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Abstract — Synchrotron micro- and

nanoprobe beamlines have demonstrated

great potential to advance photovoltaic

devices. Most importantly, their small

X-ray spotsize has enabled the direct cor-

relation of electrical performance with

elemental composition at sub-grain res-

olution for a variety of polycrystalline

solar cells. Whereas the bulk of most

inorganic semiconductors is stable un-

der the high X-ray flux of focused X-

ray beams, semiconductors with organic

components are prone to a variety of

degradation mechanisms. This is partic-

ularly critical to evaluate for the emerg-

ing organometal halide perovskite solar

cells. Here, we investigate the effects

of hard X-rays on the nanoscale per-

formance and elemental distribution of

these solar cells. We show that their

composition does not change during com-

mon operando and in-situ measurements

at synchrotron nanoprobes. However, we

found a significant X-ray induced elec-

tronic degradation of solar cells with

methylammonium lead iodide absorbers.

Time- and dose-dependent measurements

unveiled two characteristic degradation

time constants on the order of 12 and

200 s that are independent of the X-ray

flux. Based on heat and dose simu-

lations, we attribute the fast decay to

the dose-driven creation of recombina-

tion centers, while the slow decay is com-

patible with the observation of compo-

sitional changes. Finally, we detail how
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degradation-induced measurement arti-

facts can be outrun and showcase the

high correlation of the X-ray beam in-

duced current with the iodine and lead

distribution.

Introduction

The advent of correlative X-ray microscopy1

in photovoltaic research is largely based on
the co-development of brilliant hard-X-ray syn-
chrotron micro- and nanoprobe beamlines at
third-generation synchrotrons and of experi-
mental techniques such as X-ray beam induced
current (XBIC)1–4 and voltage (XBIV).5–7

These operando measurement techniques are
conceptually related to electron- (EBIC) and
laser-beam induced current (LBIC), and give
access to the charge collection efficiency in the
absorber layer, providing the high penetration
depth of LBIC at the high spatial resolution of
EBIC. Enabled by the great penetration depth
in low-Z materials and by the long working
distance, hard X-rays are intrinsically suited to
serve as probe beams for in-situ measurements
of complete solar cell stacks under various con-
ditions.6,7

In the framework of multimodal scan-
ning X-ray microscopy,8 the combination
of XBIC/XBIV with X-ray fluorescence
(XRF) and nano-diffraction measurements
has turned out to be particularly powerful
for the point-by-point correlation of the elec-
trical performance with the elemental com-
position and strain in thin-film solar cells
with compound polycrystalline absorber lay-
ers such as CuIn1−xGaxSe2,

6,9,10 CdTe,11,12

or methyl-ammonium lead iodide (MAPI,
CH3NH3PbI3).

13–17

The record efficiency of perovskite solar cells
(PSCs) with an organometal halide absorber
has been increasing at an unprecedented rate,
being after a few years of development al-
ready beyond the record efficiency of other
more established polycrystalline thin-film so-
lar cells.18 This justifies the tremendous re-
search efforts, although upscaling challenges
and degradation have hindered large-scale im-

plementation of PSCs so far. Perovskite so-
lar cells suffer from a variety of degradation
mechanisms caused by humidity, light, atmo-
sphere, and combinations thereof.19–23 Further-
more, damage of operational PSCs and their
absorber layer has been reported from electron
and X-ray beams.13,24,25 For advanced charac-
terization at the nanoscale—most importantly,
to study degradation mechanisms operando and
in-situ—it is therefore critical to understand
and quantify the probe-induced modifications.

Methods

Solar cell fabrication

To study the X-ray beam induced damage
of PSCs, we have synthesized perovskite so-
lar cells on glass substrates with fluorinated
tin oxide (FTO) that serves as front contact
during standard solar cell operation. A com-
pact and a mesoporous layer of titanium diox-
ide was deposited onto the FTO by sputtering
and spin coating, respectively. The archety-
pal MAPI was spin coated as absorber layer
on the TiO2 scaffold following the procedure
described elsewhere.26 As hole-transport layer,
spiro-MeOTAD was spin coated on the ab-
sorber, and gold was evaporated as back con-
tact. The solar cell synthesis is detailed else-
where in greater detail,27 and the sample-
specific details are provided in the supporting
information (SI) in Tab. S4.

XRF and XBIC measurements

The experiments were performed at the
nanoprobe beamline 26-ID-C28 at Argonne Na-
tional Laboratory. The angle between the XRF
detector and incident X-ray beam is fixed to
90◦. The angle between the normal to the sam-
ple surface and the incident X-ray beam was
15◦, optimized to reduce self-absorption effects
in the XRF signal while minimizing the foot-
print of the X-ray beam. A zone plate focused
the coherent X-ray beam at 9 keV to 30−40 nm
(FWHM), resulting in a photon flux on the or-
der of 2.6× 108 photons/s.
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The strong X-ray absorption in glass did not
allow measuring the XBIC signal with the glass
facing the incident X-ray beam, which would
correspond to standard solar cell operation.
Therefore, the X-ray beam entered the solar
cell through the rear contact (p-type) that was
grounded to avoid measurement artifacts as dis-
cussed elsewhere.1 The low X-ray absorptance
in MAPI leads to a flat charge generation pro-
file throughout the solar cell thickness that is
comparable to the illumination with red light
and depends only marginally on the illumina-
tion side. To reduce the X-ray beam intensity,
aluminum filters of 114 and 343 µm were used
with an X-ray transmittance of 35.3 and 4.4%,
respectively. All data shown here are normal-
ized to the X-ray flux assessed by an up-stream
ion chamber to mitigate artifacts from the de-
caying electron current in the storage ring.
The careful reader will note that the molar

ratio between iodine and lead differs signifi-
cantly from the nominal stoichiometric ratio
of 3 that is expected for the perovskite crys-
tals. This difference is predominantly caused by
measurement artifacts: self-absorption of fluo-
rescence photons, errors of thin-film standard
calibration, and limited comparability of the
spectrum fitting for PbM and IL peaks cause
an apparently off-stoichiometric ratio between
the lead and iodine distributions, in this case
an underestimation of lead. For further discus-
sion of these effects on the elemental quantifica-
tion in thin-film devices such as perovskite so-
lar cells, we refer to the literature.7,17,29,30 Note
that these errors in the absolute quantification
of elements cancel out in relative evaluation.
Consequently, these effects to not affect the out-
come of this study, as all conclusions will be
drawn from a relative comparison of elemental
concentrations as a function of time and space.

Simulations

For the quantification of the dose distribu-
tion, we have performed numeric simulations
of the X-ray photon/solar-cell interaction us-
ing a personalized version of PENCYL that
is included in the PENELOPE software pack-

age.31,32 The dose profiles shown in Fig. S6
& S7 have been obtained with 108 simulated
incident photons. The simulation parameters
were the same as the experimental parameters
(9 keV incident-photon energy, layer stack with
the thicknesses and compositions as detailed in
Tab. S4), except for the beam diameter and the
beam/sample-surface angle that were 0 nm and
90◦, respectively.
For the evaluation of the temperature dis-

tribution, heat transfer simulations were per-
formed in COMSOL Multiphysics R© software.33

To simulate the heat flux coming from the X-ray
beam absorbed in the sample, we assumed a line
source at the origin of uniform magnitude (in
W/m) through the thickness of each layer. The
magnitude of the line source in each layer was
taken from the absorbed energy per X-ray pho-
ton in each layer calculated in the PENELOPE
dose simulations at a flux of 2.6× 108 photons/s
per the beamline operating specification. X-ray
measurements were taken in vacuum with the
sample integrated atop a thick glass substrate,
such that heat transfer from the sample is poor.
To establish a worst-case heating scenario, we
assumed no heat transfer across the upper or
lower boundaries of the sample, meaning that
we overestimated the temperature rise in the
absorber. Further details about the simulations
are given in the SI.

Results

Effects of X-rays on absorber com-

position

First, we shall investigate the impact of X-ray
irradiation on the compositional distribution in
the solar cell absorber.1 Therefore, we have
subsequently measured a solar cell area 5 times
as shown in Fig. 1 and published elsewhere;14

a 6th map has been taken slightly larger. Com-
paring the pristine vs. re-measured areas by eye,
we barely note X-ray beam induced modifica-
tions, despite of the uncommonly long dwell

1Note that these measurements based on hard X-rays

are not sensitive to compositional variations of organic

absorber components.
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cused X-ray beam attenuated to 35.3% and 0.5 s
dwell time. The scan speed was limited by the
motor settling time of 0.3 s at each scan step.
Lacking of fly-scan mode and a fast shutter, the
high-resolution XBIC scan still suffered from
degradation artifacts with the signature of the
inverted pattern of Fig. S7; these artifacts were
corrected as described elsewhere.13 While such
a correction is clearly not ideal for a quantita-
tive analysis, it still allows to analyze the overall
XBIC distribution of degrading samples.
Second, the XRF measurement was taken

with unattenuated beam and 1 s dwell time.
The resulting XRF spectra were fitted using
MAPS37,38 to extract the molar iodine and lead
area concentrations from the IL and PbM lines,
respectively. From the iodine and lead distri-
bution, the molar lead-to-iodine ratio was de-
termined. Figure 5 shows the results of these
subsequent scans that were optimized for XBIC
and XRF measurements, respectively. In con-
trast to earlier studies, where areas of partic-
ularly high lead-to-iodine concentration indi-
cated the presence of a PbI2 phase that was cor-
related with low XBIC signal,1,13 such features
are not clearly visible here, which is typical for
a higher quality of the solar cell.
Maps as in Fig. 5 lay the foundations for a cor-

relative analysis between electrical performance
and elemental distribution as shown in Fig. 6.
Here, the iodine and lead concentrations are
correlated with each other and the XBIC sig-
nal, and linear fits were applied to all scatter
plots resulting from the point-by-point corre-
lations. This analysis is shown in Fig. 6(a–c)
for the measurement with degradation artifacts
(data from Fig. 2), and in Fig. 6(d–f) for the
optimized measurement with fewer degradation
artifacts (data from Fig. 5).
As expected, Fig. 6(c&f) show a high cor-

relation between the lead and iodine concen-
tration that were measured simultaneously and
are dominated by topological variations. How-
ever, the decaying XBIC signal does not corre-
late with the elemental distribution, as unveiled
by the large uncertainty of the fitted slope in
Fig. 6(a–b).
In contrast, a strong correlation was found be-

tween the XBIC signal and the iodine and lead

concentrations of the optimized measurements
(see Fig. 6(d–e)) as indicated by the small stan-
dard deviation of the slope. The clear corre-
lation between XBIC, Pb, and I shows that
measurement-induced degradation of the film
no longer dominates the XBIC signal and in-
stead, chemical inferences can be made.

Conclusions

Our approach correlating the X-ray beam in-
duced photocurrent with the elemental distri-
bution at the nanoscale shines light on the rela-
tion between performance and composition that
is often driven by smallest defects. Although
XBIC measurements locally damage perovskite
solar cells irreversibly, we have demonstrated
ways how to acquire high-quality XBIC data
despite of the presence of degradation effects.
Furthermore, we have quantified the degrada-
tion kinetics and run simulations to elucidate
the reasons behind. As a result, we could ex-
clude that the degradation is caused by tem-
perature increase. Instead, the results suggest
that the degradation of the photocurrent is gov-
erned by the dose deposited in the absorber
layer across the interaction volume.
This detailed study of experimental pa-

rameters for successful measurements of the
degradation-sensitive perovskite solar cells will
open the door for the in-situ and operando
characterization of perovskite solar cells.
This is of particular interest in view of the
nanoprobe endstations at fourth-generation
synchrotrons39–42 that will enable experiments
with 2–3 orders of magnitude higher focused
X-ray flux.
There is no doubt that higher flux will lead to

more pronounced dose-induced sample degra-
dation. However, based on this study we
may speculate that a dose-independent, slower,
degradation component—related for example
to diffusion coefficients—could be outrun by
fast measurements at a higher dose rate.
Ultimately, such correlative X-ray microscopy

experiments will foster the understanding of the
relationship between composition and charge
collection at the nanoscale and accelerate the
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development of superior solar cell chemistries
and fabrication approaches of perovskite solar
cells.

Supporting Information

SI 1: Further time-dependent XBIC and XRF
measurements to support the kinetics measure-
ments
SI 2: Heat transfer simulation
SI 3: Simulation of the X-ray interaction vol-

ume and the resulting dose upon scanning X-
ray microscopy measurements
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