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Abstract Weconsider theKorteweg–deVries equationwithwhite noise initial
data, posed on the whole real line, and prove the almost sure existence of
solutions. Moreover, we show that the solutions obey the group property and
follow a white noise law at all times, past or future. As an offshoot of our
methods, we also obtain a new proof of the existence of solutions and the
invariance of white noise measure in the torus setting.

1 Introduction

The Korteweg–de Vries equation

d
dt q = −q ′′′ + 6qq ′ (1.1)

takes its name from the paper [26] where it is derived as a model for long
waves of small amplitude in shallow water. Since that time, it has grown to be
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204 R. Killip et al.

one of the central models in mathematical physics because it sits at the nexus
of numerous strands of research, both pure and applied. It is one of the sim-
plest models synthesizing nonlinear and dispersive effects, it is Hamiltonian,
it supports solitons, and it is completely integrable.

In seeking to consider statistical ensembles of initial data for a mechanical
system, one is naturally led to Gibbs measures, which model such a system in
thermal equilibrium. Such measures are constructed directly from the Hamil-
tonian structure and the temperature. (More commonly, the temperature is
expressed through the inverse temperature β = 1

kT where T is the tempera-
ture and k is the Boltzmann constant.)

The KdV equation admits multiple Hamiltonian descriptions; this is a
common symptom of being completely integrable. The best known of these
descriptions is the following (cf. [20]): The Hamiltonian

HG
KdV(q) :=

∫
1
2q

′(x)2 + q(x)3 dx, (1.2)

generates the dynamics (1.1) via the Poisson bracket

{F,G}0 =
∫

δF

δq
(x)

(
∂

∂x

δG

δq

)
(x) dx . (1.3)

(Regarding our notation for functional derivatives, see (2.5).)
The second description is based on the Magri–Lenard bracket (cf. [30]):

{F,G}1 =
∫

δF

δq
(x)

([
− ∂3

∂x3
+ 2

∂

∂x
q(x) + 2q(x)

∂

∂x

]
δG

δq

)
(x) dx,

(1.4)

under which (1.1) is generated by

HM
KdV(q) :=

∫
1
2q(x)2 dx . (1.5)

Evidently, (1.2) and (1.5) both define conserved quantities for the KdVflow.
We should also mention the simplest of all the conserved quantities:

M(q) =
∫

q(x) dx, (1.6)

which in the water-wave setting represents any surplus/deficit of water relative
to equilibrium and thereby conservation of matter.

These three quantities, M , HM
KdV, and HG

KdV, are merely the first members
of an infinite hierarchy of such conservation laws; see [36]. In fact, the full list
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can be reconstructed via the Lenard recursion: the flow generated by (1.4) for
one entry in the list agrees with the flow generated by (1.3) for the next entry
in the list. In particular, M(q) is a Casimir for (1.3), but generates translations
under (1.4); HM

KdV generates translations under (1.3), but KdV under (1.4);
lastly, HG

KdV generates KdV under (1.3), but 5th order KdV under (1.4).
One is naturally lead to ask which Poisson structure is the ‘physical’ one.

The answer depends on which physical system one is modeling. In fact, Olver
[45] has shown that even in the case of waves in a shallow channel, the answer
depends on which approach one takes to deriving KdV from the full water
waves system. Far from creating a paradox, his arguments actually present a
compelling resolution of one, namely, why KdV is completely integrable.

Thus, in place of discussing which Hamiltonian structure is more physical,
we should really be focusing our attention on the question ofwhichGibbsmea-
sure ismost satisfactory. Here the answer ismore clear cut. Because the highest
order term (in powers of q) in HG

KdV has an indefinite sign, the corresponding
Gibbs measure is unnormalizable, even in finite volume; moreover, this cannot
be remedied by passing to a free energy of the form Fμ = HG

KdV + μHM
KdV.

On the other hand, if one adopts HM
KdV as the Hamiltonian, then the proper

meaning of the Gibbs measure is trivial: it is the Gaussian process with covari-
ance given by the identity operator! This process is more popularly referred
to as white noise. The ‘white’ property of this process is that it inhabits all
frequencies to an equal degree. (For a more rigorous definition of white noise,
see Sect. 2.2; for the equipartition property, see (2.10).)We set the temperature
parameter β = 1 in our definition of white noise, since other temperatures can
be recovered by scaling (which also respects the dynamics).

It is our belief that white noise provides the best realization of a ‘soliton
soup’ available at this time. As we will describe shortly, a number of measures
have been constructed in finite volume that compete for this moniker; however,
none seem to survive in the thermodynamic limit. On the other hand, since
the measure itself captures none of the soliton’s behavior, it is essential to
consider the dynamics. That is precisely the ambition of this paper: to construct
dynamics for the soliton soup in the thermodynamic limit.More precisely, we
will show the following:

Theorem The KdV dynamics generates a measure-preserving one-parameter
group of transformations on the space of tempered distributions onR endowed
with white noise measure.

Further clarification of the meaning of this assertion will be provided as we
proceed. The impatient reader may also refer directly to Sect. 7, with particular
attention to Theorem 7.1 and Corollaries 7.4 and 7.5.

It is natural to ask if white noise measure is, in fact, supported on soli-
tons as opposed to radiational waves. The only way that seems reasonable
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to distinguish these possibilities is to look at the spectrum of the associated
Lax operator, that is, the one-dimensional Schrödinger operator with white
noise potential. In [35], Minami proved that the white noise potential leads to
pure point spectrum (a phenomenon known as Anderson localization). This
suggests that our ‘soup’ is indeed comprised solely of solitons, undiluted by
radiation.

We turn now to a brief discussion regarding other constructions of invariant
measures. This subject has grown explosively in recent years and so we will
need to curtail our discussion rather sharply. We would like to focus our atten-
tion on two concrete scenarios: focusing equations and the thermodynamic
limit.

The dominant model in the study of invariant measures for focusing equa-
tions (essentially those supporting solitons) has been the nonlinear Schrödinger
equation, stimulated by the pioneering work [29]. In this setting, the physical
field is complex-valued and the Hamiltonian takes the form

HNLS(ψ) :=
∫

1
2 |∇ψ(x)|2 − 1

p+2 |ψ(x)|p+2 dx . (1.7)

As with HG
KdV, this Hamiltonian is not coercive and the usual Gibbs measure

is unnormalizable. Working on the torus and with p ≤ 4, Lebowitz, Rose,
and Speer constructed a modified Gibbs measure by incorporating a sharp
(i.e. compactly supported) mass cutoff. Here ‘mass’ refers to

∫ |ψ |2, which
is invariant under the NLS flow. The almost sure existence of solutions for
such initial data was shown by Bourgain [4]. In the same paper, Bourgain also
shows the invariance of the L2-truncated HG

KdV-Gibbs measure under the KdV
flow on the torus.

Twoways of modifying the sharp mass cutoff are suggested in [29] and ana-
lyzedmore thoroughly in [8,42], namely, (i) introducing a super-exponentially
decayingweight in themass and (ii) restricting to a constantmass sphere. Once
again, this is set on the one-dimensional torus. For the two-dimensional torus,
see [6]. The existence and invariance of analogous cutoff Gibbs measures in
finite volume has also been actively pursued for other focusing equations,
[2,7,16,17,21,37–39,44,55–58], with particular attention paid to Benjamin–
Ono and Derivative NLS, both of which are completely integrable.

We turn now to the question of taking the infinite-volume limit of these
measures. This has been investigated by Rider [48,49], who considers the
thermodynamic limit of NLS in one dimension, and by Chatterjee [9], who
considers a simultaneous continuum and infinite-volume limit of discretized
NLS in general dimension at fixed mass and energy. In both cases, the limit
was proven not to exist. More precisely, the statistical ensembles of initial
data were shown to increasingly collapse upon a single solitary wave (ran-
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domly placed) and background noise of negligible magnitude. We believe that
these important works illuminate a universal truth, namely, that no such cutoff
statistical ensembles for focusing equations admit a thermodynamic limit.

By contrast, the construction of Gibbs measures in the thermodynamic limit
and of corresponding almost-sure dynamics has been very successful for defo-
cusing Hamiltonian PDE. We note, in particular, the work on nonlinear wave
equations in one dimension by McKean and Vaninsky [32,34], by Xu [59] in
three dimensions with spherical symmetry, and the work by Bourgain [5] on
NLS in one dimension. Of these, the work of Bourgain is most pertinent to the
problem discussed herein, because unlike NLS and KdV, the wave equation
enjoys finite speed of propagation.

As is natural for any process describing thermal equilibrium, white noise is
invariant under translation (more formally, it is a stationary process). In fact,
the process is not only ergodic under translation but (strong) mixing. (This is
easily deduced from independence on disjoint intervals, cf. Remark 2.8.)

As wewill briefly discuss, there has been a recent surge in activity regarding
KdV with initial data sampled from almost periodic processes [3,13,18,28].
Recall that almost periodicity means that translates of the initial data form a
precompact set in L∞(R). This should be regarded as antithetical to mixing;
indeed, representative examples are periodic and quasi-periodic functions. A
major goal of these investigations of almost periodic initial data is to resolve
a conjecture of Deift [14,15], namely, that such initial data leads to almost
periodic flows in time. By comparison, white noise is mixing under transla-
tions and it is natural to believe that it is also mixing under the KdV flow. By
constructing almost-sure solutions in this paper, we are able to make this asser-
tion precise; see Conjecture 7.6. This seems a very challenging problem. For
a typical linear flow, one can prove that the evolution of white noise is mixing
directly from the Fourier transform. However, we know of no work proving
even ergodicity for a nonlinear model. In [32], McKean offers a compelling
argument for the case of the sinh-Gordon equation with Gibbsian initial data;
nevertheless, substantial obstacles remain in making this rigorous (see [33]).

The state of affairs laid out above explains our great enthusiasm for studying
the KdV equationwith white noise initial data. Indeed, we are not the first to be
so intrigued. In particular, invariance of white noise for KdV on the torus has
been resolved (in several different ways) in a series of papers by Oh, Quastel,
and Valkó [40,41,43,46]. The existence of global dynamics for KdV on the
torus with white noise initial data predates these works, since Kappeler and
Topalov [23] show that KdV is globally well-posed in H−1(R/Z). This result
is used crucially in the approach of [46], but not in the other papers. We shall
present one further solution of this problem in Sect. 3 as an offshoot of the
main thrust of our argument.
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Incidentally, while it is now known [25] that KdV is also globally wellposed
in H−1(R), this is of little direct relevance to the question of white noise initial
data on the line, which has no decay at infinity. Indeed, periodic data is a better
proxy for white noise, since both are ergodic under translations; no law on
H−1(R) has this property. This ergodicity also forbids any local smoothing
effect, which is one of the key tools usually employed in the study of dispersive
equations in infinite volume.

While it is tempting to try to take the infinite-volume limit of the torus situa-
tion (which is completely settled), this seems absolutely hopeless at this time.
We have no control on the transportation of norm from one spatial location to
another. Moreover, the central trick of exploiting Fubini to convert statistical
conservation into space-time bounds is useless if one cannot make sense of the
nonlinearity pointwise in time, as is the case here—one simply cannot square
white noise (with or without Wick ordering).

For the state of the art in this approach, see [5], in which Bourgain treats
Gibbs measures for one-dimensional defocusing NLS (with nonlinearity not
exceeding cubic) by taking the infinite-volume limit of torus dynamics. Note
that sample paths from the Gibbs measure considered in [5] are essentially
bounded; indeed, the defocusing nonlinearity confines the paths no less tightly
than for the Ornstein–Uhlenbeck process, for which one already has at most
logarithmic growth.

We should also note that in treating such infinite-volume problems, taking
a limit of some cutoff model is one of the few methods that have any chance
of success. Direct local wellposedness arguments are hopeless: if the length
of the time interval (on which the solution is constructed) needs to depend on
any facet of the initial data, then by ergodicity, it must be zero. Or, to put it
more colloquially, for an ergodic process, anything bad that can happen, will
happen (and with positive density in space).

By this reasoning, the first step in our analysis must be to find the right
cutoff model. It is in this regard (and almost no other) that what we do here
builds fundamentally on the work [25]. We will use (a modification of) the
commuting flows we introduced in [25] as our cutoff model. The fundamental
obstruction to be overcome in [25] is very low regularity, common to both line
and circle, and (by scaling) it suffices to consider initial data of small norm. On
the other hand, white noise is rather more regular (it belongs to H−1/2−

loc ), but
has no decay and cannot be considered small. (For any threshold and norm,
there is somewhere in space for which the norm exceeds that threshold.) In
light of these distinctions, we view the problem of white noise on the whole
line as an independent test of the methodology based on commuting flows.
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The commuting flows employed in [25] were defined through the Gardner
bracket (1.3) and their Hamiltonians:

Hκ(q) :=
∫

−16κ5ρ(x; κ, q) + 2κ2q(x)2 dx,

where the parameter κ > 0 and the integral is taken over one period in the
periodic case or over the whole real line. Here,

ρ(x; q, κ) := κ − 1
2g(x;κ)

+ 1
2

∫
R

e−2κ|x−y|q(y) dy,

where g(x; κ) denotes the diagonal Green’s function at energy −κ2:

g(x; q, κ) := 〈δx , (−∂2x + q + κ2)−1δx 〉.

It is not difficult to see that the Hamiltonians are well defined for small data
in L2 and that the resulting flows are well defined for small data in H−1; see
[25] for details. The smallness assumption here depends on κ and is necessary;
indeed, for large potentials (of indefinite sign) the spectrum of the Schrödinger
operator can collide with −κ2 and it will not be possible to define Hκ(q) nor
the resulting flow. In the case of white noise, for example, it is relatively easy
to show that the spectrum of the whole-line Schrödinger operator is the entire
real axis!

Our remedy here is not terribly surprising: We move κ off the real axis,
calling the new parameter k; see (3.3) for the precise Hamiltonian and (3.4)
for the resulting dynamics. On the other hand, the underlying size problem
(that forced us to change the flows) also breaks all the technology developed
in [25], which was based on a perturbative analysis about q ≡ 0. Setting aside
for the moment how this is to be resolved, let us continue with the overarching
plan of this paper.

We begin with the Hk flow on the torus R/LZ of circumference L . The
well-posedness of the flow is elementary since the nonlinearity is Lipschitz
on H−1(R/LZ); see Proposition 3.1. We show that this flow preserves (peri-
odized) white noise measure in Theorem 3.3. While this could also be proved
by the (now standard) method of finite-dimensional approximation, it is more
efficient to prove it directly using integration by parts in Gauss space.

The last result of Sect. 3 is a new proof of the invariance of white noise
under the KdV flow on the torus; see Theorem 3.4. The argument is rather
elementary; we simply exploit the fact that theHk flows conserve white noise
and converge to the KdV flow as k → ∞.

The key strategic decision in treating white noise initial data on the whole
line is to first send the volume to infinity (at fixed k) and then to send k → ∞ to
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recover the KdV flow. The virtue of this choice is that theHk flow effectively
has finite speed of propagation; the effective speed limit is of order Re k2.
This allows us to minimize the effect of the discrepancy between the two
initial data, namely, periodic white noise and infinite-volume white noise. To
prove almost sure convergence, it is necessary to couple the finite-volume
and infinite-volume initial data together in an appropriate way. We do this by
starting with a sample of white-noise in infinite volume, truncating it to the
interval [−L , L], and then extending it periodically thereafter.

A concrete manifestation of finite speed of propagation for the Hk flows
can be found, for example, in the proof of Lemma 6.3. There we see that the
exponentially weighted H−1 norm grows at most exponentially in time with a
rate that is bounded by |k|2. We have no such control on the transport of local
H−1 norm in the KdV setting. Indeed, as shown in [25, §7], the transport of
such a quantity is mediated by the local L2

t,x norm of the solution, which is
guaranteed to be infinite in the white noise setting.

To prove convergence, we first need estimates. Indeed, here lies the funda-
mental challenge in sending L → ∞ for the Hk flow. The price to pay for
limiting the propagation speed and for improving the regularity of the nonlin-
earity is that the evolution equation has become nonlocal. This is apparent in
(3.4) through the appearance of the diagonal Green’s function. In this way, we
see that the spectre of far-away, low-probability, bad events ruining everything
remains; nevertheless, we claim it has been ameliorated (and this is why we
will ultimately succeed).

Sections 4 and5 are devoted to obtaining the boundsweneed for the diagonal
Green’s function, both to send L → ∞ at fixed k in Sect. 6 and then to send
k → ∞ in Sect. 7. The key phenomenon to leverage in controlling bad events
is the exponential decay of the Green’s function (away from the diagonal)—
this is the backbone of Fröhlich–Spencer [19] multiscale analysis, which we
will adapt to our needs. Various forms of multiscale analysis have grown to
be central tools in the study of the Anderson model; see [27] for a survey.
While is true that the Schrödinger operator with white noise potential is a
natural form of Anderson model, the needs of our dispersive analysis are
rather different from those of proving Anderson localization. First, we work
with energies at a positive distance from the real axis; thus, we do not need
the potential to generate the exponential decay, we only have to prevent the
potential from destroying the decay already present in the free resolvent. This
distinction manifests, for example, in the development of our initial length
scale estimates Propositions 4.6 and 4.7.

On the other hand, for our purposes, the mapping properties of the resolvent
(particularly H−1 → H+1) are far more important than the mere decay of the
Green’s function. This is vital, for example for controlling the dependence of
the resolvent upon the potential, due to the extreme irregularity of our poten-
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tials. The need for such operator bounds is also a reason to prefer multiscale
analysis of the resolvents over transfer matrix techniques (commonly used in
1D models), which work at the level of the Green’s function. The desire for
clean resolvent bounds also influences our decision to eschew the traditional
technique of Dirichlet decoupling in our treatment of the multiscale analysis.

A second (and more decisive) reason for wishing to avoid Dirichlet decou-
pling is the need (in Sect. 7) for lower bounds on the diagonalGreen’s function.
Evidently, a Dirichlet boundary condition will drive g(x) to zero. In the proof
of Proposition 5.6, we see that even obtaining pointwise lower bounds on the
diagonal Green’s function in expectation requires significant control on the
resolvents (including Lemma 5.5), as well as considerable additional gymnas-
tics.

Our approach to multiscale analysis is to work consistently on the whole
real line and to successively reveal the potential q in dyadic windows centered
on the origin. This leads to the following expansion of resolvents:

RL = R1 −
L/2∑
�=1

R2�(q2� − q�)R� where q�(x) = q(x)χ[−�,�](x)

(1.8)

and R� denotes the resolvent with potential q�. We then obtain our infinite-
volume bounds (Proposition 5.1 and 5.2 ) by combining this expansion (both at
finite and infinite L) with the initial length scale estimates of Sect. 4. Although
the estimates of Sect. 4 demonstrate good exponential decay, they contain pref-
actors depending (weakly but unfavorably) on L . Removing these prefactors
is essential for taking the L → ∞ limit and this is what multiscale analysis
achieves.

There is one further wrinkle in this story that we have omitted, namely, that
in order to prove the convergence of the Hk flows, we need bounds not only
in infinite volume, but also on finite tori, but with bounds independent of the
circumference. To do this, we need a two-parameter version of the argument
outlined above, where L denotes the length of potential revealed near the origin
(as in (1.8)) and then this section of potential is repeated in each period cell,
which has length 2L0; see (4.1) for the precise formula.

Let us now turn our attention to Sect. 6, which considers the Hk flow on
the whole line. The main result here is Theorem 6.2, which summarizes the
results of Propositions 6.7 and 6.8. The former proposition constructs solutions
of the Hk flow obeying certain additional bounds (that hold almost surely);
the latter shows that solutions obeying such bounds are unique. One important
consequence of the uniqueness statement is that it allows us to ensure that
almost surely the full trajectory avoids the null set of initial data on which
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we do not construct solutions. (This would be trivial for a discrete dynamical
system, but our set of times is uncountable.) In particular, it is meaningful to
ask if our flows have the group property. They do! See Corollary 6.9 for details.

There are two main components to our construction of solutions to the Hk
flows in infinite volume as limits of the corresponding flows on ever-larger tori.
The first is to obtain bounds on the finite-volume solutions that are uniform
on compact time intervals. This is the content of Lemmas 6.3 and 6.5 , which
rely crucially on the effective speed limit discussed above. The second com-
ponent is to demonstrate convergence of the dynamics by controlling the time
derivative (3.4), which ultimately means showing convergence of the diago-
nal Green’s functions. The first step in this direction is Lemma 6.4; however,
this only provides information pointwise in time. The reason is that the ‘Lips-
chitz constant’ of the mapping q 
→ g involves the norms of resolvents, which
(since we need volume-independent bounds) can only be provided through the
multiscale analysis, which in turn yields bounds in expectation only. The rem-
edy is to prove equicontinuity in time, for which we employ methods closely
connected with the Kolmogorov continuity theorem; see Lemmas 2.4 and 2.5
for the underlying idea and Lemma 6.6 for the specific implementation.

In Sect. 7, we show solutions to the Hk flows on the whole line with white
noise initial data converge uniformly on compact time intervals (almost surely)
as k → ∞; see Theorem 7.1. In view of existing deterministic results, it is
natural to simply declare that these limits are the solutions to KdV with white
noise initial data. However, in Corollary 7.4 we go one step further and verify
that the limit q(t) and its associated diagonal Green’s function g(t) obey the
same integral equation as in the deterministic case, namely, (7.17). Thus q(t)
is a solution of KdV in the only intrinsic sense that we currently know makes
sense. One further virtue of our flows is that they obey the group property; see
Corollary 7.5. This is a further indication of uniqueness—the evolution of a
state is independent of how (or when) it appears in the limiting process.

Needless to say, the difficulty in making direct sense of the KdV flow for
highly irregular data also makes it difficult to show convergence of the Hk
flows. We adopt here an idea from [25], namely, to use the diagonal Green’s
function. A key difference between q(t) and g(t) is that all the terms in the
differential equation obeyed by 1/g(t) under the KdV flowmake sense as tem-
pered distributions pointwise in time. By employing all the estimates proved in
the preceding sections, we are able to show that the diagonal Green’s functions
associated to theHk flows converge as k → ∞. Initially (see Proposition 7.2),
this convergence is only in expectation and in a weighed Sobolev space with
H−2 regularity. These defects are removed by demonstrating equicontinuity
in time (in the manner used in Sect. 6) and by employing the extra spatial
regularity proved in Proposition 5.6. In this way, we are able to upgrade the
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convergence to a weighted H1 norm in space, uniformly on compact time
intervals.

In the setting of [25], the convergence of the Green’s functions guaranteed
the convergence of the solutions q(t) themselves by virtue of the diffeomor-
phism property; see [25, Proposition 2.2]. That result is proved by the inverse
function theorem and as such, is confined to small initial data. Thus, we need
here a newway of connecting the diagonal Green’s function back to the poten-
tial. As k is now complex, we no longer can expect a diffeomorphism (g is
complex-valued and q real-valued); at best one may hope for an embedding.
This is what we prove in Lemma 2.14, albeit in the limited setting of q ∈ H−1.
The key new relation is (2.25); indeed, it is this relation that we show is retained
as we send L → ∞ and then k → ∞. And it is this relation that ultimately
allows us to prove Theorem 7.1 by deducing convergence of the solutions q(t)
(uniformly on compact time intervals in weighted H−1(R)) from the behavior
of their diagonal Green’s functions.

The remainder of Sect. 7 is devoted to proving the auxiliary properties of our
solutions outlined above and to describing two interesting (but challenging)
directions for further investigation. First, we highlight open questions related
to uniqueness for KdV at low regularity. This is open both in the deterministic
and random settings. In particular, it is currently unknown whether Kappeler
and Topalov [23] orKillip andVisan [25] solutions are unique in some intrinsic
sense, independent of their appearance as the unique limit of Schwartz-class
solutions. The second major question we raise is whether the KdV flow with
white noise initial data is mixing (in time). We refer here specifically to the
whole-line case. This clearly fails on the torus; known conservation laws show
that the torus flow is not even ergodic.

2 Notation and preliminaries

We write A � B or B � A to denote A ≤ CB for some C > 0. Dependence
on various parameters will be indicated by subscripts. If A � B and B � A,
we write A ≈ B. The other common notation for this relation, namely ∼, is
used in this paper to indicate the law of a random variable. We employ the
Japanese bracket notation 〈x〉 = √

1 + x2. We write N = {1, 2, 3, . . . } and
N0 = N ∪ {0}.

Throughout, primes will represent derivatives with respect to the spatial
variable x .

Our convention for the Fourier transform is

f̂ (ξ) = 1√
2π

∫
R

e−i xξ f (x) dx, so that f (x) = 1√
2π

∫
R

eixξ f̂ (ξ) dξ.
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For s ∈ R and κ > 0, we define

‖ f ‖2Hs (R) =
∫

| f̂ (ξ)|2(4 + ξ2)s dξ and ‖ f ‖2Hs
κ (R)

=
∫

| f̂ (ξ)|2(4κ2 + ξ2)s dξ.

We have the simple but useful estimate

‖1‖H1
κ →H−1

κ
� 1

κ2
. (2.1)

For p ≥ 1, we write Ip for the Schatten class of compact operators whose
singular values lie in �p. We will primarily use the Hilbert–Schmidt class I2.
Recall that an operator A on L2(R) is Hilbert–Schmidt if and only if it admits
an integral kernel a(x, y) ∈ L2(R × R); moreover,

‖A‖2L2→L2 ≤ ‖A‖2I2 = tr{A∗A} =
∫∫

|a(x, y)|2 dx dy. (2.2)

The product of two Hilbert–Schmidt operators A and B is in the trace class
I1; moreover,

tr{AB} =
∫∫

a(x, y)b(y, x) dy dx = tr{BA} and |tr{AB}| ≤ ‖A‖I2‖B‖I2 .

Hilbert–Schmidt operators form a two-sided ideal in the algebra of bounded
operators; concretely,

‖BAC‖I2 ≤ ‖B‖L2→L2‖A‖I2‖C‖L2→L2 . (2.3)

We refer the reader to [50] for more information.
Given a function m, the corresponding multiplication operator satisfies

‖m‖H1
κ →H1

κ
= ‖m‖H−1

κ →H−1
κ

� ‖m‖L∞ + ‖m′‖L∞ . (2.4)

We will employ the L2 pairing throughout the paper. This also informs our
notation for functional derivatives:

d

ds

∣∣∣∣
s=0

F(q + s f ) = dF
∣∣
q( f ) =

∫
δF

δq
(x) f (x) dx . (2.5)

2.1 Probabilistic preliminaries

Throughout the paper we fix a probability space with probability measure P.
Expectation (i.e. integration with respect to dP) is denoted by E.
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Invariance of white noise 215

The hypercontractive property of polynomials in multivariate Gaussian ran-
dom variables is well understood thanks to the definitive work of Nelson. We
need here only the most basic manifestation of this phenomenon, whose proof
we include for completeness.

Lemma 2.1 Let Q be a positive semidefinite quadratic form in jointly Gaus-
sian random variables. Then

E
{
exp

[
θQ
E{Q}

]} ≤ (1 − 2θ)−
1
2 for any 0 ≤ θ < 1

2 . (2.6)

Consequently, for 1 ≤ p < ∞ we have

E
{|Q|p} � (2pE{Q})p. (2.7)

Proof Let us write Q = �XT A �X , where �X ∼ N (0, 
) and A = AT �= 0
is positive semidefinite. We choose B so that 
 = BBT and let O be an
orthogonal matrix diagonalizing BT AB. We write λk ≥ 0 for the eigenvalues
(repeated with multiplicity) of BT AB.

If �Z ∼ N (0, I d), then (computing the characteristic function, say) one finds
that BO �Z ∼ N (0, 
) (the law of �X ). Moreover,

(BO �Z)T A(BO �Z) = �ZT OT BT ABO �Z =
∑
k

λk Z
2
k .

Thus the left-hand side of the stated inequality can be estimated as

LHS(2.6) = E

{∏
k

eθck Z2
k

}
where ck = λk∑

λl
, and so

∑
k

ck = 1

≤
∏
k

[
E
{
eθ Z2

k
}]ck by Hölder’s inequality

=
∏
k

{
(1 − 2θ)−

1
2
}ck = (1 − 2θ)−

1
2 .

Here we have used E(eθ Z2
k ) = (1 − 2θ)− 1

2 for Zk ∼ N (0, 1), which follows
from computing the Gaussian integral.

From (2.6), Tchebychev’s inequality yields

P
{|Q| > λ

} ≤ (1 − 2θ)−
1
2 exp

{− θλ
E(Q)

}
for any θ ∈ [0, 1

2 ) and λ > 0.

Choosing θ = 1
4 , we then deduce (2.7) in the usual way. ��
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Lemma 2.2 Let {Xn}Nn=1 be a collection of random variables satisfying

sup
n

P{|Xn| > λ} ≤ Ce−cλ

for some c,C > 0. Then

P
{
sup
n

|Xn| > λ
} ≤ Ce−cλ/2 for all λ ≥ 2c−1 log N . (2.8)

Proof For λ as given, LHS(2.8) ≤ ∑
n P{|Xn| > λ} ≤ NCe−cλ ≤ RHS(2.8).

��
Our next lemma follows from what is shown in any elementary probability

text under the rubric of uniform integrability. However, as there is no catchy
name for this result, we write it out in full here:

Lemma 2.3 If supn E|Xn|p < ∞ for every p < ∞ and Xn → X in proba-
bility, then Xn → X also in L p(dP) for each p < ∞.

The next lemma encapsulates the idea of the Kolmogorov Continuity The-
orem (cf. [54, §2.1]) in a form that will be useful to us.

Lemma 2.4 Given T, α, ε > 0, 1 ≤ p < ∞, a Banach space X, and a
process F : [−T, T ] → X that is almost surely continuous,

E

{
‖F‖p

Cα
t X

}
�p,ε,T E

{
‖F(0)‖p

X

}
+ sup

−T≤s<t≤T
E

{‖F(t) − F(s)‖p
X

|t − s|1+αp+ε

}
.

Proof We provide details for T = 1; this can then be iterated to yield the result
for larger T . If F is continuous and 2−n ≤ |t − s| < 21−n then

‖F(t) − F(s)‖X ≤ 2
∞∑

m=n

sup
|�|≤2m

‖F(�2−m) − F([� + 1]2−m)‖X

and consequently,

sup
s<t

‖F(t) − F(s)‖X
|t − s|α ≤ 2

∞∑
m=0

2αm sup
|�|≤2m

‖F(�2−m) − F([� + 1]2−m)‖X .

Thus, (using Hölder’s inequality on the sum in m),

‖F‖p
Cα
t X

�p,ε ‖F(0)‖p
X +

∞∑
m=0

2(αp+ ε
2 )m

∑
|�|≤2m

‖F(�2−m) − F([� + 1]2−m)‖p
X .

The result now follows by taking expectations and exploiting its linearity. ��
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Invariance of white noise 217

While the estimates we prove in Section 7 do yield Hölder continuity in time
of solutions to KdV (in some weighted Sobolev spaces) via this lemma, our
principal reason for including it here is to provide the requisite equicontinuity to
upgrade convergence in probability at each time to L p(dP;Ct X) convergence.
We may encapsulate what we need in the following way.

Lemma 2.5 Given T, α > 0, a Banach space X, and a sequence of processes
Fn : [−T, T ] → X satisfying

sup
n

E

{
‖Fn‖p

Cα
t X

}
< ∞ and lim

n→∞ sup
|t |≤T

P

{
sup
m>n

‖Fn(t) − Fm(t)‖X > ε
}

= 0

for all 1 ≤ p < ∞ and all ε > 0, there is a limit process F ∈ Ct X with

lim
n→∞E

{
‖Fn − F‖p

Ct X

}
= 0, for all 1 ≤ p < ∞.

Remark 2.6 In view of the L p
ωCα

t X bound, one may trivially upgrade the
convergence to L p

ωC
β
t X for any 0 ≤ β < α. On the other hand, convergence

in Cα may fail even for deterministic sequences.

Proof For t fixed, we have that Fn(t) are bounded in L p for any 1 ≤ p < ∞
and converge in probability (because they are Cauchy in this sense). Thus, by
Lemma 2.3, these random variables converge in L p sense for any 1 ≤ p < ∞
and

lim
n→∞ sup

m>n
E

{
‖Fn(t) − Fm(t)‖p

X

}
= 0.

On the other hand, given natural numbers n,m, N ,

‖Fn − Fm‖Ct X ≤
∑

|�|≤N

‖Fn(�T/N ) − Fm(�T/N )‖X + N−α
[‖Fn‖Cα

t X + ‖Fm‖Cα
t X
]
.

Thus, taking N large and then n large (depending on N ), we obtain

lim
n→∞ sup

m>n
E

{
‖Fn − Fm‖p

Ct X

}
= 0.

This shows that Fn is Cauchy in L p
ωCt X and so convergent there. ��

2.2 White noise

For concreteness, we record here some well-known basic properties of white
noise. Note that we consider here only real-valued white noise.
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Theorem 2.7 A random variable q taking values in S ′(R) is said to be white
noise distributed if

E
{
ei〈 f,q〉} = exp

{−1
2‖ f ‖2L2

}
(2.9)

for all real-valued Schwartz functions f . Moreover, given any orthonormal
basis {ψn} of L2(R) and {Xn} i.i.d. N (0, 1) random variables,

∑
n

Xnψn (2.10)

converges almost surely in S ′(R) and follows the white noise law.

Remark 2.8 In view of (2.9), we may say that white noise is the Gaussian
process with covariance

E{〈φ, q〉〈ψ, q〉} = 〈φ, ψ〉, or colloquially E{q(x)q(y)} = δ(x − y).

This shows that 〈φ, q〉 and 〈ψ, q〉 are independent whenever φ and ψ are
orthogonal in L2. In particular, if I and J are disjoint intervals, then q|I
and q|J are independent. This independence property immediately yields the
ergodicity (indeed, mixing property) of white noise under spatial translations.

Outline of Proof The existence and uniqueness of a cylindermeasure onS ′(R)

obeying (2.9) follows from the Minlos Theorem; see, for example, [51, The-
orem I.2.3].

We turn now to (2.10). For any finite set N ,

E

{∥∥〈x〉−1
∑
n∈N

Xnψn
∥∥2
H−1(R)

}
=
∑
n∈N

〈
ψn, 〈x〉−1(−� + 4)−1〈x〉−1ψn

〉

≤ ‖〈x〉−1(−� + 4)−1〈x〉−1‖I1 � 1. (2.11)

Thus L2(dP)-convergence in this weighted Sobolev space is guaranteed.
Almost-sure convergence in thisweighted Sobolev space (and so also inS ′(R))
can then be deduced from the maximal inequality for martingales in Hilbert
space (see [53, Theorem 5.3.27]). The fact that the limit satisfies (2.9) is ele-
mentary. ��

A more precise version of the calculation (2.11) is the following: For w ∈
L2(R),

E
{‖wq‖2

H−1
κ

} = tr
{
w(−� + 4κ2)−1w

} = 1
4κ

∫
w2 dx . (2.12)
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Invariance of white noise 219

The construction (2.10)works equallywell on any torus, sayR/2LZ. Equiv-
alently, one may begin with white noise on R, restrict to the interval [−L , L]
and then construct qL by periodizing (as in (4.1) with L = L0). The analogue
of Remark 2.8 in this setting is

E{qL(x)qL(y)} =
∑
n∈Z

δ(x − y − 2nL). (2.13)

Arguing as in (2.12), one readily sees that

E
{‖qL‖2H−1(R/2LZ)

}
� L and thence E

{‖qL‖2p
H−1(R/2LZ)

}
�p L p

for any 1 ≤ p < ∞, by using Lemma 2.1.
The following result represents integration by parts in Gauss space; see [31]

for further details.

Lemma 2.9 Let q be white noise and suppose F belongs to D2
1 , which is to

say

‖F‖2
D2
1

:= E

{∥∥ δF
δq (q)

∥∥2
L2 + ∣∣F(q)

∣∣2} < ∞. (2.14)

Then for any ϕ ∈ L2 we have

E
{〈q, ϕ〉F(q)

} = E
{〈 δF

δq , ϕ〉}.

2.3 Resolvents and the diagonal Green’s function

For k ∈ C with Re k > 0, the free resolvent

R0(k) = (−∂2 + k2)−1

has integral kernel

G0(x, y; k) = 1
2k e

−k|x−y|.

Definition 2.10 We call nonzero k ∈ C admissible if 0 ≤ arg k < π
4 . For any

admissible k, we set

κ := |k|, E := Re (k2) and σ := Im(k2). (2.15)

For κ0 > 0, we define

A(κ0) = {k admissible : |k| ≥ κ0}.
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220 R. Killip et al.

We say an admissible k is strictly admissible if

Im(k2) ≥ C and |π8 − arg k| < π
16 .

Here C ≥ 1 is an absolute constant large enough to ensure that Lemma 2.12
below holds for all strictly admissible k. Note that for a strictly admissible k
we have |Im(k2)| ≈ |k|2.

We have the basic estimate

‖R0(k)‖H−1
κ →H1

κ
� 1

uniformly over all admissible k. For k > 0, R0(k) is positive and self-adjoint
and hence has a unique positive square root. For admissible kwedefine

√
R0(k)

as a Fourier multiplier operator, with symbol analytically continued from k >

0. We then have

‖√R0(k)‖L2→H1
κ

+ ‖√R0(k)‖H−1
κ →L2 � 1

uniformly over admissible k.
We record a few estimates for the free resolvent.

Lemma 2.11 For κ > 0,

‖√R0(κ) f
√
R0(κ)‖I2 = κ− 1

2 ‖ f ‖H−1
κ

.

Proof Direct computation (as in [25, Proposition 2.1]) shows

‖√R0(κ) f
√
R0(κ)‖2I2

= tr
{
R0(κ) f R0(κ) f̄

} = 1
κ

∫
R

| f̂ (ξ)|2
ξ2 + 4κ2 dξ = 1

κ
‖ f ‖2

H−1
κ

,

as desired. ��
The following lemma is easily verified from the explicit kernel of R0(k).

However, we use this opportunity to introduce the Combes–Thomas argument
that will be very important later in the paper. For a pedagogical introduction
to this technique, see [22].

Lemma 2.12 For k admissible with κ = |k| large enough and 0 ≤ n ≤ 100,

‖〈x〉±n R0(k)〈x〉∓n‖H−1
κ →H1

κ
� 1.
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Proof We write 〈x〉±n = eρ(x) with ρ(x) = ±n log〈x〉. The inverse of the
operator appearing in the lemma can be written

eρ(−∂2x + k2)e−ρ = −∂2x + k2 + Bρ,

where

Bρ = ρ′(x)∂x + ∂xρ
′(x) − ρ′(x)2.

By duality, one has

‖Bρ‖H1
κ →H−1

κ
� κ−1‖ρ′‖L∞ + κ−2‖ρ′‖2L∞ � nκ−1 + n2κ−2.

Thus for κ large enough we have

‖√R0(k)Bρ

√
R0(k)‖L2→L2 ≤ 1

2

and so we may write

eρR0(k)e
−ρ = √

R0(k)
[
1 +√

R0(k)Bρ

√
R0(k)

]−1√
R0(k).

This implies the result. ��
We next discuss the existence of the resolvent R(k) = (−∂2x + q + k2)−1

for q ∈ H−1(R/2L0Z), where L0 may be finite or infinite. Note that when L0
is finite, we still regard the operator as acting on the line, albeit with periodic
potential.

Proposition 2.13 Fix L0 ≥ 1 and q ∈ H−1(R/2L0Z). There is a unique
semi-bounded self-adjoint operator H = Hq on L2(R) such that

〈ψ, Hψ〉 =
∫

|ψ ′(x)|2 + q(x)|ψ(x)|2 dx for all ψ ∈ H1(R).

Indeed,

E0(q) := inf σ(Hq) � −‖q‖4H−1 .

The resolvent R(k) := (H + k2)−1 exists as a jointly analytic function of
(q, k) on the domain

{(q, k) : q ∈ H−1(R/2L0Z) and k2 ∈ C\(−∞, −E0(q)]},
taking values in the space of bounded operators from H−1(R) to H1(R).
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Moreover, the diagonal Green’s function g(x; q, k) := 〈δx , R(k)δx 〉 and its
reciprocal 1

g(x;q,k) are jointly analytic functions on the same domain, taking

values in H1(R/2L0Z).

Proof Everything in the first paragraphwas observed already in [25, Sections 2
and 6]. As was also discussed there, for � � 1 + ‖q‖2

H−1 , one may construct
the resolvent via the series

R(�) =
∞∑

�=0

(−1)�
√
R0(�)

(√
R0(�) q

√
R0(�)

)�√
R0(�), (2.16)

which converges in the space of bounded operators from H−1(R) to H1(R).
Indeed, one sees that the form domain of Hq is precisely H1(R). Boundedness
of R(k) from H−1(R) to H1(R) for general k then follows abstractly, as one
sees from the resolvent identity

R(k) = R(�) − (k2 − �2)
√
R(�)R(k)

√
R(�). (2.17)

Analyticity in k and q follows from the resolvent identities.
That g(x; q, k) belongs to H1(R/2L0Z) and is jointly analytic now follows

from the expansion

g(x; q, k) = 1
2k − 〈δx , R0(k)qR0(k)δx 〉 + 〈δx , R0(k)qR(k)qR0(k)δx 〉

= 1
2k − 〈δx , 1

k R0(2k)q〉 + 〈δx , R0(k)qR(k)qR0(k)δx 〉; (2.18)

see [25] for the details in the case k ∈ R.
That 1/g(x) belongs to H1 and is analytic will follow from the analogous

statements for g(x), once one shows that g(x) is nowhere vanishing. This non-
vanishing property follows immediately from the spectral theorem; indeed,
R(k) is a (non-isometric) isomorphism of H−1 → H1 and so we have

Re 〈δx , R(k)δx 〉 ≥ (Re k2 + E0)〈δx , R∗(k)R(k)δx 〉 > 0 for Re k2 > −E0, (2.19)

as well as

Im〈δx , R(k)δx 〉 = −Im(k2)〈δx , R∗(k)R(k)δx 〉 ≷ 0 when Imk2 ≶ 0. (2.20)

We use here that δx ∈ H−1. ��
Let us recall some basic facts about the resolvent. For k strictly admissible,

we have

‖R(k)‖L2→L2 ≤ 1
σ
. (2.21)
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In what follows, we define
√
R(k) via the spectral theorem, again choosing

the branch by analytic continuation from k � 1.
By using the series expansion (2.16) and Lemma 2.11, we deduce that

|tr{R(q, κ) f R(q, κ)h}| � κ−1‖ f ‖H−1‖h‖H−1 provided κ � 1 + ‖q‖2H−1 . (2.22)

In particular,

‖√R(q, κ) f
√
R(q, κ)‖I2 � κ− 1

2 ‖ f ‖H−1 provided κ � 1 + ‖q‖2H−1 . (2.23)

A computation using the resolvent identity yields

d

ds

∣∣∣∣
s=0

g(x; q + s f, k) = −〈δx , R(q, k) f R(q, k)δx 〉 for f ∈ H−1. (2.24)

The diagonal Green’s function satisfies the following important diffeo-
morphism property. A local version of this property was detailed in [25,
Proposition 2.2], which considered only the δ-ball in H−1 and required
k � 1 + δ2.

Lemma 2.14 (Global diffeomorphism property) Fix a strictly admissible k
and 1 ≤ L0 ≤ ∞. Then the mappings

q 
→ g(k) − 1
2k and q 
→ k − 1

2g(k)

arediffeomorphisms from H−1(R/2L0Z;R)onto their ranges in H1(R/2L0Z;
C), which are smoothly embedded submanifolds. In particular, one may
recover q from g via

q = [ g′(k)
2g(k)

]′ + [ g′(k)
2g(k)

]2 + [ 1
4g2(k)

− k2
]
. (2.25)

Proof The central point here is to prove (2.25). In view of Proposition 2.13,
both sides of this equality are analytic H−1-valued functions of q ∈ H−1.
Thus, it suffices to restrict attention to q ∈ C∞(R/2L0Z), in the case that L0
is finite, or to Schwartz class q, when L0 = ∞. In this setting (see [11]), we
may express the Green’s function in terms of the Weyl solutions

−ψ ′′± + qψ± = −k2ψ±

which we normalize to have Wronskian

ψ+(x)ψ ′−(x) − ψ ′+(x)ψ−(x) ≡ 1
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and to be square-integrable at ±∞, respectively. In this way, we have

g(x; q, k) = ψ+(x)ψ−(x),

which is nowhere-vanishing. Now we simply compute:

g′(k)
2g(k)

= ψ ′+
2ψ+

+ ψ ′−
2ψ−

so
( g′(k)
2g(k)

)′ = (q + k2) − 1
2

(ψ ′+
ψ+

)2 − 1
2

(ψ ′−
ψ−

)2

and thus

( g′(k)
2g(k)

)′ +
( g′(k)
2g(k)

)2 = (q + k2) − 1
4

(ψ ′+
ψ+

− ψ ′−
ψ−

)2 = q + k2 − 1

4g2(k)
,

by using the Wronskian relation. This proves (2.25).
We are now ready to show that both maps are global embeddings. From

Proposition 2.13 we know that the two mappings are smooth (indeed, real
analytic). On the other hand, (2.25) shows not only that the mappings are
injective but so is the differential:

[
1

2g(k)∂
2
x − 1

2g(k)
g′(k)
g(k) ∂x − 1

2g(k)

( g′(k)
g(k)

)′ − 1
2g3(k)

]
δg(k)
δq = Id.

Note that the operator in square brackets is bounded from H1 → H−1;
thus, the implicit function theorem guarantees that the mappings are indeed
smooth embeddings. ��

3 Invariance of white noise under the Hk flow on the torus

As in [25], an essential ingredient in our analysis will be the use of a suit-
able Hamiltonian approximation to the flow (1.1). We now introduce the key
quantities in our analysis, adapted from their definition in [25] to allow com-
plex parameters k. Specifically, for 1 ≤ L0 ≤ ∞, q ∈ H−1(R/2L0Z), and k
strictly admissible, we define

ρ(x; q, k) := k − 1
2g(x;q,k) + 1

2

∫
R

e−2k|x−y|q(y) dy, (3.1)

α(q, k) :=
∫ L0

−L0

ρ(x; q, k) dx, (3.2)

Hk(q) := Re
{
−16k5α(q, k) + 2k2

∫ L0

−L0

q(x)2 dx
}
. (3.3)
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Naturally, many identities derived in [25] carry over immediately, either by
analytic continuation, or by simply repeating the earlier arguments. Note that

ρ(x; q, k̄) = ρ(x; q, k) and correspondingly, α(q, k̄) = α(q, k).

The necessity of considering complex k stems from the fact that we must
simultaneously avoid the spectrumof Hq for all samples ofwhite noise in order
to define the resolvents R(q, k) as random variables (cf. Proposition 2.13). In
particular, while white noise almost surely belongs to H−1 on the torus (in
fact, the distribution of its H−1 norm has exponential tails), there is no choice
of κ0 > 0 such that R(q, κ) exists almost surely for all κ ≥ κ0.

Note that formally, at least, the Hk flows approach the KdV flow as |k| →
∞. Indeed, as was discussed in [25], for Schwartz functions q one has

α(q, k) = 1
4k3

P(q) − 1
16k5

HKdV(q) + O( 1
k7

),

where P(q) = 1
2

∫
q2 is the momentum (i.e. generator of translations).

We first establish an H−1 global well-posedness result for theHk flows on
the torus. For k ≥ 1 and data small in H−1, this appears already in [25]. The
argument here differs in two ways from that in [25]: k is complex and (more
significantly) we consider arbitrarily large H−1 data.

Proposition 3.1 Fix L0 ≥ 1 and k strictly admissible. Then the Hamiltonian
flow induced byHk ,

d
dt q(x) = Re

{
16k5g′(x; k) + 4k2q ′(x)

}
, (3.4)

is globally well-posed on H−1(R/2L0Z) and commutes with the KdV flow.
If q evolves according to (3.4), then for any strictly admissible � �= k the
diagonal Green’s function obeys

∂t
1

2g(�)
=
[
k2+k̄2
g(�)

− 2k5

k2−�2
g(k)
g(�)

− 2k̄5

k̄2−�2
g(k̄)
g(�)

]′
. (3.5)

Proof The derivation of (3.4) and (3.5) is easily adapted from the correspond-
ing statements in [25, Proposition 3.2], where k, � were real with � �= k ≥ 1.

We turn to the question of well-posedness. We rewrite (3.4) in Duhamel
form:

q(t) = e4Re k
2t∂q(0) +

∫ t

0
e4Re k

2(t−s)∂Re [16k5g′(q(s), k)] ds. (3.6)

To establish local well-posedness, it suffices to prove that q 
→ g′(q, k) is
Lipschitz from any ball in H−1 into H−1. Equivalently, we may show that
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q 
→ g(q, k) is Lipschitz from any ball in H−1 into L2. To this end, we let
q0 �= q1 in Br (0) ⊂ H−1 and endeavor to estimate

|〈g(q1, k) − g(q0, k), h〉| =
∣∣∣∣
∫ 1

0
tr{R(qθ , k)(q1 − q0)R(qθ , k)h} dθ

∣∣∣∣,

where h ∈ L2 is a unit vector, qθ := θq1 + (1 − θ)q0, and we have utilized
(2.24). To proceed, we omit the dependence on qθ (using only that ‖qθ‖H−1 ≤
2r ), write f = q1 − q0, and let κ0 ≥ 1 to be chosen below. Using (2.17), we
estimate

|tr{R(k) f R(k)h}|
≤ |tr{R(κ0) f R(κ0)h}| (3.7)

+ |k2 − κ2
0 | |tr{

√
R(κ0)R(k)

√
R(κ0) f R(κ0)h}| (3.8)

+ |k2 − κ2
0 | |tr{R(κ0) f

√
R(κ0)R(k)

√
R(κ0)h}| (3.9)

+ |k2 − κ2
0 |2|tr{

√
R(κ0)R(k)

√
R(κ0) f

√
R(κ0)R(k)

√
R(κ0)h}|. (3.10)

We first use (2.22) to get

(3.7) � κ−1
0 ‖ f ‖H−1‖h‖L2

provided κ0 � 1 + r2. Similarly, using (2.23) and (2.21), we can bound

(3.8) + (3.9) � |k2−κ20 |
σ

κ−1
0 ‖ f ‖H−1‖h‖L2

and

(3.10) � |k2−κ20 |2
σ 2 κ−1

0 ‖ f ‖H−1‖h‖L2 .

We conclude that q 
→ g(q, k) is Lipschitz from any ball in H−1 into L2,
which implies local well-posedness for theHk flow.

Global well-posedness follows from the conservation of α, which in turn
follows from (3.5) as in [25, Proposition 3.2]. Indeed, as

α(q, �) ≈ 1
�
‖q‖2

H−1
�

provided � � 1 + ‖q‖2
H−1

�
(3.11)

(cf. [25, Equation (2.20)] and [25, Equation (6.10)]), conservation of α yields

sup
t∈R

‖q(t)‖H−1 ≤ C
[‖q(0)‖H−1 + ‖q(0)‖3H−1

]
(3.12)

123



Invariance of white noise 227

for some absolute constant C > 0.
As α and the momentum P are both conserved by the Hk and KdV flows,

we see that not only do KdV and Hk commute, but so do Hk and H� for any
strictly admissible k, �. ��

Next, we wish to observe that for a given initial data, theHk flows converge
to the KdV flow as |k| → ∞. In the case where k > 0, this was proved both on
the line and on the torus in [25, Theorem 5.1]. With Proposition 3.1 in place,
minor modifications are needed to treat complex k.

Proposition 3.2 (Convergenceofflows)Fix L0 ≥ 1andq0 ∈ H−1(R/2L0Z).
Given k strictly admissible, let qk denote the global solution to the Hk flow
with initial data q0 and let q denote the solution to KdV with the same initial
data. For any T > 0, we have

lim|k|→∞ sup
|t |≤T

‖q(t) − qk(t)‖H−1 = 0.

As white noise on the torus is almost surely in H−1, Proposition 3.1 allows
us to solve the Hk flow (3.4) on any torus with white noise initial data. We
next prove that this flow preserves white noise measure.

Theorem 3.3 Fix L0 ≥ 1 and k strictly admissible. The Hk flow (3.4) pre-
serves white noise measure on R/2L0Z.

Proof Suppose, contrary to the theorem, that white noise is not preserved by
the Hk flow (3.4). Then there is a Schwartz function φ and a time T > 0 so
that

E

{
ei〈φ,q(T )〉} �= e− 1

2

∫
φ2

. (3.13)

Here q(t) denotes the solution to the Hk flow with white-noise initial data.
Proceeding with this choice of φ and T , we define f : R × H−1 → C by

f (t, q) = exp
(
i
〈
φ, e(T−t)J∇Hk q

〉)
.

Note that by the proof of Proposition 3.1, the data-to-solution map for the
Hk flow is smooth on H−1 with derivatives growing at most polynomially.
Correspondingly, q 
→ f (t, q) is smooth and

∥∥ δ f (t,q)
δq

∥∥
H1 �

[
1 + ‖q‖H−1

]C
(3.14)

uniformly for t ∈ [0, T ] and some absolute constant C .
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Given the manner in which f is defined and the fact that q(0) is white noise
distributed, we may recast (3.13) as

E
{
f (0, q(0))

} �= E
{
f (T, q(0))

}
.

The remainder of this proof is devoted to refuting this assertion by proving
that

∂tE
{
f (t, q(0))

} ≡ 0. (3.15)

Using the group property of a well-posed flow and translation invariance of
white noise, we have

E

{
f (t + h, q(0))

}
= E

{
f
(
t, e−h J∇Hk q(0))

}
= E

{
f
(
t, e−h J∇Hk e4Re k

2h∂q(0)
)}

.

On the other hand, by the Duhamel formula (3.6),

d
dh

∣∣∣
h=0

[e−h J∇Hk e4Re k
2h∂q(0)] = −16Re k5g′(x; q(0), k).

In this way, we deduce that E{ f (t, q(0))} is differentiable with respect to t
and

∂tE
{
f (t, q(0))

}
= E

{
−16

〈 δ f
δq (t, q(0)), Re k5g′(q(0), k)

〉}
.

Thus, it suffices to show that

E

{〈
δF
δq (q(0)), g′(q(0), k)

〉} = 0 (3.16)

for any function F ∈ D2
1; see (2.14). Note that q 
→ f (t, q) satisfies (2.14)

by virtue of (3.14).
In order to verify (3.16), it suffices to treat a dense class of functions in D2

1.
A convenient class of such functions are ‘polynomials’, that is, finite linear
combinations of functions of the form F(q) = ∏

n〈ϕn, q〉 where ϕn are (not
necessarily distinct) finitelymanySchwartz functions. In fact, theHilbert space
D2
1 admits an orthogonal basis of such polynomials, namely, finite products of

Hermite polynomials in the individual Xk appearing in (2.10); see [31, Chapter
V].

In what follows, we write q(0) = q and g(q(0), k) = g. We begin with the
case of monomials: F(q) = 〈ϕ, q〉n , where ϕ ∈ S is fixed. Differentiating F
and then integrating by parts, we are left to prove

E
{〈ϕ, q〉n−1〈ϕ′, g〉} = 0. (3.17)
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We proceed by induction. If n = 1, the desired result follows from trans-
lation invariance of white noise, which guarantees that the law of g is also
translation invariant. Indeed, we have

0 = ∂h

∣∣∣
h=0

E
{〈ϕh, g〉

} = E
{〈ϕ′, g〉},

where ϕh(x) = ϕ(x + h).
Now suppose n ≥ 2 and that (3.17) holds for monomials of lesser degree.

By translation invariance,

0 = ∂h

∣∣∣
h=0

E
{〈ϕh, q〉n−1〈ϕh, g〉

}
.

Using this identity and then applying Lemma 2.9 in the direction ϕ′, the fact
that 〈ϕ, ϕ′〉 = 0, and (2.24), we get

E
{〈ϕ, q〉n−1〈ϕ′, g〉} = −(n − 1)E

{〈ϕ, q〉n−2〈ϕ′, q〉〈ϕ, g〉}
= (n − 1)E

{〈ϕ, q〉n−2tr{R(q)ϕR(q)ϕ′}}. (3.18)

On the other hand, applying Lemma 2.9 in the direction ϕ, using (2.24), and
recalling the inductive hypothesis, we compute

E
{〈ϕ, q〉n−1〈ϕ′, g〉} = (n − 2)E{〈ϕ, q〉n−3〈ϕ′, g〉} − E{〈ϕ, q〉n−2tr{R(q)ϕR(q)ϕ′}}

= −E
{〈ϕ, q〉n−2tr{R(q)ϕR(q)ϕ′}}.

Comparing with (3.18), we deduce

E{〈ϕ, q〉n−1〈ϕ′, g〉} = 0,

as desired. This concludes the proof of (3.16) for the case of monomials.
Simple algebra (applying the above to linear combinations of test func-

tions) allows one to pass from the case of monomials to multinomials F(q) =∏
n〈ϕn, q〉 and thence to polynomials, as desired. ��
We are now in a position to present a new proof of the invariance of white

noise for KdV on the torus. As noted in the introduction, this result was shown
previously in [40,41,43,46] by differentmethods. The problemof constructing
dynamics for white noise initial data was resolved earlier in [23], which proved
well-posedness on the whole space q0 ∈ H−1(R/2L0Z). Note that while our
construction of the solutions follows [25], the solutions themselves coincide
with the Kappeler–Topalov solutions; they are the unique limits of smooth
solutions.
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Theorem 3.4 (Invariance of white noise for KdV on the torus)Fix L0 ≥ 1 and
let q0 be white noise distributed on R/2L0Z. Let q denote the global solution
to KdV with initial data q0. Then q(t) is white noise distributed for all t ∈ R.

Proof As q0 ∈ H−1(R/2L0Z) almost surely, we can solve both the Hk flow
(for any k strictly admissible) and KdV with initial data q0, yielding global
solutions qk and q, respectively. By Theorem 3.3, we have that qk(t) is white
noise distributed at each t ∈ R.

For t ∈ R, Proposition 3.2 yields

lim|k|→∞ ‖q(t) − qk(t)‖H−1 = 0 almost surely.

In particular, for any ϕ ∈ S we have

lim|k|→∞〈ϕ, qk(t)〉 = 〈ϕ, q(t)〉 almost surely.

Thus, by dominated convergence and the fact that qk(t) is white noise dis-
tributed, we deduce

E
{
ei〈ϕ,q(t)〉} = exp

{−1
2‖ϕ‖2L2

}
,

which completes the proof. ��
Remark 3.5 In the preceding argument, we approximated KdV on the torus
using Hk flows with strictly admissible k. This anticipates the approach we
will take later when we consider KdV on the line, in which case it is necessary
to restrict to complex k.

However, if one is only interested in the torus, then it is enough to use Hκ

flows with real κ , even though these flows cannot be defined for all samples
of white noise. Fixing r > 0, we define κr = δ−1(1 + r2),

Br = {q : ‖q‖H−1
κr

≤ r and α(q, κr ) < δ}, and �r = {ω : q0 ∈ Br },

where δ > 0 is a small constant dictated by the results of [25]. From that paper
we see that for κ ≥ κr , theHκ flow is globally well-posed on the set Br which
is invariant under the flow. Moreover, Br is also invariant for the KdV flow
and theHκ flows converge to KdV on Br as κ → ∞. As the probability of �c

r
is exponentially small, this is sufficient to prove that the solution q(t) to KdV
is white noise distributed at each t . Indeed, for any r > 0, one has

E
{
ei〈ϕ,q(t)〉} = E

{
1�r e

i〈ϕ,q(t)〉}+ O(e−cr )

= lim
κ→∞E

{
1�r e

i〈ϕ,qκ (t)〉}+ O(e−cr )
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= lim
κ→∞E

{
1�r e

i〈ϕ,qκ (0)〉}+ O(e−cr )

= exp{−1
2‖ϕ‖2L2} + O(e−cr ).

Sending r → ∞ yields the result.

4 Single scale analysis

Throughout this section we restrict L0 ∈ 2N0 ∪ {∞} and let q be white noise
distributed on R. For dyadic 1 ≤ L ≤ L0 ∈ 2N0 , we define

qL(x) =
∑
n∈Z

[
1[−L ,L]q

]
(x − 2nL0), (4.1)

which produces a distribution that is 2L0-periodic. If L0 = ∞ and L ∈ 2N0 ,
we set

qL(x) = [
1[−L ,L]q

]
(x).

We further define

RL(k) = (HL + k2)−1,

for strictly admissible k, where HL is the Schrödinger operator with potential
qL (cf. Proposition 2.13).

Given a sample from white noise on the line, the L = L0 case of (4.1)
provides a recipe for constructing a copy of white noise on the torus R/2L0Z.
Indeed, this is precisely the manner in which we will ultimately couple our
evolution problems on the line and on the torus. The rationale for allowing
L < L0 will not be apparent in this section; rather, it is inspired by the needs
of the multiscale analysis in the next section. In fact, the ‘multiple scales’ are
precisely the different values of L , as we successively ‘reveal’ ever more of
the potential by sending L → L0.

The main results of this section are probabilistic estimates for the operators
RL(k). While the bounds we obtain in this section do deteriorate as L → ∞,
they provide the crucial foundation for the next section, where we employ
multiscale analysis to obtain bounds independent of L and L0. We begin with
the following lemma.

Lemma 4.1 For κ > 0, q white noise distributed, φ ∈ L2, and 1 ≤ p < ∞,

E
{∥∥√R0(κ)qφ

√
R0(κ)

∥∥p
I2

}
�p ‖φ‖p

L2κ
−p.
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Proof Lemma 2.11 implies

E
{∥∥√R0(κ)qφ

√
R0(κ)

∥∥2
I2

} = 1
κ

∫
R

E{|φ̂q(ξ)|2}
ξ2 + 4κ2 dξ. (4.2)

As q is white noise distributed, we have that

E{|φ̂q(ξ)|2} = 1
2πE

{|〈φe−i xξ , q〉|2}
= 1

2πE
{[〈cos(xξ)φ, q〉]2 + [〈sin(xξ)φ, q〉]2}

= 1
2π

∫
[φ(x)]2[cos2(xξ) + sin2(xξ)] dx = 1

2π ‖φ‖2L2, (4.3)

uniformly in ξ . Continuing from (4.2) we deduce

E
{‖√R0(κ)qφ

√
R0(κ)‖2I2

} = 1
4κ2

‖φ‖2L2, (4.4)

which settles p = 2. To extend this to 1 ≤ p < ∞, we use the fact that the
square of the Hilbert–Schmidt norm is a quadratic form in Gaussian random
variables (cf. (2.10)) and Lemma 2.1. ��

Before we state the next lemma, we remind the reader of the notation A(κ0)

from Definition 2.10.

Lemma 4.2 There exists c > 0 such that

P

{
sup

k∈A(κ0)

|k|κ0‖
√
R0(k)qL

√
R0(k)‖2L2→L2 ≥ λ

}
� e−cλ (4.5)

uniformly for κ0 ≥ 1, 2 ≤ L ≤ L0, and λ ≥ c−1 log L.
Consequently, for 1 ≤ p < ∞ and κ ≥ 1,

E
{‖qL‖p

H1
κ →H−1

κ

}
�p [log L] p

2 κ−p. (4.6)

Proof We begin by choosing ϕ ∈ C∞
c (R) satisfying

∑
n∈Z

ϕ2
n(x) = 1, where ϕn(x) = ϕ(x − n),

as well as ϕnϕm ≡ 0 for |n − m| > 1. Consider

Qn :=
∑

κ∈κ02N0

κκ0‖
√
R0(κ)qLϕ2

n

√
R0(κ)‖2I2
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and observe the following large deviation bound

P

{
Qn ≥ μ

}
� e−c0μ, (4.7)

which holds for some fixed c0 > 0, uniformly over n ∈ Z. Indeed, arguing as
in the proof of Lemma 4.1 (see (4.4)) and performing a change of variables,
we may write

E

{ ∑
κ∈κ02N0

κκ0‖
√
R0(κ)qLϕ2

n

√
R0(κ)‖2I2

}
≈

∑
κ∈κ02N0

κ0
κ ‖ϕ2

n‖2L2 ≈ ‖ϕ2‖2L2 � 1.

Thus, by Lemma 2.1, we have

E
{
ec0Qn

}
� 1

for some c0 > 0, which guarantees (4.7).
Next, we observe that {Qn : n odd} and {Qn : n even} are sets of only

O(L)-many distinct random variables. Moreover, each set is comprised of
independent random variables; see Remark 2.8. Thus, by Lemma 2.2,

P

{
sup
n∈Z

Qn ≥ λ

}
�
{
1 λ < c−1 log L

e−cλ λ ≥ c−1 log L
(4.8)

for some absolute c > 0.
Next, fix f ∈ L2 and define

fn :=
√

−∂2 + κ2ϕn

√
R0(κ) f,

which satisfy

∑
n

‖ fn‖2L2 � ‖ f ‖2L2 .

Exploiting self-adjointness and writing

1 =
∑
n

ϕ2
n =

∑
|n−m|≤1

ϕ2
nϕ

2
m,

we get

〈 f,√R0(κ)qL
√
R0(κ) f 〉 =

∑
|n−m|≤1

〈 fm,
√
R0(κ)qLϕ2

n

√
R0(κ) fm〉.
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We can now apply Cauchy–Schwarz to deduce

∣∣〈 f,√R0(κ)qL
√
R0(κ) f 〉∣∣ �

∑
m

‖ fm‖2L2 sup
n

‖√R0(κ)qLϕ2
n

√
R0(κ)‖L2→L2 . (4.9)

By duality and polarization, (4.9) implies

‖√R0(κ)qL
√
R0(κ)‖L2→L2 � sup

n
‖√R0(κ)qLϕ2

n

√
R0(κ)‖L2→L2 . (4.10)

Using this together with

sup
κ∈κ02N0

κκ0 sup
n

‖√R0(κ)qLϕ2
n

√
R0(κ)‖2L2→L2 � sup

n
Qn

and (4.8), we deduce

P

{
sup

κ∈κ02N
κκ0‖

√
R0(κ)qL

√
R0(κ)‖2L2→L2 ≥ λ

}
� e−cλ,

uniformly for κ0 ≥ 1, L ≥ 2, and λ ≥ c−1 log L . This finally implies (4.5), as
we have the bound

‖√R0(k)(−∂2 + κ2)
1
2 ‖L2→L2 � 1,

uniformly for k ∈ A(κ0) with κ ≤ |k| ≤ 2κ . This then yields (4.6) by the
standard argument. ��

We now turn to our first key result of this section.

Proposition 4.3 The following holds uniformly for finite L satisfying 2 ≤ L ≤
L0 ∈ 2N ∪ {∞}: There exists 0 < c0 < 1 such that for any κ1 ≥ c−1

0
√
log L,

there is an event � = �(κ1) on which

∥∥∥∥
√
R∗
L(k)RL(k)

∥∥∥∥
H−1

κ →H1
κ

� 1 if κ ≥ κ1,

∥∥∥∥
√
R∗
L(k)RL(k)

∥∥∥∥
H−1

κ1 →H1
κ1

� 1 + κ21
σ

if κ ≤ κ1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.11)

uniformly for strictly admissible k, where we used the notations (2.15). More-
over,

P(�c) � e−c0κ21 .
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Before proving this proposition, let us record a useful corollary.

Corollary 4.4 Define

XL(k) := ∥∥√RL(k)
∥∥2
L2→H1

κ
= ∥∥√RL(k)

∥∥2
H−1

κ →L2 ≥ ‖RL(k)‖H−1
κ →H1

κ
.

(4.12)

There exists c > 0 such that

P
{
XL(k) ≥ λ

}
� e−cλ for all λ ≥ c−1 log L ,

uniformly for finite L satisfying 2 ≤ L ≤ L0 ∈ 2N ∪ {∞} and strictly admis-
sible k. Consequently, for 0 < p < ∞, we have

E

{∥∥√RL(k)
∥∥p
L2→H1

κ

}
= E

{∥∥√RL(k)
∥∥p
H−1

κ →L2

}
�p [log L] p

2 ,

uniformly in 2 ≤ L ≤ L0 and strictly admissible k. In particular,

E

{
‖RL(k)‖p

H−1
κ →H1

κ

}
�p [log L]p. (4.13)

Proof Let c0 be the constant appearing in Proposition 4.3. Given λ ≥
c−2
0 log L , we may choose κ2

1 = aλ for some small a > 0 (meant to defeat the
implicit constants appearing in (4.11)) and apply Proposition 4.3 to deduce

P
{
XL(k) ≥ λ

}
� e−ac0λ

uniformly in L and over strictly admissible k.
For 0 < p < ∞ we estimate as follows:

E
{|XL(k)| p

2
} = p

2

∫ ∞

0
λ

p
2 P
{|XL(k)| ≥ λ

}dλ
λ

�p

∫ c−2
0 log L

0
λ

p
2 dλ

λ
+
∫ ∞

c−2
0 log L

λ
p
2 e−ac0λ dλ

λ
�p

[
log L

] p
2 .

The result follows by choosing c ≤ c0 min{a, c0}. ��
Proof of Proposition 4.3 Our task is to estimate the random variables

XL(k) = ∥∥√RL(k)
∥∥2
L2→H1

κ
= ∥∥√RL(k)

∥∥2
H−1

κ →L2 = ∥∥√R∗
L(k)RL(k)‖H−1

κ →H1
κ
.
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Given κ1 > 0, let � = �(κ1) denote the event

‖√R0(k)qL
√
R0(k)‖2L2→L2 ≤ 1

2
κ1|k| for all k ∈ A(κ1). (4.14)

Note that the event �(κ1) grows as κ1 grows.
By Lemma 4.2 we have the estimate

P(�c) � e−cκ21 provided κ2
1 ≥ 2c−1 log L . (4.15)

In the following, we work on the set �. On this set and for k ∈ A(κ1), we
may construct RL(k) via the series expansion

RL(k) = R0(k) +
∑
�≥1

(−1)�
√
R0(k)

(√
R0(k)qL

√
R0(k)

)�√
R0(k).

In particular, we have the estimate

‖RL(k) − R0(k)‖H−1
κ →H1

κ
�
√

κ1
κ

for all k ∈ A(κ1). (4.16)

We next observe that

XL(k) ≈
∥∥∥∥
∫ ∞

0
R∗
L(kτ )RL(kτ ) dτ

∥∥∥∥
H−1

κ →H1
κ

, (4.17)

where

kτ :=
√
k2 + iτ with τ ∈ (0, ∞).

Writing k2 = E + iσ , this is a consequence of the fact that

∫ ∞
0

∣∣(λ + E) + i(σ + τ)
∣∣−2 dτ = 1√

λ+E−iσ
m(λ) 1√

λ+E+iσ
with m(λ) ≈ 1

along with the spectral theorem.
We first consider the case κ ≥ κ1 and seek to prove the estimate

∥∥∥∥
∫ ∞

0
R∗
L(kτ )RL(kτ ) dτ

∥∥∥∥
H−1

κ →H1
κ

� 1. (4.18)

Note that in this case, κτ ∈ A(κ1).
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We begin with the identity

R∗
L RL = −(R∗

L − R∗
0 )(RL − R0) + R∗

L (RL − R0) + (R∗
L − R∗

0 )RL + R∗
0 R0,

(4.19)

where each resolvent is evaluated at kτ . The contribution to (4.18) of the last
term on the right-hand side of (4.19) is straightforward to estimate: applying
(4.17) again, we get

∥∥∥∥
∫ ∞

0
R∗
0(kτ )R0(kτ ) dτ

∥∥∥∥
H−1

κ →H1
κ

�
∥∥√R∗

0(k)R0(k)
∥∥
H−1

κ →H1
κ

� 1,

which is acceptable.
The contributions of the second and third terms on the right-hand side of

(4.19) can be handled similarly; we present here the details for the second
term. We begin with the estimate

∥∥R∗
L(kτ )[RL(kτ ) − R0(kτ )]

∥∥
H−1

κ →H1
κ

� ‖1‖H1|kτ |→H1
κ
‖R∗

L(kτ )‖H−1
|kτ |→H1|kτ |

‖1‖H1|kτ |→H−1
|kτ |

× ‖RL(kτ ) − R0(kτ )‖H−1
|kτ |→H1|kτ |

‖1‖H−1
κ →H−1

|kτ |
.

To estimate these norms we first observe that |kτ | ≥ κ , so that

‖1‖H−1
κ →H−1

|kτ |
+ ‖1‖H1|kτ |→H1

κ
� 1.

By (2.1), we also have the estimate

‖1‖H1|kτ |→H−1
|kτ |

� 1
κ2+τ

. (4.20)

Thus, as kτ ∈ A(κ1), we may continue from above and use (4.16) to deduce

∥∥R∗
L(kτ )[RL(kτ ) − R0(kτ )]

∥∥
H−1

κ →H1
κ

�
√

κ1

(κ2 + τ)
5
4

.

By the triangle inequality, this gives the acceptable contribution

∥∥∥∥
∫ ∞

0
R∗
L(kτ )[RL(kτ ) − R0(kτ )] dτ

∥∥∥∥
H−1

κ →H1
κ

�
√

κ1
κ

.
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Finally, for the first term on the right-hand side of (4.19), an analogous
argument yields the estimate

∥∥[R∗
L(kτ ) − R∗

0(kτ )][RL(kτ ) − R0(kτ )]
∥∥
H−1

κ →H1
κ

� κ1

(κ2+τ)
3
2
,

whence
∥∥∥∥
∫ ∞

0
[R∗

L(kτ ) − R∗
0(kτ )][RL(kτ ) − R0(kτ )] dτ

∥∥∥∥
H−1

κ →H1
κ

� κ1
κ

,

which is acceptable.
It remains to consider the case κ ≤ κ1, where (4.11) will follow from

∥∥∥∥
∫ ∞

0
R∗
L(kτ )RL(kτ ) dτ

∥∥∥∥
H−1

κ1 →H1
κ1

� 1 + κ21
σ

. (4.21)

We will split the integral in τ into the regions [0, κ2
1 ] and [κ2

1 , ∞).
We begin with the region [κ2

1 , ∞). Defining

k̃ =
√
k2 + iκ2

1 , κ̃ = |k̃|, and k̃τ =
√
k2 + iκ2

1 + iτ

and observing that κ1 ≤ κ̃ , we can change variables and bound

∥∥∥∥
∫ ∞

κ21

R∗
L(kτ )RL(kτ ) dτ

∥∥∥∥
H−1

κ1 →H1
κ1

≤
∥∥∥∥
∫ ∞

0
R∗
L(k̃τ )RL(k̃τ ) dτ

∥∥∥∥
H−1

κ̃
→H1

κ̃

.

As k̃τ ∈ A(κ1) for τ ∈ (0, ∞), we are in a position to estimate the term on the
right-hand side exactly as we did for (4.18). In particular, we deduce

∥∥∥∥
∫ ∞

κ21

R∗
L(kτ )RL(kτ ) dτ

∥∥∥∥
H−1

κ1 →H1
κ1

� 1.

We turn to the region [0, κ2
1 ]. Using the resolvent identity

RL(kτ ) = RL(κ1) − (k2τ − κ2
1 )
√
RL(κ1)RL(kτ )

√
RL(κ1),
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we find that it suffices to estimate the following three terms:

∫ κ21

0
‖R∗

L (κ1)RL (κ1)‖H−1
κ1 →H1

κ1
dτ, (4.22)

∫ κ21

0
|k2τ − κ21 |‖R∗

L (κ1)
√
RL (κ1)RL (kτ )

√
RL (κ1)‖H−1

κ1 →H1
κ1

dτ, (4.23)
∫ κ21

0
|k2τ − κ21 |2‖

√
R∗
L (κ1)R

∗
L (kτ )

√
R∗
L (κ1)

√
RL (κ1)RL (kτ )

√
RL (κ1)‖H−1

κ1 →H1
κ1

dτ. (4.24)

For (4.22), we observe that (4.16) implies

‖RL(κ1)‖H−1
κ1 →H1

κ1
+ ‖R∗

L(κ1)‖H−1
κ1 →H1

κ1
� 1.

Combining this with (2.1), we estimate (4.22) � 1, which is acceptable.
Next, we have

(4.23) �
∫ κ21

0
κ2
1

{‖R∗
L(κ1)‖H−1

κ1 →H1
κ1

‖1‖H1
κ1

→H−1
κ1

‖√RL(κ1)‖L2→H1
κ1

× ‖RL(kτ )‖L2→L2‖
√
RL(κ1)‖H−1

κ1 →L2

}
dτ.

Using (2.21) with Im(k2τ ) = τ + σ , (2.1), and the fact that (4.11) is already
proved for κ = κ1, we get

(4.23) �
∫ κ21

0

dτ
τ+σ

� κ21
σ

,

which is an acceptable contribution to (4.21).
Finally we turn to (4.24). Estimating in the same way,

(4.24) �
∫ κ21

0
κ4
1

{‖
√
R∗
L(κ1)‖L2→H1

κ1
‖R∗

L(kτ )‖L2→L2‖
√
R∗
L(κ1)‖H−1

κ1 →L2

× ‖1‖H1
κ1

→H−1
κ1

‖√RL(κ1)‖L2→H1
κ1

‖RL(kτ )‖L2→L2

× ‖√RL(κ1)‖H−1
κ1 →L2

}
dτ

�
∫ κ21

0

κ21
(τ+σ)2

dτ � κ21
σ

,

which is acceptable.
This completes the proof of (4.21) and hence the proof of Proposition 4.3.��
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The remaining three propositions in this section are devoted to exhibit-
ing decay of the resolvent away from the diagonal. We begin by running the
Combes–Thomas argument with a generic weight eρ for ρ belonging to the
class

W (λ) := {
ρ : R → R such that ‖ρ′‖L∞ ≤ λ− 1

2
}

(4.25)

for λ > 0. We then employ certain concrete choices of weight to obtain our
main results, namely, Propositions 4.6 and 4.7 . Recall that we employed the
Combes–Thomas argument earlier when proving Lemma 2.12.

Proposition 4.5 There exists c > 0 such that

P
{‖eρRL(k)e−ρ‖H−1

κ →H1
κ

≥ λ
}

� e−cλ for all λ ≥ c−1 log L ,

(4.26)

uniformly over finite L satisfying 2 ≤ L ≤ L0 ∈ 2N0∪{∞}, strictly admissible
k, and ρ ∈ W (λ).

Proof Let κ1 � √
log L and take � = �(κ1) as in Proposition 4.3. In view

of (4.15), it suffices to show that for ρ ∈ W (λ) we have

‖eρRL(k)e−ρ‖H−1
κ →H1

κ
≤ λ on �,

provided λ and κ1 are chosen appropriately.
Given ρ ∈ W (λ), we may write

eρ(x)(−∂2x + qL + k2
)
e−ρ(x) = −∂2x + qL + k2 + Bρ, (4.27)

where Bρ is the differential operator

Bρ := ρ′(x)∂x + ∂xρ
′(x) − ρ′(x)2.

Note that

eρRL(k)e−ρ = √
RL(k)

(
1 +√

RL(k)Bρ

√
RL(k)

)−1√
RL(k).

By duality, one can readily show that

‖Bρ‖H1
ζ →H−1

ζ
≤ 2ζ−1‖ρ′‖L∞ + ζ−2‖ρ′‖2L∞
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for any ζ > 0. Thus for ρ ∈ W (λ) and ζ = max{κ, κ1}, Proposition 4.3 yields

‖√RL (k)Bρ

√
RL (k)‖L2→L2 ≤ ‖√RL (k)‖H−1

ζ →L2‖Bρ‖H1
ζ →H−1

ζ
‖√RL (k)‖L2→H1

ζ

�
(
1 + κ21

σ

)( 1√
λκ1

+ 1
λκ21

)
on �.

Hence, choosing κ1 = a
√

λ for a small a > 0, which is consistent with
κ1 � √

log L if we choose c appearing in (4.26) sufficiently small, we deduce

‖√RL(k)Bρ

√
RL(k)‖L2→L2 ≤ 1

2

on � for all strictly admissible k and for all ρ ∈ W (λ). Thus, with ζ =
max{κ, κ1},

‖eρRL (k)e−ρ‖H−1
κ →H1

κ
� ‖√RL (k)‖L2→H1

ζ
‖√RL (k)‖H−1

ζ →L2 � 1 + κ21
σ

� 1 + a2λ

on �. The result follows by choosing a and c suitably small. ��
To continue, let χ1 ∈ C∞

c (R) be a bump function satisfying

1[−1,1] ≤ χ1 ≤ 1[−2,2].

For n ∈ 2N we define

χn(x) := χ1(
x
n ) − χ1(

2x
n ), (4.28)

which yields the smooth partition of unity

∑
n∈2N0

χn ≡ 1.

Note that for n > 1,χn is supported in {n2 ≤ |x | ≤ 2n}. In particular,χnχm ≡ 0
for 1 ≤ n ≤ m

4 .
By construction we have

‖χ ′
n‖L∞ � 1 uniformly in n ∈ 2N0,

which by (2.4) implies

‖χn‖H1
κ →H1

κ
= ‖χn‖H−1

κ →H−1
κ

� 1 uniformly in n ∈ 2N0 and κ ≥ 1.

(4.29)
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Proposition 4.6 Fix 0 < α < 1
2 . For 1 ≤ p < ∞, we have

E
{∥∥χm RL (k)χn

∥∥p
H−1

κ →H1
κ

} = E
{∥∥χn RL (k)χm

∥∥p
H−1

κ →H1
κ

}
�p,α [log(L)]pe−8p〈m〉α

uniformly for n,m ∈ 2N0 with n ≤ 1
8m, finite L satisfying 2 ≤ L ≤ L0 ∈

2N ∪ {∞}, and strictly admissible k.
Proof The two operators under consideration have the same norm since they
are transposes of one another. Thus we only consider χmRL(k)χn in what
follows.

Fix n ≤ 1
8m and strictly admissible k. We define the weight ρ via

ρ(x) =
{
20〈x〉α |x | ≥ m

2

0 |x | ≤ 2n
,

and by linear interpolation in the remaining intervals. By construction,

‖ρ′‖L∞ � 〈m〉α−1,

and thus ρ ∈ W (λ) with λ ≈ 〈m〉2(1−α) (cf. (4.25)). By (2.4),

‖e−ρχm‖H1
κ →H1

κ
� e−10〈m〉α and ‖eρχn‖H−1

κ →H−1
κ

� 1.

We define �lo to be the event

‖eρRL(k)e−ρ‖H−1
κ →H1

κ
≤ 〈m〉2(1−α) + c−1 log L ,

where c is as in Proposition 4.5.
We estimate

E
{
1�lo‖χm RLχn‖p

H−1
κ →H1

κ

}
�p ‖e−ρχm‖p

H1
κ →H1

κ
‖eρχn‖p

H−1
κ →H−1

κ
[〈m〉2(1−α) + log L]p

�p,α [log L]pe−8p〈m〉α ,

which is an acceptable contribution.
Next, using Proposition 4.5, (4.13), and (4.29), we estimate

E
{
1�c

lo
‖χmRLχn‖p

H−1
κ →H1

κ

}
� [P(�c

lo

)] 12
√
E
{‖χmRLχn‖2pH−1

κ →H1
κ

}

� e− c
2 〈m〉2(1−α)

√
E
{‖RL‖2p

H−1
κ →H1

κ

}
�p,α e−8p〈m〉α [log L]p,

which is also acceptable. This completes the proof of Proposition 4.6. ��
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At this point a word of explanation is warranted regarding the sub-
exponential decay appearing in Proposition 4.6 and recurrently through the
remainder of the paper. First, and most important, is the fact that this type of
decay suffices to prove all the results we need. On the other hand, polynomial
weights do not suffice. This is most evident in the dynamical arguments of
Sect. 6 where Gronwall arguments need to be applied. In this setting, unavoid-
able logarithmic losses in the volume (cf. Lemma 2.2) raised to a power greater
than one must be exponentiated. Thus one needs decay that is stronger than
polynomial in order to defeat them.

On the other hand, pure exponential decay of the resolvent would be a much
more difficult goal to pursue, and ultimately unnecessary. In particular, when
concatenating exponential decay from one cube to a second, and then on to
a third (which is an essential technique in multi-scale analysis), one has to
be extremely vigilant to avoid continually accumulating losses in the rate of
decay. The strict subadditivity of fractional powers, makes this a breeze in the
sub-exponential regime.

Proposition 4.7 Fix 0 < α < 1
2 , 0 < β ≤ 4, and 1 ≤ p < ∞. Then

E
{‖e±β〈x〉αχmRL(k)χne

∓β〈x〉α‖p

H−1
κ →H1

κ

}
�p,α,β [log L]p,

uniformly in finite L satisfying 2 ≤ L ≤ L0 ∈ 2N ∪ {∞}, m, n ∈ 2N with

m, n � [log L] 1
2(1−α) , and strictly admissible k.

Proof By transpose symmetry, it suffices to consider only the upper signs.
Moreover, the preceding proposition allows us to restrict our attention to the
case n

4 ≤ m ≤ 4n. We define

ρ(x) = β〈x〉α for n
8 ≤ |x | ≤ 8n

with ρ continuous and constant on each remaining interval. Note that

‖ρ′‖L∞ � nα−1.

In particular, ρ ∈ W (λ) for λ ≈ n2(1−α).
Let � denote the event

‖eρRL(k)e−ρ‖H−1
κ →H1

κ
≤ n2(1−α).

The restriction n � [log L] 1
2(1−α) allows us to apply Proposition 4.5 and obtain

P{�c} � e−cn2(1−α)

.
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Using Proposition 4.5 and (4.29), we now estimate

E
{
1�‖eβ〈x〉αχmRL(k)χne

−β〈x〉α‖p

H−1
κ →H1

κ

}

� E
{
1�‖eρRL(k)e−ρ‖p

H−1
κ →H1

κ

}

�p

∫ c−1 log L

0
μp−1dμ +

∫ n2(1−α)

c−1 log L
μp−1e−cμ dμ

�p [log L]p.

Applying Cauchy–Schwarz and using Corollary 4.4 as well, we estimate

E
{
1�c‖eβ〈x〉αχm RL(k)χne

−β〈x〉α‖p

H−1
κ →H1

κ

}

� [P{�c}] 1
2 epβ〈2m〉α [

E{‖RL(k)‖2p
H−1

κ →H1
κ

}] 1
2 �p,α,β [log L]p.

This completes the proof. ��

5 Multiscale analysis

The key idea of the multiscale analysis is to tame bad behavior in q by exploit-
ing decay of the resolvent away from the diagonal. Note that ergodicity of
white noise under translation on the line guarantees that such bad behavior is
inevitable. Our approach to multiscale analysis is to successively reveal the
potential on dyadic shells using the resolvent identity; archetypal examples
appear in (5.2) and (5.4) below. In both cases, the sum in L will be controlled
using decay of the resolvent in the form exhibited in Proposition 4.6.

The ultimate goal of the multiscale analysis is to obtain bounds indepen-
dent of the volume L0, such as those appearing in Proposition 5.2. These are
evidently essential if we are to send L0 → ∞, which is what will be done
in Sect. 6. However, our first application of this technique is Proposition 5.1,
which removes the limitations on m and n in the formulation of Proposi-
tion 4.7. In this setting, a logarithmic loss in L is unavoidable, as it originates
from contributions near the diagonal.

Proposition 5.1 Fix 0 < α < 1
2 and let ϕL be a smooth cutoff satisfying

1[−4L ,4L] ≤ ϕL ≤ 1[−8L ,8L]. (5.1)

For 1 ≤ p < ∞ and 0 < β ≤ 4, we have

E
{‖eβ〈x〉α RL(k)ϕLe

−β〈x〉α‖p

H−1
κ →H1

κ

}
�p [log L]2p,
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uniformly for finite L satisfying 2 ≤ L ≤ L0 ∈ 2N ∪ {∞} and strictly admis-
sible k.

Proof Recall the cutoffsχn introduced in (4.28).Webegin by using the triangle
inequality to estimate

(
E{‖eβ〈x〉α RL(k)ϕLe

−β〈x〉α‖p

H−1
κ →H1

κ

}) 1
p

�
∑
m≥1

8L∑
n=1

(
E{‖eβ〈x〉αχmRL(k)χne

−β〈x〉α‖p

H−1
κ →H1

κ

}) 1
p

� log L sup
1≤n≤8L

∑
m≥1

(
E{‖eβ〈x〉αχmRL(k)χne

−β〈x〉α‖p

H−1
κ →H1

κ

}) 1
p ,

where here and below n and m are restricted to lie in 2N.
Using (2.4) and Proposition 4.6, we can estimate the contributions ofm < n

4
and m > 4n by

�p log L sup
1≤n≤8L

[ ∑
m< n

4

eβ〈2m〉α e−8〈n〉α log L +
∑
m>4n

eβ〈2m〉α e−8〈m〉α log L
]

�p [log L]2,

which is acceptable.
It remains to estimate the contribution near the diagonal, namely when

n
4 ≤ m ≤ 4n ≤ 32L . We distinguish two cases; the case L < 64n will be
discussed at the end of the proof.

If L ≥ 64n, we use the decomposition

RL(k) = R32n(k) +
L/2∑

�=32n

[R2�(k) − R�(k)]

= R32n(k) −
L/2∑

�=32n

R2�(k)(q2� − q�)R�(k). (5.2)

We first consider the contribution of R32n(k). If n � 1 so that n �
(log n)

1
2(1−α) , we use Proposition 4.7 to estimate

E{‖eβ〈x〉αχmR32n(k)χne
−β〈x〉α‖p

H−1
κ →H1

κ

} �p [log n]p �p [log L]p,

which is acceptable. In the remaining case n � 1, we have by (2.4) and (4.13)
that

E{‖eβ〈x〉αχmR32n(k)χne
−β〈x〉α‖p

H−1
κ →H1

κ

} �p 1,
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which is acceptable, as well.
We treat an individual summand in (5.2) using (2.4):

E
{‖eβ〈x〉α χm R2�(k)χ̃�(q2� − q�)χ̃�R�(k)χne

−β〈x〉α ‖p

H−1
κ →H1

κ

}

� epβ〈2m〉α
E{‖χm R2�(k)χ̃�‖p

H−1
κ →H1

κ

‖χ̃�R�(k)χn‖p

H−1
κ →H1

κ

‖q2� − q�‖p

H1
κ →H−1

κ
},

where we have employed the following cutoff to the support of q2� − q�:

χ̃�(x) :=
{∑

h∈Z
(
χ� + χ2�

)
(x − 2hL0) if L0 ∈ 2N,(

χ� + χ2�
)
(x) if L0 = ∞.

(5.3)

Recalling that � ≥ 32n ≥ 8m and using Hölder’s inequality, (4.6), and Propo-
sition 4.6, for L0 ∈ 2N we estimate the above by

�p epβ〈2m〉α(∑
h∈Z

e−8p〈�+2|h|L0〉α [log(� + 2|h|L0)]p
)2[log �]p/2 �p e−8p〈�〉α ,

which sums in � with a final bound of order 1. If L0 = ∞, a similar argument
yields the bound

�p epβ〈2m〉α[e−8p〈�〉α [log(�)]p]2[log �]p/2 �p e−8p〈�〉α ,

which also sums in � with a final bound of order 1.
It remains to consider the contribution near the diagonal in the case L < 64n.

This can be handled using (4.13) and Proposition 4.7 in the same way as when
controlling the contribution of R32n above. ��
Proposition 5.2 For 1 ≤ p < ∞, we have the following:

E
{‖χmRL0(k)χn‖p

H−1
κ →H1

κ

}
�p

⎧⎪⎨
⎪⎩

[logm]p if m ≈ n

e−6p〈m〉α if m > 4n

e−6p〈n〉α if n > 4m,

uniformly over m, n ∈ 2N, 2 ≤ L0 ∈ 2N ∪ {∞}, and strictly admissible k.
Proof By transpose symmetry, it suffices to consider only the cases m ≈ n or
m > 4n. At the outset, we assume that 16m ≤ L0. The remaining case will
be discussed at the end of the proof. As in (5.2), we write

RL0(k) = R8m(k) −
∑

8m≤L≤L0/2

R2L(k)[q2L − qL ]RL(k). (5.4)
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If m ≈ n we use (4.13) to bound

E
{‖χmR8m(k)χn‖p

H−1
κ →H1

κ

}
�p [logm]p,

which is acceptable. If instead m > 4n, then Proposition 4.6 yields

E
{‖χmR8m(k)χn‖p

H−1
κ →H1

κ

}
�p [logm]pe−8p〈m〉α ,

which is also acceptable.
For L ≥ 8m, we use Proposition 4.6, (4.6), (4.13), and Hölder’s inequality

to estimate

E
{‖χmR2L(k)[q2L − qL ]RL(k)χn‖p

H−1
κ →H1

κ

}

� E
{‖χmR2L(k)[q2L − qL ]χ̃2

L RL(k)χn‖p

H−1
κ →H1

κ

}

� E
{‖χmR2L(k)χ̃L‖p

H−1
κ →H1

κ

‖χ̃L RL(k)χn‖p

H−1
κ →H1

κ

‖q2L − qL‖p

H1
κ →H−1

κ

}

�p [log L]p/2
(∑
h∈Z

e−8p〈L+2|h|L0〉α [log(L + 2|h|L0)]p
)2

�p e−8p〈L〉α ,

where χ̃L is as in (5.3). Summing over L ≥ 8m yields an acceptable contri-
bution.

It remains to consider the case 16m > L0. In this case, the claim follows
readily from (4.13) and Proposition 4.6, in the same way that we treated the
contribution of R8m(k) above. ��

Proposition 5.2 leads to several useful estimates, which we record here.

Corollary 5.3 Fix 1 ≤ p < ∞. The following holds uniformly over L0 ∈
2N ∪ {∞} and strictly admissible k:

E
{‖χmRL0(k)‖p

H−1
κ →H1

κ

}
�p [logm]p uniformly for m ∈ 2N, (5.5)

E
{‖RL0(k)〈x〉−β‖p

H−1
κ →H1

κ

}
�β,p 1 for any β > 0, (5.6)

E
{‖e〈x〉α RL0(k)e

−2〈x〉α‖p

H−1
κ →H1

κ

}
�α,p 1 for any 0 < α < 1

4 , (5.7)

E
{‖e2〈x〉αϕL RL0(k)e

−2〈x〉α‖p

H−1
κ →H1

κ

}
�α,p [log L]p for any 0 < α < 1

2 ,

(5.8)

where the implicit constant in (5.8) is uniform over L ∈ 2N and ϕL is as in
(5.1).
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Proof The estimate (5.5) follows from Proposition 5.2 by writing 1 = ∑
n χn

and then splitting into the regimes n < 1
4m, 1

4m ≤ n ≤ 4m, and n > 4m.
The estimate (5.6) follows from (5.5). Indeed, writing 1 = ∑

m χm , we
estimate

[
E{‖RL0 (k)〈x〉−β‖p

H−1
κ →H1

κ

}] 1
p �

∑
m∈2N0

〈m〉−β
[
E{‖RL0 (k)〈x〉−β 〈m〉βχm‖p

H−1
κ →H1

κ

}] 1
p .

Observing that 〈x〉−β〈m〉βχm defines a bounded operator on H±1
κ , the result

follows from (5.5) and the fact that 〈m〉−β logm is summable over m ∈ 2N.
To obtain (5.7) we insert 1 = ∑

n χn = ∑
m χm and use that multiplication

by

ec〈x〉αe−c〈2�〉αχ�(x) and e−c〈x〉αec〈�/2〉αχ�(x)

are bounded operators on H±1
κ uniformly for � ∈ 2N0 . Thus, invoking Propo-

sition 5.2 we get

[
LHS(5.7)

] 1
p �

∑
n,m∈2N0

e〈2m〉αe−2〈n/2〉α[
E
{‖χmRL0(k)χn‖p

H−1
κ →H1

κ

}] 1
p

�p

∑
m>4n

e〈2m〉αe−2〈n/2〉αe−6〈m〉α +
∑
n>4m

e〈2m〉αe−2〈n/2〉αe−6〈n〉α

+
∑

n
4≤m≤4n

e〈2m〉αe−2〈n/2〉α log(m) �p 1,

where we use that 0 < α < 1
4 in order to control the contribution near the

diagonal.
We turn now to (5.8). By the triangle inequality, we estimate

(
E{‖e2〈x〉αϕL RL0(k)e

−2〈x〉α‖p

H−1
κ →H1

κ

}) 1
p

�
8L∑
m=1

∑
n≥1

(
E{‖e2〈x〉αχmRL(k)χne

−2〈x〉α‖p

H−1
κ →H1

κ

}) 1
p .

Using Proposition 5.2, we estimate the contributions away from the diagonal
by

∑
m>4n

e2〈2m〉αe−2〈n/2〉αe−6〈m〉α +
∑
n>4m

e2〈2m〉αe−2〈n/2〉αe−6〈n〉α � 1.
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To estimate the contribution of m
4 ≤ n ≤ 4m ≤ 32L , we repeat the argument

covering this case in the proof of Proposition 5.1, using the decomposition

RL0 = R32m −
L0/2∑

�=32m

R2�(q2� − q�)R� (5.9)

in place of (5.2). ��
As discussed in the introduction and manifested already in our treatment of

the torus problem, the diagonal Green’s function g(x; q, k) and its reciprocal
play essential roles in our analysis. The two remaining propositions in this
section provide the essential volume-independent bounds on these objects.
We begin with g(x) itself:

Proposition 5.4 Fix 1 ≤ s < 3
2 and 1 ≤ p < ∞. For k strictly admissible,

E
{‖〈x〉−β[gL0(x; k) − 1

2k ]‖p
L p

}
�p,β κ− 5p

2 for β > 1, (5.10)

E
{‖〈x〉−β[gL0(x; k) − 1

2k ]‖p
Hs

κ

}
�p,β,s κ(2s−4)p for β > 1, (5.11)

E
{‖〈x〉−β[gL0(x; k) − 1

2k ]‖p
H−1

}
�p,β κ−3p for β > 2, (5.12)

uniformly in L = L0 ∈ 2N ∪ {∞}.
Proof As all estimates will be uniform in L0, it will be convenient to drop the
subscript everywhere in what follows.

By translation invariance of white noise, (5.10) will follow readily from

E
{∣∣g(0; k) − 1

2k

∣∣p} � κ− 5p
2 . (5.13)

Recall from (2.18) that

g(0; k) − 1
2k = −〈δ0, 1

k R0(2k)q〉 + 〈δ0, R0(k)qR(k)qR0(k)δ0〉.
As q is white noise distributed,

E
{∣∣〈δ0, 1

k R0(2k)q〉∣∣2} � κ−2
E
{|〈R0(2k)δ0, q〉|2} � κ−2‖R0(2k)δ0‖2L2 � κ−5.

Using Lemma 2.1, we deduce

E
{∣∣〈δ0, 1

k R0(2k)q〉∣∣p} �p κ− 5p
2 .
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Next, we estimate

∣∣〈δ0, R0(k)qR(k)qR0(k)δ0〉
∣∣ � ‖〈x〉2δ0‖H−1

κ
‖〈x〉4δ0‖H−1

κ

× ‖〈x〉−2R0(k)〈x〉2‖H−1
κ →H1

κ
‖〈x〉4R0(k)〈x〉−4‖H−1

κ →H1
κ

× ‖〈x〉−2q‖2
H1

κ →H−1
κ

‖R(k)〈x〉−2‖H−1
κ →H1

κ
.

Thus, using Lemma 2.12, (4.6), and (5.6), we get

E
{∣∣〈δ0, R0(k)qR(k)qR0(k)δ0〉

∣∣p} �p κ−3p.

This completes the proof of (5.13).
We turn now to (5.11). Using again (2.18), we write

g(x; k) − 1
2k = −〈δx , 1

k R0(2k)q〉 + 〈δx , R0(k)qR(k)qR0(k)δx 〉. (5.14)

The contribution of the first term on the right-hand side of (5.14) is straight-
forward to estimate. Indeed,

E
{‖〈x〉−β 1

k R0(2k)q‖2Hs
κ

} = κ−2tr
{
R0(2k)

∗〈x〉−β(−� + 4κ2)s〈x〉−β R0(2k)
}

= κ−2
∫∫ |mβ(ξ − η)|2(η2 + 4κ2)s

|ξ2 + 4k2|2 dξ dη,

where mβ denotes the Fourier transform of the function 〈x〉−β . As β > 1, we
have

∣∣mβ(ξ)
∣∣ �n 〈ξ 〉−n for any n ∈ N,

which readily implies that

E
{‖〈x〉−β 1

k R0(2k)q‖2Hs
κ

}
�s κ−2κ2s−3 �s κ2s−5.

Invoking Lemma 2.1, this gives

E
{‖〈x〉−β 1

k R0(2k)q‖p
Hs

κ

}
�p,s κ(s− 5

2 )p,

which is an acceptable contribution to (5.11).
To estimate the contribution of the second term on the right-hand side of

(5.14), we argue by duality. For f ∈ H−s
κ with s > 1

2 and γ > 0,
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∣∣〈 f, 〈x〉−β 〈δx , R0(k)qR(k)qR0(k)δx 〉
〉∣∣

≤ ∣∣tr{ f 〈x〉−β R0(k)qR(k)qR0(k)
}∣∣

� ‖R0(κ)
s
2 f R0(κ)

s
2 ‖L2→L2‖〈x〉−γ R(k)〈x〉−γ ‖H−1

κ →H1
κ

×‖(−� + κ2)
s
2 〈x〉−β/2R0(k)q〈x〉γ√R0(κ)‖2I2

� ‖ f ‖H−s
κ

‖〈x〉−γ R(k)〈x〉−γ ‖H−1
κ →H1

κ
‖(−� + κ2)

s
2 〈x〉−β/2R0(k)q〈x〉γ√R0(κ)‖2I2

.

(5.15)

To continue, we write

〈x〉− β
2 R0(k) = BR0(k)〈x〉− β

2 with B = I + R0(k)A〈x〉− β
2

R0(k)〈x〉 β
2 (−� + k2)

and

A = β∂x
x

〈x〉2 + β
(β+2)x2−2

4〈x〉4 .

For 1 ≤ s ≤ 2, Lemma 2.12 yields

‖B‖Hs
κ →Hs

κ
≤ 1 + ‖R0(k)A‖H1

κ →Hs
κ
‖〈x〉− β

2 R0(k)〈x〉
β
2 ‖

H−1
κ →H1

κ
‖ − � + k2‖

Hs
κ →H−1

κ

� 1.

Thus, using (4.3) we get

E
{‖(−� + κ2)

s
2 〈x〉− β

2 R0(k)q〈x〉γ√R0(κ)‖2I2
}

� ‖B‖2Hs
κ →Hs

κ
E
{‖(−� + κ2)

s
2 R0(k)q〈x〉γ− β

2
√
R0(κ)‖2I2

}

�
∫∫ |ξ2 + κ2|s

(η2 + κ2)|ξ2 + k2|2E
{∣∣F(q〈x〉γ− β

2 )(ξ − η)
∣∣2} dξ dη

� ‖〈x〉γ− β
2 ‖2L2

∫∫ |ξ2 + κ2|s
(η2 + κ2)|ξ2 + k2|2 dξ dη �s κ2s−4,

provided β
2 > γ + 1

2 and s < 3
2 . By Lemma 2.1, this gives

E
{‖(−� + κ2)

s
2 〈x〉− β

2 R0(k)q〈x〉γ√R0(κ)‖p
I2

}
�p,β,s κ p(s−2) for all 1 ≤ p < ∞,

which combined with (5.15) and (5.6) yields

E
{‖〈x〉−β〈δx , R0(k)qR(k)qR0(k)δx 〉‖p

Hs
κ

}
�p,β,s κ p(2s−4)

for all β > 1 and 1 ≤ s < 3
2 . This completes the proof of (5.11).
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To prove (5.12), we argue as for (5.11). Starting from (5.14), we estimate

E
{‖〈x〉−β 1

k R0(2k)q‖2H−1

} = κ−2tr
{
R0(2k)

∗〈x〉−β(−� + 4)−1〈x〉−β R0(2k)
}

= κ−2
∫∫ |mβ(ξ − η)|2

|ξ2 + 4k2|2(η2 + 4)
dξ dη � κ−6.

Invoking Lemma 2.1, we thus obtain

E
{‖〈x〉−β 1

k R0(2k)q‖p
H−1

}
�p κ−3p.

To estimate the contribution to (5.12) of the second term on the right-hand side
of (5.14), we argue by duality. For f ∈ H1,

∣∣〈 f, 〈x〉−β〈δx , R0(k)qR(k)qR0(k)δx 〉
〉∣∣

≤ ∣∣tr{ f 〈x〉−βR0(k)qR(k)qR0(k)
}∣∣

� ‖ f ‖H1
κ →H−1

κ
‖〈x〉 β

2 R0(κ)〈x〉− β
2 ‖H−1

κ →H1
κ
‖〈x〉− β

2 R0(κ)〈x〉 β
2 ‖H−1

κ →H1
κ

× ‖〈x〉− β
4 R(k)〈x〉− β

4 ‖H−1
κ →H1

κ
‖√R0(κ)〈x〉− β

4 q
√
R0(κ)‖2I2

� κ−2‖ f ‖H1‖R(k)〈x〉− β
4 ‖H−1

κ →H1
κ
‖√R0(κ)〈x〉− β

4 q
√
R0(κ)‖2I2,

where we used Lemma 2.12 in the last step. Using also Lemma 4.1 together
with (5.6), we obtain

E
{‖〈x〉−β〈δx , R0(k)qR(k)qR0(k)δx 〉‖p

H−1

}
�p,β κ−4p,

provided β > 2. This completes the proof of (5.12). ��
We turn now to obtaining bounds on 1/g(x; q, κ) that are independent

of the volume. Evidently, the new difficulty is obtaining lower bounds on the
diagonal of the resolvent. This is quite at odds with what is usually investigated
in the Anderson model. Regions where the potential is extremely large (and
positive) improve localization; indeed, they act as de facto Dirichlet boundary
conditions. This is advantageous for localization, but an enemy in our setting,
since this drives the Green’s function to zero!

As our bounds on 1/g(x; q, κ) need to be volume-independent, multiscale
analysis again plays an essential role. We encapsulate precisely what we need
in the following lemma.

Lemma 5.5 Let ϕ ∈ C∞
c . For 1 ≤ p < ∞, we have

E
{‖ϕ√R∗

L0
(k)RL0(k)ϕ‖p

H−1
κ →H1

κ

}
�p,ϕ 1
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uniformly over L0 ∈ 2N ∪ {∞} and strictly admissible k.
Proof We recall from (4.17) that

‖ϕ
√
R∗
L0

(k)RL0(k)ϕ‖H−1
κ →H1

κ
≈
∥∥∥∥
∫ ∞

0
ϕR∗

L0
(kτ )RL0(kτ )ϕ dτ

∥∥∥∥
H−1

κ →H1
κ

,

where once again we write kτ = √
k2 + iτ and κτ = |kτ |.

To proceed, we write

RL0 = R� +
L0/2∑
L=�

(R2L − RL) = R� −
L0/2∑
L=�

R2L(q2L − qL)RL

where � is chosen so that supp(ϕ) ⊂ (−�/4, �/4). As κτ ≥ κ , we have

‖ϕ
√
R∗
L0

(k)RL0(k)ϕ‖H−1
κ →H1

κ

≤
∥∥∥∥
∫ ∞

0
ϕR∗

� R�ϕ dτ

∥∥∥∥
H−1

κ →H1
κ

(5.16)

+ 2

1
2 L0∑
L=�

∫ ∞

0
‖ϕR∗

� R2L(q2L − qL)RLϕ‖H−1
κτ →H1

κτ
dτ (5.17)

+
1
2 L0∑

L ,L ′=�

∫ ∞

0
‖ϕR∗

L ′(q2L ′ − qL ′)R∗
2L ′R2L(q2L − qL)RLϕ‖H−1

κτ →H1
κτ
dτ,

(5.18)

where the resolvents are all evaluated at kτ .
We first consider the contribution of (5.16). Applying (4.17) once again,

followed by (2.4) and Corollary 4.4, we estimate the contribution of (5.16) by

E
{‖ϕ

√
R∗

� (k)R�(k)ϕ‖p

H−1
κ →H1

κ

}
�p,ϕ (log �)p,

which is acceptable.
By (2.4), Corollary 4.4, (4.6), Proposition 4.6, (4.20), and Hölder’s inequal-

ity, we estimate the contribution of (5.17) by
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1
2 L0∑
L=�

∫ ∞

0

[
E
{‖ϕR∗

� R2L(q2L − qL)χ̃L RLϕ‖p

H−1
κτ →H1

κτ

}] 1
p
dτ

�ϕ

1
2 L0∑
L=�

∫ ∞

0

[
E
{‖R∗

�‖p

H−1
κτ →H1

κτ

‖1‖p

H1
κτ

→H−1
κτ

‖R2L‖p

H−1
κτ →H1

κτ

× ‖q2L − qL‖p

H1
κτ

→H−1
κτ

‖χ̃L RLϕ‖p

H−1
κτ →H1

κτ

}] 1
p
dτ

�p,ϕ

1
2 L0∑
L=�

∫ ∞

0

log � · [log L]2+ 1
2 · e−8〈L〉α

(κ2 + τ)
3
2

dτ �p,ϕ
1
κ
,

where χ̃L is a cutoff to the support of q2L − qL as defined in (5.3). The
penultimate step is immediate when L0 = ∞. When L0 is finite, one must
first introduce an additional sum over h ∈ Z as in the proof of Propositions 5.1
and 5.2, which is then easily seen to be controlled by the h = 0 summand.

Arguing similarly, we estimate the contribution of (5.18) by

1
2 L0∑

L ,L ′=�

∫ ∞

0
‖1‖H1

κτ
→H−1

κτ
E

{
‖ϕR∗

L ′ χ̃L ′‖p

H−1
κτ →H1

κτ

‖q2L ′ − qL ′‖p

H1
κτ

→H−1
κτ

× ‖R∗
2L ′‖p

H−1
κτ →H1

κτ

‖R2L‖p

H−1
κτ →H1

κτ

‖q2L − qL‖p

H1
κτ

→H−1
κτ

× ‖χ̃L RLϕ‖p

H−1
κτ →H1

κτ

} 1
p
dτ

�p

1
2 L0∑

L ,L ′=�

∫ ∞

0

[log L ′]2+ 1
2 e−8〈L ′〉α · [log L]2+ 1

2 e−8〈L〉α

(k2 + τ)2
dτ �p,ϕ

1
κ2

,

which is acceptable. This completes the proof. ��
We are now ready to prove the bounds we need on the reciprocal of the

diagonal Green’s function; these are optimal in κ , as we can see already from
the case q ≡ 0.

Proposition 5.6 Fix 1 ≤ p < ∞. For k strictly admissible, we have

E
{∥∥〈x〉−β 1

gL0 (x;k)
∥∥p
L p

}
�p,β κ p for β > 1

p , (5.19)

E
{∥∥〈x〉−β 1

gL0 (x;k)
∥∥p
Hs

}
�p,β κ p for β > 5 and 0 ≤ s < 3

2 , (5.20)

uniformly in L = L0 ∈ 2N ∪ {∞}.
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Proof As the arguments to be presented do not depend on L0, we suppress it
in the notation below.

By translation invariance of white noise, (5.19) will follow readily from

E
{∣∣ 1

g(0;k)
∣∣p} �p κ p (5.21)

To prove (5.21), we use

1
|g(0;k)| ≤ 1

|Img(0;k)|

and (recalling that σ = Imk2)

Img(0; k) = 1
2i 〈δ0, [R(k) − R∗(k)]δ0〉 = −σ 〈δ0, R∗(k)R(k)δ0〉. (5.22)

Using Hölder (with respect to the spectral measure), we estimate

|〈δ0,
√
R∗(k)R(k)δ0〉| = ‖[R∗(k)R(k)] 14 δ0‖2L2

� |〈δ0, R∗(k)R(k)δ0〉| 15 |〈δ0, [R∗(k)R(k)] 38 δ0〉| 45 ,
and so

|Img(0; k)|−1 � σ−1|〈δ0,
√
R∗(k)R(k)δ0〉|−5|〈δ0, [R∗(k)R(k)] 38 δ0〉|4.

(5.23)

We now let ψ ∈ C∞
c satisfy

ψ(x) =
{
1, |x | ≤ 1

2κ

0, |x | ≥ 1
κ
.

(5.24)

By Cauchy–Schwarz,

1 = |〈δ0, ψ〉|2 = |〈[R(k)∗R(k)] 14 δ0, [(H + k2)∗(H + k2)] 14ψ〉|2
≤ ∣∣〈δ0,√R∗(k)R(k)δ0〉

∣∣ ∣∣〈ψ, |H + k2|ψ〉∣∣.
In particular,

|〈δ0,
√
R∗(k)R(k)δ0〉|−1 ≤ |〈ψ, |H + k2|ψ〉|.

We now let ψ̃ ∈ C∞
c be a bump function with ψ̃ψ = ψ . As H + k2 is a

local operator and all operators involved are normal,
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|〈ψ, |H + k2|ψ〉| = |〈(H + k)2ψ,
√
R∗(k)R(k)(H + k2)ψ〉|

= |〈(H + k2)ψ, ψ̃
√
R∗(k)R(k)ψ̃(H + k2)ψ〉|

� ‖(H + k2)ψ‖2
H−1

κ
‖ψ̃√R∗(k)R(k)ψ̃‖H−1

κ →H1
κ

�
(‖ψ‖2H1

κ
+ ‖qψ‖2

H−1
κ

)‖ψ̃√R∗(k)R(k)ψ̃‖H−1
κ →H1

κ

�
(
κ + ‖qψ‖2

H−1
κ

)‖ψ̃√R∗(k)R(k)ψ̃‖H−1
κ →H1

κ
.

Thus,

|〈δ0,
√
R∗(k)R(k)δ0〉|−1 �

(
κ + ‖qψ‖2

H−1
κ

)‖ψ̃√R∗(k)R(k)ψ̃‖H−1
κ →H1

κ
.

(5.25)

By (2.12),

E{‖qψ‖2
H−1

κ

} = 1
4κ ‖ψ‖2L2 � κ−2,

which (appealing to Lemma 2.1) then implies

E{‖qψ‖p

H−1
κ

} �p κ−p

for all 1 ≤ p < ∞. Using this together with Lemma 5.5, we get

E
{|〈δ0,√R∗(k)R(k)δ0〉|−p} �p κ p (5.26)

for any 1 ≤ p < ∞.
We turn to the remaining term in (5.23). We recall the notation from the

proof of Proposition 4.3 and write kτ := √
k2 + iτ for τ ∈ (0, ∞). We begin

by observing

〈δ0, [R∗(k)R(k)] 38 δ0〉 =
∫ (|λ + E |2 + σ 2)− 3

4 dμ(λ)

≈
∫ ∞

0

∫
τ

1
4

|λ + E |2 + τ 2 + σ 2 dμ(λ) dτ

≈
∫ ∞

0

∫
τ

1
4

|λ + k2 + iτ |2 dμ(λ) dτ

=
〈
δ0,

(∫ ∞

0
R∗(kτ )R(kτ )τ

1
4 dτ

)
δ0

〉
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=
∫ ∞

0
〈δ0, R∗(kτ )R(kτ )δ0〉τ 1

4 dτ

= −
∫ ∞

0

τ
1
4

σ+τ
Img(0; kτ ) dτ,

where dμ denotes the spectral measure for (H, δ0). Thus, using (5.13), we get

[
E
{|〈δ0, [R∗(k)R(k)

] 3
8 δ0〉|p

}] 1
p �

∫ ∞

0

[
E
{|Img(0; kτ )|p

}] 1
p τ

1
4

σ+τ
dτ

�
∫ ∞

0

τ
1
4

σ+τ
|kτ |−1 dτ � σ− 1

4 . (5.27)

Continuing from (5.23) and using (5.26) and (5.27), we finally derive

E
{∣∣ 1

g(0;k)
∣∣p} � σ−p

E
{〈δ0,√R∗(k)R(k)δ0〉−5p〈δ0, [R∗(k)R(k)] 38 δ0〉4p

}
�p σ−2pκ5p �p κ p

since κ2 ≈ σ , by strict admissiblity. This completes the proof of (5.21).
Turning to (5.20), we first consider the case s = 1. By (5.19), Sobolev

embedding, and (5.11), for 1 < p < ∞ we get

E
{∥∥〈x〉−β

( 1
g(x;k)

)′∥∥p
L2

}
�
(
E
{∥∥〈x〉− β

4 1
g(x;k)

∥∥4p
L4p

}) 1
2
(
E
{∥∥〈x〉− β

2 g′(x; k)∥∥2p
L

2p
p−1

}) 1
2

�p,β κ2p
(
E
{‖〈x〉− β

2 [g(x; k) − 1
2k ]‖2p

H
1+ 1

2p

}) 1
2 �p,β κ,

provided β > 2. On the other hand, by (5.21) and either Jensen’s or Hölder’s
inequalities,

(
E
{∥∥〈x〉−β 1

g(x;k)
∥∥p
L2

}) 1
p �p,β κ for all 1 ≤ p < ∞ and β > 1.

Combining the two bounds above we get

E
{∥∥〈x〉−β 1

g(x;k)
∥∥p
Hs

}
�p κ p for all 1 ≤ p < ∞, 0 ≤ s ≤ 1, and β > 2.

(5.28)

To treat 1 < s < 3
2 , we observe that by the fractional (and usual) product

rule and Sobolev embedding,
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∥∥|∇|s−1[〈x〉−β
( 1
g(x;k)

)′]∥∥
L2

�
∥∥|∇|s−1[〈x〉−γ 1

g(x;k)
]∥∥

L
2

s−1

∥∥〈x〉−γ 1
g(x;k)

∥∥
L

2
s−1

∥∥〈x〉−β+2γ g′(x; k)∥∥
L

2
3−2s

+ ∥∥〈x〉−γ 1
g(x;k)

∥∥2
L∞

∥∥|∇|s−1[〈x〉−β+2γ g′(x; k)]∥∥L2
�
∥∥〈x〉−γ 1

g(x;k)
∥∥2
H1

{∥∥〈x〉−β+2γ g(x; k)∥∥Hs + ∥∥〈x〉−β+2γ−1g(x; k)∥∥Hs−1
}
.

The result now follows from (5.11) and (5.28) by taking γ > 2 and β − 2γ
> 1. ��

6 Invariance of white noise for the Hk flow on the line

Our main objective in this section is to ‘send L0 → ∞’ and deduce invariance
of white noise under the Hk flow (3.4) on the entire real line. The precise
meaning of a solution in this context will be given in Definition 6.1 below.
First, however, we must settle some notational conventions.

Starting in this section (and continuing until the end of the paper), we work
only with the fully revealed potential, which corresponds to setting L = L0 in
(4.1).

Throughout this section, we freeze the parameter k:

k = κeiπ/8 (6.1)

with κ large enough so that k is strictly admissible. Like the choice of opening
angle in the definition of strict admissibility, this is essentially arbitrary; we
prefer concrete numbers purely for expository reasons. One caveat on this
generality (and rationale for choosing specificity) is that in order to prove
Lemma 6.6 below in the requisite generality, we do need k to lie in a slightly
narrower sector than that used in the preceding sections.

Definition 6.1 We say that q : R → S ′(R) is a global good solution to the
Hk flow (3.4) if for every T > 0 there exist 0 < α < 1

4 and C ≥ 1 such that

sup
t∈[−T,T ]

‖e−〈x〉αq(t)‖H−1
κ

< ∞, (6.2)

∫ T

−T
‖e〈x〉α R(k)e−2〈x〉α‖4

H−1
κ →H1

κ

dt < ∞, (6.3)

sup
L∈2N

[log L]−C
∫ T

−T
‖e2〈x〉αϕL R(k)e−2〈x〉α‖2

H−1
κ →H1

κ

dt < ∞, (6.4)

and

〈ϕ, q(t)〉 = 〈
ϕ, e4Re k

2t∂q(0) +
∫ t

0
e4Re k

2(t−s)∂Re [16k5g′(q(s))] ds〉 (6.5)
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for all ϕ ∈ C∞
c (R) and all t ∈ [−T, T ]. Here R(k) is the resolvent associated

to the potential q with L0 = ∞ and ϕL denotes a smooth cutoff as in (5.1).

This notion of good solution is motivated by the fact that if q(t) is white
noise distributed at each time t ∈ [−T, T ], then q satisfies the bounds in (6.3)
and (6.4) not only almost surely, but even in expectation. Indeed, this is a
consequence of Corollary 5.3.

Themain results of this section are Propositions 6.7 and 6.8 . Taken together
they yield

Theorem 6.2 For almost every sample q0 of white noise on the real line, there
exists a unique global good solution q to the Hk flow (3.4) on the real line
with initial data q0. As a random variable, q(t) is white noise distributed at
each t ∈ R.

The remainder of this section is dedicated to the proof of this theorem, as
well as certain additional conclusions that will be needed in the next section.

Given white noise q0 on the line and L ∈ 2N, we define

q0L(x) =
∑
n∈Z

[
1[−L ,L]q0

]
(x − 2nL), (6.6)

which is 2L-periodic white noise. Using Proposition 3.1, we define qL(t) to
be the global 2L-periodic solution to the Hk flow (3.4) with initial data q0L .
Theorem 3.3 yields that as a random variable, qL(t) is 2L-periodic white noise
for all t ∈ R. In particular,qL(t) obeys the bounds (6.3) and (6.4) almost surely.
Below we will also show that qL satisfies (6.2), so that qL is a global good
solution to (3.4).

We will prove that almost surely, the solutions qL(t) converge to a limit
q(t) for all t ∈ R in a suitable norm as L → ∞; see Lemma 6.3 below. We
will then show that q(t) is white noise distributed for each t and that q is
a global good solution to the Hk flow (3.4) on the line; see Proposition 6.7.
Finally, wewill demonstrate the uniqueness of good solutions to theHk flow in
Proposition 6.8; this implies, in particular, that the solution q(t) is independent
of the particular sequence used to construct it.

We begin with the following convergence result.

Lemma 6.3 Fix T > 0, α ∈ (0, 1
4), and δ > 0. Then almost surely,

∑
L∈2N

L2δ sup
t∈[−T,T ]

‖e−〈x〉α [q2L(t) − qL(t)]‖2
H−1

κ
< ∞. (6.7)

Proof For L ∈ 2N and t ∈ [−T, T ], we define
dL(t) = ‖e−〈x〉α [q2L(t) − qL(t)]‖2

H−1
κ

.
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As q02L − q0L = 0 on [−L , L], using (2.12) we obtain

E{dL(0)} � E
{‖e−〈x〉α1|x |≥Lq

0
2L‖2

H−1
κ

+ ‖e−〈x〉α1|x |≥Lq
0
L‖2

H−1
κ

}
� e−Lα

.

(6.8)

In what follows, we will show

sup
t∈[−T,T ]

dL(t) ≤ dL(0) exp

{∫ T

−T
XL(t) dt

}
, (6.9)

where XL(t) ≥ 0 is a quantity that satisfies

XL(t) ≈ κ2 + κ3‖R2L(k)‖H−1
κ →H1

κ
‖e〈x〉α RL(k)ϕLe

−〈x〉α‖H−1
κ →H1

κ

(6.10)

uniformly for t ∈ [−T, T ]. By (4.13) andProposition 5.1, for any 1 ≤ p < ∞,

E
{|XL(t)|p} �p κ2p + κ3p[log L]3p uniformly for t ∈ [−T, T ].

(6.11)

Assuming (6.9) and (6.11) for the moment, let us show that (6.7) holds. In
view of (6.8) and (6.11), we have that both

sup
L∈2N

eL
α/2dL(0) and sup

L∈2N
1

[log L]5
∫ T

−T
XL(t) dt

are almost surely finite (indeed, the sum in L has finite expectation). Building
on this, (6.7) follows from (6.9).

It remains to prove (6.9) and (6.10). We start with (6.9), which we will
prove using the equation (3.4) and Gronwall’s inequality. In particular, we
will establish the bound

|∂t dL(t)| ≤ XL(t)dL(t)

for a nonnegative quantity XL(t) obeying (6.10).
To this end, we write gL(k) and g2L(k) for the diagonal Green’s functions

associated to qL and q2L . Using (3.4) and the identity

(e−〈x〉α f )′ = e−〈x〉α f ′ − αx
〈x〉2−α e

−〈x〉α f, (6.12)
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we compute

∂t dL(t) = 32Re
{
k5
〈
e−〈x〉α [q2L − qL ], e−〈x〉α [g2L(k) − gL(k)]′〉H−1

κ

}
(6.13)

+ 8αRe
{
k2
〈
e−〈x〉α [q2L − qL ], x

〈x〉2−α e
−〈x〉α [q2L − qL ]〉H−1

κ

}
.

(6.14)

Applying Hölder in (6.13) and using that multiplication by x〈x〉α−2 is
bounded on H−1

κ to handle (6.14), we get

|∂t dL(t)| � κ2dL(t) + κ5‖e−〈x〉α [g2L(k) − gL(k)]‖L2 dL(t)
1
2 .

In this way, the proof of (6.9) and thence also (6.7) will be complete once we
show

‖e−〈x〉α [g2L (k) − gL (k)]‖H1
κ

� κ−1‖R2L (k)‖H−1
κ →H1

κ
‖e〈x〉α RL (k)ϕLe

−〈x〉α ‖H−1
κ →H1

κ
‖e−〈x〉α [q2L − qL ]‖H−1

κ
. (6.15)

As both g2L and gL are 4L-periodic,

‖e−〈x〉α [g2L(k) − gL(k)]‖H1
κ

� ‖e−〈x〉αϕL [g2L(k) − gL(k)]‖H1
κ
,

where ϕL is as in (5.1). We estimate this norm by duality. For f ∈ H−1
κ , we

use the resolvent identity

R2L − RL = −R2L(q2L − qL)RL

to write

〈e−〈x〉αϕL [g2L − gL ], f 〉 = −tr{R2L(q2L − qL)RLϕLe
−〈x〉α f }.

Cycling the trace and using Lemma 2.11, we get

∣∣tr{R2L (k)(q2L − qL )RL (k)ϕLe
−〈x〉α f

}∣∣
� ‖R2L (k)‖

H−1
κ →H1

κ
‖√R0(κ)(q2L − qL )e−〈x〉α√R0(κ)‖I2

× ‖e〈x〉α RL (k)ϕLe
−〈x〉α ‖

H−1
κ →H1

κ
‖√R0(κ) f

√
R0(κ)‖I2

� κ−1‖R2L (k)‖
H−1

κ →H1
κ
‖e−〈x〉α (q2L − qL )‖

H−1
κ

‖e〈x〉α RL (k)ϕLe
−〈x〉α ‖

H−1
κ →H1

κ
‖ f ‖

H−1
κ

.

Taking the supremum over unit vectors f ∈ H−1
κ , we conclude that (6.15)

holds. ��
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Our next result shows convergence in probability for the diagonal Green’s
function at each time. This is a crucial stepping stone to the stronger conver-
gence we will demonstrate in Proposition 6.7 below.

Lemma 6.4 Given T > 0, α ∈ (0, 1
4), ε > 0, and � strictly admissible,

lim
L→∞ sup

|t |≤T
P

{
sup

L ′∈2NL

∥∥e−〈x〉α [gL ′(t; �) − gL(t; �)
∥∥
H1 > ε

}
= 0,

where gL(t; �) = gL(x; qL(t), �) is the diagonal Green’s function associated
to qL(t).

Proof Recall from (6.15) that

‖e−〈x〉α [g2L (t; �) − gL (t; �)]‖H1

� ‖R2L (�)‖H−1
|�| →H1|�|

‖e〈x〉α RL (�)ϕLe
−〈x〉α ‖H−1

|�| →H1|�|
‖e−〈x〉α [q2L − qL ]‖H−1

|�|
.

Thus, letting δ > 0 and defining

X (t) =
∑
M∈2N

M−δ‖R2M(�)‖2
H−1

|�| →H1|�|
‖e〈x〉α RM(�)ϕMe−〈x〉α‖2

H−1
|�| →H1|�|

and

YL(t) = L−δ
∑
M∈2N

M2δ‖e−〈x〉α [q2M − qM ]‖2
H−1

|�|
,

we get

sup
L ′∈2NL

‖e−〈x〉α [gL ′(t; �) − gL(t; �)]‖2H1 � X (t)YL(t).

Using Lemma 6.3 and the fact that H1
κ and H1|�| have comparable norms,

we get

sup
|t |≤T

YL(t) → 0 as L → ∞

almost surely and so also in probability. On the other hand, by (4.13) and
Proposition 5.1,

sup
|t |≤T

E
{
X (t)} < ∞.
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Noting that for every η > 0,

P{X (t)YL(t) > η} ≤ P{X (t) > η−1} + P{YL(t) > η2},

this gives

sup
|t |≤T

P{X (t)YL(t) > η} ≤ η sup
|t |≤T

E{X (t)} + P{ sup
|t |≤T

YL(t) > η2},

which proves the lemma. ��
To continue, for fixed T > 0, the estimate (6.7) implies that almost surely,

there exists a limit q on [−T, T ] satisfying

e−〈x〉αq ∈ Ct ([−T, T ]; H−1
κ ).

Taking a sequence Tn → ∞, we can find a full probability event on which
qL(t) converges to q(t) for all t ∈ R. We wish to prove that as a random
variable, q(t) is white noise distributed for all t ∈ R. Due to the extremely
rapid decay of the weight (which is essential for proving Lemma 6.3), we
do not yet know enough about q(t) to even make sense of it as a tempered
distribution. To remedy this, we establish improved bounds for qL , which will
be inherited by q.

Lemma 6.5 For any 1 ≤ p < ∞, β > 1, and T > 0,

E

{
sup

t∈[−T,T ]
‖〈x〉−βqL(t)‖p

H−1
κ

}
�p,β,T,κ 1 (6.16)

uniformly over L ∈ 2N.

Proof The proof of (6.16) is similar to that of Lemma 6.3. We define

AL(t) = ‖〈x〉−βqL(t)‖2
H−1

κ
.

Using the equation (3.4) and the identity

(〈x〉−β f )′ = 〈x〉−β f ′ − βx
〈x〉2 〈x〉−β f,

we derive

|∂t AL(t)| � κ2AL(t) + κ5
√
AL(t)‖〈x〉−βgL‖L2 .
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We estimate the L2 norm by duality: for h ∈ L2 and β > 1,

∣∣〈〈x〉−βgL , h
〉∣∣ = |tr{〈x〉−βRLh}|

� ‖√R0(κ)〈x〉− β
2 h
√
R0(κ)‖I1‖〈x〉−

β
2 RL(k)‖H−1

κ →H1
κ

� κ−1‖〈x〉− β
2 h‖L1‖〈x〉− β

2 RL(k)‖H−1
κ →H1

κ

� κ−1‖h‖L2‖〈x〉− β
2 RL(k)‖H−1

κ →H1
κ
.

Taking the supremum over unit vectors h ∈ L2, we get

|∂t AL(t)| � κ2AL(t) + κ4
√
AL(t)‖〈x〉− β

2 RL(k)‖H−1
κ →H1

κ

� κ2AL(t) + κ6‖〈x〉− β
2 RL(k)‖2

H−1
κ →H1

κ

.

Thus by Gronwall’s inequality,

sup
|t |≤T

AL(t) � eCκ2T
[
AL(0) + κ6

∫ T

−T
‖〈x〉− β

2 RL(k)‖2
H−1

κ →H1
κ

ds

]
.

As qL(t) is white noise distributed for each time, the claim follows from (2.12),
Lemma 2.1, and (5.6). ��

It is our intention to employ Lemma 2.5 to upgrade the convergence given
in Lemma 6.4. Our next lemma provides the requisite equicontinuity (cf.
Lemma 2.4).

Lemma 6.6 Fix 1 ≤ p < ∞. For any strictly admissible � with |�| ≤ 10κ ,

E
{∥∥〈x〉−β

[ 1
gL (t;�)

− 1
gL (s;�)

]∥∥p
H−2

}
�p,β |t − s|p|�|3p for β > 4,

(6.17)

E
{∥∥〈x〉−β

[
gL(t; �) − gL(s; �)

]∥∥p
H−1

}
�p,β |t − s|p/2 for β > 6, (6.18)

uniformly in L ∈ 2N and t, s ∈ R.

Proof To ease notation, throughout the proof we omit the subscript L . All our
estimates will be independent of L .

We will first prove (6.17) under the additional restriction that |k − �| >

10−6κ . The significance of the absolute constant here is that it guarantees that
even after doubling the radius of the omitted ball, it is still contained inside
the strictly admissible sector. This restriction on � will be removed later.
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Using (3.5), we write

1
g(t;�)

− 1
g(s;�)

= −4
∫ t

s

{
k2�2

k2−�2
1

2g(τ ;�)
+ k5

k2−�2
1

g(τ ;�)

[
g(τ ; k) − 1

2k

]

+ k̄2�2

k̄2−�2
1

2g(τ ;�)
+ k̄5

k̄2−�2
1

g(τ ;�)

[
g(τ ; k̄) − 1

2k̄

]}′
dτ. (6.19)

Thus, by Hölder, (5.12), (5.19), and (5.28) we get

LHS(6.17) �p |t − s|p−1
∫ t

s
E
{|�|2p∥∥〈x〉−β 1

g(τ ;�)

∥∥p
H−1

+ κ3p
∥∥〈x〉−β 1

g(τ ;�)

[
g(τ ; k) − 1

2k

]∥∥p
H−1

}
dτ

�p,β |t − s|p|�|3p,

whenever β > 4, which settles (6.17).
To remove the restriction on �, we recall that 1/g is an analytic function

of �. Thus its values in the omitted ball can be reconstructed from the values
on the boundary of the doubled ball and the Cauchy (or Poisson) integral
formula. That (6.17) continues to hold (albeit with a slightly larger constant)
then follows just by using the triangle inequality.

Interpolating between (6.17) and (5.19), we get

E
{∥∥〈x〉−β

[ 1
g(t;�)

− 1
g(s;�)

]∥∥p
H−1

}
�p,β |t − s|p/2|�|2p

whenever β > 4, uniformly in t, s ∈ R. The claim (6.18) now follows from
this and (5.11), by observing

g(t; �) − g(s; �) = −g(t; �)g(s; �)
[ 1
g(t;�)

− 1
g(s;�)

]
.

This completes the proof of the lemma. ��
We are now ready to formulate our result concerning the existence of good

solutions to the Hk flow. The question of uniqueness will be discussed later.

Proposition 6.7 For almost every initial data q0, there is a global good solu-
tion q(t) of theHk flow on the line that satisfies all of the following:

(a) For any 1 ≤ p < ∞, T > 0, and β > 1,

lim
L→∞E

{‖〈x〉−β[qL(t) − q(t)]‖p
Ct ([−T,T ];H−1)

} = 0. (6.20)

(b) For every t ∈ R, q(t) is white noise distributed.
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(c) Given a strictly admissible � with |�| ≤ 10κ and writing g(t, x; �) =
g(x; q(t), �), we have

E
{∥∥〈x〉−βg(�)

∥∥p
Cγ
t ([−T,T ];Hσ )

}+ E
{∥∥〈x〉−β 1

g(�)

∥∥p
Cγ
t ([−T,T ];Hσ )

}
�|�|,p,β,σ,T 1, (6.21)

uniformly in k, for any T > 0, 1 ≤ p < ∞, 1 ≤ σ < 3
2 , β > 6, and some

γ = γ (p, σ ) > 0. Moreover, if in addition β > 18, then

∥∥〈x〉−β [gL (�) − g(�)]∥∥Ct ([−T,T ];H1)
+ ∥∥〈x〉−β

[ 1
gL (�)

− 1
g(�)

]∥∥
Ct ([−T,T ];H1)

→ 0 (6.22)

in L p(dP) as L → ∞.
(d) g(t) and q(t) are related by (2.25) and 1/g(t) solves (3.5).

Proof We first define q(t) as the almost sure limit guaranteed by Lemma 6.3.
Consequently,

‖e−〈x〉α [qL(t) − q(t)]‖Ct ([−T,T ];H−1) → 0 as L → ∞ (6.23)

almost surely. Combining this with Lemmas 6.5 and 2.3 , we immediately
deduce that (6.23) also holds in the L p(dP) sense, that is,

lim
L→∞E

{‖e−〈x〉α [qL(t) − q(t)]‖p
Ct ([−T,T ];H−1)

} = 0 for any 1 ≤ p < ∞.

(6.24)

This can then be upgraded to (6.20) using Lemma 6.5 together with the fact
that

‖〈x〉−β f ‖H−1 � e2r
α‖e−〈x〉α f ‖H−1 + rβ ′−β‖〈x〉−β ′

f ‖H−1

for any r � 1 and 1 < β ′ < β.
Recall from Theorem 3.3 that qL(t) is 2L-periodic white noise for each

t ∈ R; thus part (b) follows from (6.20) via the characterization (2.9).
We turn now to part (c). Combining (5.11) (with 1 ≤ σ < s < 3

2 ) and (6.18)
we deduce that

E
{∥∥〈x〉−β[gL(t; �) − gL(s; �)]∥∥pHσ

}
�|�|,p,β,σ |t − s| p(s−σ)

2(1+s) . (6.25)

Using again (5.11) and invoking Lemma 2.4, we obtain

sup
L∈2N

E
{∥∥〈x〉−βgL(�)

∥∥p
Cγ ([−T,T ];Hσ )

}
�|�|,p,β,σ,T 1 (6.26)

for some γ (p, σ ) > 0.
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Taking σ = 1 in (6.26) together with Lemma 6.4 provides the prerequisites
to apply Lemma 2.5 and so deduce that there is some process G(t) so that

lim
L→∞E

{‖e−〈x〉α [gL(t; �) − G(t)]‖p
Ct ([−T,T ];H1)

} = 0 for any 1 ≤ p < ∞.

(6.27)

We will verify that G(t) = g(x; q(t), �) in a moment; first, we observe that
the exponential weight may be replaced by the polynomial weight appearing
in (6.22) by the same argument we used to do this for q(t) in part (a) above.

In view of the preceding, to verify that G(t) = g(x; q(t), �), it suffices to
show

lim
L→∞E

{‖e−4〈x〉α [gL(t; �) − g(t; �)]‖2
L2
t ([−T,T ];H1)

} = 0. (6.28)

To this end, we note that the resolvent identity gives

‖e−4〈x〉α [gL (t; �) − g(t; �)]‖2H1

� ‖e−2〈x〉α R(�)e〈x〉α ‖2
H−1

|�| →H1|�|
‖e−2〈x〉α [qL − q]‖2

H−1
|�|

‖e〈x〉α RL (�)e−2〈x〉α ‖2
H−1

|�| →H1|�|
.

This then yields (6.28) by taking expectation, using (6.24) and (5.7), and then
integrating in time.

As noted above, the identificationG(t) = g(x; q(t), �) completes the proof
of the first claim in (6.22). Combining this with (6.26) also yields the first claim
in (6.21).

We turn now to the claims regarding 1/g in (6.21) and (6.22). The former
claim follows by the same argument used to prove (6.26), by employing (5.20)
and (6.17) in place of (5.11) and (6.18). The latter claim follows from (6.21),
the identity

1
g − 1

gL
= 1

gL
1
g [gL − g]

and the convergence gL → g shown above.
We next show that q is a good solution (cf. Definition 6.1). Property (6.2)

follows already from part (a), while properties (6.3) and (6.4) follow from
(5.7) and (5.8), respectively, because we have shown that q(t) is white noise
distributed at every time. That q(t) obeys (6.5) follows from the fact that
(qL , gL) obey this identity at finite L and the convergence shown in parts (a)
and (c).

Consider now part (d). By Lemma 2.14 and Proposition 3.1, (2.25) and (3.5)
both hold at finite L . These results then carry over to infinite volume by virtue
of parts (a) and (c). This completes the proof of Proposition 6.7. ��
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To complete the proof of Theorem 6.2, it remains to establish uniqueness
within the class of good solutions.

Proposition 6.8 (Uniqueness of good solutions) Suppose q, q̃ are global good
solutions to the Hk flow (3.4) on R. If q(0) = q̃(0), then q(t) ≡ q̃(t) for all
t ∈ R.

Proof Evidently, it suffices to work on an interval [−T, T ] for an arbitrary
T > 0. We proceed similarly to the proof of Lemmas 6.3 and 6.5. For t ∈
[−T, T ], we define

M(t) := ‖e−2〈x〉α−2〈x〉α̃ [q(t) − q̃(t)]‖2
H−1

κ
,

where α and α̃ are the parameters attendant to the two solutions q and q̃
appearing in Definition 6.1. By symmetry, we may assume α ≤ α̃.

By assumption, M(0) = 0. Computing the time derivative leads to the
estimate

d
dt M(t) � κ2M(t) + κ5[M(t)] 12 ‖e−2〈x〉α−2〈x〉α̃ [g(t) − g̃(t)]‖L2,

where g, g̃ denote the diagonal Green’s functions for q and q̃, respectively. As
before, we estimate the L2-norm by duality. For h ∈ L2 and L ≥ 1,

|〈e−2〈x〉α−2〈x〉α̃ [g − g̃], h〉| ≤ |tr{e−2〈x〉α̃ R̃ϕ2
L(q − q̃)Re−2〈x〉αh}| (6.29)

+ |tr{e−2〈x〉α̃ R̃(1 − ϕ2
L)(q − q̃)Re−2〈x〉αh}|,

(6.30)

where ϕL denotes a smooth cutoff as in (5.1) and R, R̃ are the resolvents
corresponding to q and q̃, respectively.

Using Lemma 2.11, we first estimate

(6.29) � ‖e−2〈x〉α̃ R̃ϕL e2〈x〉α̃ ‖
H−1

κ →H1
κ
‖√R0(κ)e−2〈x〉α−2〈x〉α̃ (q − q̃)

√
R0(κ)‖I2

× ‖e2〈x〉α ϕL Re
−2〈x〉α ‖

H−1
κ →H1

κ
‖√R0(κ)h

√
R0(κ)‖I2

� κ−1‖h‖L2‖e−2〈x〉α̃ R̃ϕL e2〈x〉α̃ ‖
H−1

κ →H1
κ
‖e2〈x〉α ϕL Re

−2〈x〉α ‖
H−1

κ →H1
κ
[M(t)] 12 .

Similarly, using (6.2), (2.4), and Lemma 2.11, we estimate

(6.30) � ‖e−2〈x〉α̃ R̃e〈x〉α̃ ‖
H−1

κ →H1
κ
‖√R0(κ)e−〈x〉α̃ (q − q̃)

√
R0(κ)‖I2

× ‖e−〈x〉α (1 − ϕ2L )‖
H−1

κ →H−1
κ

‖e〈x〉α Re−2〈x〉α ‖
H−1

κ →H1
κ
‖√R0(κ)h

√
R0(κ)‖I2

� CT κ−1‖h‖L2e−
1
2 〈L〉α ‖e−2〈x〉α R̃e〈x〉α ‖

H−1
κ →H1

κ
‖e〈x〉α Re−2〈x〉α ‖

H−1
κ →H1

κ
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for some CT > 0. (We use here that if (6.2) holds with α, it also holds with
α̃ ≥ α.)

Continuing from above, we deduce

d
dt M(t) � M(t)

{
κ2 + κ4‖e−2〈x〉α̃ R̃ϕL e2〈x〉α̃‖H−1

κ →H1
κ
‖e2〈x〉αϕL Re

−2〈x〉α‖H−1
κ →H1

κ

+ κ8C2
T ‖e−2〈x〉α̃ R̃e〈x〉α̃‖2

H−1
κ →H1

κ

‖e〈x〉α Re−2〈x〉α‖2
H−1

κ →H1
κ

}+ e−〈L〉α .

Applying Gronwall’s inequality and the bounds (6.3) and (6.4) for good solu-
tions, we deduce

sup
t∈[−T,T ]

M(t) � e−〈L〉α+C(T,κ)[log L]C .

Sending L → ∞, we deduce M(t) ≡ 0, which completes the proof. ��
This uniqueness statement allows us to quickly dispel any concerns that

our notion of the Hk flow is not truly a flow (i.e., a one-parameter group). In
proving this, it will be convenient to adopt the abbreviation

‖ f ‖W := ∥∥〈x〉−β f
∥∥
H−1(R)

, (6.31)

where β > 1 is fixed.

Corollary 6.9 (Group property for Hk) There is a one parameter group of
transformations � : R × W → W preserving white noise measure so that

P
({q(t) = �(t, q0) for all t ∈ R}) = 1,

where q(t) denotes the solution to the Hk flow with initial data q0 and q0 is
chosen at random following a white noise law.

Proof LetO denote the subset ofW comprised of initial data for which theHk
flow admits a good global solution. In view of Proposition 6.7,P(q0 ∈ O) = 1.
On this set we define� in the obvious way; on the complement ofO we define
� to be the identity.

The definition of good solution guarantees that if q(t) is a good solution,
so is q(t + T ) for any T ∈ R. Thus the set O is invariant under �. As good
solutions are unique, we may also deduce that �(t) ◦ �(s) = �(t + s) for all
t, s ∈ R. ��

7 Invariance of white noise for KdV on the line

Our goal in this section is to complete the proof of the main result of the paper,
namely, the existence of KdV dynamics for white noise initial data on the
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270 R. Killip et al.

whole line and the invariance of white noise measure under these dynamics;
see Theorem 7.1 below. Our procedure for doing this is to take a limit of the
Hk flows, as k → ∞. Recall that for H−1(R) initial data, this limit was shown
to coincide with the KdV flow in [25]. For concreteness, we shall send k → ∞
along the sequence

kn = 2neiπ/8 where n ∈ N.

Any other sequence with ε < arg(kn) < π
4 − ε would serve equally well

and would lead to the same limit. The sparseness imposed on this sequence
is purely so that we may prove L p(dP) convergence by summing increments;
this restriction is readily removed via Urysohn’s subsequence principle.

Theorem 7.1 (Invariance of white noise for KdV on the line) Given initial
data q0 following the white noise distribution on the line, let qn denote the
corresponding global good solution to the Hkn flow (3.4) on the line, whose
existence is guaranteed by Theorem 6.2. For any T > 0, qn converges to a
limit q in the following sense: for any 1 ≤ p < ∞ and β > 24,

lim
n→∞E

{∥∥〈x〉−β(qn − q)
∥∥p
Ct ([−T,T ];H−1)

} = 0. (7.1)

Moreover, q(t) is white noise distributed for every t ∈ R.

While the early part of this section is devoted to the proof of this theorem,
we also include a further discussion on the nature of our solutions and two
results, namely, Corollaries 7.4 and 7.5 , that illustrate important virtues of
these solutions.

The path to proving Theorem 7.1 is as follows: we first control the both
the diagonal Green’s function and its reciprocal and then use Lemma 2.14 to
deduce control on the solutions qn themselves. As a first step, we treat 1/gn .

Proposition 7.2 Fix k ∈ {2neiπ/8 : n ∈ N} and let � be strictly admissible so
that |�| ≤ 1

2 |k|. Then for β > 18,

sup
t∈[−T,T ]

E

{∥∥∥〈x〉−β
[

1
2g(q2k(t);�)

− 1
2g(qk(t);�)

]∥∥∥2
H−2

}
�|�|,T |k|−1. (7.2)

Proof In view of Proposition 6.7, it suffices to prove the result in finite volume
with a bound independent of L ∈ 2N. Henceforth, we will regard L as fixed
and suppress the dependence of q and g on L .

As theHk flows commute on H−1(R/2LZ), we may write

q2k(t) = et J∇[H2k−Hk ]qk(t).
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Invariance of white noise 271

Using invariance of white noise under theHk flow, we may therefore replace

1
2g(q2k(t);�)

− 1
2g(qk(t);�)

by 1
2g(t;�)

− 1
2g(0;�)

in (7.2), where g(t; �) := g(q(t), �) and

q(t) := et J∇[H2k−Hk ]q, with q white noise distributed.

Applying the fundamental theorem of calculus and Minkowski’s inequality,
we get

sup
|t |≤T

E

{∥∥〈x〉−β
[ 1
2g(t;�)

− 1
2g(0;�)

]∥∥2
H−2

}
� E

{[∫ T

−T

∥∥〈x〉−β∂t
1

g(t;�)

∥∥
H−2 dt

]2}

� T sup
t∈[−T,T ]

E
{∥∥〈x〉−β∂t

1
g(t;�)

∥∥2
H−2

}
.

As white noise is invariant under the difference flow, the expectation here is
actually independent of t ∈ [−T, T ]. With this in mind, we suppress the t
dependence in what follows.

Using (3.5), we now write

∂t
1

2g(�)
=
{

1
g(�)

(
−2(2k)3[g(2k) − 1

4k ] + 2k3[g(k) − 1
2k ]
)

(7.3)

+ 1
g(�)

(
−2(2k̄)3[g(2k̄) − 1

4k̄
] + 2k̄3[g(k̄) − 1

2k̄
]
)

(7.4)

− 2 (2k)3�2

(2k)2−�2
1

g(�)

[
g(2k) − 1

4k

]+ 2 k3�2

k2−�2
1

g(�)

[
g(k) − 1

2k

]
(7.5)

− 2 (2k̄)3�2

(2k̄)2−�2
1

g(�)

[
g(2k̄) − 1

4k̄

]+ 2 k̄3�2

k̄2−�2
1

g(�)

[
g(k̄) − 1

2k̄

]
(7.6)

+
[

3k2�4

(k2−�2)(4k2−�2)
+ 3k̄2�4

(k̄2−�2)(4k̄2−�2)

]
1

g(�)

}′
. (7.7)

It remains to estimate the contribution of each of these terms. In what follows,
implicit constants are allowed to depend on �.

We start with (7.5) and (7.6). By symmetry, it suffices to consider the second
term in (7.5). Using (5.10) and (5.19), we estimate this contribution by

�|�| |k|E{∥∥〈x〉−β 1
g(�)

[
g(k) − 1

2k

]∥∥2
L2

}

�|�| |k|E{‖〈x〉−β/2 1
g(�)

‖4L4

} 1
2E
{‖〈x〉−β/2[g(k) − 1

2k ]‖4L4

} 1
2 �|�| |k|−4.

Using Cauchy–Schwarz and (5.19), we estimate the contribution of (7.7)
by

�|�| |k|−2
E
{‖〈x〉−β 1

g(�)
‖2L2

}
�|�| |k|−2.
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It remains to treat (7.3) and (7.4). By symmetry, it suffices to consider (7.3).
Using (2.18), we write

−(2k)3[g(2k) − 1
4k ] + k3[g(k) − 1

2k ] = [(2k)2R0(4k) − k2R0(2k)]q (7.8)

− (2k3)〈δx , R0(2k)qR(2k)qR0(2k)δx 〉 (7.9)

+ k3〈δx , R0(k)qR(k)qR0(k)δx 〉. (7.10)

We first consider (7.8). By an explicit computation, (5.20), and Hölder’s
inequality, we estimate the contribution of (7.8) by

� E
{∥∥〈x〉−β 1

g(�)
[(2k)2R0(4k) − k2R0(2k)]q

∥∥2
H−1

}

� |k|4[E{‖〈x〉2−β 1
g(�)

‖4H1}] 12 [E{‖〈x〉−2∂2R0(2k)R0(4k)q‖4H−1}] 12
�|�| |k|4[E{‖〈x〉−2∂R0(2k)R0(4k)q‖4L2}] 12 .

As q is white noise distributed, a computation using (2.10) shows

E
{‖〈x〉−2∂R0(2k)R0(4k)q‖2L2

} = ‖〈x〉−2∂R0(2k)R0(4k)‖2I2 � |k|−5,

and hence by Lemma 2.1,

E
{‖〈x〉−2∂R0(2k)R0(4k)q‖4L2

} 1
2 � |k|−5.

Thus the contribution of (7.8) is controlled by |k|−1, which is acceptable.
It remains to treat the contributions of (7.9) and (7.10). By symmetry, it

suffices to consider (7.10). We expand to one order higher in q and estimate it
by

� |k|6E{∥∥〈x〉−β 1
g(�)

〈δx , R0(k)qR(k)qR0(k)δx 〉
∥∥2
L2

}

� |k|6E
{
‖〈x〉−β/2 1

g(�)
‖2L4

[
‖〈x〉−β/2〈δx , R0(k)qR0(k)qR0(k)δx 〉‖2L4

+ ‖〈x〉−β/2〈δx , R0(k)qR0(k)qR(k)qR0(k)δx 〉‖2L4

]}

�|�| |k|6
[
E
{∥∥〈x〉−β/2〈δx , R0(k)qR0(k)qR0(k)δx 〉

∥∥4
L4

}

+ E
{∥∥〈x〉−β/2〈δx , R0(k)qR0(k)qR(k)qR0(k)δx 〉

∥∥4
L4

}] 1
2
. (7.11)
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We estimate

|〈δ0, R0(k)qR0(k)qR0(k)δ0〉| � ‖qR0(k)δ0‖2H−1
κ

‖R0(k)‖H−1
κ →H1

κ
� ‖qR0(k)δ0‖2H−1

κ

where, as before, κ = |k|. As q is white noise distributed, we may use (2.12)
followed by Lemma 2.1 to obtain

E
{‖qR0(k)δ0‖p

H−1
κ

} �p |k|−2p

for any 1 ≤ p < ∞. Thus, using translation invariance of white noise, we
deduce

E
{‖〈x〉−β/2〈δx , R0(k)qR0(k)qR0(k)δx 〉‖4L4

}
� E{‖qR0(k)δ0‖8H−1

κ
}‖〈x〉−β/2‖4L4

� |k|−16. (7.12)

To handle the contribution of the final term in (7.11), we use Lemma 2.12,
(4.6), and (5.6) to estimate

E
{|〈δ0, R0(k)qR0(k)qR(k)qR0(k)δ0〉|4

}
� E

{‖〈x〉4δ0‖8H−1
κ

‖〈x〉−4R0(k)〈x〉4‖8H−1
κ →H1

κ

‖〈x〉−2R0(k)〈x〉2‖4H−1
κ →H1

κ

× ‖〈x〉−2q‖12
H1

κ →H−1
κ

‖R(k)〈x〉−2‖4
H−1

κ →H1
κ

}

� |k|−4|k|−12 � |k|−16.

By translation invariance of white noise, we get

E{‖〈x〉−β/2〈δx , R0(k)qR0(k)qR(k)qR0(k)δx 〉‖4L4} � |k|−16‖〈x〉−β/2‖4L4

� |k|−16. (7.13)

Thus, continuing from (7.11), we deduce

|k|6E{∥∥〈x〉−β 1
g(�)

〈δx , R0(k)qR(k)qR0(k)δx 〉
∥∥2
L2

}
�|�| |k|−2,

which is acceptable. This completes the proof of the proposition. ��
Proposition 7.2 provides the key input to complete the

Proof of Theorem 7.1 Throughout this proof,wewrite gn(t; �) = g(qn(t), �).
Combining (7.2) and (6.21), we see that

lim
n→∞ sup

|t |≤T
E

{( ∞∑
m=n

∥∥〈x〉−β
[ 1
gn(t;�)

− 1
gm(t;�)

]∥∥
H1

)2} = 0.
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Thus, invoking (6.21) again, we may apply Lemma 2.5 to deduce that there is
a process 1

g so that for β > 18,

lim
n→∞E

{∥∥〈x〉−β
[ 1
gn(�)

− 1
g(�)

]∥∥p
Ct ([−T,T ];H1)

} = 0. (7.14)

In view of (6.21) and the identity

gn − gm = gngm
[ 1
gm

− 1
gn

]
,

it now follows that gn(�) → g(�) in the same topology:

lim
n→∞E

{∥∥〈x〉−β
[
gn(�) − g(�)

]∥∥p
Ct ([−T,T ];H1)

} = 0, (7.15)

provided β > 30.
A posteriori, we may relax the condition on β in (7.14) and (7.15) to merely

β > 6, by interpolating with (6.21).
We now turn our attention to qn . Recall from Proposition 6.7(d) that

qn = [ g′
n(�)

2gn(�)

]′ + [ g′
n(�)

2gn(�)

]2 + [ 1
4g2n(�)

− �2].

As both gn and 1
gn

are convergent in the senses (7.14) and (7.15), respectively,
for β > 6, it follows that qn are convergent in the sense (7.1) for β > 24.

It remains to show that q(t) is white noise distributed. This follows imme-
diately from the characterization (2.9), (7.1), dominated convergence, and the
fact that each qn(t) is white noise distributed (see Proposition 6.7). ��

In [25] it is shown that Ct (R; H−1
x (R)) solutions to KdV constructed as

the (unique!) limit of Schwartz solutions are in fact distributional solutions.
Nevertheless, the uniqueness question for distributional solutions remains open
at this time. In the torus setting, it is currently unknown if theKappeler–Topalov
solutions (constructed in [23]) are distributional solutions in any sense. The
work [10] of Christ gives strong evidence that distributional solutions may not
be unique at negative regularity.

The time integration inherent in the definition of distributional solutions is
essential inmaking any sense of theKdV equation (1.1) for such irregular data,
due to the impossibility of defining q(t, x)2 pointwise in time. It is natural to
ask if the solutions constructed in Theorem 7.1 are distributional solutions.
We believe that they are; nevertheless, verifying this seems to be a challenging
problem. Before presenting what additional properties of our solutions we can
prove at this time (namely Corollaries 7.4 and 7.5) we would like to devote a
little space to sharing our current perspective on this topic.
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Essential to showing that the solutions to KdV constructed in [25] are dis-
tributional solutions is the local smoothing effect, which guarantees that

∫∫
q(t, x)2

〈t〉2〈x〉2 dx dt < ∞. (7.16)

This immediately yields that the nonlinearity can be interpreted as a space-time
distribution.

White noise solutions cannot obey (7.16), even under stronger space-time
localization. Indeed, by invariance of white noise measure, the local L2

x norm
is almost surely infinite at every time. The intuitive picture here is analogous
to the failure of local smoothing for periodic initial data (i.e., the torus).

A naive explanation for the divergence of the square is that it originates in
low frequencies and will be subdued by the derivative outside the nonlinearity.
Indeed, the most obvious way to remove the divergence in expectation is to
Wick-order the nonlinearity, which will not affect the dynamics precisely due
to this derivative. However, the underlying divergence of the square of white
noise is much more severe than that. Indeed, choosing trigonometric series in
the representation (2.10) ofwhite noise on the circle, one immediately sees that
the average value of the zero Fourier mode diverges, while that of other modes
remains zero. However, the fluctuations of all modes diverge (the probability
laws lose tightness)!

Nevertheless, we still believe that our solutions are distributional solutions.
The primary source of this hope comes from a subtly different dispersive effect,
which by analogy with local smoothing, we would call the local averaging
effect. A simple computation with the Airy equation reveals its underlying
phenomenology: Let us write q(t) = e−t∂3q0 for the solution of the Airy
equation with initial data q0, which is white noise distributed. Then q(t) is a
Gaussian process with covariance

C(t, x; s, y) := E{q(t, x)q(s, y)} = (3|t − s|)−1/3 Ai
(
(3[t − s])−1/3[x − y]

)
,

where Ai denotes the Airy function. It is now reasonably easy to verify that
for any Schwartz function ψ : R2 → R,

∫∫
: q(t, x)2 : ψ(t, x) dt dx,

where colons represent Wick ordering, yields a well-defined random variable
with second moment

2
∫∫ ∫∫

ψ(t, x)C(t, x; s, y)2ψ(s, y) dy ds dx dt < ∞.

123



276 R. Killip et al.

See [52, Theorem I.3]. The intuitive explanation behind this is that the time
integration averages out some of the divergence by exploiting the rapid oscil-
lation in time of waves of high wave number.

One word of warning seems appropriate at this point, namely, that the local
averaging effect of the Hk flows is too weak to make sense of the square
of these solutions (with white noise initial data) as space-time distributional
solutions in the above sense. Therein, we already see the first major obstacle to
be overcome in treating the question of distributional solutions by the methods
of this paper.

Nevertheless, we will demonstrate that the solutions constructed in Theo-
rem 7.1 are solutions in at least one intrinsic sense. By ‘intrinsic’ we mean
determined by the solution itself, independent of any limiting procedures used
to construct it. The idea stems from Proposition 3.1 in [25] and as such, let us
first articulate it in the setting ofCt H

−1
x solutions on the line and on the circle:

Definition 7.3 We say that q ∈ Ct H
−1
x is a green solution to (1.1) if for all

� > 0 sufficiently large, the associated diagonal Green’s function g(t, x; q, �)

obeys

1
2g(t;�)

− 1
2g(0;�)

=
(∫ t

0

q(s)
g(s;�)

− 2�2

g(s;�)
ds
)′

. (7.17)

Note that this is inherently meaningful as an identity of Ct H
−2
x functions.

The arguments of [25] give immediately that the solutions constructed
therein are green solutions. It is also our belief that green solutions are unique in
that setting; however, this is a challenging open problem (cf. [10,12]). Never-
theless, we do know that green solutions are unique and coincide with classical
notions of solution already for q ∈ Ct L

2
x . More explicitly, sending � → ∞

in (7.17), one finds that green solutions are distributional solutions, which are
then unique by the results of [1,60].

As our next result, we observe that the solutions constructed in Theorem 7.1
are green solutions in the sense natural to this problem; once again, the almost
sure uniqueness of such solutions is an interesting open problem.

Corollary 7.4 (Intrinsic solutions) Let q(t) denote the ensemble of solutions
constructed in Theorem 7.1, let � be strictly admissible, and let g(t) =
g(t, x; �, q(t)). Then the couple (q(t), g(t)) obeys (7.17) for all times t ∈ R

(as an equality of tempered distributions), excepting perhaps a set of initial
data of probability zero.

Proof Recall (6.19), which is merely a rewriting of (3.5). In view of this
identity obeyedby solutions of theHk flow,wemay recover (7.17) for solutions
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of the KdV equation employing (7.1), (7.14), and by verifying that (after
excluding a set of initial data of probability zero)

∥∥〈x〉−β
{
4k3n

[ 1
2kn

− gn(t)
]− qn(t)

}∥∥
L2([−T,T ];H−1)

→ 0 (7.18)

asn → ∞ for every T > 0 and someβ > 0.Hereqn and gn denote the solution
of theHkn flow and its associated diagonal Green’s function, as earlier in this
section.

By the resolvent identity and direct simplification of the term linear in q,

4k3n
[ 1
2kn

− gn(t)
]− qn(t) = ∂2R0(2kn)qn − 4k3n〈δx , R0(kn)qn R0(kn)qn R0(kn)δx 〉

+ 4k3n〈δx , R0(kn)qn R0(kn)qn R(kn)qn R0(kn)δx 〉.

The second and third terms in this expansion have already been estimated in a
satisfactory manner; see (7.12) and (7.13), respectively. We turn our attention
to the first term:

E
{‖〈x〉−β∂2R0(2kn)qn

∥∥2
H−1

}
� E

{‖〈x〉−β∂R0(2kn)qn
∥∥2
L2

}
� ‖〈x〉−β∂R0(2kn)‖2I2 � |kn|−1.

Putting everything together, we deduce that

E

{∥∥〈x〉−β
{
4k3n

[ 1
2kn

− gn(t)
]− qn(t)

}∥∥2
H−1(R)

}
� |kn|−1,

for β sufficiently large. The conclusion (7.18) that we seek now follows by
Fubini and the Borel–Cantelli lemma. ��

Next, we would like to confirm that the solutions of KdV we have con-
structed have the group property. What we show here is slightly weaker than
what we proved for the Hk flow; nevertheless, it suffices for the questions of
immediate interest to us. In particular, the realization of the Koopman opera-
tors as a strongly continuous unitary group is precisely what is needed for the
standard proof of the mean ergodic theorem and also suffices to characterize
weak/strong mixing; see [47], for example.

For more sophisticated questions one may wish to realize the Koopman
operators as coming from an honest one-parameter group in a concrete Pol-
ish space. (By ‘honest’ here, we mean that the group property holds without
exceptional null sets.) This can be done by invoking a classical theorem of
Mackey (see [61, Appendix B]).

Corollary 7.5 (Group property for KdV) The Koopman operators

U (t) : L2(dμ) → L2(dμ) via [U (t) f ](q0) = f (q(t))
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form a strongly continuous one-parameter unitary group. Here dμ denotes
white-noise measure on W endowed with the Borel σ algebra.

Proof From Theorem 7.1, we know that our flow preserves white noise mea-
sure and that the trajectories are almost surely continuous in the Hilbert space
W defined in (6.31), but nowwith β > 24. (Note that the standard theorems of
measure theory apply onW because it is completely metrizable and separable;
see [24, §17]).

By the measure-preserving property and the density of bounded continu-
ous functions in L2(dP), strong continuity of the Koopman operators follows
from the almost-sure continuity of trajectories and the dominated convergence
theorem. The measure-preserving property also immediately guarantees that
the Koopman operators are isometries. Unitarity will follow once we verify
the group property:

U (t)U (s) = U (t + s) for any fixed s, t ∈ R.

This in turn will follow if we show

E
{∣∣〈ψ, �(t) ◦ �(s)q0〉 − 〈ψ, �(t + s)q0〉∣∣} = 0 (7.19)

for fixed s, t ∈ R and fixed Schwartz function ψ . Here � : R × W → W
denotes the data-to-solution map constructed (on a set of full probability) in
Theorem 7.1. The fact that � was constructed as the a.e. limit of a sequence
of one-parameter groups �n , namely theHkn flows, will be pertinent to com-
pleting the present proof. In truth, we have only explicitly proved L p(dP;W )

convergence along the original sequence of parameters kn; thus, we should
now to pass to a subsequence kn → ∞ so as to guarantee almost sure conver-
gence. (Actually, with more attention to the minute details, one could avoid
passing to a subsequence, but this is of no consequence.)

As the map q0 
→ 〈ψ, �(t)q0〉 ∈ L2(dP), for each ε > 0, Lusin’s and
Tietze’s theorems combine to guarantee the existence of an Fε : W → R that
is continuous, bounded, and satisfies

E
{∣∣〈ψ, �(t)q0〉 − Fε(q

0)
∣∣} ≤ ε.

In view of Corollary 6.9, we have also have

〈ψ, �n(t) ◦ �n(s)q
0〉 − 〈ψ, �n(t + s)q0〉 ≡ 0.
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Thus, recalling also that � and �n are measure preserving at any fixed time,

LHS(7.19) ≤ E
{∣∣〈ψ, �(t) ◦ �(s)q0〉 − 〈ψ, �(t) ◦ �n(s)q

0〉∣∣}
+ E

{∣∣〈ψ, �(t) ◦ �n(s)q
0〉 − 〈ψ, �n(t) ◦ �n(s)q

0〉∣∣}
+ E

{∣∣〈ψ, �n(t + s)q0〉 − 〈ψ, �(t + s)q0〉∣∣}
≤ 2ε + E

{∣∣Fε ◦ �(s)(q0) − Fε ◦ �n(s)(q
0)
∣∣}

+ E
{∣∣〈ψ, �(t)q0〉 − 〈ψ, �n(t)q

0〉∣∣}
+ E

{∣∣〈ψ, �n(t + s)q0〉 − 〈ψ, �(t + s)q0〉∣∣}
≤ 2ε + o(1) as n → ∞.

Note that these last three terms converge to zero by virtue of Theorem 7.1, the
continuity of Fε, and Lemma 2.3. As ε > 0 was arbitrary, this completes the
proof of (7.19) and hence that of Corollary 7.5. ��

Corollary 7.5 also allows us to rigorously formulate our loftiest ambition
with regard to the model discussed in this paper:

Conjecture 7.6 The KdV flow is mixing, namely, as t → ∞, the operators
U (t) converge to the projection onto constants in the weak operator topology.
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