x̄α−1
= Q(x̄),

where x̄ =
(∑m

k=1

∏k−1
j=0 (1− pj)bkα

)1/α
x.

Proof of Theorem 6. Using a similar technique that proves
Theorem 1, we have,

P[Miss for R0|H]

=
M∑
m=1

(Mm)∑
k=1

P[I0 = S(m)
k ]P[Miss for R0|I0 = S(m)

k , H]

=
M∑
m=1

(Mm)∑
k=1

P[I0 = S(m)
k ]

(
Πm
i=1(1− p

I
(m)
k,i

)

+
∑

(i,j):S(j)
i ⊆S

(m)
k

(
P[J0 = S(j)i |I0 = S(m)

k , H]

· P[Miss for R0|J0 = S(j)i , I0 = S(m)
k , H]

))
.

Then, applying Lemmas 5, 6 and 7 finishes the proof of
Theorem 6.

I. Proof of Lemma 3
Different from the static policy for homogenous channels,

the miss probability depends not only on the number of
replications of each data, but also on which caches the data are
stored, when the channels have heterogenous reliability levels.
Assume without loss of generality that pm’s are non-increasing
with respect to m. If we decide to store m replications of a
data item in the system, they should be stored in the most
reliable caches (i.e., C1, C2, · · · , Cm) to minimize the miss
probability. In other words, given the replication strategy, the
data placement is fixed. Therefore, we only need to decide the
cache size of each involved caches.

Similar to the homogenous case, for m ≥ 0, we define
the marginal gain ∆i(m) as the reduction in the overall miss
probability by storing one more di in the system when there
are already m copies, i.e.,

∆i(m) = qi

(
m∏
k=0

(1− pk)−
m+1∏
k=0

(1− pk)

)

= qipm+1

m∏
k=0

(1− pk).
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The optimal static policy can be obtained by starting with
empty caches and gradually adding items with the largest
marginal gains.
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