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We study the scattering problem for the nonlinear Schrödinger equation i∂tu + �u =
|u|pu on R

d, d ≥ 1, with a mass-subcritical nonlinearity above the Strauss exponent. For

this equation, it is known that asymptotic completeness in L2 with initial data in � holds

and the wave operator is well defined on �. We show that there exists 0 < β < p such

that the wave operator and the data-to-scattering-state map do not admit extensions to

maps L2 → L2 of class C1+β near the origin. This constitutes a mild form of ill-posedness

for the scattering problem in the L2 topology.

1 Introduction

Consider the defocusing mass-subcritical nonlinear Schrödinger equation (NLS):

i∂tu + �u = F(u) = |u|pu, (t, x) ∈ I × R
d ⊂ R × R

d, (1)

where 0 < p < 4
d . It is well known that the Cauchy problem for this equation is globally

well-posed in L2. In this paper, we are concerned with two elements of the long-time

asymptotic behavior of solutions to this equation in the L2 topology. The first is the

question of asymptotic completeness. We say that (1) is asymptotically complete in L2 if

for each φ ∈ L2, there exists u+ ∈ L2 so that the global solution u to (1) with u(t = 0) = φ
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3572 G. E. Lee

satisfies

lim
t→∞ ‖e−it�u(t) − u+‖L2 = 0.

The second is the existence of the wave operator. We say that the wave operator for (1)

is well defined on L2 if for each φ ∈ L2, there exists a unique global solution u ∈ Ct,locL2
x

to (1) satisfying

lim
t→∞ ‖e−it�u(t) − φ‖L2 = 0.

Analogous definitions can be made as t → −∞; as the distinction between forward and

backward time does not affect any part of this paper, we consider the forward time

direction only.

Whether (1) is asymptotically complete or admits a wave operator in L2 are

currently open problems. The known results rely on stronger assumptions on the space

of initial data or scattering states. We introduce the two representative results here. Let

� be the Banach space defined by the norm

‖f ‖2
� = ‖f ‖2

L2 + ‖∇f ‖2
L2 + ‖xf ‖2

L2 .

The 1st result is by Ginibre and Velo and establishes the scattering theory in �.

Theorem 1.1 (Scattering in �; [13, 14]).

1. Let α(d) < p < 4
d , where

α(d) = 2 − d + √
(d − 2)2 + 16d

2d

denotes the Strauss exponent (the Strauss exponent is a current technical

limitation for the scattering theory for (1). It represents the threshold at

which one can obtain global spacetime bounds for the solution in critically

scaling Strichartz spaces. We note that the range of nonlinearities for

Theorem 1.1 be broadened to 4
d+2 < p < 4

d with a small-data assumption,

due to Cazenave and Weissler [7]). Then the Cauchy problem for (1) is globally

well-posed in �.

2. Equation (1) is asymptotically complete in �, for each φ ∈ �, there exists

u+ ∈ � so that the global solution u to (1) with u(t = 0) = φ satisfies

lim
t→∞ ‖e−it�u(t) − u+‖� = 0.
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Breakdown of Regularity of Scattering 3573

3. The wave operator is well defined on �, for each φ ∈ �, there exists a unique

global solution u ∈ Ct,loc�(R) to (1) satisfying

lim
t→∞ ‖e−it�u(t) − φ‖� = 0.

The 2nd result is due to Tsutsumi and Yajima:

Theorem 1.2 (Asymptotic completeness in L2 for � data; [26]). Let 2
d < p < 4

d . Then for

each φ ∈ �, there exists u+ ∈ L2 so that the global solution u to (1) with u(t = 0) = φ

satisfies

lim
t→∞ ‖e−it�u(t) − u+‖L2 = 0.

These results do not address the question of taking data in L2, which is arguably

the most natural space for the problem given its mass-subcritical nature and the

conservation of mass. In this paper, we offer something of an explanation for this state

of affairs. We now define our main objects and state our main results.

Definition 1.3. Let α(d) < p < 4
d . The initial-to-final-state map is the map S : � →

L2 defined by S(φ) = limt→∞ e−it�u(t) = u+, where u ∈ Ct,locL2
x is the global solution

to (1) and the limit is in the L2 topology. The wave operator is the map W : � → L2

defined by W(φ) = u(0), where u ∈ Ct,locL2
x is the unique global solution to (1) satisfying

limt→∞ ‖e−it�u(t) − φ‖L2 = 0.

Note that S and W are well defined by Theorem 1.1; in fact, we could take them

to be �-valued, but this is not necessary for our purposes.

Theorem 1.4 (Main theorem). Assume d ≥ 1 and α(d) < p < 4
d . Then:

1. S and W, regarded as maps � → L2, are s-Hölder continuous at 0 ∈ � for all

0 < s ≤ 1 + p at 0, and are not s-Hölder continuous at 0 for any s > 1 + p.

2. There exists 0 < β < p, with β depending only on d and p, such that for any

ball B ⊂ L2 containing the origin, S : B ∩ � → L2 and W : B ∩ � → L2 cannot

be extended to maps B ⊂ L2 → L2 that are Hölder continuous of order 1 + β

at 0 ∈ L2.
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3574 G. E. Lee

Here, for s > 0 possibly non-integer, by a map F : X → L2 (where X = � or

L2) that is Hölder continuous of order s at x0 ∈ X we mean a map that belongs to the

pointwise Hölder space Cs(x0) (see Definition 2.4). In particular:

Corollary 1.5. Assume d ≥ 1 and α(d) < p < 4
d . Then:

1. Let s > 1 + p, and let n be the integer part of s. Then S and W, regarded as

maps � → L2, cannot have an n-th Gateaux derivative defined about 0 ∈ �

that is Hölder continuous of order s − n.

2. Let s = 1 + β, where β is as in Theorem 1.4, and let n be the integer part of

s. Then S and W cannot be extended to maps L2 → L2 that admit an n-th

Gateaux derivative defined about 0 ∈ L2 that is Hölder continuous of order

s − n.

Part (1) of Theorem 1.4 is, in some sense, unsurprising, since the nonlinearity in

(1) is a pure power of degree 1+p, given a sufficiently strong global well-posedness and

scattering theory we should expect to be able to differentiate with respect to the initial

or final state up to, and not more than, 1 + p times. In that sense, part (1) provides the

sharp regularity result with respect to the nonlinearity. That this amount of regularity

holds with initial or final states in � is a confirmation that � is such a space with a

strong global well-posedness and scattering theory. Therefore, part (2) of Theorem 1.4

is the statement of primary interest; it states that if we instead take L2 as our space

of initial or final states, then the initial-to-final state operator and the wave operator,

if they were to be defined on L2, cannot attain the regularity with respect to the data

suggested by the smoothness of the nonlinearity. The value of β in part (2) can be made

explicit, which will become evident toward the end of the proof of Theorem 1.4. We

interpret this as a mild form of ill-posedness result for the asymptotic completeness

and wave operator problems in the L2 topology.

We briefly review the history and relevant work behind this result. We have

already mentioned the two main positive results in the scattering theory for the mass-

subcritical NLS: the work of Ginibre-Velo [13, 14], which establishes the scattering the-

ory in �, and that of Tsutsumi-Yajima [26], which establishes asymptotic completeness

in L2 under the assumption of � data. The result of Tsutsumi-Yajima is optimal in

that it treats the full range of nonlinearities 2
d < p < 4

d (the so-called short-range

regime) for which mass-subcritical scattering in L2 is possible; for p ≤ 2
d (the long-

range regime), scattering in L2 can only occur for the zero solution, which is a result

due to Strauss, Glassey, and Barab [2, 15, 23]. The asymptotic completeness results can
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Breakdown of Regularity of Scattering 3575

be extended to spaces with weaker weights and regularity assumptions than �, see [21].

Moreover, for certain even mass-critical and supercritical values of p, the wave and

scattering operators are real analytic as a map � → �, a result of Carles and Gallagher

[5]. Therefore, we see that the scattering problem is typically quite well behaved on

weighted spaces such as � and its variants. To be clear, we are not asserting that � is a

purely artificial space for the scattering theory. It is in fact a very natural space: after

a lens transformation it arises as the harmonic energy space for Equation 1, see [25].

The corresponding literature for mass-subcritical scattering with data in L2 is

sparser. There is one positive result due to Nakanishi [20]: in the full short-range regime,

for any free evolution eit�ψ there is a global solution u to (1) which approximates

it in L2 (resp. in H1) as t → ∞. However, it is not known if the global solution

thus obtained is unique, so this falls short of defining the wave operator on L2.

Moreover, this global solution is obtained by compactness methods, and we do not

obtain a quantitative understanding of how it depends on the final state ψ . In fact, the

asymptotic completeness result of Tsutsumi-Yajima also proceeds by a compactness

argument, and thus we do not obtain a quantitative understanding of the initial-to-

final-state map either. As for the mass-critical case p = 4
d , global well-posedness and

scattering in L2 are known due to recent work of Dodson [9–11]. The scattering theory for

the mass-critical NLS is essentially a direct consequence of its global well-posedness

theory, as it admits a symmetry under the pseudoconformal transformation.

Perhaps it is telling that despite the question being relatively obvious to any

student of the subject, there have been few if any positive results in the direction of

mass-subcritical scattering in L2. In fact, the fact that we can construct initial states

for given final states is already somewhat remarkable. This is because (as observed

by Nakanishi) the wave operator problem is in some sense scaling-supercritical in

L2, as can be seen by applying the pseudoconformal transform to convert it into an

initial value problem. Generally speaking, the problem of constructing the scattering

operator is at least as difficult as that of constructing the wave operator. This is

because when the Cauchy problem is posed in a subcritical or critical space, it is often

the case that the wave operator can be constructed by Picard iteration in the same

way as one constructs local-in-time solutions. To conclude asymptotic completeness,

one additionally needs some sort of decay estimate on the nonlinear evolution that is

consistent with the dispersive decay of the linear evolution. Therefore, the question

of asymptotic completeness in L2 appears to require both a well-posedness theory

for a scaling-supercritical problem and rather explicit decay-in-time estimates. It is

generally conjectured that scaling-supercritical problems exhibit some form of ill-

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/5/3571/5823261 by U
C

LA D
igital C

ollections Services user on 20 M
ay 2021



3576 G. E. Lee

posedness. This is the primary motivation behind this paper: to demonstrate that the

asymptotic completeness and wave operator problems on L2 are ill-posed in some

appropriate mild sense, offering a partial explanation for the difficulty in resolving

these problems.

We now outline our methods for proving Theorem 1.4. Our ill-posedness argu-

ment proceeds along the following abstract framework:

1. Decompose the solution under consideration into an explicit main term and

an error term, possibly in a stronger topology than where ill-posedness is to

be proved (in order to make this splitting possible in the first place).

2. Demonstrate that when restricted to the weaker topology, the main term

exhibits the desired ill-posedness properties.

3. Show that in the regime that the main term exhibits ill-posedness, the error

term is dominated by the main term; therefore, the error does not destroy the

ill-posedness.

This abstract framework has been used previously to prove ill-posedness properties

(e.g., norm inflation) of various initial-value problems for NLS: see, for instance, [3, 8,

17]. The result itself falls into a class of results sometimes known as Ck or analytic

ill-posedness, in which it is shown that a data-to-solution map of some type lacks

regularity with respect to the data. As far as we are aware, this class of result was

first investigated by Bourgain in [4], in which the threshold Sobolev regularity for

smoothness of the periodic KdV flow was determined.

The key tool in our analysis, corresponding to step (1), is the following small-

data expansion of the scattering state near the origin:

S(φ) = φ − i
∫ ∞

0
e−is�F(eis�φ) ds + error (2)

for small Cauchy data φ. A similar expansion holds for the wave operator W, and the

following discussion for S holds equally for W, so for now let us speak only of S for

brevity. We obtain (2) as an explication of the proof of Theorem 1.1; this is the reason for

the restriction p > α(d). The 1st term in this expansion arises from the linear evolution;

the 2nd term arises naturally as the 1st nonlinear term in the Picard iteration scheme for

u. We will formulate this expansion precisely, prove that it holds, and quantify the error

term. Part (1) of Theorem 1.4 will then emerge almost immediately as a consequence.

This sort of expansion is not new; this expansion appears for the mass-critical NLS

in [6], with a different proof. Higher-order expansions of the error term, as well as
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Breakdown of Regularity of Scattering 3577

quantitative estimates for the higher-order errors, were studied in [18], though for us

the first-order expansion suffices.

Next we outline step (2). Assuming that the error is negligible compared to the

remaining terms, this allows us to write

S(φ) − φ ∼ −i
∫ ∞

0
e−is�F(eis�φ) ds.

With a sufficiently strong estimate on the error term, it is easily seen that S is

differentiable at 0 in the Fréchet sense, with derivative the identity operator; therefore,

the left-hand side of the above expression is exactly equal to the remainder term in a

first-order Taylor approximation of the scattering operator near the origin. Therefore,

the behavior of quotients such as

‖S(φ) − φ‖L2

‖φ‖1+β

L2

as ‖φ‖L2 → 0 corresponds to the regularity (or lack thereof) of the scattering map beyond

the 1st derivative.

Due to the small-data expansion of the scattering state, by L2 duality the

numerator in the above quotient is essentially equivalent to

∥∥∥∥
∫ ∞

0
e−is�F(eis�φ) ds

∥∥∥∥
L2

≥ 1

‖φ‖L2

∣∣∣∣
∫ ∞

0
〈e−is�F(eis�φ), φ〉L2

x
ds

∣∣∣∣
= 1

‖φ‖L2
‖eit�φ‖p+2

Lp+2
t,x ([0,∞))

.

We would therefore like to show that

sup
φ∈BR

‖eit�φ‖p+2

Lp+2
t,x ([0,∞))

‖φ‖2+β

L2

= ∞.

To do this, it is required that ‖eit�φ‖
Lp+2

t,x ([0,∞))
cannot be controlled by large powers

of the mass ‖φ‖L2 . This is a familiar result: such control can only be obtained in the

mass-critical case p = 4
d , for which it is the L2 Strichartz estimate at the Tomas–Stein

exponent, and in all other cases one can show by scaling that there exists an L2-bounded

sequence (φn) for which ‖eit�φn‖
Lp+2

t,x ([0,∞))
→ ∞. That the failure of a Strichartz estimate

can lead to conclusions about the regularity of a data-to-solution map essentially dates

back to [4], see also [24] for a textbook treatment.
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3578 G. E. Lee

Therefore, the main term exhibits the desired ill-posedness properties and only

step (3) remains: we must find a sequence of initial data φ that sends the above quotient

to ∞, while ensuring that the main term dominates the error term. We do this by

introducing a two-parameter family of initial data φε,σ , where ε is the amplitude and

σ is the spatial scale. The error term is essentially a higher-order term in ε compared to

the main term; therefore, we can choose ε small so that the main term defeats the error

and then σ to send the quotient to ∞.

We now briefly outline the organization of the paper. In Section 2, we go over

the notation and basic preliminary results used in the rest of the paper. In Section 3, we

prove that S and W admit the expansion (2) with quantitative bounds on the error term.

In the interest of exposition, we do this in dimensions d ≥ 4 only. In this setting, the

nonlinearity is subquadratic, which simplifies some technical details. In Section 5, we

leverage (2) with the error estimates to demonstrate that the ill-posedness properties of

the main term carry over to ill-posedness of the entire operator. In Appendix A, we show

how to recover the cases d = 1, 2, 3.

2 Notation and Preliminaries

Let X and Y be two quantities. We write X � Y if there exists a constant C > 0 such that

X ≤ CY. If C depends on parameters a1, . . . , an, i.e., C = C(a1, . . . , an) and we wish to

indicate this dependence, then we will write X �a1,...,an
Y. If X � Y and Y � X, we write

X ∼ Y. If the constant C is small, then we write X � Y. We also employ the asymptotic

notation O(f ) and o(f ) with their standard meanings.

We will be working with the mixed spacetime Lebesgue spaces Lq
t Lr

x(I ×R
d) with

norms

‖u‖Lq
t Lr

x(I×Rd)
=

(∫
I

(∫
Rd

|u(t, x)|r dx
) q

r

dt

) 1
q

.

We will abbreviate the norm as ‖u‖Lq
t Lr

x(I×Rd) = ‖u‖Lq
t Lr

x(I). We will often encounter the

case I = [0, ∞). In this case, we will further abbreviate the norm as ‖u‖Lq
t Lr

x([0,∞)×Rd)
=

‖u‖q,r. For functions with no time dependence, we write ‖f ‖Lr(Rd) = ‖f ‖r. For 1 ≤ r ≤ ∞,

we denote by r′ the Hölder conjugate: 1 = 1
r + 1

r′ .

We define the energy functional

E(v) =
∫
Rd

1

2
|∇v|2 + 1

p + 2
|v|p+2 dx.

It is well known that the energy, as well as the L2-norm, are conserved quantities for

solutions to (1).
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Breakdown of Regularity of Scattering 3579

We recall the following fundamental estimates for the Schrödinger equation.

Proposition 2.1 (Dispersive estimate). Let 2 ≤ r ≤ ∞. Then for all t �= 0,

‖eit�φ‖Lr
x(Rd) �r,d |t| d

2 − d
r ‖φ‖Lr′ (Rd)

.

Definition 2.2 (Admissible pair). Let d ≥ 1 and 2 ≤ q, r ≤ ∞. We say that (q, r) is an

admissible pair if it satisfies the scaling relation 2
q + d

r = d
2 and (d, q, r) �= (2, 2, ∞). We

say that (α, β) is a dual admissible pair if (α′, β ′) is an admissible pair.

Proposition 2.3 (Strichartz estimates). Let d ≥ 1, let (q, r) be an admissible pair, and

let (α, β) be a dual admissible pair. Then for any interval I ⊂ R,

‖eit�φ‖Lq
t Lr

x(I×Rd)
� ‖φ‖L2(Rd),∥∥∥∥

∫ t

0
ei(t−s)�F(s) ds

∥∥∥∥
Lq

t Lr
x(I×Rd)

� ‖F‖Lα
t Lβ

x (I×Rd)
.

Lastly, we define our notion of pointwise Hölder regularity.

Definition 2.4 (Pointwise Hölder space [1]). Let X and Y be Banach spaces. Let x0 ∈ X

and U a convex open neighborhood of x0. Fix s > 0 and let n be the integer part of s. For

s > 0, we say that the map G : X → Y belongs to the pointwise Hölder space Cs(x0) if for

all h ∈ X with ‖h‖X = 1, there exist coefficients {aj(x0; h)}n
j=0 ⊂ Y such that

‖G(x0 + εh) − G(x0) −
n∑

j=1

εjaj(x0; h)‖Y � εs

for all ε > 0 sufficiently small, with the implicit constant independent of the

direction h.

Our main interest in Cs(x0) is that membership in Cs(x0) is a necessary, though

not sufficient, condition for a stronger notion of regularity of order s:

Lemma 2.5. Let X and Y be Banach spaces. Let U ⊂ X be a convex neighborhood of

x0 ∈ X. Let G : U → Y be a map and suppose G /∈ Cs(x0) with n < s < n + 1. Then

dnG(x; h) (the n-th Gateaux derivative of G), if it exists for x ∈ U, cannot be a Hölder

continuous function of x of order s − n with Hölder seminorm uniformly bounded in h.
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3580 G. E. Lee

For the proof of Lemma 2.5, as well as the relationship between Definition 2.4

and other notions of regularity, we refer the reader to Appendix B.

3 Small-Data Expansion of the Wave and Initial-to-Scattering-State Operators

In this section, we undertake step (1) of our ill-posedness framework, the decomposition

of the wave operator, and the initial-to-scattering-state map.

Henceforth, we take q = 4(p+2)
dp ; then (q, p + 2) is an admissible pair. We write

T− = S, T+ = W, regarding them as maps T± : � → L2.

Proposition 3.1 (Small-data expansion). Let α(d) < p < 4
d . Then there exists ε =

ε(d, p) > 0 small so that if ‖φ‖� < ε, then

T±(φ) = φ ± i
∫ ∞

0
e−is�F(eis�φ) ds + e±(φ),

where the error term e±(φ) satisfies

‖e±(φ)‖2 �d,p ‖φ‖
2(2p+1)

p+2
� . (3)

The proof of Proposition 3.1 is based on the proof of Theorem 1.1 given in [7].

The key fact underlying all of these arguments is the pseudoconformal energy estimate.

Lemma 3.2 (Pseudoconformal energy estimate). Let 0 < p < 4
d and φ ∈ �. Let u be the

global solution to (1) with initial data φ. Then for all t ≥ 1,

‖u(t)‖p+2

Lp+2
x

�d,p t− dp
2 (‖u(1)‖2

� + ‖u(1)‖p+2
� ). (4)

Moreover, if ε = ε(d, p) > 0 is sufficiently small and ‖φ‖� < ε, then for all t ≥ 0

‖u(t)‖p+2

Lp+2
x

�d,p 〈t〉− dp
2 ‖φ‖2

� . (5)

Lemma 3.2 has a well-known formal proof for regular solutions via the virial

identity, though it is usually stated without the explicit dependence on u(1) or the small-

data statement. We reproduce it here for the reader’s convenience; our proof follows the

presentation in [19]. A proof that recovers Lemma 3.2 for rougher solutions can be found

in [12].
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Breakdown of Regularity of Scattering 3581

Proof. Let J(t) = x + it∇. Equation (4) follows from the more general inequality

‖J(t)u(t)‖2
L2

x
+ ‖u(t)‖p+2

Lp+2
x

�d,p t− dp
2 (‖u(1)‖2

� + ‖u(1)‖p+2
� ).

Expanding,

‖J(t)u(t)‖2
L2

x
=

∫
|x|2|u|2 − 2tIm(u∇u · 2x) + 4t2|∇u|2 dx.

Next, we invoke the virial identity for solutions to (1):

d2

dt2

∫
|x|2|u|2 dx = d

dt
2Im

∫
u∇u · 2x dx =

∫
4dp

p + 2
|u|p+2 + 8|∇u|2 dx.

It follows that:

d

dt

∫
|x|2|u|2 − 2tImu∇u · 2x dx = −

∫
4dpt

p + 2
|u|p+2 + 8t|∇u|2 dx.

By conservation of energy,

4t2 d

dt

∫
|∇u|2 dx = −8t2 d

dt

∫
1

p + 2
|u|p+2 dx.

Combining, we obtain

d

dt

∫
|J(t)u(t)|2 dx = −

∫
4dpt

p + 2
|u|p+2 − 8t2 d

dt

∫
1

p + 2
|u|p+2 dx.

Defining

e(t) =
∫

|J(t)u(t)|2 + 8t2

p + 2
|u|p+2 dx,

we find that

ė(t) = 4t(4 − dp)

p + 2

∫
|u|p+2 dx = 2 − dp

2

t

8t2

p + 2

∫
|u|p+2 dx.

With

U(t) = 8t2

p + 2

∫
|u|p+2 dx,

it follows that:

U(t) ≤ e(t) = e(1) +
∫ t

1
ė(s) ds = e(1) +

∫ t

1

2 − dp
2

s
U(s) ds.
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3582 G. E. Lee

By Gronwall’s inequality and Sobolev embedding, we conclude that

U(t) ≤ e(1) exp

(∫ t

1

2 − dp
2

s
ds

)
� (‖u(1)‖2

� + ‖u(1)‖p+2
� )t2− dp

2

that gives the claim. The small-data statement now follows from the local well-

posedness theory for NLS in �. �

Proposition 3.1 then follows from the following two estimates:

Lemma 3.3. Let d ≥ 1, α(d) < p < 4
d , and φ ∈ �. Then there exists ε = ε(d, p) > 0 small

so that if ‖φ‖� < ε, then

‖u‖ pq
q−2 ,p+2 + ‖u‖q,p+2 �d,p ‖φ‖

2
p+2
� .

Proof. By Lemma 3.2,

‖u‖ pq
q−2 ,p+2 �

(∫ ∞

0
(〈t〉− dp

2(p+2) ‖φ‖
2

p+2
� )

pq
q−2 dt

) q−2
pq

= ‖φ‖
2

p+2
�

(∫ ∞

0
〈t〉− 2p

q−2 dt
) q−2

pq

.

The integral in time is finite provided 2p
q−2 > 1, which is true whenever p > α(d). A

similar argument shows that

‖u‖q,p+2 � ‖φ‖
2

p+2
�

(∫ ∞

0
〈t〉−2 dt

) 1
q

� ‖φ‖
2

p+2
� .

�

Lemma 3.4. Let d ≥ 1, α(d) < p < 4
d , and φ ∈ �. Then

‖eit�φ‖ pq
q−2 ,p+2 �d,p ‖φ‖� .

Proof. The dispersive estimate (Proposition 2.1), combined with the Gagliardo–

Nirenberg inequality and the embedding � ↪→ Lq ( 2d
d+2 < q ≤ 2), gives us the decay

estimate

‖eit�φ‖p+2 � 〈t〉− dp
2(p+2) ‖φ‖� .
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Breakdown of Regularity of Scattering 3583

From here the proof is nearly identical to that of Lemma 3.3, where we invoke the above

decay estimate in place of the pseudoconformal energy estimate. �

Proof. of Proposition 3.1 By the construction of the wave operator given in [7], for a

given final state φ ∈ � the global solution u to (1) with final state φ satisfies

u(t) = eit�φ +
∫ ∞

t
ei(t−s)�F(u)(s) ds

= eit�φ +
∫ ∞

t
ei(t−s)�F(eis�φ)(s) ds + r+(φ)(t),

where

r+(φ)(t) = u(t) − eit�φ −
∫ ∞

t
ei(t−s)�F(eis�φ)(s) ds.

Sending t → 0, we obtain

W(φ) = u(0) = φ +
∫ ∞

0
e−is�F(eis�φ)(s) ds + e+(φ),

where e+(φ) = r+(φ)(0). A similar expression holds for S(φ), we have

S(φ) = [S(φ) − e−it�u(t)] +
[
φ − i

∫ t

0
e−is�F(eis�φ) ds

]
+ e−it�r−(φ)(t), (6)

where

r−(φ)(t) = u(t) − eit�φ + i
∫ t

0
ei(t−s)�F(eis�φ) ds.

By the definition of S(φ) and Theorem 1.1, we have ‖S(φ)−e−it�u(φ)(t)‖2 → 0 as t → ∞.

Sending t → ∞ in (6), we obtain

S(φ) = φ − i
∫ ∞

0
e−is�F(eis�φ) ds + e−(φ),

where e−(φ) = limt→∞ e−it�r−(φ)(t). Therefore, we have

‖e±(φ)‖2 ≤ ‖r±(φ)‖∞,2.

Since u satisfies the integral equation, we may write

r±(φ)(t) = ±i
∫ t

0
ei(t−s)�[F(u(φ)(s)) − F(eis�φ)] ds.
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3584 G. E. Lee

By repeated applications of the Strichartz inequality (Proposition 2.3) and Hölder, we

obtain

‖r±(φ)‖∞,2 =
∥∥∥∥
∫ t

0
ei(t−s)�[F(u(φ)(s)) − F(eis�φ)] ds

∥∥∥∥∞,2

�d,p (‖u‖ pq
q−2 ,p+2 + ‖eit�φ‖ pq

q−2 ,p+2)‖u − eit�φ‖q,p+2

�d,p (‖u‖p
pq

q−2 ,p+2
+ ‖eit�φ‖p

pq
q−2 ,p+2

)‖u‖p
pq

q−2 ,p+2
‖u‖q,p+2.

Using Lemmas 3.3 and 3.4 to control the terms in the last line, and noting that ‖φ‖
2

p+2
� �

‖φ‖� for ‖φ‖� small, we obtain Proposition 3.1. �

Proof. of Theorem 1.4 for d ≥ 4 We begin the proof of Theorem 1.4. In the interest of

exposition, from here on we restrict to the case d ≥ 4; this simplifies some technical

details, while preserving the essence of the proof. We refer the reader to the appendix

for the modifications needed to recover d = 1, 2, 3.

Our 1st goal is part (1) of Theorem 1.4. First, we show that T± : � → L2 is of class

Cs(0) for all 0 < s ≤ 1 + p. Applying Strichartz and arguing as in the proof of Lemma 3.4,

we have the estimate ∥∥∥∥
∫ ∞

0
e−is�F(eis�φ) ds

∥∥∥∥
2

� ‖φ‖1+p
� .

Therefore, Proposition 3.1 gives us

T±(φ) − φ = OL2(‖φ‖1+p
� ) + OL2(‖φ‖

2(2p+1)
p+2

� )

whenever ‖φ‖� is small. Noting that 2(2p+1)
p+2 > 1+p (the condition is equivalent to p < 1,

which holds for mass-subcritical NLS whenever d ≥ 4), we find that

T±(φ) − φ = OL2(‖φ‖1+p
� ).

From this we conclude that T± : � → L2 belongs to the class Cs(0) for all 0 < s ≤ 1 + p.

Moreover, this identifies the 1st variation of T± at 0 as dT±(0)(φ) = φ.

Next we show that T± : � → L2 fails to be of class Cs(0) whenever s > 1 + p. It

suffices to show that

T±(φ) − φ �= OL2(‖φ‖s
�) (7)

as ‖φ‖� → 0 for any s > 1 + p, see Lemma B.6.
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Breakdown of Regularity of Scattering 3585

By Proposition 3.1, L2 duality, and the unitarity of the linear propagator, we have

‖T±(φ) − φ‖2 ≥
∥∥∥∥
∫ ∞

0
e−is�F(eis�φ) ds

∥∥∥∥
2

− ‖e±(φ)‖2

≥ 1

‖φ‖2

∣∣∣∣
∫ ∞

0
〈e−is�F(eis�φ), φ〉L2

x
ds

∣∣∣∣ − ‖e±(φ)‖2

= ‖eit�φ‖p+2
p+2,p+2

‖φ‖2
− ‖e±(φ)‖2.

Therefore, (7) is proved if we exhibit a sequence (φn) ⊂ � with ‖φn‖� → 0 and

‖eit�φn‖p+2
p+2,p+2

‖φn‖2‖φn‖s
�

− ‖e±(φn)‖�

‖φn‖s
�

→ ∞.

Let φ ∈ � with ‖φ‖2 = 1, and for ε, σ > 0 define

φε,σ (x) = ε

σ
d
2

φ
( x

σ

)
.

Then φε,σ satisfies the following scalings:

‖φε,σ ‖2 = ε, ‖∇φε,σ ‖2 ∼ ε

σ
, ‖φε,σ ‖� ∼ ε(1 + 1

σ
+ σ),

and

‖eit�φε,σ ‖p+2
p+2,p+2 ∼ εp+2σ 2− dp

2 ,

where for the last expression we have used the parabolic scaling symmetry of the linear

Schrödinger equation.

We will work in the regime ε � 1, σ � 1 and εσ � 1. These together imply that

‖φε,σ ‖� ∼ εσ � 1, and therefore, we are in the small-data regime of Proposition 3.1.

By the error estimate (3) of Proposition 3.1, we have

‖e±(φε,σ )‖2 � (εσ )
2(2p+1)

p+2 .
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3586 G. E. Lee

Next we assume that ε = σ−j with j > 1. Since σ � 1, under this assumption we

still have εσ � 1. We now compute:

‖eit�φε,σ ‖p+2
p+2,p+2

‖φε,σ ‖2
− ‖e±(φε,σ )‖2 � εp+1σ 2− dp

2 − (εσ )
2(2p+1)

p+2

= σ−j(p+1)+2− dp
2 − σ

2(2p+1)
p+2 (1−j).

We wish for the main term to dominate the error term in the regime σ � 1. Since we are

free to take j arbitrarily large, the main term will dominate provided p + 1 <
2(2p+1)

p+2 ; as

we have already observed, this is automatically satisfied whenever d ≥ 4.

Therefore, we have

‖T±(φε,σ ) − φε,σ ‖2 � σ−j(p+1)+2− dp
2 (8)

and thus

‖T±(φε,σ ) − φε,σ ‖2

‖φε,σ ‖s
�

� σ j[s−(p+1)]+2− dp
2 −s.

Since s > 1 + p, for j sufficiently large we have j[s − (p + 1)] + 2 − dp
2 − s > 0. Taking

j large to guarantee this inequality and that the main term dominates the error, then

taking σ → ∞, we find that

‖T±(φε,σ ) − φε,σ ‖2

‖φε,σ ‖s
�

→ ∞.

We thus conclude, as desired, that T± is not of class Cs(0) as a map � → L2 whenever

s > 1 + p.

We proceed to part (2) of Theorem 1.4. It suffices to show there exists 0 < β < p

so that

T±(φ) − φ �= OL2(‖φ‖1+β
2 ) (9)

as ‖φ‖L2 → 0. For suppose T± ∈ C1+β(0). Then T±(εφ) − εa(φ) = OL2(ε1+β) for ‖φ‖2 = 1

and ε > 0 small. Dividing through by ε, noting T±(0) = 0, and letting ε → 0, we find that

a(φ) = dT±(0)(φ), the 1st variation of T± at 0 in the direction φ; but we already know

that dT±(0)(φ) = φ when T± is regarded as a map � → L2, and by density this would

be preserved if T± were to admit an extension to L2. Therefore, T±(φ) − φ is the only

expression that has any hope of satisfying the O(‖φ‖1+β
2 ) bound, showing that this fails

proves that T± /∈ C1+β(0) as a map L2 → L2.
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Breakdown of Regularity of Scattering 3587

From here the proof is similar to the proof we gave for (7). Arguing identically as

before, (9) is proved if we exhibit a sequence (φn) ⊂ � with ‖φn‖� → 0 and

‖eit�φn‖p+2
p+2,p+2

‖φn‖2+β
2

− ‖e±(φn)‖2

‖φn‖1+β
→ ∞.

We take σ � 1, ε = σ−j, and j sufficiently large. Starting from (8) and dividing through

by ‖φε,σ ‖1+β
2 , we obtain

‖T±(φε,σ ) − φε,σ ‖2

‖φε,σ ‖1+β
2

� σ j(β−p)+2− dp
2 .

For this to be large in the regime σ � 1, we require j(β − p) + 2 − dp
2 > 0 or equivalently

β > p− 1
j (2− dp

2 ). This shows that if j is sufficiently large and this inequality for β holds,

then T± fails to extend to a map L2 → L2 of class C1+β(0). Since the constraint on β is

an open condition, we can optimize by taking the smallest admissible value of j, which

depends only on p and d. Therefore, we have found j = j(d, p) so that if β > p− 1
j (2− dp

2 ),

then u+ fails to extend to a map L2 → L2 of class C1+β(0), which completes the proof of

Theorem 1.4 when d ≥ 4. Corollary 1.5 now follows from Lemma 2.5. �

A Proof of Theorem 1.4 in d = 1, 2, 3

Here we outline the proof of Theorem 1.4 in d = 1, 2, 3. There is no truly serious

obstruction to be overcome to obtain the result in low dimensions; the choice to break

up the proof is entirely for expository purposes, as the proof for d ≥ 4 is particularly

clean and encompasses all of the main ideas.

The main reason why the previous proof does not extend to lower dimensions is

that the error estimate

‖e±(φ)‖2 � ‖φ‖
2(2p+1)

p+2
�

is no longer strong enough for the main term to dominate the error when d ≤ 3 and

α(d) < p < 4
d . The main task is therefore to sharpen this estimate until the error is once

again dominated by the main term.

The inefficiency in the above estimate arises from the use of the pseudocon-

formal energy estimate (Lemma 3.2), which is obviously not scaling-invariant and thus

leads to losses every time it is invoked. At this time, we do not have another decay-in-

time estimate that can replace the pseudoconformal energy estimate and so we must

still take on some losses. However, noting that there is some slack in the integrability
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3588 G. E. Lee

conditions for the time integrals in the proofs of Lemmas 3.3 and 3.4, we can at least

reduce the total degree to which we do invoke the pseudoconformal energy estimate.

As before, we write q = 4(p+2)
dp , so that (q, p + 2) is an admissible pair. We now

state the sharpened version of (3):

Proposition A1. Let d ≥ 1, α(d) < p < 4
d . Define e±(φ) as before. Let q−2

2p < η ≤ 1 and
1
2 < ν ≤ 1. Then there exists ε = ε(d, p) > 0 small so that if ‖φ‖� < ε, then

‖e±(φ)‖2 �d,p,η,ν ‖φ‖Q(d,p,η,ν)

� , (A.1)

where

Q(d, p, η, ν) = 2p(1 − η) + (1 − ν) + 2

p + 2
(2ηp + ν).

We begin the proof. Write θ = 1 − dp
2(p+2)

. First, we have the following sharpened

forms of Lemmas 3.3 and 3.4:

Lemma A2. Let d ≥ 1, α(d) < p < 4
d , and φ ∈ �. Then there exists ε = ε(d, p) > 0 small

so that if ‖φ‖� < ε, then for q−2
2p < η ≤ 1, we have

‖u(φ)‖ pq
q−2 ,p+2 �d,p,η (‖φ‖θ

2(E(φ)
1
2 )1−θ )1−η‖φ‖

2η
p+2
� ,

and for 1
2 < ν ≤ 1, we have

‖u(φ)‖q,p+2 �d,p,η (‖φ‖θ
2(E(φ)

1
2 )1−θ )1−ν‖φ‖

2ν
p+2
� .

Proof. We seek to control (∫ ∞

0
‖u(φ)(t)‖

pq
q−2

Lp+2
x

dt
) q−2

pq

.

Let η ∈ [0, 1]. We factor the integrand into powers ‖u(φ)(t)‖
pq

q−2 (1−η)

Lp+2
x

‖u(φ)(t)‖
pq

q−2 η

Lp+2
x

. We esti-

mate the 1st piece using Gagliardo–Nirenberg and the 2nd using the pseudoconformal

energy estimate. We obtain

(∫ ∞

0
‖u(φ)(t)‖

pq
q−2

Lp+2
x

dt
) q−2

pq =
(∫ ∞

0
‖u(φ)(t)‖

pq
q−2 (1−η)

Lp+2
x

‖u(φ)(t)‖
pq

q−2
2η

p+2

Lp+2
x

dt
) q−2

pq

≤ (‖φ‖θ
2(E(φ)

1
2 )1−θ )(1−η)‖φ‖

2η
p+2
�

(∫ ∞

0
〈t〉− 2pη

q−2 dt
) q−2

pq

.

The last integral is finite assuming η >
q−2
2p . This establishes the 1st estimate in

Lemma A2. The 2nd estimate for ‖u(φ)‖q,p+2 is proved in exactly the same way: we
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Breakdown of Regularity of Scattering 3589

split ‖u(φ)(t)‖
Lp+2

x
= ‖u(φ)(t)‖(1−ν)

Lp+2
x

‖u(φ)(t)‖ν

Lp+2
x

, estimate the 1st piece using Gagliardo–

Nirenberg, and the 2nd by the pseudoconformal energy estimate. The condition ν > 1
2 is

required to make the final integral in time finite. We leave the details to the reader. �

Lemma A3. Let d ≥ 1, α(d) < p < 4
d , and φ ∈ �. Then for q−2

2p < η ≤ 1,

‖eit�φ‖ pq
q−2 ,p+2 �d,p,η (‖φ‖θ

2‖∇φ‖1−θ
2 )1−η‖φ‖η

� .

Proof. The proof proceeds almost identically to that of the 1st part of Lemma

A2. As earlier, we factor ‖eit�φ‖p+2 = ‖eit�φ‖1−η
p+2‖eit�φ‖η

p+2. The 1st factor can be

controlled using Gagliardo–Nirenberg and the conservation of Ḣs norms under the linear

Schrödinger flow. The 2nd factor is controlled near time 0 by Gagliardo–Nirenberg and

at large times by the dispersive estimate and the embedding � ↪→ Lq for all 2d
d+2 < q ≤ 2.

The condition η >
q−2
2p ensures that the time integral that remains is finite. We leave the

details to the reader. �

Proof of Proposition A1. We argue as in the proof the error bound in of Proposition

3.1, but using Lemmas A2 and A3. Doing so, we arrive at an estimate of the form

‖e±(φ)‖2 �d,p,η,ν ‖φ‖α
2(E(φ)

1
2 )β+δ‖φ‖γ

� + ‖φ‖α
2(E(φ)

1
2 )β‖∇φ‖δ

2‖φ‖γ+ p
p+2 ηp

� ,

where:

α = θ(2p(1 − η) + (1 − ν));

β = (1 − θ)(p(1 − η) + (1 − ν));

γ = 2

p + 2
(2ηp + ν);

δ = (1 − θ)p(1 − η).

Note that Q(d, p, η, ν) = α + β + δ + γ . By Sobolev embedding, E(φ) is controlled by

‖φ‖2
� + ‖φ‖p+2

� , and by the assumption ‖φ‖� � 1 the 2nd term is negligible. Therefore,

every norm and each (E(φ))
1
2 is majorized by ‖φ‖� , and we have:

‖e±(φ)‖2 �d,p,η,ν ‖φ‖Q(d,p,η,ν)

� + ‖φ‖Q(d,p,η,ν)+ p
p+2 ηp

� � ‖φ‖Q(d,p,η,ν)

� . �

We are now ready to prove Theorem 1.4 in full generality.

Proof of Theorem 1.4. We mention only the necessary changes relative to the proof in

dimensions d ≥ 4.
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3590 G. E. Lee

The 1st step is to prove that T± : � → L2 is of class Cs(0) for all 0 < s < 1 + p. It

suffices as before to show that

T±(φ) − φ = O(‖φ‖1+p
� )

whenever ‖φ‖� is small. To ensure this, we must show that e+(φ) is of higher order in

‖φ‖� than the main term, that is, 1+p < Q(d, p, η, ν) for some admissible choice of η and

ν. Since η can be arbitrarily close to q−2
2p and ν can be arbitrarily close to 1

2 , it suffices

to show that

1 + p < Q
(

d, p,
q − 2

2p
,

1

2

)
.

This is equivalent to the condition

2dp2 + (11d − 8)p + (8d − 16) > 0.

When d ≥ 2, this is automatically satisfied for p > 0 because the coefficients are

nonnegative. When d = 1, the positive root of this polynomial is smaller than 3
2 , and

thus this is satisfied for p > 2 = 2
d .

Next we show that T± : � → L2 is not of class Cs(0) for s > 1 + p and does not

extend to a map L2 → L2 of class C1+β(0) for some 0 < β < p. As before it suffices to

show that

T±(φ) − φ �= OL2(‖φ‖s
�) (A.2)

in the 1st case and

T±(φ) − φ �= OL2(‖φ‖1+β

L2 ) (A.3)

in the latter case. Examining the proof in d ≥ 4, we observe that the only way in which

the size of e±(φ) enters into either argument is to show that there exists a regime ε � 1,

σ � 1, and εσ � 1 so that ‖φε,σ ‖2 (where φε,σ is defined as before) is dominated by the

main term ‖φε,σ ‖−1
2 ‖eit�φε,σ ‖p+2

p+2,p+2. Taking ε = σ−j with j > 1 to be determined, the

main term is still of size

‖eit�φε,σ ‖p+2
p+2,p+2

‖φε,σ ‖2
∼ σ−j(p+1)+2− dp

2 .

We use (A.1) to control the error by

‖e±(φε,σ )‖2 �d,p,η,ν σ (1−j)Q(d,p,η,ν).

Noting as before that Q(d, p, η, ν) > p + 1 for a judicious choice of η and ν, we see that

‖e±(φε,σ )‖� is negligible relative to the main term for j sufficiently large and σ � 1.

From here the proof of (A.2) and (A.3) proceeds exactly as when d ≥ 4. �
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Breakdown of Regularity of Scattering 3591

B Pointwise Hölder Spaces and Gateaux Derivatives

In this appendix, we relate the notion of pointwise Hölder regularity given in

Definition 2.4 to more familiar notions. For convenience, we reproduce the definition

here:

Definition B1 (Pointwise Hölder space [1]). Let X and Y be Banach spaces. Let x0 ∈ X

and U a convex open neighborhood of x0. Fix s > 0 and let n be the integer part of s. For

s > 0, we say that the map G : X → Y belongs to the pointwise Hölder space Cs(x0) if for

all h ∈ X with ‖h‖X = 1, there exist coefficients {aj(x0; h)}n
j=0 ⊂ Y such that

‖G(x0 + εh) − G(x0) −
n∑

j=1

εjaj(x0; h)‖Y � εs

for all ε > 0 sufficiently small, with the implicit constant independent of the

direction h.

This is related to two notions: the Peano derivative (also known as the de la

Vallée Poussin derivative) and the Gateaux derivative.

Definition B2 (Peano, de la Vallée-Poussin derivative). Let X and Y be Banach spaces.

Let x0 ∈ X, let U be a convex open neighborhood of x0, and let h ∈ X with ‖h‖X = 1. For

n ≥ 1, we say that a map G : U → Y has an n-th Peano derivative, or de la Vallée-Poussin

derivative, at x0 in the direction h if there exist {aj(x0; h)}n
j=1 ⊂ Y such that

‖G(x0 + εh) − G(x0) −
n∑

j=1

1

j!
εjaj(x0; h)‖Y = o(εn; h)

as ε → 0.

Therefore, if G ∈ Cs(x0) with s ≥ n, then G automatically has an n-th Peano

derivative, with an asymptotic bound as ε → 0 that is uniform in h; moreover, if s > n,

then the asymptotic bound is stronger.

Definition B3 (Gateaux derivative [16]). Let X and Y be Banach spaces. Let x0 ∈ X

and U ⊂ X a convex neighborhood of x0. We say that the map G : U → Y is Gateaux

differentiable at x0 in the direction h ∈ X if the limit

dG(x0; h) = lim
ε→0+

G(x0 + εh) − G(x0)

ε
= d

dε

∣∣∣∣
ε=0

G(x0 + εh)
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exists in Y. In that case, we call dG(x0; h) the Gateaux derivative, or 1st variation, of

G at u in the direction v. If dG(x0; h) exists for all h ∈ X, we say that G is Gateaux

differentiable at x0. Similarly, we define the Gateaux derivative of order n, or n-th

variation, by

dnG(x0; h) = dn

dεn

∣∣∣∣
ε=0

G(x0 + εh).

Gateaux derivatives are homogeneous in their 2nd argument: djG(x0; εh) =
εjdjG(x0; h) for all ε ∈ R ([16], Lemma 1.2).

It is clear that if n ≥ 1 and G : U → Y has an n-th Peano derivative an(x0; h) at x0

in the direction h, then it also has j-th Peano derivatives aj(x0; h) at x0 in the direction

h for j = 1, . . . , n − 1; moreover, G is Gateaux differentiable at x0 in the direction h

with 1st variation dG(x0; h) = a1(x0; h). It is not, however, true that G has variations of

any higher order, even in the real-valued case: a counterexample is f (x) = x3 sin(1/x)

for x �= 0, f (0) = 0, for which the 2nd Peano derivative exists at 0, but not f ′′(0) [22].

For this reason, Cs(x0) is not exactly a replacement for the space of n-times Gateaux

differentiable maps with dnG(x0; h) Hölder continuous of order s − n in x0. When s > 2,

we are not even able to detect from the definition whether a map in Cs(x0) has a 2nd

variation at x0. However, Cs(x0) is still a useful notion for detecting when a map fails to

have a certain level of Gateaux regularity, which is what is relevant for the breakdown of

regularity statements in Corollary 1.5. This arises through the generalization of Taylor’s

theorem with remainder for Banach space valued functions.

Theorem B4 (Taylor’s theorem with remainder; [16], Theorem 5). Let X and Y be Banach

spaces. Let U ⊂ X be a convex neighborhood of u ∈ X. Let G : U → Y be n-times Gateaux

differentiable on U, and let x0 ∈ X be such that dnG(x0 + sεh; h) is Riemann integrable

(defined in [16]) over s ∈ (0, 1) whenever ε > 0 is sufficiently small. Then for all h ∈ X

with ‖h‖X = 1 and ε > 0 small,

G(x0 + εh) = G(x0) +
n∑

j=1

εj

j!
djG(x0; h) + εn+1Rn+1(x0, h, ε),

where

Rn+1(x0, h, ε) = 1

n!

∫ 1

0
(1 − s)ndn+1G(x0 + sεh; h) ds.

We now arrive at the main statement of interest. It states that for n < s < n + 1,

membership in Cs(x0) is necessary for a map G to be n times Gateaux differentiable with
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dnG(x; h) Hölder continuous of order s − n. This gives us a way of detecting whether G

admits s derivatives in this latter sense.

Lemma B5. Let X and Y be Banach spaces. Let U ⊂ X be a convex neighborhood of

x0 ∈ X. Let G : U → Y be a map and suppose G /∈ Cs(x0) with n < s < n + 1. Then

dnG(x; h), if it exists for x ∈ U, cannot be a Hölder continuous function of x of order

s − n with Hölder seminorm uniformly bounded in h.

Proof. Suppose for contradiction that dnG(x; h) exists on U and is Hölder continuous

of order s − n in x, with Hölder seminorm uniformly bounded in h. Then all lower

order Gateaux derivatives must also exist. This implies that G satisfies the conditions

of Theorem B4, and hence admits the expansion

G(x0 + εh) = G(x0) +
n−1∑
j=1

εj

j!
djG(x0; h) + εnRn(x0, h, ε)

as ε → 0, where Rn is given as in Theorem B4. By the Hölder continuity assumption,

we have

‖Rn(x0, h, ε) − 1

n!
dnG(x0; h)‖Y

=
∥∥∥∥ 1

(n − 1)!

∫ 1

0
(1 − r)n−1[dnG(x0 + rεh; h) − dnG(x0; h)] dr

∥∥∥∥
Y

≤ 1

(n − 1)!

∫ 1

0
(1 − r)n−1‖dnG(x0 + rεh; h) − dnG(x0; h)‖Y dr

� εs−n
∫ 1

0
(1 − r)n−1rs dr ≤ εs−n.

Therefore,

G(x0 + εh) = G(x0) +
n−1∑
j=1

εj

j!
djG(x0; h) + εnRn(x0, h, ε)

= G(x0) +
n∑

j=1

εj

j!
djG(x0; h) + εn[Rn(x0, h, ε) − 1

n!
dnG(x0; h)]

= G(x0) +
n∑

j=1

εj

j!
djG(x0; h) + OY(εs).

But then G ∈ Cs(x0), contradiction. �
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Lastly, we need a way of checking that a given G does not belong to the class

Cs(x0).

Lemma B6. Let n be a positive integer, and let n < s < s+ δ < n+1. Assume G ∈ Cs(x0)

with Peano derivatives {aj(x0; h)}n
j=1, so that

‖G(x0 + εh) − G(x0) −
n∑

j=1

εjaj(x0; h)‖Y � εs.

Suppose also that

‖G(x0 + εh) − G(x0) −
n∑

j=1

εjaj(x0; h)‖Y �� εs+δ.

Then G /∈ Cs+δ(x0).

The proof is based on the following uniqueness statement for the Peano

derivatives:

Theorem B7 ([16], Theorem 6). Let X and Y be Banach spaces. Let U ⊂ X be a convex

neighborhood of x0 ∈ X. Let G : U → Y be a map. Then for each positive integer n, there

exists at most one expansion of the form

G(x0 + h) = G(x0) +
n∑

j=1

aj(x0; h) + Rn+1(x0, h)

satisfying aj(x0; sh) = sjaj(x0; h) and Rn+1(x0, h) = o(‖h‖n
Y) as h → 0.

Proof of Lemma B6. Suppose to the contrary that G ∈ Cs+δ(x0). Then there are

coefficients {bj(x0; h)}n
j=1 such that

‖G(x0 + εh) − G(x0) −
n∑

j=1

εjbj(x0; h)‖Y � εs+δ.

Then we have two polynomial expansions for G(x0 + h) around x0 of degree n with

o(‖h‖n
Y) remainder as h → 0. By Theorem B7, it follows that bj = aj. But this contradicts

the assumption that the the error in the expansion G(x0 + εh) ∼ G(x0) + ∑n
j=1 εjaj(x0; h)

is not O(εs+δ). �

The utility of Lemma B6 is that so long as we can verify one asymptotically

valid polynomial approximation of G(x0 + εh), the same polynomial approximation can
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be used to check the membership of G in Cs(x0), as long as there is no need to add a

higher-order derivative term to the expansion.
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