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We study the scattering problem for the nonlinear Schrédinger equation id,u + Au =
|[ulPu on R4, d > 1, with a mass-subcritical nonlinearity above the Strauss exponent. For
this equation, it is known that asymptotic completeness in L? with initial data in ¥ holds
and the wave operator is well defined on ¥. We show that there exists 0 < 8 < p such
that the wave operator and the data-to-scattering-state map do not admit extensions to
maps L? — L? of class C!*# near the origin. This constitutes a mild form of ill-posedness

for the scattering problem in the L? topology.

1 Introduction

Consider the defocusing mass-subcritical nonlinear Schridinger equation (NLS):

id,u+ Au=F(u) = [ulPu, (t,x) eI x R? c R x RY, (1)
where 0 < p < %. It is well known that the Cauchy problem for this equation is globally
well-posed in L?. In this paper, we are concerned with two elements of the long-time
asymptotic behavior of solutions to this equation in the L? topology. The first is the
question of asymptotic completeness. We say that (1) is asymptotically complete in L? if
for each ¢ € L?, there exists u, € L? so that the global solution u to (1) with u(t = 0) = ¢
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satisfies
lim le" ™A u(t) — u, ll;2 = 0.
—00

The second is the existence of the wave operator. We say that the wave operator for (1)
is well defined on L? if for each ¢ € L?, there exists a unique global solution u € CMOCL)%
to (1) satisfying
lim [le” 5 u(t) - ¢ll2 = 0.

Analogous definitions can be made as t — —oo; as the distinction between forward and
backward time does not affect any part of this paper, we consider the forward time
direction only.

Whether (1) is asymptotically complete or admits a wave operator in L? are
currently open problems. The known results rely on stronger assumptions on the space

of initial data or scattering states. We introduce the two representative results here. Let

¥ be the Banach space defined by the norm

IFIE = IFIZ + IVFIZ, + I1xf11%.
The 1st result is by Ginibre and Velo and establishes the scattering theory in X.

Theorem 1.1 (Scattering in ¥; [13, 14]).

1. Leta(d) <p < %, where

a(d) =

2—d++/(d—-2)2%+16d
2d

denotes the Strauss exponent (the Strauss exponent is a current technical
limitation for the scattering theory for (1). It represents the threshold at
which one can obtain global spacetime bounds for the solution in critically
scaling Strichartz spaces. We note that the range of nonlinearities for
Theorem 1.1 be broadened to diJrz <p< % with a small-data assumption,
due to Cazenave and Weissler [7]). Then the Cauchy problem for (1) is globally
well-posed in X.

2. Equation (1) is asymptotically complete in X, for each ¢ € %, there exists
u, € X so that the global solution u to (1) with u(t = 0) = ¢ satisfies

—itA

tlggo le”" u®) —u |y =0.
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3. The wave operator is well defined on X, for each ¢ € T, there exists a unique

global solution u € C; .= (R) to (1) satisfying

lim [e "2 u(t) — ¢ = 0.
t— 00

The 2nd result is due to Tsutsumi and Yajima:

Theorem 1.2 (Asymptotic completeness in L? for ¥ data; [26]). Let % <p< g. Then for
each ¢ € X, there exists u, € L? so that the global solution u to (1) with u(t = 0) = ¢

satisfies

lim le A u(t) — u, l;2 = 0.
t—o0

These results do not address the question of taking data in L?, which is arguably
the most natural space for the problem given its mass-subcritical nature and the
conservation of mass. In this paper, we offer something of an explanation for this state

of affairs. We now define our main objects and state our main results.

Definition 1.3. Leta(d) <p < %. The initial-to-final-state map is the map S : ¥ —
L? defined by S(¢) = lim,_, ., e "“u(t) = u,, where u € C;},,L2 is the global solution
to (1) and the limit is in the L? topology. The wave operator is the map W : ¥ — L2
defined by W(¢) = u(0), where u € Ct,IOCL)% is the unique global solution to (1) satisfying

lim, , . lle”®*u(t) — ¢|l;2 = 0.

Note that S and W are well defined by Theorem 1.1; in fact, we could take them

to be X-valued, but this is not necessary for our purposes.

Theorem 1.4 (Main theorem). Assume d > 1 and a(d) < p < %. Then:

1. S and W, regarded as maps X — L2, are s-Holder continuous at 0 € X for all
0 <s<1+pat0, and are not s-Hoélder continuous at O for any s > 1 + p.

2. There exists 0 < 8 < p, with 8 depending only on d and p, such that for any
ball B C L? containing the origin, S: BN X — L? and W : BN ¥ — L? cannot
be extended to maps B C L? — L? that are Holder continuous of order 1 + g
at 0 € L2
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Here, for s > 0 possibly non-integer, by a map F : X — L? (where X = X or
L?) that is Hélder continuous of order s at x, € X we mean a map that belongs to the

pointwise Holder space C%(x,) (see Definition 2.4). In particular:

Corollary 1.5. Assumed >1anda(d) <p < %. Then:
1. Lets > 1+ p, and let n be the integer part of s. Then § and W, regarded as

maps ¥ — L?, cannot have an n-th Gateaux derivative defined about 0 € X
that is Holder continuous of order s — n.

2. Lets =1+ B, where 8 is as in Theorem 1.4, and let n be the integer part of
s. Then S and W cannot be extended to maps L? — L? that admit an n-th
Gateaux derivative defined about 0 € L? that is Hélder continuous of order

S—n.

Part (1) of Theorem 1.4 is, in some sense, unsurprising, since the nonlinearity in
(1) is a pure power of degree 1+ p, given a sufficiently strong global well-posedness and
scattering theory we should expect to be able to differentiate with respect to the initial
or final state up to, and not more than, 1 + p times. In that sense, part (1) provides the
sharp regularity result with respect to the nonlinearity. That this amount of regularity
holds with initial or final states in ¥ is a confirmation that X is such a space with a
strong global well-posedness and scattering theory. Therefore, part (2) of Theorem 1.4
is the statement of primary interest; it states that if we instead take L? as our space
of initial or final states, then the initial-to-final state operator and the wave operator,
if they were to be defined on L?, cannot attain the regularity with respect to the data
suggested by the smoothness of the nonlinearity. The value of 8 in part (2) can be made
explicit, which will become evident toward the end of the proof of Theorem 1.4. We
interpret this as a mild form of ill-posedness result for the asymptotic completeness
and wave operator problems in the L? topology.

We briefly review the history and relevant work behind this result. We have
already mentioned the two main positive results in the scattering theory for the mass-
subcritical NLS: the work of Ginibre-Velo [13, 14], which establishes the scattering the-
ory in ¥, and that of Tsutsumi-Yajima [26], which establishes asymptotic completeness
in L? under the assumption of ¥ data. The result of Tsutsumi-Yajima is optimal in
that it treats the full range of nonlinearities % <p < % (the so-called short-range
regime) for which mass-subcritical scattering in L? is possible; for p < % (the long-
range regime), scattering in L? can only occur for the zero solution, which is a result

due to Strauss, Glassey, and Barab [2, 15, 23]. The asymptotic completeness results can
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be extended to spaces with weaker weights and regularity assumptions than X, see [21].
Moreover, for certain even mass-critical and supercritical values of p, the wave and
scattering operators are real analytic as a map ¥ — X, a result of Carles and Gallagher
[5]. Therefore, we see that the scattering problem is typically quite well behaved on
weighted spaces such as X and its variants. To be clear, we are not asserting that X is a
purely artificial space for the scattering theory. It is in fact a very natural space: after
a lens transformation it arises as the harmonic energy space for Equation 1, see [25].

The corresponding literature for mass-subcritical scattering with data in L? is
sparser. There is one positive result due to Nakanishi [20]: in the full short-range regime,
for any free evolution e®2y there is a global solution u to (1) which approximates
it in L? (resp. in H!) as t — oo. However, it is not known if the global solution
thus obtained is unique, so this falls short of defining the wave operator on L?.
Moreover, this global solution is obtained by compactness methods, and we do not
obtain a quantitative understanding of how it depends on the final state . In fact, the
asymptotic completeness result of Tsutsumi-Yajima also proceeds by a compactness
argument, and thus we do not obtain a quantitative understanding of the initial-to-
final-state map either. As for the mass-critical case p = %, global well-posedness and
scattering in L? are known due to recent work of Dodson [9-11]. The scattering theory for
the mass-critical NLS is essentially a direct consequence of its global well-posedness
theory, as it admits a symmetry under the pseudoconformal transformation.

Perhaps it is telling that despite the question being relatively obvious to any
student of the subject, there have been few if any positive results in the direction of
mass-subcritical scattering in L2, In fact, the fact that we can construct initial states
for given final states is already somewhat remarkable. This is because (as observed
by Nakanishi) the wave operator problem is in some sense scaling-supercritical in
L?, as can be seen by applying the pseudoconformal transform to convert it into an
initial value problem. Generally speaking, the problem of constructing the scattering
operator is at least as difficult as that of constructing the wave operator. This is
because when the Cauchy problem is posed in a subcritical or critical space, it is often
the case that the wave operator can be constructed by Picard iteration in the same
way as one constructs local-in-time solutions. To conclude asymptotic completeness,
one additionally needs some sort of decay estimate on the nonlinear evolution that is
consistent with the dispersive decay of the linear evolution. Therefore, the question
of asymptotic completeness in L? appears to require both a well-posedness theory
for a scaling-supercritical problem and rather explicit decay-in-time estimates. It is

generally conjectured that scaling-supercritical problems exhibit some form of ill-
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posedness. This is the primary motivation behind this paper: to demonstrate that the
asymptotic completeness and wave operator problems on L? are ill-posed in some
appropriate mild sense, offering a partial explanation for the difficulty in resolving
these problems.

We now outline our methods for proving Theorem 1.4. Our ill-posedness argu-

ment proceeds along the following abstract framework:

1. Decompose the solution under consideration into an explicit main term and
an error term, possibly in a stronger topology than where ill-posedness is to
be proved (in order to make this splitting possible in the first place).

2. Demonstrate that when restricted to the weaker topology, the main term
exhibits the desired ill-posedness properties.

3. Show that in the regime that the main term exhibits ill-posedness, the error
term is dominated by the main term; therefore, the error does not destroy the

ill-posedness.

This abstract framework has been used previously to prove ill-posedness properties
(e.g., norm inflation) of various initial-value problems for NLS: see, for instance, [3, 8,
17]. The result itself falls into a class of results sometimes known as C¥ or analytic
ill-posedness, in which it is shown that a data-to-solution map of some type lacks
regularity with respect to the data. As far as we are aware, this class of result was
first investigated by Bourgain in [4], in which the threshold Sobolev regularity for
smoothness of the periodic KdV flow was determined.

The key tool in our analysis, corresponding to step (1), is the following small-

data expansion of the scattering state near the origin:
oo . .
S@)=¢— i/ e B5AF(e$2¢) ds + error (2)
0

for small Cauchy data ¢. A similar expansion holds for the wave operator /, and the
following discussion for S holds equally for W, so for now let us speak only of S for
brevity. We obtain (2) as an explication of the proof of Theorem 1.1; this is the reason for
the restriction p > «a(d). The 1st term in this expansion arises from the linear evolution;
the 2nd term arises naturally as the 1st nonlinear term in the Picard iteration scheme for
u. We will formulate this expansion precisely, prove that it holds, and quantify the error
term. Part (1) of Theorem 1.4 will then emerge almost immediately as a consequence.
This sort of expansion is not new; this expansion appears for the mass-critical NLS

in [6], with a different proof. Higher-order expansions of the error term, as well as
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quantitative estimates for the higher-order errors, were studied in [18], though for us
the first-order expansion suffices.
Next we outline step (2). Assuming that the error is negligible compared to the

remaining terms, this allows us to write
m . .
S(p) — ¢ ~ —i / e BAF(ES2 ) ds.
0

With a sufficiently strong estimate on the error term, it is easily seen that § is
differentiable at 0 in the Fréchet sense, with derivative the identity operator; therefore,
the left-hand side of the above expression is exactly equal to the remainder term in a
first-order Taylor approximation of the scattering operator near the origin. Therefore,

the behavior of quotients such as

IS@) — ¢l
Ipl,;"

as ||¢|l;2 — O corresponds to the regularity (or lack thereof) of the scattering map beyond
the 1st derivative.
Due to the small-data expansion of the scattering state, by L? duality the

numerator in the above quotient is essentially equivalent to

=
L2 ||¢||L2

1
ol

o0 . .
H/ e—lSAF(elSA¢) dS
0

/oo<e—iSAF(eiSA¢)’¢>L§ ds
0

itA 4 P2
e g :
25%(10,00))

We would therefore like to show that

itA . P+2
e 2 el

I572(10,00))

sup =00

2+
A Y

To do this, it is required that ||e*2¢| P+ cannot be controlled by large powers
t.x

([0,00))
of the mass ||¢||;2. This is a familiar result: such control can only be obtained in the
mass-critical case p = %, for which it is the L? Strichartz estimate at the Tomas-Stein
exponent, and in all other cases one can show by scaling that there exists an L?-bounded

([0,00))
can lead to conclusions about the regularity of a data-to-solution map essentially dates

sequence (¢,,) for which ||eitA¢n|| 1P+2 — 00. That the failure of a Strichartz estimate
t,x

back to [4], see also [24] for a textbook treatment.
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Therefore, the main term exhibits the desired ill-posedness properties and only
step (3) remains: we must find a sequence of initial data ¢ that sends the above quotient
to oo, while ensuring that the main term dominates the error term. We do this by
introducing a two-parameter family of initial data ¢, ,, where ¢ is the amplitude and
o is the spatial scale. The error term is essentially a higher-order term in ¢ compared to
the main term; therefore, we can choose ¢ small so that the main term defeats the error
and then o to send the quotient to co.

We now briefly outline the organization of the paper. In Section 2, we go over
the notation and basic preliminary results used in the rest of the paper. In Section 3, we
prove that S and W admit the expansion (2) with quantitative bounds on the error term.
In the interest of exposition, we do this in dimensions d > 4 only. In this setting, the
nonlinearity is subquadratic, which simplifies some technical details. In Section 5, we
leverage (2) with the error estimates to demonstrate that the ill-posedness properties of
the main term carry over to ill-posedness of the entire operator. In Appendix A, we show

how to recover the cases d =1, 2, 3.

2 Notation and Preliminaries

Let X and Y be two quantities. We write X < Y if there exists a constant C > 0 such that
X < CY. If C depends on parameters a,,...,a,, i.e.,, C = C(a,,...,a,) and we wish to
LY. IfX SYand Y S X, we write
X ~ Y. If the constant C is small, then we write X « Y. We also employ the asymptotic

indicate this dependence, then we will write X <, ,

notation O(f) and o(f) with their standard meanings.

We will be working with the mixed spacetime Lebesgue spaces L{LL(I x R%) with

1
‘N
||u||L;1Lr(Ide)=(/(/ |u(t,X)|rdX) dt) .
* 1 \/Rd

We will abbreviate the norm as ||u||L;;L;(Ide) = ||u||L?L;

norms

a- We will often encounter the
case I = [0, 00). In this case, we will further abbreviate the norm as ||u”L?L§([O,oo)><Rd) =
lullg,- For functions with no time dependence, we write ||f||Lr(Rd) = [Ifll,. For1 <r < oo,
we denote by ' the Holder conjugate: 1 = % + rl
We define the energy functional
1 o2 1 +2
E() = —|Vv|* + ——|v|PT* dx.
R4 2 p + 2
It is well known that the energy, as well as the L?-norm, are conserved quantities for

solutions to (1).
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We recall the following fundamental estimates for the Schrédinger equation.

Proposition 2.1 (Dispersive estimate). Let 2 < r < co. Then for all ¢t # 0,

itA 4_d
lle' Pl may Sra 16127 7 19l ray-

Definition 2.2 (Admissible pair). Letd > 1 and 2 < q,r < oco. We say that (g,r) is an
admissible pair if it satisfies the scaling relation % + % = % and (d,q,r) # (2,2,00). We

say that («, 8) is a dual admissible pair if (¢, ') is an admissible pair.

Proposition 2.3 (Strichartz estimates). Let d > 1, let (q,r) be an admissible pair, and
let (@, B) be a dual admissible pair. Then for any interval I C R,
1€ D1l 917 (rray S 10 122rays

t .
/ e =92F(s) ds

0

S IF|

Lastly, we define our notion of pointwise Holder regularity.

B dy-
LILL(IxR4) LiLxIxR%)

Definition 2.4 (Pointwise Ho6lder space [1]). Let X and Y be Banach spaces. Let x; € X
and U a convex open neighborhood of x;. Fix s > 0 and let n be the integer part of s. For
s > 0, we say that the map G : X — Y belongs to the pointwise Hélder space C%(x,) if for
all h € X with ||h|ly = 1, there exist coefficients {a;(xq; h)}?:o C Y such that

n
1G(xo + £h) — G(xg) — D elaj(xpi Wlly < &°
j=1

for all ¢ > O sufficiently small, with the implicit constant independent of the

direction h.

Our main interest in C%(x,) is that membership in C°(x;) is a necessary, though

not sufficient, condition for a stronger notion of regularity of order s:

Lemma 2.5. Let X and Y be Banach spaces. Let U C X be a convex neighborhood of
Xg € X.Let G: U — Y be a map and suppose G ¢ C°(xy) withn < s < n + 1. Then
d"G(x; h) (the n-th Gateaux derivative of G), if it exists for x € U, cannot be a Holder

continuous function of x of order s — n with Holder seminorm uniformly bounded in A.
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For the proof of Lemma 2.5, as well as the relationship between Definition 2.4

and other notions of regularity, we refer the reader to Appendix B.

3 Small-Data Expansion of the Wave and Initial-to-Scattering-State Operators

In this section, we undertake step (1) of our ill-posedness framework, the decomposition

of the wave operator, and the initial-to-scattering-state map.
4@+m

Henceforth, we take g = ; then (q,p + 2) is an admissible pair. We write

T_ =S8, T, =W, regarding them as maps TL:X — L2,

Proposition 3.1 (Small-data expansion). Let a(d) < p < %. Then there exists ¢ =
e(d,p) > 0 small so that if ||¢||y < ¢, then

To@) = p+i / e A RSB ) ds + e, (),
0

where the error term e, (¢) satisfies

2@2p+1)

lex@)ly Sap lols™ (3)

The proof of Proposition 3.1 is based on the proof of Theorem 1.1 given in [7].

The key fact underlying all of these arguments is the pseudoconformal energy estimate.

Lemma 3.2 (Pseudoconformal energy estimate). Let0 < p < and ¢ € X. Let u be the
global solution to (1) with initial data ¢. Then for all ¢ > 1,

_dl
lu@1Fy% Sap ¢ % Qu@IF + luIg"™). 4
Moreover, if ¢ = ¢(d, p) > 0 is sufficiently small and ||¢||x, < ¢, thenforallt >0

O Sap 07 F 1812 <5)

Lemma 3.2 has a well-known formal proof for regular solutions via the virial
identity, though it is usually stated without the explicit dependence on u(1) or the small-
data statement. We reproduce it here for the reader’s convenience; our proof follows the
presentation in [19]. A proof that recovers Lemma 3.2 for rougher solutions can be found
in [12].
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Proof. LetJ(t) = x+itV. Equation (4) follows from the more general inequality

I @u@) I, + @275 Sqp ¢ 7 (2 + DB,

Expanding,
IT@u@)|?, = / 1|2 |u|? — 2tIm(UVu - 2x) + 4t*|Vu|?

Next, we invoke the virial identity for solutions to (1):
dt2/|x| |u|? dx = —ZIm/uVu 2x dx = / |u|P+2+8|Vu|
It follows that:

jt/|x| lul? — 2tImuVu - 2x dx = /

By conservation of energy,

1
tZ%/|Vu|2 -8t zjt/ | ulP*? dx.

Combining, we obtain

d 2 adpt . zd/ 1 o
dt/lJ(t)u(t)| dx = /p+2|u| 8¢ - | ———IulP? dx.

adpt
p [ulP*2 + 8t|Vul? dx

Defining

m—/ﬂnu>+fﬁwwﬂw
e TP+ ,

we find that

dp 2
at(4 - d - 8t
et = ( p)/| P2 dx szJrz/lulerz dx.

With

8¢2
Ut) =
® p+2

it follows that:

dp
2 U(s) ds.

t t
Umsaw=anﬁ/agw=an+/
1 1
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3582 G.E. Lee
By Gronwall’s inequality and Sobolev embedding, we conclude that

t 2 d_P
U(®) < e(1)exp (/1 ~ ds) < QuME + lumig =%

that gives the claim. The small-data statement now follows from the local well-

posedness theory for NLS in X. |
Proposition 3.1 then follows from the following two estimates:

Lemma3.3. Letd>1,a(d) <p< %, and ¢ € X. Then there exists ¢ = ¢(d, p) > 0 small
so that if |||y < &, then

2
P2
1ull 29, iz + 1Ullgpez Sap 16157

Proof. By Lemma 3.2,

q-2
([ s o B ar)
1l pg, pr2 S A (t) lolly")e2 dt

_2 00 _2p qT;z
= |lp|I 2" (/0 (t)y" @2 dt) :

The integral in time is finite provided qZsz > 1, which is true whenever p > a(d). A

similar argument shows that
2 (% -2 4\ < 1172
Iullgpea < B2 (/0 () dt) < eIz

Lemma3.4. Letd>1,a(d) <p< %, and ¢ € X. Then

itA
llet Pl 29, py2 Sap lols.

Proof. The dispersive estimate (Proposition 2.1), combined with the Gagliardo-
Nirenberg inequality and the embedding ¥ «— L9 (32%2 < q < 2), gives us the decay

estimate

itA < (t ~ 20
le" "l pz S (2) olls-
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From here the proof is nearly identical to that of Lemma 3.3, where we invoke the above

decay estimate in place of the pseudoconformal energy estimate. |

Proof. of Proposition 3.1 By the construction of the wave operator given in [7], for a

given final state ¢ € ¥ the global solution u to (1) with final state ¢ satisfies
. 00 .
u(t) = et ¢ + / e =I2F(u)(s) ds
t
. 0 . .
=g + / e INF(ERp)(s) ds + 1, (9) (1),
t
where

r (@) = u) — "¢ — / T AR ) s) ds.

t

Sending t — 0, we obtain
W(g) = u(0) = ¢ + /O e AR (S g)(s) ds + e, (¢),

where e, (¢) =1, (¢)(0). A similar expression holds for S(¢), we have

. t . . .
S(p) = [S(p) — e rut)] + [cp —i / e SAF(eBA¢) ds] +e A _(9) (1), (6)
0

where
. t .
r_ (¢)(t) = u(t) — eltAd) =+ l/ el(t_s)AF(eLSA¢) ds.
0

By the definition of S(¢) and Theorem 1.1, we have |S(¢) — e“imu(q&)(t)u2 — 0ast— oo.

Sending t — oo in (6), we obtain
m . .
S@)=¢—i / e UAF (52 ¢) ds +e_(¢),
0
where e_(¢) = lim,_, e "*r_(¢)(t). Therefore, we have

leL(@llz = I71(D)ll o 2

Since u satisfies the integral equation, we may write

t . .
r(@)(8) = i / SO Ew(@)(s)) — F(e5D )] ds.
0
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By repeated applications of the Strichartz inequality (Proposition 2.3) and Hélder, we

obtain

t . .
17 (D)l o2 = H /O e CIAF(u($)(s) — F(° )] ds

00,2

itA itA
Sap (Il gg, iy + 16201 25,y o) = €6l 0

< p itA 4D p
~d,p (”u”%,p-i-z + |le ¢||%,p+2)||u||;7qu'p+2||u”q,p+2'

2
Using Lemmas 3.3 and 3.4 to control the terms in the last line, and noting that ||¢|| ?2 >

l#lls; for |||y small, we obtain Proposition 3.1. |

Proof. of Theorem 1.4 for d > 4 We begin the proof of Theorem 1.4. In the interest of
exposition, from here on we restrict to the case d > 4; this simplifies some technical
details, while preserving the essence of the proof. We refer the reader to the appendix
for the modifications needed to recoverd =1, 2, 3.

Our 1st goal is part (1) of Theorem 1.4. First, we show that 7, : ¥ — L? is of class

C5(0) for all 0 < s < 1+ p. Applying Strichartz and arguing as in the proof of Lemma 3.4,

Therefore, Proposition 3.1 gives us

we have the estimate

S . .
/ e*lSAF(elsAqs) dS
0

1+p
Slells™.
2

2(2p+1)

To(@) — 6 = Op2(Igllx ) + Opa (161577 )

2(2p+1)
p+2

which holds for mass-subcritical NLS whenever d > 4), we find that

whenever | ¢||y; is small. Noting that > 1+ p (the condition is equivalenttop < 1,

To(@) — ¢ = O (Il D).

From this we conclude that 7, : ¥ — L? belongs to the class C5(0) forall0 < s < 1 +p.
Moreover, this identifies the 1st variation of 7, at 0 as d7,.(0)(¢) = ¢.
Next we show that 7, : ¥ — L? fails to be of class C°(0) whenever s > 1 +p. It

suffices to show that

Ti(9) — ¢ # Op2(l¢ll3) (7)

as ||¢|ly — Oforany s > 1+ p, see Lemma B.6.
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By Proposition 3.1, L? duality, and the unitarity of the linear propagator, we have

\%

ITL(d) — ¢llz =

0o . .
/ e—zsAF(elsA¢) ds
0

1
Z [N
ol

itA 4 P+2
— ”e(p”ﬂ —lle @l
B Il o

— llex (@)l
2

— llex()ll2

/Oo(eiiSAF(eiSA(p),(p)L)Z( dS
0

Therefore, (7) is proved if we exhibit a sequence (¢,,) C X with |¢, [l — 0 and

itA p+2
le ¢n”p+2,p+2 B lley (D)5
lPnll2llpnll% 16, 1I5;

Let ¢ € ¥ with |l¢]|, = 1, and for ¢,0 > 0 define

0o =70 (3).

o 2

Then ¢, , satisfies the following scalings:

€ 1
||¢g,(7||2 =&, ||V¢€'O’||2 ~ ;l ||¢g'(7||2 ~ 8(1 + g + 6)!

and

i +2 _dp
12, (175 pg ~ P 2072,
where for the last expression we have used the parabolic scaling symmetry of the linear
Schrodinger equation.

We will work in the regime ¢ <« 1, 0 > 1 and o « 1. These together imply that
¢ o |l ~ €0 < 1, and therefore, we are in the small-data regime of Proposition 3.1.

By the error estimate (3) of Proposition 3.1, we have

2p+1)

2(
les (@ q)l2 S (e0) P2
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Next we assume that ¢ = 0/ with j > 1. Since ¢ > 1, under this assumption we

still have ¢o « 1. We now compute:

1 p+2
€2, 4l a 22p+1)
0 lp+2,p4+2 1 _2-9P
—lles (@ )y = ePT1o*" 2 — (e0) P72

¢¢,01l2

. 2(2p+1 .
_ oiorvi2-P _ FEP )

We wish for the main term to dominate the error term in the regime o > 1. Since we are
2(2p+1),

free to take j arbitrarily large, the main term will dominate provided p + 1 < bz as
we have already observed, this is automatically satisfied whenever d > 4.
Therefore, we have
—j(p+1)+2—-2
”E(‘t)g,n) _¢glg”2 ZO— 2 (8)

and thus

ITe@er) = Peals - je-prvier-2pos
e, 1% ~

Since s > 1 + p, for j sufficiently large we have jls — (p + 1)1 + 2 — dTP — s > 0. Taking
J large to guarantee this inequality and that the main term dominates the error, then
taking o — oo, we find that
||7;|:(¢s,o-) - d)g,o' ”2
S —>
96,0 1I5;

We thus conclude, as desired, that 7, is not of class C°(0) as a map ¥ — L2 whenever

s>1+p.
We proceed to part (2) of Theorem 1.4. It suffices to show there exists 0 < 8 < p
so that

To (@) — ¢ # Op2(19l15™) 9)

as [¢l;2 — 0. For suppose T, € C'*#(0). Then T (e¢) — ea(p) = Op2(e'*P) for [|pll, = 1
and ¢ > 0 small. Dividing through by ¢, noting 7, (0) = 0, and letting ¢ — 0, we find that
a(p) = dT.(0)(¢), the 1st variation of 7, at O in the direction ¢; but we already know
that d7,.(0)(¢) = ¢ when T, is regarded as a map ¥ — L?, and by density this would
be preserved if 7, were to admit an extension to L2. Therefore, T.(¢) — ¢ is the only
expression that has any hope of satisfying the (’)(||¢||;+ﬂ) bound, showing that this fails
proves that 7, ¢ C'*#(0) as a map L? — L2.
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From here the proof is similar to the proof we gave for (7). Arguing identically as

before, (9) is proved if we exhibit a sequence (¢,)) C £ with ||¢, ||, — 0 and

itA p+2
le ¢n||p+2,p+2 llex ()15

g, 1577 lp II1HA

We take 0 > 1, ¢ = 0/, and j sufficiently large. Starting from (8) and dividing through

by lIg, ,ll37", we obtain

||T:|:(¢g,g) - ¢)g,g ”2 > O—j(ﬁ_p)‘i'z_dTP_

1+ ~
e o157

For this to be large in the regime ¢ > 1, we require j(8 —p) +2 — dz—p > 0 or equivalently
B>p— %(2 — dTP). This shows that if j is sufficiently large and this inequality for g holds,
then 7, fails to extend to a map L? — L? of class C'*#(0). Since the constraint on g is
an open condition, we can optimize by taking the smallest admissible value of j, which
depends only on p and d. Therefore, we have found j = j(d, p) so thatif 8 > p— %(2 — dz—p),
then u, fails to extend to a map L? — L? of class C'*#(0), which completes the proof of

Theorem 1.4 when d > 4. Corollary 1.5 now follows from Lemma 2.5. [ |

A Proof of Theorem 1.4ind =1,2,3

Here we outline the proof of Theorem 1.4 in d = 1,2,3. There is no truly serious
obstruction to be overcome to obtain the result in low dimensions; the choice to break
up the proof is entirely for expository purposes, as the proof for d > 4 is particularly
clean and encompasses all of the main ideas.

The main reason why the previous proof does not extend to lower dimensions is

that the error estimate
2(2p+1)

lec (@, S lglls?™

is no longer strong enough for the main term to dominate the error when d < 3 and
a(d) <p < %. The main task is therefore to sharpen this estimate until the error is once
again dominated by the main term.

The inefficiency in the above estimate arises from the use of the pseudocon-
formal energy estimate (Lemma 3.2), which is obviously not scaling-invariant and thus
leads to losses every time it is invoked. At this time, we do not have another decay-in-
time estimate that can replace the pseudoconformal energy estimate and so we must

still take on some losses. However, noting that there is some slack in the integrability
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conditions for the time integrals in the proofs of Lemmas 3.3 and 3.4, we can at least
reduce the total degree to which we do invoke the pseudoconformal energy estimate.
As before, we write g = %;—2), so that (g, p + 2) is an admissible pair. We now

state the sharpened version of (3):

Proposition Al. Letd >1,a(d) <p < %. Define e (¢) as before. Let % <n <1and

# < v < 1. Then there exists ¢ = &(d, p) > 0 small so that if [|¢||5, < ¢, then

lex @)y Sapny 0122, (A1)

where

2
ad,p,n,v)=2p(1—n+ 1 —v)+ m(an +v).

We begin the proof. Write § =1 — First, we have the following sharpened

2(p+2)
forms of Lemmas 3.3 and 3.4:

Lemma A2, Letd>1,a(d) <p < %, and ¢ € . Then there exists ¢ = ¢(d, p) > 0 small

so that if ||¢||5 < &, then for % <1 <1, we have

1w 29, 12 Saps (ISI5EG)? 2)l=0)1- ’7||¢||”*2,

and for% < v <1, we have

U@ lgpsz Sapy IOI5E@) D)1 ”||¢||P”.

Proof. We seek to control

P% g%%
(/O u@ @l qp+z dt) .
Pq

L (1—
Let 5 € [0, 1]. We factor the integrand into powers ||u(¢)(®)| %, pﬂ || (¢)(t)|| pﬂ We esti-
mate the 1st piece using Gagliardo-Nirenberg and the 2nd using the pseudoconformal
energy estimate. We obtain

q—2 q—2

00 5a 00 24 Lﬂz Pq
(/0 IIu(¢)(t)|| p+z ) :(/o ||u(¢)(t)llzp ||u(¢)(t)ll )

-2
2pn

20 00 o
< (IBlI5 (E@) D)) 11||p]| 272 (/O (t) a2 dt) "

The last integral is finite assuming n > %. This establishes the 1st estimate in

Lemma A2. The 2nd estimate for lu(@lgpr2 is proved in exactly the same way: we
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split ||u(¢)(t)||L§+z = ||u(¢)(t)||2€12”)||u(¢)(t)||]‘i§+2, estimate the 1st piece using Gagliardo-

Nirenberg, and the 2nd by the pseudoconformal energy estimate. The condition v > % is

required to make the final integral in time finite. We leave the details to the reader. H

Lemma A3. Letd>1,a(d) <p < %, and ¢ € . Then for % <n <1,

itA [% 1-6\1— n
€t Pl 29, pr2 Sdapy U121Vl el

Proof. The proof proceeds almost identically to that of the 1st part of Lemma
A2. As earlier, we factor ||eim</>||p+2 = ||e”A¢>||p+2||e‘mqb||er2 The 1st factor can be
controlled using Gagliardo-Nirenberg and the conservation of H* norms under the linear
Schrédinger flow. The 2nd factor is controlled near time 0 by Gagliardo—Nirenberg and

at large times by the dispersive estimate and the embedding ¥ < L4 for all 24 < g < 2.

d+2
The condition n > 2_pZ ensures that the time integral that remains is finite. We leave the

details to the reader. [ |

Proof of Proposition Al. We argue as in the proof the error bound in of Proposition

3.1, but using Lemmas A2 and A3. Doing so, we arrive at an estimate of the form

v+ p+2 77p

lex@llz Sapanv 11 E@) P 161 + 101LE@D 2PV 16115
where:
a=02p(l —n)+ 1 —v);

B=0-0)PA—-n+A-v),
J— 2 2 .
V—m( np +v);

§=(1-0)pd —n).

Note that Q(d,p,n,v) = ¢« + 8 + 8 + y. By Sobolev embedding, E(¢) is controlled by
||¢>||§: + ||¢||§+2, and by the assumption ||¢||y <« 1 the 2nd term is negligible. Therefore,

every norm and each (E(qb))% is majorized by ||¢|/y, and we have:

ad, Q(d,pnv)+5hznp ad
lex@llz Sapnw 615 P + 1165 PRI < gl g P,

We are now ready to prove Theorem 1.4 in full generality.

Proof of Theorem 1.4. We mention only the necessary changes relative to the proof in

dimensions d > 4.
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The 1st step is to prove that 7, : ¥ — L? is of class C5(0) forall0 <s <1 +p. It

suffices as before to show that

To(@) — ¢ = O(pI5™P)

whenever | ¢||y; is small. To ensure this, we must show that e, (¢) is of higher order in
l#ll5; than the main term, thatis, 1+p < Q(d, p, n, v) for some admissible choice of n and

v. Since n can be arbitrarily close to % and v can be arbitrarily close to %, it suffices

to show that
qg—2 1
1 o\d,p,——,—-).
TP (p 2p 2)

This is equivalent to the condition
2dp? + (11d — 8)p + (8d — 16) > 0.

When d > 2, this is automatically satisfied for p > 0 because the coefficients are
nonnegative. When d = 1, the positive root of this polynomial is smaller than %, and
thus this is satisfied forp > 2 = %.

Next we show that 7, : ¥ — L? is not of class C5(0) for s > 1 + p and does not
extend to a map L? — L2 of class C1*#(0) for some 0 < B < p. As before it suffices to
show that

Te(@) — ¢ # Op(I$l3) (A.2)

in the 1st case and

To(@) — ¢ # O (I3 ") (A.3)

in the latter case. Examining the proof in d > 4, we observe that the only way in which
the size of e, (¢) enters into either argument is to show that there exists a regime ¢ < 1,

o > 1, and o < 1 so that ||¢, , I, (where ¢, , is defined as before) is dominated by the

p+2

o0 lp+2,pt2: Taking ¢ = 0/ with j > 1 to be determined, the

. —1y i
main term |, , |5 €%

main term is still of size

itA p+2
1" b 5 Ip12,p12 ~ giOtD+2-F

¢, 1l2
We use (A.1) to control the error by

1-pHad,p.m,
||e:|:(¢s,o)||2 Sd,p,n,v a( 1) A( Pﬂv)'

Noting as before that Q(d,p,n,v) > p + 1 for a judicious choice of n and v, we see that
leL (¢, ,)lls is negligible relative to the main term for j sufficiently large and o > 1.

From here the proof of (A.2) and (A.3) proceeds exactly as when d > 4. |
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B Pointwise Holder Spaces and Gateaux Derivatives

In this appendix, we relate the notion of pointwise Holder regularity given in
Definition 2.4 to more familiar notions. For convenience, we reproduce the definition

here:

Definition B1 (Pointwise Holder space [1]). Let X and Y be Banach spaces. Let x, € X
and U a convex open neighborhood of x,. Fix s > 0 and let n be the integer part of s. For
s > 0, we say that the map G : X — Y belongs to the pointwise Hélder space C%(x,) if for
all h € X with |||y = 1, there exist coefficients {a;(xo; h)}J'-l:0 C Y such that

n
1Gxg +2h) — G(xg) — > &a;xp Wlly < &°
j=1
for all ¢ > 0 sufficiently small, with the implicit constant independent of the

direction h.

This is related to two notions: the Peano derivative (also known as the de la

Vallée Poussin derivative) and the Gateaux derivative.

Definition B2 (Peano, de la Vallée-Poussin derivative). Let X and Y be Banach spaces.
Let x, € X, let U be a convex open neighborhood of x, and let h € X with ||h|x = 1. For
n > 1, we say that amap G : U — Y has an n-th Peano derivative, or de la Vallée-Poussin
derivative, at x in the direction h if there exist {a;(xo; h)}}1 , C Y such that

n
1 .
|G(xy + eh) — G(xp) — Zj—!eJaj(XO; h)lly =o(e™; h)
j=1
ase¢ — 0.

Therefore, if G € C°(x,;) with s > n, then G automatically has an n-th Peano
derivative, with an asymptotic bound as ¢ — 0 that is uniform in h; moreover, if s > n,

then the asymptotic bound is stronger.

Definition B3 (Gateaux derivative [16]). Let X and Y be Banach spaces. Let x5 € X

and U C X a convex neighborhood of x,. We say that the map G : U — Y is Gateaux

differentiable at x, in the direction h € X if the limit
G(xg + eh) — G(xp) _

. d
dG(XO’ h) = sl—1>I(IJl+ & N a e=

G(xq + ¢h)
0
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exists in Y. In that case, we call dG(x,; h) the Gateaux derivative, or 1st variation, of
G at u in the direction v. If dG(x,; h) exists for all h € X, we say that G is Gateaux
differentiable at x;. Similarly, we define the Gateaux derivative of order n, or n-th
variation, by
dn
d"G(xy; h) = F 8=0G(X0 + ¢h).

Gateaux derivatives are homogeneous in their 2nd argument: d/G(xy;eh) =
Ejde(XO,' h) for all ¢ € R ([16], Lemma 1.2).

Itis clear thatif n > 1 and G : U — Y has an n-th Peano derivative a,, (x,; h) at x,
in the direction h, then it also has j-th Peano derivatives aJ-(XO; h) at x; in the direction
h for j = 1,...,n — 1; moreover, G is Gateaux differentiable at x, in the direction h
with 1st variation dG(xy; h) = a,(xy; h). It is not, however, true that G has variations of
any higher order, even in the real-valued case: a counterexample is f(x) = x° sin(1/x)
for x # 0, f(0) = 0, for which the 2nd Peano derivative exists at 0, but not f”(0) [22].
For this reason, C°(xy) is not exactly a replacement for the space of n-times Gateaux
differentiable maps with d"G(x,; h) Hélder continuous of order s — n in x,. When s > 2,
we are not even able to detect from the definition whether a map in C%(xy) has a 2nd
variation at x,. However, C*(x,) is still a useful notion for detecting when a map fails to
have a certain level of Gateaux regularity, which is what is relevant for the breakdown of
regularity statements in Corollary 1.5. This arises through the generalization of Taylor’s

theorem with remainder for Banach space valued functions.

Theorem B4 (Taylor's theorem with remainder; [16], Theorem 5). Let X and Y be Banach
spaces. Let U C X be a convex neighborhood of u € X. Let G: U — Y be n-times Gateaux
differentiable on U, and let x;, € X be such that d"G(x, + s¢h; h) is Riemann integrable
(defined in [16]) over s € (0,1) whenever ¢ > 0 is sufficiently small. Then for all h € X

with ||k x =1 and & > 0 small,
nogo
G(xg +¢h) = G(xp) + D j—ldJG(XO; h) + "R, (X0, ho8),
=17
where
1 1
R, 1(xg, h,e) = a/o (1 —9)"d" G(x, + seh; h) ds.

We now arrive at the main statement of interest. It states thatforn <s <n+1,

membership in C*(x) is necessary for a map G to be n times Gateaux differentiable with
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d"G(x; h) Holder continuous of order s — n. This gives us a way of detecting whether G

admits s derivatives in this latter sense.

Lemma B5. Let X and Y be Banach spaces. Let U C X be a convex neighborhood of
Xy € X.Let G : U — Y be a map and suppose G ¢ C°(xy) withn < s < n + 1. Then
d"G(x; h), if it exists for x € U, cannot be a Hoélder continuous function of x of order

s —n with Hélder seminorm uniformly bounded in h.

Proof. Suppose for contradiction that d"G(x; h) exists on U and is Holder continuous
of order s — n in x, with H6lder seminorm uniformly bounded in h. Then all lower
order Gateaux derivatives must also exist. This implies that G satisfies the conditions

of Theorem B4, and hence admits the expansion

n—1 i .
Glxo+eh) = Glxp) + > j:—ldJG(XO,‘ h) + e"R,, (Xo, h, €)
j=1"

as ¢ — 0, where R,, is given as in Theorem B4. By the Hdélder continuity assumption,

we have

1
IR, (xq, h, &) — md"G(Xg; My

- (TL— D!

_"/ A -—r"1rsdr<es™,
0

/ (1-n"" 1[d”G(X0 +reh; h) — d"G(xy; h)] dr

(n—l)l Y

/ (1 — )" Hd"G(xy + reh; h) — d"G(xg; h) ||y dr

Therefore,
G(xy + eh) = G(xg) + Z dJG(XO, h) 4+ e"R, (xy, h, )
j= 1

= G(xy) + Z dJG(XO, h) + "R, (xy, h, &) — —dnG(XO, h)]
Jj= 1

= G(x,) + Z df G(xg; h) + Oy (£%).
Jj= 1

But then G € C°(x,), contradiction. |
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Lastly, we need a way of checking that a given G does not belong to the class
CS
(xg)-

Lemma B6. Let n be a positive integer, andletn <s <s+48 <n+1. Assume G € C5(x)
with Peano derivatives {a;(xo; h)}]’.’zl, so that

n
1G(x + eh) — G(xg) — D _ & a;(xg; D)y S &
j=1

Suppose also that

1G(xo + £h) — G(xg) — D ea;(xgi )|y £ 5.
j=1

Then G ¢ C57°(x,).

The proof is based on the following uniqueness statement for the Peano

derivatives:

Theorem B7 ([16], Theorem 6). Let X and Y be Banach spaces. Let U C X be a convex
neighborhood of x; € X. Let G: U — Y be a map. Then for each positive integer n, there

exists at most one expansion of the form

n
G(xg+h) = G(xg) + D a;(x; h) + R,y (X0, h)
j=1

satisfying aj(xo;sh) = sfaj(xo; h) and R,, | (xq, h) = o(||h||}) as h — 0.

Proof of Lemma B6. Suppose to the contrary that G € C*%(x,). Then there are
coefficients {bj(XO; h)}}?:1 such that

n
1G(xo + £h) — G(xg) — D elbj(xgi )y S &5,
j=1
Then we have two polynomial expansions for G(x, + h) around x, of degree n with
o(||h||}) remainder as h — 0. By Theorem B7, it follows that bj =a;. But this contradicts
the assumption that the the error in the expansion G(xy + ¢h) ~ G(x,) + ZJ’LI 8faj(xo; h)
is not O(&519). [ ]

The utility of Lemma B6 is that so long as we can verify one asymptotically

valid polynomial approximation of G(x, + ¢h), the same polynomial approximation can
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be used to check the membership of G in C°(x;), as long as there is no need to add a

higher-order derivative term to the expansion.
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