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Abstract

We study super-resolution multi-reference alignment, the problem of estimating a signal
from many circularly shifted, down-sampled, and noisy observations. We focus on the low
SNR regime, and show that a signal in RM is uniquely determined when the number L
of samples per observation is of the order of the square root of the signal’s length (L =
O(
√
M)). Phrased more informally, one can square the resolution. This result holds if the

number of observations is proportional to 1/SNR3. In contrast, with fewer observations
recovery is impossible even when the observations are not down-sampled (L = M). The
analysis combines tools from statistical signal processing and invariant theory. We design an
expectation-maximization algorithm and demonstrate that it can super-resolve the signal in
challenging SNR regimes.

1 Introduction

Model. We study the problem of estimating a signal from its circularly shifted, sampled, and
noisy copies. More precisely, we consider N independent observations sampled from the model

y = PRsx+ ε, s ∼ Uniform[0, . . . ,M − 1], ε ∼ N (0, σ2I), (1.1)

where Rs denotes an operator that shifts the target signal x ∈ RM circularly by s entries, that
is, (Rsx)[n] = x[(n − s) mod M ], and P denotes a fixed sampling operator that collects L ≤ M
equally-spaced samples. We assume that the random variable s is distributed uniformly over
[0, . . . ,M − 1], and the noise ε ∈ RL is i.i.d. Gaussian. Explicitly, the i-th observation reads:

yi[`] = P (Rsix)[`] + εi[`]

= x[`K − si] + εi[`], (1.2)
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where ` = 0, . . . , L− 1, and K := M/L is assumed to be an integer. Importantly, the shifts si are
all unknown, and thus (1.1) is a special case of the multi-reference alignment (MRA) model, which
we review in Section 2. Figure 1 presents an example of two observations with signal-to-noise ratio
(SNR) equal to one (namely, the expected squared norm of the noise equals the squared norm of
the signal).

Our goal is to estimate x from N observations sampled from (1.1). In contrast to previous
works on MRA, the individual observations are down-sampled, and therefore recovering the full
signal x is also a special case of the super-resolution problem. Accordingly, we refer to x as the
“high-resolution signal,” while y1, . . . , yN are the “low-resolution observations.” The parameter K
can be thought of as a “super-resolution factor.” The difficulty in estimating x resides chiefly
in three factors: the additive noise, the unknown circular shifts (the nuisance variables of the
problem), and the sampling operator.

The statistical model (1.1) suffers from an intrinsic symmetry: it is invariant under a global
circular shift since p(y|x) = p(y|Rix) for all i = 1, . . . ,M − 1. In this case, we say that the goal is
to recover the signal up to a global circular shift. More formally, the goal is to recover the orbit
of x:

Gx := {gx | g ∈ G}, (1.3)

where G := {R0, R1, . . . , RM−1} is the group of cyclic shifts ZM . However, as will be shown in
Section 3, without prior information on the signal, even the orbit Gx is not identifiable from the
observations, and thus prior information on x is necessary for its identification.

Connection with sampling theory. We think of the discrete signal x ∈ RM as Nyquist-rate
samples of a continuous bandlimited signal. Specifically, let us define a real signal with bandlimit B
as

xc(t) =
B∑

k=−B

x̂[k]e2πιkt, t ∈ [0, 1), (1.4)

where ι =
√
−1, and x̂ denotes the Fourier series coefficients of x. Since xc is real, it follows that

x̂[k] = x̂[−k]. According to the well-known Shannon-Nyquist sampling theorem, the samples

x̃c[m] := xc(m/M) =
B∑

k=−B

x̂[k]e2πιkm/M , m = 0, . . . ,M − 1, (1.5)

characterize xc uniquely when M ≥ 2B + 1. Model (1.1) is identical to rotating the discrete
signal x̃c on the M -point grid {m/M}M−1

m=0 , sampling it L times, and adding noise.
With the above interpretation in mind, we identify the length of the signal in (1.1) with twice

the signal’s bandwidth, namely, M = 2B+ 1 ≈ 2B. Thus, if L < M , we say that each observation
is sampled below the signal’s Nyquist rate, and thus the recovery process should compensate for an
aliasing distortion. To avoid aliasing, the standard signal processing approach in many applications
is to remove the high frequency components before sampling [53, 26]—namely, low-passfiltering
the signal— and then estimate a down-sampled, smooth approximation of x. While this strategy is
generally optimal for a single observation, this is not necessarily true when multiple observations
are available. In this work, we show that if sufficiently many observations are acquired (as a
function of the noise level), then in principle it suffices to acquire only L = O(

√
M) samples at
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Figure 1: Two shifted copies of a signal of length M = 120 (the high-resolution signal) are presented
in blue. The red squares display L = 15 noisy samples with SNR equal to one. The goal is to
estimate the high-resolution signal from multiple noisy observations.

each observation to recover high-resolution details, even if the circular shifts are unknown and the
noise level might be high.

The analogy between (1.1) and rotating a continuous bandlimited signal (1.4) holds only when
the rotations are restricted to the grid {m/M}M−1

m=0 . In Section 6 we discuss potential extensions
to more intricate models that permit rotations over a continuous interval.

Super-resolution. The model (1.1) is an instance of the super-resolution from multiple observa-
tions problem: the task of estimating the fine details of a signal from its low-resolution observations.
This problem has attracted the attention of numerous researchers in the last couple of decades
in a variety of fields, such as computer vision, image processing, and medical imaging; see for
instance [46, 28, 32] and references therein. In particular, the statistical model in some of these
works is akin to (1.1), see for example [50, 49, 61]. Nevertheless, as far as we know, previous works
on super-resolution did not aim to derive and quantify the achievable super-resolution in the low
SNR regime. To avoid confusion, we mention that there exists a different thread of research, which
is not directly related to this work, that studies super-resolution from a single image based on
prior knowledge (such as sparsity [19, 15]), or machine learning techniques [36, 41].

Main contributions. In this paper we provide a detailed analysis of model (1.1) and derive
fundamental conditions permitting an accurate estimate of x. In particular, we characterize the
interplay between the number of observations N , the noise level σ, the signal’s length M , and the
number of samples per observation L, in the low SNR regime.

The following theorem summarizes (informally) the theoretical contribution of this paper. Pre-
cise formulations and technical details are provided in Section 3.

Theorem 1.1 (informal). Suppose that N observations from (1.1) are collected and σ → ∞.
If N/σ6 → ∞ and L ≥ C

√
M for some constant C, then the maximum of the likelihood func-
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Figure 2: An example of an accurate estimate when the SNR is equal to 1. In the experiment,
N = 104 observations were generated from a signal of length M = 120 (plotted in dashed blue; the
same one as in Figure 1). The bandwidth of the signal is B = 15 and it was sampled L = 15 times
at each observation—half of the Nyquist sampling rate. The classical signal processing approach
suggests to remove all frequencies beyond L/2 and then process the low-resolution data. This
low-passed version of the signal is presented in red. Notably, the two peaks in the center of the
signal are blurred and merged into one. In contrast, the EM algorithm resolves the two peaks and
estimates the high-resolution signal accurately (in green).

tion p(y1, . . . , yN |x) is almost surely attained by a finite set of signals that includes the target
signal x. If in addition x was drawn from a Gaussian prior, then almost surely there exists a
single signal that achieves the maximum of the posterior distribution p(x|y1, . . . , yN).

Expectation-maximization. As a computational scheme, we propose to retrieve the high-
resolution signal x from the low-resolution observations y1, . . . , yN using an expectation-maximization
(EM) algorithm; a detailed description is given in Section 4. Figure 2 shows a numerical example.
A high-resolution signal of length M = 120 is estimated from N = 104 observations in a noisy
environment, where the SNR is equal to one and each observation is sampled at L = 15 points.
The bandwidth of the signal is B = L, so that the sampling rate is half of the Nyquist rate. If
we were to follow the Shannon-Nyquist sampling scheme of filtering out the L/2 high frequencies,
the two peaks in the center of the signal would have been blurred into one, even with known
circular shifts and in the absence of noise. In contrast, the EM algorithm resolves the two adjacent
peaks and estimates the signal accurately. A detailed description of this simulation, and additional
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numerical experiments, are provided in Section 5. We note, however, that while the theoretical
analysis guarantees identifiability in the regime M ≈ L2, in our experiments the EM algorithm
fails to estimate the high-resolution signal even when L ≈ M2/3. Following [6, 17, 60], we postu-
late that this inadequate performance reflects a fundamental statistical-computational gap in the
super-resolution problem, rather than a shortcoming of the EM framework.

Remark on terminology and notation. We refer to each realization of the model (1.1) as
an observation, and to the entries of each observation as samples. Namely, yi[`] denotes the `-th
sample of the i-th observation. In addition, in the sequel all indices should be considered as modulo
M or L, depending on the context. When writing P & Qd we mean that Qd is the leading-order
term of the right-hand side expansion in Q. For example, M & L2/6 implies that M is greater
than L2/6 plus a linear polynomial in L.

2 Background on multi-reference alignment and invariants

The model (1.1) is a special case of the multi-reference alignment (MRA) problem. This problem
entails estimating a signal from multiple noisy observations; in each observation the signal is acted
upon by an unknown element of a known group G. In its most general form, the MRA model
reads

y = T (g ◦ x) + ε, g ∈ G, x ∈ X , (2.1)

where T is a known linear operator, with the group G acting on a vector space X [8]. Specifically,
if x ∈ RM , G is identified with the group of circular shifts ZM , and T is the sampling operator P ,
then the general MRA model (2.1) reduces to (1.1).

Similarly to many MRA models in the literature [7, 14, 47, 1, 17, 42, 2, 4, 51], this work
is inspired by single-particle reconstruction problems using cryo-electron microscopy (cryo-EM)
and X-ray free electron lasers (XFEL)—high-resolution structural methods for biological macro-
molecules [30, 31, 44, 56, 10]. In particular, this work is a first step towards understanding the
resolution limits of these modalities; see further discussion in Section 6.

Suppose we collect N observations from (2.1). If the noise level is low, the standard approach
is to estimate the group element g1, . . . , gN . For example, in (1.1) the unknown circular shifts
s1, . . . , sN can be estimated by simultaneous clustering and synchronization (see Section 3.1). This
can be done, for instance, using the Non-Unique Games framework [39]. However, in the low SNR
regime—which is the main interest of this work—the group elements cannot be recovered reliably
by any method [3, 13]. Therefore, we consider two techniques that circumvent shift determination:
estimation based on shift-invariant features, and the EM algorithm. In particular, we formulate
EM in detail in Section 4, and present numerical experiments in Section 5.

For the theoretical analysis, we use features that are invariant under circular shifts. Specifically,
the q-th order circular-shift invariant feature of a signal z ∈ RL is simply its auto-correlation:

Mq(z)[`1, . . . , `q−1] =
L−1∑
i=0

z[i]z[i+ `1] . . . z[i+ `q−1]. (2.2)

It is readily seen that this quantity remains unchanged under any circular shift of z, namely,
Mq(z) = Mq(Rs̄z) for any fixed s̄. These invariants can also be presented in Fourier domain.
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Specifically, let ẑ[k] denote the k-th Fourier coefficient of z. Then the polynomials

M̂q(z)[k1, . . . , kq−1] = ẑ[k1] · · · ẑ[kq−1]ẑ[−k1 − · · · − kq−1], (2.3)

are also invariant under circular shift. Throughout the paper, we use the terms auto-correlations,
invariants, and invariant features interchangeably. Using these invariants, a variety of algorithms
were proposed under different MRA setups [14, 47, 1, 17, 21, 42], as well as for cryo-EM and
XFEL [34, 37, 40, 12, 45, 58, 55].

In this work, we harness the first three invariants. The first invariant is the zero frequency
M̂1(z) = ẑ[0] (equivalently, the mean of the signal). The second invariant is the power spectrum
of the signal M̂2(z)[k] = |z[k]|2 for k = 0, . . . , L − 1. Unfortunately, the mean and the power
spectrum do not determine a general signal uniquely (see for example [11]). Thus, we need the
third-order invariant, the bispectrum, which determines almost all signals uniquely [57, 52]:

M̂3(z)[k1, k2] = ẑ[k1]ẑ[k2]ẑ[−k1 − k2], k1, k2 = 0, . . . , L− 1. (2.4)

The bispectrum is a useful tool in many data processing applications, such as separating Gaussian
and non-Gaussian processes [18], studying the cosmic background radiation, seismic, radar and
EEG signals [59, 23, 43], MIMO systems [20], and classification [63].

For large σ, the variance of estimating the q-th order auto-correlation (either Mq or M̂q) is
proportional to σ2q since the estimator involves the product of q noisy terms. Thus, reliable
estimation requires an order of σ2q observations. For the problem under consideration, it implies
that we need to record N/σ6 � 1 observations to obtain an accurate estimate of the bispectrum.
Interestingly, it was shown that for the MRA model (2.1), the invariant features approach is optimal
in the following sense. Let q̄ be the lowest-order auto-correlation that identifies a generic signal
(in our case, q̄ = 3). Then, in the asymptotic regime where N and σ diverge (while L is fixed), the
estimation error of any method is bounded away from zero if N/σ2q̄ is bounded from above [9, 2].
In other words, q̄ determines the minimal number of observations required for an accurate estimate
in the low SNR regime. Remarkably, we show that for (1.1) and for a certain range of L, at the
same estimation rate (i.e., N scales with σ6) one can reduce the sampling rate significantly below
the Nyquist rate and still achieve an accurate estimate of the signal. In Section 6 we discuss the
potential of super-resolution in case higher-order auto-correlations could be computed—that is, if
more observations are available.

3 Analysis

The analysis is carried out in the asymptotic regime of N → ∞, while the dimension M remains
fixed. Therefore, we assume, without of loss of generality, that ‖x‖2 = M so that SNR=1/σ2. By
the term “accurate recovery” we mean that the recovery error drops to zero almost surely. For
example, the condition N/σ6 → ∞ ensures that we can almost surely estimate the bispectrum
accurately.

In Section 3.1, we show that (1.1) can be interpreted as the heterogeneous multi-reference
alignment (hMRA) model applied to K subsets of x, and formulate the likelihood function of (1.1).
This, in turn, immediately implies that the signal is not determined uniquely from the likelihood
function (a result implicit in earlier works, such as [61]):

6



Theorem 3.1. The likelihood function p(y1, . . . , yN |x) does not determine x uniquely, neither its
orbit under ZM (1.3).

Nevertheless, the likelihood function allows us to identify a family of signals which can be
described as the orbit of x under a parameterized sub-group of the permutation group; we de-
note this orbit by GΠ,Lx from reasons that will be explained later. Our analysis consists of two
stages: identifying the orbit GΠ,Lx from the observations, and finding a unique signal in GΠ,Lx
that maximizes the posterior distribution. In particular, in Section 3.2 we use auto-correlation
analysis to show that for any L ≤ 192 satisfying L &

√
6M (more accurately, any pair (L,M)

satisfying (3.5) and (3.6)), the orbit GΠ,Lx can be computed from the first three auto-correlations
of y; we conjecture it remains true for any L > 192. These auto-correlations can be estimated
from the data if N/σ6 → ∞ in any SNR regime. Finally, in Section 3.3 we show that if x was
drawn from almost any Gaussian prior on the signal, then there is a unique signal in GΠ,Lx that
maximizes the posterior distribution.

The following summarizes the main results of this section:

Theorem 3.2. Suppose that N →∞ observations from (1.1) are collected, N/σ6 →∞, and that x
was drawn from almost any Gaussian prior. Then, for L ≤ 192 and any K that satisfies (3.5),
there exists a single signal that achieves the maximum of the posterior distribution p(x|y1, . . . , yN).

Conjecture 3.3. Suppose that N → ∞ observations from (1.1) are collected, N/σ6 → ∞, and
that x was drawn from almost any Gaussian prior. Then, for any fixed M , there exists a single
signal that achieves the maximum of the posterior distribution p(x|y1, . . . , yN) as long as M ≤
L · P(L), where P(L) is given in (3.5).

3.1 Reduction to heterogeneous MRA and the likelihood function

Consider two realizations yi, yj generated, respectively, after shifting x by si and sj, and recall that
K = M/L is an integer. If si− sj = cK for some integer c, then yi is equal to a circular shift of yj,
with a different noise realization. It follows that any observation yi is a noisy and circularly-shifted
realization of one of the following K signals,

xk :=
[
x[k], x[k +K], x[k + 2K], . . . , x[k + (L− 1)K]

]
, k = 0, . . . , K − 1. (3.1)

Namely, xk[`] = x[k + K`] for ` = 0, . . . , L − 1. We refer to x0, . . . , xK−1 ∈ RL as sub-signals.
Using this notation, the model (1.1) can be written as

y = R`xk + ε, (3.2)

where k is drawn uniformly at random from {0, . . . , K − 1}, R` is a circular shift on an L-point
grid [0, 1, . . . , L − 1], and ` is distributed uniformly. The model (1.1) is thus equivalent to the
hMRA model, recently studied in [47, 6, 17, 42], applied to the sub-signals x0, . . . , xK−1.

Observations from the hMRA model (3.2) enable the recovery of x0, . . . , xK−1 up to a circular
shift of each sub-signal and a permutation across signals. This can be seen by considering the
marginalized likelihood of a single observation y:

p(y|x) =
1

M

L−1∑
`=0

K−1∑
k=0

p(y|x, `, k) =
1

(2πσ2)L/2M

L−1∑
`=0

K−1∑
k=0

e−
1

2σ2
‖y−R`xk‖22 . (3.3)
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(a) A signal consisting of 3 sub-signals

0 2 4 6 8 10 12

(b) A permutation of the sub-signals

0 2 4 6 8 10 12

(c) Circular shifts of the sub-signals

0 2 4 6 8 10 12

(d) Permutation + circular shifts of the sub-signals

Figure 3: An illustration of the orbit GΠ,Lx; all four signals have the same likelihood function.
(a) A signal of length M = 12 consists of K = 3 sub-signals (drawn in different colors). (b)
Permuting the sub-signal (x0, x1, x2) 7→ (x1, x2, x0). (c) Shifting the sub-signals (x0, x1, x2) 7→
(R−1x0, R−2x1, x2). (d) Permuting and shifting the sub-signals (x0, x1, x2) 7→ (R−2x1, x2, R−1x0).
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Plainly, p(y|x) is invariant under any permutation π (overall K! permutations)

(x0, . . . , xK−1) 7→ (xπ(0), . . . , xπ(K−1)),

or circular shifts `0, . . . , `K−1 (overall LK permutations)

(x0, . . . , xK−1) 7→ (R`0x0, . . . , R`K−1
xK−1).

This set of permutations, denoted by GΠ,L, includes K!LK elements and constitutes a subgroup of
the permutation group of M elements. The orbit of x under GΠ,L is illustrated in Figure 3.

Importantly, previous works on hMRA aimed to retrieve the orbit GΠ,Lx. In this work we
further wish to recover the high-resolution signal x by ordering the sub-signals x0, . . . , xK−1 prop-
erly, which is impossible based solely on the likelihood. Thus, we must impose some additional
constraints on the signal. In particular, we show in Section 3.3 that for almost any Gaussian prior
there is a single element of GΠ,Lx that achieves the maximum of the posterior distribution.

3.2 Identifying the orbit GΠ,Lx

3.2.1 The noiseless case

In the absence of noise, if we have observed each one of the K sub-signals x0, . . . , xK−1, we can
determine the orbit GΠ,Lx immediately by considering all of their circular shifts and permuta-
tions. Therefore, the only question is how many observations from (1.1) are required to see each
sub-signal xk at least once; this problem is known in the combinatorics literature as the coupon
collector’s problem (see, for instance, [29]). In expectation, it is known that KHK observations
are required to see all K signals, where HK is the harmonic sum

HK =
1

1
+

1

2
+ · · ·+ 1

K
= logK + γ + εK ,

where γ ≈ 0.57721 is the Euler-Mascheroni constant and εK ∼ 1/(2K) for large K. If K is
large enough, the harmonic sum can be bounded by HK ≤ C logK for some small constant C.
For example, HK ≤ 2 logK for any K ≥ 3. Thus, we say that in expectation N ≈ K logK =
M/L log(M/L) observations suffice to characterize the orbit GΠ,Lx from noiseless observations.
Yet, even in the absence of noise, Theorem 3.1 suggests that finding x itself from GΠ,Lx is a
non-trivial task, requiring additional assumptions; we address this in Section 3.3.

3.2.2 Auto-correlation analysis

In the low SNR regime, we propose to estimate the orbit GΠ,Lx using the first three auto-
correlations of the observations, or, equivalently, their Fourier counterparts: the mean, power
spectrum, and bispectrum. Assuming N/σ6 →∞ and considering (3.2), the invariants of the data
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converge to the average of the invariants of the K sub-signals, up to bias terms:

1

N

N∑
i=1

M̂1 (yi)
N→∞→ 1

K

K−1∑
k=0

M̂1(xk),

1

N

N∑
i=1

M̂2 (yi) [`]
N→∞→ 1

K

K−1∑
k=0

M̂2(xi)[`] + B2, (3.4)

1

N

N∑
i=1

M̂3 (yi) [`1, `2]
N→∞→ 1

K

K−1∑
k=0

M̂3(xi)[`1, `2] + B3[`1, `2],

where B2 = σ2L1, B3[`1, `2] = x̄σ2L2D[`1, `2], 1 ∈ RL is a vector of ones, x̄ is the average of x
D ∈ RL×L is a zero matrix except D[0, 0] = 3 and D[i, 0] = D[0, i] = D[i, i] = 1 for i = 1, . . . , L−1,
and `, `1, `2 = 0, . . . , L − 1. We note that if σ2 is known, one can easily remove the bias factors
from the second- and third-order invariants. As N →∞, the left-hand side equals the right-hand
side almost surely.

The reason we require N/σ6 → ∞ is that the third-order auto-correlation requires taking
triple products of three noise terms (thus tripling the effective noise level), and thus for large σ
the number of observations needs to scale at least as σ6 to keep the variance of the estimator
under control; more precisely, only when N/σ6 → ∞ one can estimate the invariants accurately.
Therefore, if N/σ6 → ∞, one can estimate the first three auto-correlations at any SNR levels. If
σ is fixed while N →∞, then one can estimate all auto-correlations at any SNR level. If σ →∞
and N does not scale with σ6, namely, N/σ6 < C for some finite constant C, then the third-order
auto-correlation cannot be consistently estimated from the observations.

3.2.3 Identifiability conditions for the orbit GΠ,Lx from the auto-correlations

As discussed in Section 2, it is well-known that the first three invariants determine a single generic
signal uniquely [52, 33, 14]. Using tools from invariant theory and algebraic geometry, this result
was recently extended to demixing of K ≥ 1 invariants as in (3.4) [6]. The framework of [6] is based
on checking computationally the rank of the Hessian matrix of the map between a generic1 signal
and the invariants. If the rank is sufficiently high (depending on the algebraic structure of the
problem), we say that the Hessian test is passed, implying that the orbit GΠ,Lx can be identified
for generic x. The Hessian test is executed on pairs of parameters (K,L); if (K,L) passes the test,
it implies identifiability for all pairs (K ′, L), K ′ ≤ K. In particular, it was verified2 for all L ≤ 192
that a set of generic signals is determined uniquely from (3.4), up to the symmetries that form the
group GΠ,L, as long as

K < P(L) :=
L+ 3 +

⌊
L/2

⌋
+
⌈
(L− 1)(L− 2)/6

⌉
L+ 1

≈ L/6. (3.5)

This immediately implies that the number of required samples is bounded by

K =
M

L
. L/6 ⇒ L &

√
6M. (3.6)

1By the notion of generic signals, we mean that all signals that are not recoverable in the regime defined by
equation (3.5) satisfy a certain polynomial equation, and thus are of measure zero.

2We extended the range of parameters examined by the authors of [6]. We thank Dr. Joseph Kileel for his
assistance to execute this computational verification.
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This bound is conjectured to hold true for any pair (L,K) that satisfies (3.5); see [6, 17]. We note
that the bound of (3.5) is tight in the sense that it agrees with a simple upper bound based on
parameter counting: on the one hand, the bispectrum of a generic signal contains P(L) ·L ≈ L2/6
distinct entries (out of L2 entries in total), and on the other hand K signals consists of KL
parameters.

The following proposition and conjecture summarize the result:

Proposition 3.4. Suppose that we acquire an average of the mean, power spectrum, and bispectrum
of K signals as in the right-hand side (3.4). Then, for L ≤ 192 and any K that satisfies (3.5),
one can identify the orbit GΠ,Lx for generic x.

Conjecture 3.5. Suppose that we acquire an average of the mean, power spectrum, and bispectrum
of K signals as in the right-hand side of (3.4). Then, for any pair (K,L) that satisfies (3.5), one
can identify the orbit GΠ,Lx for generic x.

3.2.4 A note on computational considerations

It is important to note that Proposition 3.4 does not claim that the bound (3.5) can be achieved
using a computationally efficient (e.g., polynomial time) algorithm. In the context of the hMRA
model, numerical evidence suggests that for i.i.d. standard Gaussian signals, one can estimate
the orbit GΠ,Lx from a mix of bispectra using non-convex least squares only in the regime K ≤√
L—substantially below the identifiability regime K . L/6 [17]. Recently, it was proven that

i.i.d. standard Gaussian signals can be disentangled, with high probability, using a sum-of-squares
algorithm as long as K ≤

√
L/polylog(L) [60]. In [6, 17], it was conjectured that the

√
L bound

reflects a fundamental statistical-computational gap—namely, while it is statistically possible to
recover approximately L/6 signals, any efficient (polynomial-time) algorithm can estimate at most√
L signals.

If indeed one can recover only up to
√
L signals efficiently from (3.4), it implies that the orbit

GΠ,Lx can be estimated efficiently in the regime K = M
L
≤
√
L ⇒ M ≤ L3/2 for i.i.d. Gaussian

entries. Having said that, in contrast to the hMRA model, the goal of the super-resolution problem
is not to recover the orbit GΠ,Lx, but rather the signal x itself; the latter task seems to be a
significantly more challenging computational problem. In addition, the main interest of this work
is in smooth signals (e.g., signals with decaying power spectrum). For such signals, the achievable
performance of hMRA deteriorates [9], and even recovering

√
L signals seem to be unreachable.

Indeed, numerical experiments in Section 5 suggest that recovery is not attainable even in the
regime M ≈ L3/2—at least not with the EM algorithm.

3.3 Identifying a unique high-resolution signal from the orbit GΠ,Lx

Until now, we have shown that one can identify the orbit GΠ,Lx for generic x if L &
√

6M , L < 192,
and the first three auto-correlations can be estimated from the observations. Next, we wish to
show how to determine a single signal out of GΠ,Lx.

Recall that the posterior distribution p(x|y1, . . . , yN) is proportional to the likelihood function
p(y1, . . . , yN |x) times a prior on the signal p(x). According to (3.3), the likelihood is constant
over the orbit GΠ,Lx. Consequently, we choose the signal in the orbit that best fits the prior.
Importantly, this part is independent of the observations.

11



Many priors can be used. In this section, we focus on Gaussian signals with zero mean and
covariance Σ, that is, p(x) = 1√

(2π)M |Σ|
e−

1
2
xTΣ−1x. Priors of this form are ubiquitous in signal

processing, and have been considered in previous works, such as [50, 49, 61]. In particular, we
wish to show that among all signals in GΠ,Lx, there is a single signal that maximizes p(x), or,
equivalently, minimizes xTΣ−1x for a positive-definite matrix, Σ−1. The next lemma shows that
permuting a signal usually changes this quadratic form. To this end, we define the Σ−1 norm by
‖z‖2

Σ−1 := zTΣ−1z for a positive-definite matrix Σ−1.

Lemma 3.6. Let Ω ⊂ Rn and denote by R1 and R2 two permutation matrices and their ratio by
R = R2R

T
1 . Then the set

ZR1,R2 =
{
z ∈ Ω |‖R1z‖2

Σ−1 =‖R2z‖2
Σ−1

}
,

is a subset of Ω of measure zero if and only if Σ−1 and R do not commute.

Proof. Let A := RT
1 Σ−1R1 − RT

2 Σ−1R2. Observe that A = 0 if and only if R and Σ−1 commute.
The condition ‖R1z‖2

Σ−1 = ‖R2z‖2
Σ−1 is equivalent to zTAz = 0. Thus, if A = 0 then ZR1,R2 = Ω.

Otherwise, A 6= 0 and symmetric, i.e., there exists a basis Q of orthogonal eigenvectors such
that (Qy)TAQy =

∑n
i=1 λiy

2
i , with λ1 6= 0. Therefore, the condition (Qy)TAQy = 0 means that

y2
1 =

∑n
i=2

λi
−λ1y

2
i . Denote the indicator functions χZ and χY for the two sets

{
z ∈ Ω | zTAz = 0

}
and

{
y ∈ Rn | yT (QTAQ)y = 0

}
, respectively. Since orthogonal transformations preserve integrals

and Ω ⊂ Rn, we have∣∣ZR1,R2

∣∣ =

∫
Ω

χZ(z)dz ≤
∫
Rn
χY (y)dy =

∫
Rn−1

(∫
R
χY (y1, y2, . . . , yn)dy1

)
dy2 · · · dyn.

Recall that (Qy)TAQy = 0 implies that y1 = ±
(∑n

i=2
λi
−λ1y

2
i

) 1
2
. Thus, for any fixed y2, . . . , yn,

the indicator function χY is nonzero on only two points, implying
∫
R χY (y1, y2, . . . , yn)dy1 = 0.

Consequently,
∣∣ZR1,R2

∣∣ = 0.

Any group of permutations over a finite set is finite, and thus there are finitely many pairs R1

and R2 of permutation matrices. Consequently, the set of signals for which ‖R1z‖2
Σ−1 =‖R2z‖2

Σ−1

for some pairs of permutations is also of measure zero.

Corollary 3.7. Assume the conditions of Lemma 3.6 are met, that is, Σ−1 and R2R
T
1 do not

commute for all pairs R1 6= R2 in the permutation group. Then for almost every x in Ω the
minimum of the quadratic form yTΣ−1y is unique among all signals y in GΠ,Lx.

The case when Σ−1 is a circulant matrix is of particular importance. Such a prior, reflecting
a prior on the signal’s power spectrum, is popular in many signal processing tasks, as well as in
cryo-EM; see for instance [54]. In this case, both the prior and the likelihood function (and thus
the posterior) are shift-invariant, and therefore any signal is indistinguishable from its cyclic shifts.
To account for this symmetry, we derive a distinct uniqueness result—up to a circular shift—for
circulant matrices.

Proposition 3.8. Assume Σ−1 is a circulant, positive-definite matrix of size n > 2. Then:
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1. The Σ−1 norm ‖·‖Σ−1 is invariant under cyclic shifts. Consequently, we may consider the
quadratic form yTΣ−1y as a function over equivalence classes in GΠ,Lx, where two vectors
are equivalent if one is a cyclic shift of the other.

2. If all eigenvalues of Σ−1 are distinct, then for almost every signal x the minimum of the
quadratic form yTΣ−1y is unique over the equivalence classes of GΠ,Lx.

The proposition is proved in Appendix A.

4 An expectation-maximization algorithm

Our theoretical study is based on invariant features. Conceptually, it suggests a two-stage proce-
dure: it begins by identifying the orbit GΠ,Lx, and then choosing a unique signal according to the
prior. While identifying the orbit GΠ,Lx efficiently using bispectrum demixing is possible [17, 60], it
is unclear how to devise a tractable algorithm for the second step. As an alternative, we formulate
an EM algorithm, described below, which aims to achieve the maximum of the posterior distribu-
tion by maximizing the likelihood function and the prior simultaneously [25]. EM is known to work
quite well in many practical scenarios; see for instance its application to cryo-EM experimental
datasets [54, 48]. In what follows, we formulate EM for MRA with a general linear operator

y = TRsx+ ε, (4.1)

where s is drawn from a uniform distribution on a discrete grid SM with M points, and T is a
general linear operator (not necessarily a sampling matrix). For the special case of super-resolution,
a similar algorithm was already derived by [61].

EM is a common framework to compute the maximum aposteriori estimator (MAP). Hereafter,
we formulate EM for the general model. Given a set of N independent observations y1, . . . , yN ,
the log-posterior distribution log p(x|y1, . . . , yN) is proportional to log p(y1, . . . , yN |x)p(x), where

log p(y1, . . . , yN |x) =
N∑
i=1

log
∑
s`∈SM

e−
1

2σ2
‖yi−TRs`x‖

2
2 + constant, (4.2)

is the log-likelihood function, and p(x) is a prior on the signal. We assume that the signal is drawn
from a Gaussian prior with zero mean and known covariance Σ so that p(x) ∼ N (0,Σ). EM aims to
maximize the posterior iteratively, where each iteration consists of two steps. The first step, called
E-step, computes the expected value of the likelihood x (note, not the marginalized likelihood)
with respect to the circular shifts (i.e., the nuisance variables), given the current estimate of the
signal xt and the data y1, . . . , yN :

Q(x|xt) = Es1,...,sN |y1,...,yN ,xt
{

log p(y1, . . . , yN , s1, . . . , sN |x) + log p(x)
}

= − 1

2σ2
Es1,...,sN |y1,...,yN ,xt


N∑
i=1

‖yi − TRsix‖

− 1

2
xTΣ−1x+ constant

= − 1

2σ2

N∑
i=1

∑
s`∈SM

wi,`‖yi − TRs`x‖ −
1

2
xTΣ−1x+ constant,

(4.3)
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where

wi,` =
e

−1

2σ2
‖yi−TRs`xt‖

2∑
s`∈SM e

−1

2σ2
‖yi−TRs`xt‖2

. (4.4)

The second step, called M-step, maximizes Q with respect to x. The solution is obtained by solving
the linear system of equations

Ax = b, (4.5)

where

A :=Σ−1 +
1

σ2

∑
i,`

ωi,`(R
−1
` T TTR`), (4.6)

b :=
1

σ2

∑
i,`

ωi,`R
−1
` T Tyi. (4.7)

The EM algorithm iterates between computing the weights (4.4) and solving the linear system (4.5)
until convergences. In our implementation, the algorithm halts when the relative difference between
the posterior of two consecutive iterations falls below 10−5. In general, EM does not converge to the
global maximum of the posterior distribution; however, each iteration is guaranteed not to decrease
the posterior [25]. In addition, several recent works derived intriguing theoretical results for EM
under specific statistical models. See for example [5, 24], and in particular [27] that analyzes EM
for the MRA model.

In the special case in which the linear operator T is the sampling operator (1.1), computing the
weights and constructing A and b reduces to computing a set of correlations; this can be executed
efficiently using FFT. For EM implementation when a blurring kernel is included, see [61].

On the connection between maximum likelihood estimation and the invariant ap-
proach. A recent paper by Katsevich and Bandeira [35] studies Gaussian mixture models, for
which heterogeneous MRA is a special case, in the parametric setup considered in this work:
N → ∞, SNR→ 0, and fixed M . In particular, they show that log-likelihood maximization
is equivalent to an asymptotic series of successively higher moment matching problems. In this
sense, a method based on the bispectrum (a third-order moment), as we use for the analysis, can
be thought of as a third-order approximation of the likelihood function.

5 Numerical results

We conducted three experiments to examine the performance of the EM algorithm. The first
experiment demonstrates resolving two adjacent peaks from low-resolution observations. The next
two experiments study the performance of the algorithm as a function of noise level and the
number of samples. The code for all experiments and the EM algorithm is publicly available at
https://github.com/TamirBendory/MRA-SR.

In all experiments, we set a prior on the signal’s power spectrum, and therefore, to account for
the circular shift symmetry, the relative recovery error is defined as

relative error = min
`∈ZM

‖R`xest − x‖
‖x‖

, (5.1)
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where x ∈ RM is the underlying signal, and xest is the output of the EM algorithm. The SNR is
defined as SNR = ‖x‖2/(Mσ2). The EM iterations terminate when either a maximal number of
iterations is reached, or the relative absolute difference of the posterior between two consecutive
iterations drop below a tolerance parameter. In all experiments, the maximal number of EM
iterations was set to be 100 iterations, and the tolerance parameters was 10−5. The EM may
be initialized from multiple random points and thus produce different estimators. Among those
estimators, we choose the one with the largest posterior. The posterior is computed at each EM
iteration.

Experiment 1. The signal in this experiment is of length M = 120 with bandwidth (the largest
non-zero frequency, see (1.5)) B = 15. We generated N = 104 observations by shifting the signal
and sampling it at L = 15 points, corresponding to half of the Nyquist sampling rate. Then,
an i.i.d. Gaussian noise was added, corresponding to SNR = 1. We ran the EM algorithm from
five random initial points; each trial required 13 to 17 iterations to converge. Since the signal
(only in this experiment) is bandlimited, in each iteration the current estimate is projected onto
the low B = 15 frequencies. The target and estimated signals are presented in Figure 2; the
relative recovery error is 0.0614. Figure 4 displays the relative error per frequency. As can be seen,
the relative error of frequencies above the Nyquist rate is still quite low, indicating that the EM
algorithm resolves high frequencies accurately.
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Figure 4: Recovery error per frequency of the experiment presented in Figure 2. The figure
indicates that the EM algorithm succeeds to resolve frequencies beyond the largest frequency
determined by the Nyquist sampling rate L/2 (vertical red line).

Experiment 2. Figure 5 presents the error curve as a function of the SNR, in the high and low
SNR regimes. For each SNR value, 50 trials were conducted and we present the median error. A
signal of length M = 64 was drawn from a Gaussian distribution with zero mean, and a circulant
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Figure 5: Relative estimation error as a function of the SNR. In the high SNR regime, the relative
error scales as SNR−1/2, which is the same estimation rate as if there were no shifts (namely, the
estimation rate of averaging independent Gaussian variables). In the low SNR regime, the error
decays faster than SNR−1, demonstrating a sharp transition from the high SNR regime.

covariance matrix, corresponding to power spectrum decaying linearly, that is, as 1/f . Following
the circular shift, each observation was sampled at L = 32 equally-spaced points—corresponding
to half of the Nyquist sampling rate.

Figure 5b presents the relative error as a function of the SNR, for 30 SNR values sampled
uniformly on a logarithmic scale between 100.2 to 102, and N = 102 observations; this reflects the
high SNR regime. Unfortunately, the EM seems to suffer from a flaw: it should be initialized from
many points (among them we choose the one with the largest posterior value) in order to result
in a consistent recovery. In this experiment, we initialized the algorithm from 1000 points; the
computational load is still quite cheap since each trial requires only a few iterations (around 5).
Yet, it suggests that EM may not be the optimal computational scheme in the high SNR regime.
The slope of the error curve is approximately -1/2. Since the SNR is proportional to 1/σ2, this
indicates that the error scales as σ—the optimal estimation rate even if the circular shifts were
known.

Figure 5a shows a similar experiment for SNR values ranging between 10−0.6 to 1 and N = 105

observations. In this low SNR regime, the EM algorithm seems to be more consistent, and thus we
initialized it from merely 20 random points. In this regime, the slope of the error curve becomes
steeper and the error slope is smaller than −1, implying that the error scales faster than σ4. This
indicates, in line with previous works on MRA (with finite M), that the estimation rate in the
high and low SNR regimes is drastically different [9, 47, 1, 2]. In fact, our analysis predicts that
as SNR→ 0, the slope of the error curve would tend to SNR−3/2; see Section 3.

Experiment 3. Figure 6 examines the recovery error for different values of M and L. For each
M , we chose values of L so that M/L is an integer. The signals were generated as in Experiment
2 with SNR = 5 and N = 1000, and the EM was initialized from 50 random locations in each
trial. For each pair (M,L), the mean error over 50 trials was recorded. The red vertical dashed
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Figure 6: Relative recovery error as a function of L for different values of M . The red dashed line
indicates L = M2/3. The results suggest that the super-resolution problem is significantly harder
than hMRA.

line indicates L = M2/3; this is the conjectured computational recovery limit for hMRA, namely,
for recovering the orbit GΠ,Lx (see discussion in Section 3.2.4). Notwithstanding, we get relatively
small recovery error only for much larger values of L, suggesting that the super-resolution problem
is computationally more challenging than hMRA. In particular, our theoretical analysis is split
into two stages: recovering the orbit GΠ,Lx, and recovering x from the orbit; the latter depends
only on the prior, and not on the data. In contrary, the EM algorithm aims to implicitly carry out
both stages simultaneously. We believe that the second stage, together with the smoothness of the
signals (see Section 3.2.4), is the reason the performance of EM for super-resolution is inferior to
what was demonstrated in previous MRA setups [14, 1, 42].

6 Discussion

Super-resolution limits. This work analyzes the super-resolution from multiple observations
problem in a noisy environment using the third-order auto-correlation. To use higher-order auto-
correlations, more observations should be collected: the number of observations needs to scale
as σ2q to estimate the q-th order auto-correlation accurately. The q-th auto-correlation provides
O(Lq−1) polynomial equations of the sought signals. Based on our analysis and the reduction of
the super-resolution problem to the hMRA model (3.2), we expect that the q ≥ 3 auto-correlation
would identify M = O(Lq−1) grid points. Such a result will follow directly from a generalization
of [6] to higher-order auto-correlations. This leads us to the following conjecture:

Conjecture 6.1. Suppose that N observations from (1.1) are collected and each observation is
sampled at L equally-spaced locations. Then, in the low SNR regime σ → ∞, if N/σ2q → ∞ for
some q ≥ 3, one can identify up to M = O(Lq−1) grid points. In other words, only L = O(M1/(q−1))
samples per observation suffice for signal identification. In particular, for N → ∞ and any fixed
noise level (that might be arbitrarily high), there is no theoretical limit on the achievable resolution.

Continuous super-resolution. A natural generalization of the model considered in this work
is the following. Let x : S1 → R be a band-limited signal on the circle (1.4), and let Rθ denote
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a rotation, that is, (Rθx)(t) = x(t − θ), where θ is distributed uniformly on the circle. Together
with i.i.d. Gaussian noise ε ∈ RL, the data generative model reads

y = P (Rθx) + ε, θ ∼ Uniform[0, 1), ε ∼ N (0, σ2I), (6.1)

where P denotes a sampling operator that collects L equally-spaced point-wise samples. The goal
is to estimate x from N observations sampled from (6.1). This setup is interesting in the sub-
Nyquist regime, where P samples x below its Nyquist sampling rate. While this model shares
many similarities with (1.1), it poses some additional challenges that are beyond the scope of this
work; we intend to address them in a follow-up work.

Super-resolution of images. While this paper deals with 1-D signals, the methodology can be
extended to higher-dimensions. For example, an interesting MRA setup that was studied in [42]
considers rotating 2-D “bandlimited” images. Specifically, suppose that an image X belongs to the
vector space of images that can expanded by finitely many coefficients in a steerable basis (such
as Fourier-Bessel [62] or prolate spheroidal wave functions [38]):

X(r, φ) =
Kmax∑
k=1

Qmax∑
q=1

ak,quk,q(r, φ), (6.2)

where (r, φ) are polar coordinates, ak,q are the expansion coefficients, and uk,q(r, φ) are the basis
functions of the steerable basis. The images are acted upon by unknown elements of the group of
in-plane rotations SO(2). The steerability property implies that rotating an image by an angle α
amounts to multiplying the expansion coefficients by eιkα:

X(r, φ− α) =
Kmax∑
k=1

Qmax∑
q=1

ak,qe
−ιkαuk,q(r, φ). (6.3)

Accordingly, it is easy to see that the triple products ak1,q1ak2,q2a−k1−k2,q3 are invariant under
rotations—these products form the bispectrum [62, 42]. This in turn implies that for an image
expanded by M coefficients, there are O(M5/2) bispectrum entries. In this case, our framework
suggests that, perhaps, one can identify an image from sufficiently many observations with merely
L = O(M−2/5) samples per observation.

Super-resolution in high dimensions. This work studies the finite-dimensional regime (fi-
nite M) in which invariant features achieve the optimal estimation rate as SNR → 0. A recent
work [51] uncovered that this is not the case in the high-dimensional regime M →∞. In particular,
it was shown that the parameter that controls the “hardness” of the model is α = M/(logMσ2):
when α < 2 the samples complexity of the problem rapidly increases, whereas for α > 2 the
effect of the unknown shifts is minor. Nevertheless, the authors of [51] only investigated random
sub-sampling operators that do not include the super-resolution setup (1.1). The high-dimensional
regime is of particular interest since it seems as a good model for modern cryo-EM datasets, where
the dimensionality and the number of samples are of the same order of a few millions. In fact,
high-dimensional statistical analysis has been already proven effective for cryo-EM data processing.
For example, a covariance estimation technique based on high-dimensional analysis (the so-called
spiked model) has significantly improved image denoising [16].
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Cryo-EM and XFEL. The main motivation of this work arises from cryo-EM and XFEL. The
measurements in these applications (under simplifying assumptions, see for example [10]) agree
with the general MRA model (1.1), where g ∈ SO(3) (the group of 3-D rotations), the 3-D Fourier
transform of the signal x is assumed to be bounded in a ball (“bandlimited” volume), and the
linear operator T collects samples of the 2-D tomographic projection of the rotated volume. The
question then would be whether the maximal resolution of a 3-D reconstruction algorithm can
surpass the resolution dictated by the detectors acquiring the data—that is, the resolution of the
2-D tomographic projection images. A recent proof of concept (on simulated data) promises an
affirmative answer [22]. Extending our analysis to this case requires sophisticated tools and we
leave it for a future research.

Acknowledgment

The authors are grateful to Joseph Kileel and Dan Edidin for insightful discussions about alge-
braic geometry. The authors also thank the anonymous reviewers for their valuable comments and
suggestions. A.S. and W.L. were partially supported by NSF BIGDATA award IIS-1837992. T.B.,
N.S., and A.S. were partially supported by BSF grant no. 2019752, and NSF grant no. 2009753.
W.L. and N.S. were partially supported by BSF grant no. 2018230. A.S. was also partially sup-
ported by NIH/NIGMS award 1R01GM136780-01, award FA9550-17-1-0291 from AFOSR, award
FA9550-20-1-0266 from AFOSR, the Simons Foundation Math+X Investigator Award, and the
Moore Foundation Data-Driven Discovery Investigator Award. T.B. was also partially supported
by the Zimin Institute for Engineering Solutions Advancing Better Lives.

References

[1] Emmanuel Abbe, Tamir Bendory, William Leeb, João M Pereira, Nir Sharon, and Amit
Singer. Multireference alignment is easier with an aperiodic translation distribution. IEEE
Transactions on Information Theory, 65(6):3565–3584, 2018.

[2] Emmanuel Abbe, João M Pereira, and Amit Singer. Estimation in the group action channel.
In 2018 IEEE International Symposium on Information Theory (ISIT), pages 561–565. IEEE,
2018.

[3] Cecilia Aguerrebere, Mauricio Delbracio, Alberto Bartesaghi, and Guillermo Sapiro. Funda-
mental limits in multi-image alignment. IEEE Transactions on Signal Processing, 64(21):5707–
5722, 2016.

[4] Yariv Aizenbud, Boris Landa, and Yoel Shkolnisky. Rank-one multi-reference factor analysis.
arXiv preprint arXiv:1905.12442, 2019.

[5] Sivaraman Balakrishnan, Martin J Wainwright, and Bin Yu. Statistical guarantees for the EM
algorithm: From population to sample-based analysis. The Annals of Statistics, 45(1):77–120,
2017.

19



[6] Afonso S Bandeira, Ben Blum-Smith, Joe Kileel, Amelia Perry, Jonathan Weed, and Alexan-
der S Wein. Estimation under group actions: recovering orbits from invariants. arXiv preprint
arXiv:1712.10163, 2017.

[7] Afonso S Bandeira, Moses Charikar, Amit Singer, and Andy Zhu. Multireference alignment
using semidefinite programming. In Proceedings of the 5th conference on Innovations in the-
oretical computer science, pages 459–470. ACM, 2014.

[8] Afonso S Bandeira, Yutong Chen, Roy R Lederman, and Amit Singer. Non-unique games
over compact groups and orientation estimation in cryo-EM. Inverse Problems, 36(6):064002,
2020.

[9] Afonso S Bandeira, Jonathan Niles-Weed, and Philippe Rigollet. Optimal rates of estimation
for multi-reference alignment. Mathematical Statistics and Learning, 2(1):25–75, 2020.

[10] Tamir Bendory, Alberto Bartesaghi, and Amit Singer. Single-particle cryo-electron mi-
croscopy: Mathematical theory, computational challenges, and opportunities. IEEE Signal
Processing Magazine, 37(2):58–76, 2020.

[11] Tamir Bendory, Robert Beinert, and Yonina C Eldar. Fourier phase retrieval: Uniqueness
and algorithms. In Compressed Sensing and its Applications, pages 55–91. Springer, 2017.

[12] Tamir Bendory, Nicolas Boumal, William Leeb, Eitan Levin, and Amit Singer. Toward single
particle reconstruction without particle picking: Breaking the detection limit. arXiv preprint
arXiv:1810.00226, 2018.

[13] Tamir Bendory, Nicolas Boumal, William Leeb, Eitan Levin, and Amit Singer. Multi-target
detection with application to cryo-electron microscopy. Inverse Problems, 35(10):104003, 2019.

[14] Tamir Bendory, Nicolas Boumal, Chao Ma, Zhizhen Zhao, and Amit Singer. Bispectrum inver-
sion with application to multireference alignment. IEEE Transactions on Signal Processing,
66(4):1037–1050, 2017.

[15] Tamir Bendory, Shai Dekel, and Arie Feuer. Robust recovery of stream of pulses using convex
optimization. Journal of mathematical analysis and applications, 442(2):511–536, 2016.

[16] Tejal Bhamre, Teng Zhang, and Amit Singer. Denoising and covariance estimation of single
particle cryo-EM images. Journal of structural biology, 195(1):72–81, 2016.

[17] Nicolas Boumal, Tamir Bendory, Roy R Lederman, and Amit Singer. Heterogeneous mul-
tireference alignment: A single pass approach. In Information Sciences and Systems (CISS),
2018 52nd Annual Conference on, pages 1–6. IEEE, 2018.

[18] Patrick L Brockett, Melvin J Hinich, and Douglas Patterson. Bispectral-based tests for the
detection of gaussianity and linearity in time series. Journal of the American Statistical
Association, 83(403):657–664, 1988.

[19] Emmanuel J Candès and Carlos Fernandez-Granda. Towards a mathematical theory of super-
resolution. Communications on pure and applied Mathematics, 67(6):906–956, 2014.

20



[20] Binning Chen and Athina P Petropulu. Frequency domain blind MIMO system identifica-
tion based on second-and higher order statistics. IEEE Transactions on Signal Processing,
49(8):1677–1688, 2001.

[21] Hua Chen, Mona Zehni, and Zhizhen Zhao. A spectral method for stable bispectrum inversion
with application to multireference alignment. IEEE Signal Processing Letters, 25(7):911–915,
2018.

[22] James Z Chen. Single-particle 3D reconstruction beyond the Nyquist frequency. In 2018
IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 2442–
2445. IEEE, 2018.

[23] Tao-wei Chen, Wei-dong Jin, and Jie Li. Feature extraction using surrounding-line integral
bispectrum for radar emitter signal. In 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), pages 294–298. IEEE, 2008.

[24] Constantinos Daskalakis, Christos Tzamos, and Manolis Zampetakis. Ten steps of EM suffice
for mixtures of two gaussians. In Conference on Learning Theory, pages 704–710, 2017.

[25] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the royal statistical . Series B (methodological), pages
1–38, 1977.

[26] Yonina C Eldar. Sampling theory: Beyond bandlimited systems. Cambridge University Press,
2015.

[27] Zhou Fan, Yi Sun, Tianhao Wang, and Yihong Wu. Likelihood landscape and maximum
likelihood estimation for the discrete orbit recovery model. arXiv preprint arXiv:2004.00041,
2020.

[28] Sina Farsiu, Dirk Robinson, Michael Elad, and Peyman Milanfar. Advances and challenges
in super-resolution. International Journal of Imaging Systems and Technology, 14(2):47–57,
2004.

[29] William Feller. An Introduction to Probability Theory and Its Applications, volume 1. John
Wiley & Sons, Inc., 1968.

[30] Joachim Frank. Three-dimensional electron microscopy of macromolecular assemblies: visu-
alization of biological molecules in their native state. Oxford University Press, 2006.

[31] KJ Gaffney and HN Chapman. Imaging atomic structure and dynamics with ultrafast X-ray
scattering. Science, 316(5830):1444–1448, 2007.

[32] Hayit Greenspan. Super-resolution in medical imaging. The Computer Journal, 52(1):43–63,
2008.

[33] Ramakrishna Kakarala. The bispectrum as a source of phase-sensitive invariants for Fourier
descriptors: a group-theoretic approach. Journal of Mathematical Imaging and Vision,
44(3):341–353, 2012.

21



[34] Zvi Kam. The reconstruction of structure from electron micrographs of randomly oriented
particles. Journal of Theoretical Biology, 82(1):15–39, 1980.

[35] Anya Katsevich and Afonso Bandeira. Likelihood maximization and moment matching in low
SNR gaussian mixture models. arXiv preprint arXiv:2006.15202, 2020.

[36] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using
very deep convolutional networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1646–1654, 2016.

[37] Ruslan P Kurta, Jeffrey J Donatelli, Chun Hong Yoon, Peter Berntsen, Johan Bielecki,
Benedikt J Daurer, Hasan DeMirci, Petra Fromme, Max Felix Hantke, Filipe RNC Maia,
et al. Correlations in scattered X-ray laser pulses reveal nanoscale structural features of
viruses. Physical review letters, 119(15):158102, 2017.

[38] Boris Landa and Yoel Shkolnisky. Approximation scheme for essentially bandlimited and
space-concentrated functions on a disk. Applied and Computational Harmonic Analysis,
43(3):381–403, 2017.

[39] Roy R Lederman and Amit Singer. A representation theory perspective on simultaneous
alignment and classification. Applied and Computational Harmonic Analysis, 49(3):1001–
1024, 2020.

[40] Eitan Levin, Tamir Bendory, Nicolas Boumal, Joe Kileel, and Amit Singer. 3D ab initio
modeling in cryo-EM by autocorrelation analysis. In Biomedical Imaging (ISBI 2018), 2018
IEEE 15th International Symposium on, pages 1569–1573. IEEE, 2018.

[41] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep
residual networks for single image super-resolution. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pages 136–144, 2017.

[42] Chao Ma, Tamir Bendory, Nicolas Boumal, Fred Sigworth, and Amit Singer. Heterogeneous
multireference alignment for images with application to 2D classification in single particle
reconstruction. IEEE Transactions on Image Processing, 29:1699–1710, 2019.

[43] Taikang Ning and Joseph D Bronzino. Bispectral analysis of the rat EEG during various
vigilance states. IEEE Transactions on Biomedical Engineering, 36(4):497–499, 1989.

[44] Eva Nogales and Sjors HW Scheres. Cryo-EM: a unique tool for the visualization of macro-
molecular complexity. Molecular cell, 58(4):677–689, 2015.

[45] Kanupriya Pande, Jeffrey J Donatelli, Erik Malmerberg, Lutz Foucar, Christoph Bostedt, Ilme
Schlichting, and Petrus H Zwart. Ab initio structure determination from experimental fluctu-
ation X-ray scattering data. Proceedings of the National Academy of Sciences, 115(46):11772–
11777, 2018.

[46] Sung Cheol Park, Min Kyu Park, and Moon Gi Kang. Super-resolution image reconstruction:
a technical overview. IEEE signal processing magazine, 20(3):21–36, 2003.

22



[47] Amelia Perry, Jonathan Weed, Afonso S Bandeira, Philippe Rigollet, and Amit Singer. The
sample complexity of multireference alignment. SIAM Journal on Mathematics of Data Sci-
ence, 1(3):497–517, 2019.

[48] Ali Punjani, John L Rubinstein, David J Fleet, and Marcus A Brubaker. cryoSPARC: algo-
rithms for rapid unsupervised cryo-EM structure determination. Nature methods, 14(3):290,
2017.

[49] Dirk Robinson, Sina Farsiu, and Peyman Milanfar. Optimal registration of aliased images us-
ing variable projection with applications to super-resolution. The Computer Journal, 52(1):31–
42, 2009.

[50] Dirk Robinson and Peyman Milanfar. Statistical performance analysis of super-resolution.
IEEE Transactions on Image Processing, 15(6):1413–1428, 2006.

[51] Elad Romanov, Tamir Bendory, and Or Ordentlich. Multi-reference alignment in high dimen-
sions: sample complexity and phase transition. arXiv preprint arXiv:2007.11482, 2020.

[52] Brian M Sadler and Georgios B Giannakis. Shift-and rotation-invariant object reconstruction
using the bispectrum. JOSA A, 9(1):57–69, 1992.

[53] Ronald William Schafer and Alan V Oppenheim. Discrete-time signal processing. Prentice
Hall Englewood Cliffs, NJ, 1989.

[54] Sjors HW Scheres. RELION: implementation of a Bayesian approach to cryo-EM structure
determination. Journal of structural biology, 180(3):519–530, 2012.

[55] Nir Sharon, Joe Kileel, Yuehaw Khoo, Boris Landa, and Amit Singer. Method of moments for
3D single particle ab initio modeling with non-uniform distribution of viewing angles. Inverse
Problems, 36(4):044003, 2020.

[56] Amit Singer. Mathematics for cryo-electron microscopy. Proceedings of the International
Congress of Mathematicians, 2018.

[57] JW Tukey. The spectral representation and transformation properties of the higher moments
of stationary time series. Reprinted in The Collected Works of John W. Tukey, 1:165–184,
1953.

[58] Benjamin von Ardenne, Martin Mechelke, and Helmut Grubmüller. Structure determination
from single molecule X-ray scattering with three photons per image. Nature communications,
9(1):2375, 2018.

[59] Limin Wang and Marc Kamionkowski. Cosmic microwave background bispectrum and infla-
tion. Physical Review D, 61(6):063504, 2000.

[60] Alexander Wein. Statistical Estimation in the Presence of Group Actions. PhD thesis, Mas-
sachusetts Institute of Technology, 2018.

23



[61] Nathan A Woods, Nikolas P Galatsanos, and Aggelos K Katsaggelos. Stochastic methods
for joint registration, restoration, and interpolation of multiple undersampled images. IEEE
Transactions on Image Processing, 15(1):201–213, 2005.

[62] Zhizhen Zhao and Amit Singer. Fourier–Bessel rotational invariant eigenimages. JOSA A,
30(5):871–877, 2013.

[63] Zhizhen Zhao and Amit Singer. Rotationally invariant image representation for viewing di-
rection classification in cryo-EM. Journal of structural biology, 186(1):153–166, 2014.

A Proof of Proposition 3.8

The first lemma refines the condition of Lemma 3.6 in terms of invariant subspaces. Recall that a
subspace V is R-invariant if R(V ) ⊂ V .

Lemma A.1. Let S be a symmetric matrix. Then, R and S commute if and only if every eigenspace
is R-invariant.

Proof. Since S is symmetric, we can decompose the space into real eigenspaces. First direction: if
R and S commute then for any eigenvector v of S with eigenvalue λ, we have

S(Rv) = RSv = λ(Rv).

Namely, Rv is also in the eigenspace. Second direction: if any eigenspace Vλ is R-invariant then
for any v ∈ Vλ we can write Rv in terms of the basis of Vλ, and to have

Rv =
∑
i

αivi =⇒ S(Rv) = S

∑
i

αivi

 =
∑
i

αiλvi = λRv = R(Sv).

Lemma A.2. Let Σ−1 be a circulant matrix. Then

1. Σ−1 commutes with any cyclic permutation matrix R.

2. Conversely, if each eigenvalue of Σ−1 has multiplicity 1 and Σ−1 commutes with a permutation
matrix R, then R must be a cyclic permutation.

Proof. Let W denote the DFT matrix, with entries Wj,` = 1√
n
ω(`−1)(j−1), ω = e−2πι/n, 1 ≤ j, ` ≤ n.

Then the columns w0, . . . , wn−1 of W are the eigenvectors of Σ−1. Furthermore, if R is the cyclic
permutation matrix corresponding to the permutation j 7→ j + k mod n, then Rw` = ω(`−1)kw`.
Consequently, R preserves each eigenspace of Σ−1, and so by Lemma A.1 R and Σ−1 commute.
This proves the first statement.

For the converse, suppose each eigenvalue of Σ−1 has multiplicity 1, and take any permutation
matrix R that commutes with Σ−1. From Lemma A.1, R must leave each eigenspace of Σ−1 fixed;
consequently, for each eigenvector w` of Σ−1 there is a scalar α` so that Rw` = α`w`. Suppose the
permutation corresponding to R sends index 1 to index k + 1; then

1√
n

= W1,` = (Rw`)k+1 = α`Wk+1,` = α`
1√
n
ω(`−1)k, (A.1)
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and so α` = ω−(`−1)k. Since Rw` = α`w`, for any index j,

(Rw`)j = ω−(`−1)kWj,` = ω−(`−1)k 1√
n
ω(`−1)(j−1) =

1√
n
ω(`−1)(j−k−1) = Wj−k,`, (A.2)

meaning that R cyclically shifts the entries of w` by k. Since this holds for all basis vectors w`, R
is a cyclic shift.

We may now prove Proposition 3.8. The first statement of Proposition 3.8 is identical to the
first statement of Lemma A.2. For the second statement, Lemma 3.6 tells us that for almost
every signal x, the quadratic form yTΣ−1y takes on distinct values on each equivalence class of
vectors in the orbit GΠ,Lx (where two vectors are equivalent if one is a cyclic shift of the other).
Indeed, for any two permutation matrices R1 and R2, the set

{
x | xTRT

1 Σ−1R1x = xTRT
2 Σ−1R2x

}
has measure zero if and only if R2R

T
1 does not commute with Σ−1; from Lemma A.2, this latter

condition is equivalent to R2R
T
1 not being a cyclic permutation. Since there are only finitely many

permutation matrices, the set{
x | ∃R1, R2 s.t. R2R

T
1 not cyclic and xTRT

1 Σ−1R1x = xTRT
2 Σ−1R2x

}
(A.3)

also has measure 0. Consequently, for almost every signal x, the equality xTRT
1 Σ−1R1x =

xTRT
2 Σ−1R2x can hold only when R2R

T
1 is cyclic, i.e. when R1x and R2x are in the same equivalence

class of GΠ,Lx.
Because the quadratic form yTΣ−1y takes on distinct values on each equivalence class in GΠ,Lx

for almost every x, it immediately follows that for almost every x the minimum of yTΣ−1y over
equivalence classes in GΠ,Lx is unique. This is the desired result.
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