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Abstract. Multi-reference alignment entails estimating a signal in RL from its circularly-shifted and noisy copies.5
This problem has been studied thoroughly in recent years, focusing on the finite-dimensional setting6
(fixed L). Motivated by single-particle cryo-electron microscopy, we analyze the sample complexity7
of the problem in the high-dimensional regime L → ∞. Our analysis uncovers a phase transition8
phenomenon governed by the parameter α = L/(σ2 logL), where σ2 is the variance of the noise.9
When α > 2, the impact of the unknown circular shifts on the sample complexity is minor. Namely,10
the number of measurements required to achieve a desired accuracy ε approaches σ2/ε for small ε;11
this is the sample complexity of estimating a signal in additive white Gaussian noise, which does not12
involve shifts. In sharp contrast, when α ≤ 2, the problem is significantly harder and the sample13
complexity grows substantially quicker with σ2.14
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1. Introduction. We study the sample complexity of the multi-reference alignment (MRA)18
model: the problem of estimating a signal from its circularly-shifted and noisy copies. Specif-19
ically, let X ∼ N (0, I) be an L-dimensional vector with i.i.d. standard normal entries. We20
collect n independent measurements of random cyclic shifts of X, corrupted by additive white21
Gaussian noise:22

Yi = R`iX + σZi, i = 1, . . . , n,(1.1)2324

where R` denotes a cyclic shift, namely, (R`X)j = X(j+`) mod L for all j = 0, . . . , L− 1, Zi
i.i.d.∼25

N (0, I), and `i
i.i.d.∼ Uniform({0, . . . , L − 1}) are statistically independent of X. Given the26

measurements Y n = (Y1, . . . , Yn), one is interested in constructing an estimator X̂ = X̂(Y n)27
of the signal. Importantly, the unknown shifts `1, . . . , `n—while their estimation might be a28
means to an end—are nuisance variables. Figure 1 shows an example of a measurement drawn29
from (1.1).30

This paper focuses on the high-dimensional regime, where the dimension of the signal31
grows indefinitely L → ∞. In this setting, we wish to characterize the relations between the32
number of measurements n, the length of each observation L, and the noise level σ2 that allow33
estimating X to a prescribed accuracy. This is in contrast to previous works, surveyed in34
Section 3, which analyzed the interplay between n and σ, while considering a fixed L.35
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Figure 1. An example of a measurement drawn from (1.1) for α = 2 and L = 400. The corresponding
noise level is σ2 = 33.38.

It is important to note that given the measurements, there is no way to distinguish between36
X and its cyclic shift since PY n|X=x = PY n|X=R1x = · · · = PY n|X=RL−1x. Therefore, we can37
only estimate the orbit of X under the group of circular shifts ZL. Accordingly, we use the38
following distortion measure39

ρ(X, X̂) =
1

L
min

`=0,...L−1
‖X −R`X̂‖2.(1.2)40

41

In the sequel, we loosely say that we aim to estimate X rather than its orbit, and refer to42
Eρ(X, X̂) as the MSE.43

Sample complexity. Our goal in this paper is to characterize the smallest possible number44
of measurements required to achieve a desired MSE in terms of the dimension L and the noise45
level σ2. To that end, we define the smallest MSE attainable by any estimator as46

MSE∗MRA(L, σ2, n) := inf
X̂

Eρ(X, X̂(Y n)),(1.3)47
48

and the sample complexity of the MRA problem49

n∗MRA(L, σ2, ε) := min
{
n : MSE∗MRA(L, σ2, n) ≤ ε

}
.(1.4)5051

We define the signal-to-noise ratio (SNR) by52

(1.5) SNR :=
E‖X‖2

σ2
=

L

σ2
.53
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MULTI-REFERENCE ALIGNMENT IN HIGH DIMENSIONS 3

This definition is consistent with previous works which considered a fixed L and σ → ∞,54
implying SNR→ 0; see Section 3.55

The asymptotics in our model turn out to be particularly interesting when the dimension,56
the noise level, and the SNR are simultaneously large. In particular, it will be convenient to57
parametrize the noise variance by58

σ2(α) =
L

α logL
⇐⇒ α =

L

σ2 logL
=

SNR
logL

.(1.6)59
60

Accordingly, we define MSE∗MRA(L,α, n) := MSE∗MRA(L, σ2(α), n) and n∗MRA(L,α, ε) := n∗MRA(L, σ2(α), ε).61
Motivation. The MRA model is mainly motivated by single-particle cryo-electron mi-62

croscopy (cryo-EM)—a leading technology to constitute the 3-D structure of biological mol-63
ecules. In its most simplified version, the cryo-EM problem involves reconstructing a 3-D64
structure from its multiple noisy tomographic projections, taken after the structure has been65
rotated by an unknown 3-D rotation. In analogy, in the MRA model (1.1) the signal X is66
measured after an unknown circular shift. In Theorem 2.3, we extend the basic model to67
include a projection; we refer to this model as the projected MRA model. This projection68
plays the role, to some extent, of the tomographic projection in cryo-EM. Section 7 discusses69
further potential extensions.70

The correspondence between MRA and cryo-EM, while admittedly not perfect, has mo-71
tivated an extensive study of the MRA problem in recent years. For example, the resolution72
limitations of MRA were analyzed in [12] in order to draw an analogy to the achievable reso-73
lution of cryo-EM—a crucial aspect from a biological standpoint. More relevant to this work,74
in [3,6,8,32], the sample complexity of the MRA and cryo-EM models were analyzed for a fixed75
dimension L. Remarkably, it was shown that in the low noise regime (small σ), the number76
of measurements should scale like σ2, while in the high noise regime (large σ) n must increase77
with σ6; see further discussion in Section 3.78

Our high-dimensional analysis is motivated by the size of modern cryo-EM datasets. In79
a typical cryo-EM experiment, the number of measurements and the dimension of the 3-80
D structure are of the same order of a few millions. For example, a 3-D structure of size81
200 × 200 × 200 voxels resulting in 8, 000, 000 parameters to be estimated. Since a typical82
noise level in a cryo-EM dataset is σ2 ≈ 100, the anticipated parameter regime is α� 1. We83
do emphasize, however, that these numbers should be taken with some degree of skepticism:84
while cryo-EM is a motivation for studying the MRA problem, these are ultimately quite85
different problems, and practical cryo-EM setups involve additional complications, that are86
not captured by MRA [10]. In fact, high-dimensional statistical analysis has been already87
proven to be effective for cryo-EM data processing. For example, a covariance estimation88
technique based on high-dimensional analysis (the so-called spiked model) has significantly89
improved image denoising [14].90

Information-theoretic background and asymptotic notation. The analysis of this work is91
greatly based on information-theoretic notions and techniques. For completeness, we review92
the relevant definitions in supporting information (SI) appendix, Section SM1.93

We also repeatedly use asymptotic notation. For sequences a = a(L) and b = b(L), we94
write a(L) = O(b(L)) if there exists a constant C > 0 such that a(L) ≤ Cb(L) for all L.95
Similarly, a(L) = Ω(b(L)) means a(L) ≥ Cb(L). Occasionally, we use a(L) = Oβ(b(L)) to96
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4 E. ROMANOV, T. BENDORY, AND O. ORDENTLICH

signify explicitly that C depends on some parameter β. The notation a(L) = o(b(L)) means97
a(L)/b(L) → 0 as L → ∞. In particular, if a(L) = o(1) then a(L) → 0 asymptotically.98
Similarly, a(L) = ω(b(L)) means a(L)/b(L)→∞.99

Reproducibility. The code to reproduce the figures is publicly available at https://github.100
com/TamirBendory/high-dimensional-mra-bounds.1101

Supporting information (SI). Due to space constraints, we have relegated the proofs of102
several technical claims to the SI appendix. In addition to those, the SI contains a brief review103
of all information-theoretic notions necessary to follow this work (Section SM1), as well as104
some additional discussion which is somewhat tangential to our main results (Section SM2).105

2. Main results and discussion.106
Phase transition.. This work focuses on the asymptotic setting where L tends to infinity.107

Our first main finding is that in this asymptotic limit there is a transition in terms of the108
behavior of the sample complexity. For α > 2, the MRA problem is essentially as easy109
as estimating a signal in additive white Gaussian noise (AWGN), with no random shifts.110
More precisely, for sufficiently small distortion ε, the sample complexity tends to the sample111
complexity of estimating a signal in AWGN, n∗AWGN(L,α, ε) = d

(
1
ε − 1

)
σ2(α)e, which behaves112

as σ2(α)
ε for small ε. In sharp contrast, for α ≤ 2 the problem becomes substantially harder.113

Theorem 2.1. The sample complexity of the MRA model (1.1) obeys:114
1. For any α > 2 we have115

lim
ε→0

lim
L→∞

n∗MRA(L,α, ε)

σ2(α)/ε
= lim

ε→0
lim
L→∞

n∗MRA(L,α, ε)

n∗AWGN(L,α, ε)
= 1.116

117

2. For any α ≤ 2 and any ε < 1 we have118

n∗MRA(L,α, ε) = ω
(
σ2 log (1/ε)

)
.119120

In particular, for fixed ε,121

lim
L→∞

n∗MRA(L,α, ε)

n∗AWGN(L,α, ε)
=∞.122

123

In part 1 of Theorem 2.1, the lower bound n∗MRA(L,α,ε)

n∗AWGN(L,α,ε) ≥ 1 is trivial: estimating in124

the MRA model is harder than estimating a signal in AWGN (namely, when the shifts are125
known). A small subtlety is that the distortion measure Eρ(X, X̂) is a bit weaker than the126
standard definition of MSE, E‖X − X̂‖2, as it allows for any cyclic shift. However, we show127
in Section 5 that, as expected, this has a vanishing effect for large L. In order to show128

that limε→0 limL→∞
n∗MRA(L,α,ε)

n∗AWGN(L,α,ε) ≤ 1 we introduce an algorithm that for any α > 2 requires129

about σ2(α)/ε samples to achieve Eρ(X, X̂) ≤ ε, provided that ε is sufficiently small and L130
is sufficiently large. The sole purpose of the estimation procedure is establishing an upper131
bound; its computational complexity is exponential in L and thus the procedure is far from132
being efficient. More specifically, it is based on a two-step procedure. First, we construct a δ-net133

1Our expectation-maximization implementation is based on the code of [11].
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that, by definition, contains a member close to X and look for the most likely candidate within134
that net given the measurements. Second, we use this candidate in order to determine almost135
all shifts ˆ̀

i, and then estimate the signal by alignment and averaging X̂ = 1
n

∑n
i=1R−ˆ̀

i
Yi.136

The details are given in Section 6.137
In order to establish part 2 of Theorem 2.1, we show that for α ≤ 2 the mutual information138

(MI) I(X;Y ) between X and a single MRA measurement grows with L significantly slower139
than I(X;X + σZ), as in estimating a signal in AWGN. The details are given in Section 5.140

Although our results are asymptotic in L, the transition in the difficulty of the problem141
around α = 2, as predicted by Theorem 2.1, is evident already for relatively small L. Figure 2142
presents the root MSE (RMSE) as a function of α for different values of L. We take our143
estimator X̂ to be the output of the expectation-maximization (EM) algorithm [11,20], which144
is the standard choice for MRA; see details in Section 3. For large values of L and large α, the145
error of EM tends to that of estimating a signal in AWGN, implying that it detects the shifts146
accurately. For smaller values of α, the error grows rapidly, especially when α < 2. We note147
that the observed transition in the vicinity of α = 2, at the values of L considered in Figure 2148
(few 100s), appears to not be very sharp. Our proofs suggest that perhaps this behavior is to149
be expected: the concentration rates we are able to derive for some of the quantities relevant150
to the analysis is quite slow (inverse polynomial in L, with a very small exponent when α is151
close to 2).152

Connection with template matching. At this point, the reader may wonder what is the153
intuitive interpretation of α = 2. To answer this question we now introduce the template154
matching problem, which is studied in detail in Section 4. In this problem, we are given X155
and one MRA measurement Y = R`X +Z, where X, R` and Z are distributed as above, and156
our goal is to recover the shift R`. We will see that in the asymptotic setting, α = 2 is the157
critical threshold for this problem. That is, the error probability in recovering R` from (X,Y )158
approaches 0 for all α > 2, and approaches 1 for all α < 2.159

In the MRA problem, recovering the shifts is harder, as we do not have access to X.160
We nevertheless show that for α > 2, given enough measurements, it is possible to recover a161
fraction approaching 1 of the shifts correctly. On the other hand, recovering a large fraction of162
the shifts correctly for α < 2 is impossible since it is impossible even in the template matching163
model. Intuitively, if we cannot recover almost all shifts, the attained MSE should be much164
worse than in estimating a signal in AWGN, which means that the sample complexity should165
be much higher for α < 2. Our bounds in Section 5 formalize this intuition.166

To illustrate the phase transition for template matching, we conducted a “genie-aided”167
experiment, presented in Figure 3. In this experiment, we use the true X (the “genie”) in168
order to estimate the shifts by ˆ̀

i = arg max`∈{0,...,L−1}〈R`X,Yi〉. Then, we estimate the signal169

by aligning the measurements and averaging X̂ = 1
n

∑n
i=1R− ˆ̀

i
Yi. For large values of α, the170

recovery error converges to the error of estimating a signal in AWGN. For smaller α values,171
and in particular α < 2, the recovery error rapidly increases.172

Tighter lower bound for the low SNR regime. Theorem 2.1 shows that for all α ≤ 2 and173
fixed ε < 1 the shifts make a difference: the sample complexity with unknown shifts (i.e., the174
MRA problem) is ω

(
σ2(α) log(1/ε)

)
, and is therefore substantially greater than the sample175

complexity when the shifts are known. For α < 1, we were able to prove a much stronger lower176
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Figure 2. The RMSE of EM (averaged over 100 trials) as a function of α for different values of L. The
number of measurements was set to be n(L) = 100L/ log(L). An example of a single measurement appears in

Figure 1. For large values of α, the error reduces to the error of estimating a signal in AWGN,
√

σ2

σ2+n
=

1√
1+100α

, suggesting that EM performs as if the shifts were known. For small values of α, and in particular
α < 2, the error rapidly increases.

bound on the sample complexity.177

Theorem 2.2. For any 0 < α < 1, and 0 < ε < 1,178

n∗MRA(L,α, ε) = Ω
(
L2−α log(1/ε)

)
.(2.1)179180

181

Theorems 2.1 and 2.2 are proved in Section 5.182
The sample complexity of the projected MRA model. Recall that MRA serves as a toy model183

of the cryo-EM reconstruction problem. An additional complication arising in cryo-EM is a184
fixed tomographic projection, a line integral, also known as the X-ray transform. To account185
for this effect, we extend our basic model (1.1) to the projected multi-reference alignment186
problem (PMRA) model:2187

Yi = πSR`iX + σZi.(2.2)188189

Here, πS : RL → RL′ is matrix projecting a vector in RL to RL′ by keeping only the coordinates190

that belong to a subset S ⊂ [L] of size L′ ≤ L and discarding the rest, and Zi
i.i.d.∼ N (0, I) are191

2We mention that other projected MRA models were studied in [6, 12].
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Figure 3. A “genie-aided” experiment: the true X is used to estimate the shifts ˆ̀
1, . . . , ˆ̀n, as in the

template matching problem, and then the signal is estimated by aligning all measurements and averaging X̂ =
1
n

∑n
i=1R− ˆ̀

i
Yi. The figure presents the RMSE (averaged over 50 trials) as a function of α for different values

of L. The number of measurements was set to be n(L) = 100L/ log(L). For large values of α, the error reduces

to the error of estimating a signal in AWGN (i.e., when the shifts are known)
√

σ2

σ2+n
= 1√

1+100α
. For small

values of α, and in particular α < 2, the template matching error quickly increases.

L′-dimensional i.i.d. Gaussian vectors. We assume that S is fixed and known to the estimator.192
As in MRA without the projection, the goal is to reconstruct X up to a circular shift, that is,193
produce an estimate X̂ such that Eρ(X, X̂) is as small as possible.194

We study the PMRA problem in an asymptotic setting where L,L′, σ2 → ∞ simultane-195
ously. It makes sense to adopt a slightly different scaling for the noise in PMRA, as196

(2.3) σ2 = σ2
PMRA(α) =

L′

α log(L)
.197

The reason for this particular scaling will be made clear from the analysis: the numerator is the198
total signal energy available in a single measurement, E‖πSR`iX‖2 = L′; the log(L) factor is199
log the size of the group of shifts. In Section 7 we provide some remarks as to how to extend our200
results to other groups. Similarly to our notation for the MRA model, we denote the smallest201
attainable MSE in the PMRA model as MSE∗PMRA(L,α, n), and the sample complexity as202
n∗PMRA(L,α, ε).203

Theorem 2.3. Suppose that σ2
PMRA(α) is scaled as in (2.3), and L,L′ →∞, so that L′ ≤ L204

and L′ = ω(log(L)) (that is, L grows strictly less than exponentially fast in L′). The sample205
complexity of the PMRA model (2.2) obeys the following lower bounds:206

This manuscript is for review purposes only.
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1. For any α > 2 and 0 < ε < 1 we have that207

n∗PMRA(L,α, ε) ≥ L

L′

(
1

ε
− 1

)
σ2

PMRA(α)(1 + o(1)).(2.4)208
209

2. For any α ≤ 2 and 0 < ε < 1 we have that210

n∗PMRA(L,α, ε) = ω

(
L

L′
σ2

PMRA(α) log(1/ε)

)
.(2.5)211

212

The proof of the theorem relies heavily on the proof of Theorem 2.1. Due to space constraints,213
a proof sketch is relegated to the SI appendix, see Section SM6. We conjecture that at high214
SNR (α > 2), the lower bound given in Theorem 2.3 is in fact tight at very low MSE (formally215
ε→ 0, as in Theorem 2.1).216

Extension to other signal priors and group actions. In section 7 we describe briefly how one217
could modify our proofs to account for other i.i.d. signal priors (besides Gaussian) and finite218
group actions.219

3. Prior art. The multi-reference alignment problem was introduced by [7], and fully220
formulated in [8]. The general MRA model reads221

Yi = Ti(gi ◦X) + σZi, i = 1, . . . , n,(3.1)222223

where gi is a random element of a compact group G (drawn from a possibly unknown distribu-224
tion over G) acting on a vector space X ∈ X, and Ti, i = 1, . . . , n, are known linear operators.225
If Ti = I for all i, gi are drawn uniformly from the group of cyclic shifts ZL, and X ∼ N (0, I),226
then (3.1) reduces to the MRA model (1.1). This model can be thought of as a special case227
of a Gaussian mixture model, where all centers are connected through a group action (i.e., a228
cyclic shift). If Ti = πS for all i, we get the projected MRA model (2.2). In cryo-EM—the229
main motivation of this work—G is the group of 3-D rotations SO(3), X is the space of 3-D230
“band-limited” functions (that is, functions that can be expanded by finitely many basis func-231
tions), and Ti encodes the (fixed) tomographic projection, as well as other linear effects, such232
as the microscope’s point spread function (which varies across images) and sampling [10, 41].233

The sample complexity of the MRA model (1.1), in the minimax sense, was first studied234
in [9,32]. The focus of these works, as well as the rest of the works mentioned in this section,235
is on the regime where the noise level σ and number of measurements n diverge, while the236
dimension of each measurement L is fixed, implying SNR → 0. These results were extended237
to the general MRA model (3.1) by [6] and [3] (the latter generalizes the framework proposed238
in [1]). These papers constitute an intimate connection between the MRA model and the239
method of moments—a classical estimation technique. Let d̄ be the lowest order moment240
that distinguishes two different signals (signals that are not in the same orbit) given a specific241

MRA model (namely, fixed Ti,X, and a distribution over G). Then, unless n ·SNRd̄ →∞, the242
MSE is bounded from below. More informally, the moments determine the optimal (minimax)243
estimation rate of the problem. For example, for the MRA model (1.1) it is known that the244
third moment determines a generic signal uniquely (in this work we only consider normal i.i.d.245
signals that fall into this category), i.e., d̄ = 3, and thus n ·SNR3 � 1 is a necessary condition.246
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Remarkably, this phenomenon was observed empirically in context of cryo-EM early on by247
Sigworth [39].248

In this work, we propose an alternative explanation for the statistical difficulty of MRA249
at low SNR, in a setting where the signal X is “generic” (specifically, X ∼ N (0, I)) and the250
dimension is very large. The separation between the two SNR regimes we identify is not251
given in terms of moments; instead, it is characterized in terms of a very natural estimation-252
theoretic question: is it possible, in an information-theoretic sense, to consistently recover the253
unknown shifts (nuisance parameters) themselves? As we scale SNR = α logL, the threshold254
α = 2, separating the high and low SNR regimes, is exactly the threshold for the shift recovery255
problem. Note that in this high-dimensional setting, we find that the low SNR regime in fact256
extends beyond the case SNR→ 0 to unbounded values of SNR (provided that it grows slowly257
enough with L)—this is in contrast to previous works that study MRA in fixed dimension.258

From the algorithmic perspective, two main computational frameworks were applied to259
MRA problems. The first approach is based on expectation-maximization (EM)—a popular260
heuristic to maximize the posterior distribution [20]. EM is the most popular and successful261
methodology to elucidate high-resolution 3-D structures using cryo-EM [10, 37], and it was262
successfully applied to a variety of MRA setups [1, 11, 12, 16, 31]. A recent work [22] studies263
the likelihood landscape for the general MRA model (3.1), where G is a discrete group and264
Ti = I. The latter paper shows that when the dimension is fixed and the SNR is sufficiently265
high, the log likelihood has certain favorable features from an optimization perspective; their266
results give a compelling argument for why EM seems to give good performance for MRA in267
high SNR. In [17], it is shown that usually maximum likelihood achieves the parametric rate268
ρ(X, X̂MLE) ∼ 1/n, although in some cases the rate can be ∼ 1/

√
n.269

The second algorithmic framework is based on the method of moments. This approach270
has an appealing property: it requires only one pass over the measurements, and thus its271
computational load is relatively low, unless L is large [1,11,16,31,32,35]. In addition, as men-272
tioned, it achieves the optimal estimation rate when L is fixed and SNR→ 0. Consequently, a273
variety of moment-based algorithms were proposed. For example, the authors of [32] suggest274
estimating the third-order tensor moment of the signal T (3) = L−1

∑L−1
`=0 (R`X)⊗3, from which275

X can be recovered by Jenrich’s method [24, 29]. Using the robustness analysis of [23], they276
were able to show that n = O

(
ε−1σ6poly(L)

)
samples suffice to achieve ρ(X, X̂) ≤ ε with277

constant probability. This bound depends polynomially on both the dimensional and on the278
inverse smallest DFT coefficient of X; when X ∼ N (0, I), one can verify that typically all the279
DFT coefficients of X are greater than Ω(L−1/2). The poly(L) dependence is not computed280
explicitly, but to the best of our understanding, the analysis of [23] provides a significantly281
worse dimensional scaling than the Ω(L2) in our lower bound (as α → 0). Another work [11]282
studies recovery by bispectrum inversion, which is equivalent to the third-order moment if283
the distribution of shifts is uniform. They argue that when L is fixed, the sample complexity284
should scale like O(σ6), hiding an implicit dependence on L. The method of moments was285
also applied to cryo-EM and related technologies, see for example [21, 26, 30, 38], as well as to286
additional MRA setups [2, 5, 25].287

A recent work [27] establishes an enticing connection between likelihood-based techniques288
and the method of moments for the general MRA model (3.1) for fixed L, SNR → 0, and289
Ti = I. Specifically, it was shown that likelihood optimization in the low SNR regime reduces290
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to a sequence of moment matching problems. In addition, the method of moments is also291
closely-related to invariant theory and thus tools from the latter field can be applied to analyze292
MRA models; see in particular [6].293

4. Phase transition of template matching. Suppose that the shifts R`i are all known.294
In this scenario, estimating the signal is easy: one needs to align each observation R−1

`i
yi and295

average out the noise. Therefore, if possible, it makes sense to try and estimate the shifts. In296
this section, we study the problem of estimating a shift when the signal is assumed to be known297
(which is not the case in MRA); we refer to this problem as template matching. Specifically,298
suppose that one has access to a signal, a “template” X ∈ RL, and observes a single sample299
Y = R`X + σZ, where X ∼ N (0, I), R` ∼ Uniform({0, . . . , L− 1}) is a random uniform shift,300
Z ∼ N (0, I), and R`, Z and X are mutually independent. The goal, then, is to recover R`301
from X and Y .3302

While the template matching problem seems to be significantly easier than the MRA303
problem, we show a surprising phenomenon: in high dimensions, template matching and MRA304
share the exact same phase transition point. In particular, it turns out that in high dimensions,305
under our parameterization σ2(α), which amounts to L/σ2 = α log(L), the template matching306
problem displays a sharp recoverability threshold. That is: (i) whenever α > 2, the random307
shift can be recovered with error probability pe → 0 as L→∞; (ii) whenever α < 2, the shift308
cannot be consistently recovered, and in fact for any estimator, pe → 1.309

Observe that the optimal estimator (in the sense of maximum a posteriori probability) for310
R` is given by:311

(4.1) R̂MAP = argmin
`′
‖X −R−1

`′ Y ‖
2 = argmax

`′

〈X,R−1
`′ Y 〉

‖X‖2
.312

Denote its error probability by313

(4.2) pe = Pr
(
R` 6= R̂MAP

)
.314

We start by establishing that with overwhelming probability, the template X is “incoher-315
ent”, in the sense that the correlations 〈X,R`′X〉/‖X‖2 are very small, unless `′ = 0. The316
lemma is proved in Appendix SM3.317

Lemma 4.1. For κ > 0, let A(κ) be the event that318 ∣∣L−1‖X‖2 − 1
∣∣ < κ and max

`′ 6=0
L−1 |〈X,R`′X〉| ≤ κ,319

and let A(κ) be its complement. Then,320

Pr(A(κ)) ≤ 2L exp
(
−cLmin(κ, κ2)

)
,321

for a universal constant c > 0. In particular, one can choose a sequence κ = κL such that322
κ → 0 sufficiently slowly, for example, κ = CL−1/2 log(L) for C > 0 large enough, so that323
Pr(AL(κL)) = 1− o(1).324

3A more general setting, where X is not necessarily Gaussian, and R`X goes through some general channel,
not necessarily Gaussian, was studied by Wang, Hu, and Shayevitz [45], but under different asymptotics.
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Let325

(4.3) Θ`′ =
〈X,R−1

`′ Y 〉
‖X‖2

=
〈X,R`−`′X〉
‖X‖2

+
σ〈X,R−1

`′ Z〉
‖X‖2

,326

and327

(4.4) W`′ = ‖X‖−1〈X,R−1
`′ Z〉.328

Recalling that R̂MAP = argmax`′ Θ`′ , and plugging σ2 = (α log(L))−1L, Lemma 4.1 implies329
that with high probability,330

(4.5) Θ`′ =

1 + (1 + o(1)) 1√
α log(L)

·W` if `′ = `,

o(1) + (1 + o(1)) 1√
α log(L)

·W`′ if `′ 6= `.
331

Notice that for every `′, W`′ ∼ N (0, 1), being the projection of R−1
`′ Z ∼ N (0, I) onto a332

unit vector X/‖X‖. This clearly implies that Θ`
p→ 1 as L→∞. Thus, to analyze the error of333

the MAP estimator, it simply remains to understand the behavior of max`′W`′ . To this end,334
we recall the following three results. We start with a well-known fact about the maximum of335
i.i.d. standard Gaussians:336

Lemma 4.2. Let Z1, . . . , ZL be i.i.d N (0, 1) random variables. Then, as L→∞,337

E
[
max
`
Z`

]
/
√

2 log(L)→ 1.338

The upper bound E [max` Zl] ≤
√

2 log(L) is elementary, and holds even when Z1, . . . , ZL are339

not independent. The proof follows from Emax` Z` ≤ β−1 logEmax` e
βZ` ≤ β−1 logE

∑L
`=1 e

βZ` =340
β/2 +β−1 log(L), which holds for all β > 0; now take β =

√
2 log(L). The proof of the match-341

ing lower bound, on the other hand, is more involved and follows from results in extreme value342
theory, see, for instance, Example 1.1.7 in [19]. We also use the following “quantitative” version343
of the Sudakov-Fernique inequality:344

Lemma 4.3 (Theorem 2.2.5 in [4]). Let (X1, . . . , XL) and (Y1, . . . , YL) be Gaussian vectors345
so that E[Xi] = E[Yi] for all i. Set346

γXi,j = E(Xi −Xj)
2, γYi,j = E(Yi − Yj)2,347

and γ = maxi,j |γXi,j − γYi,j |. Then348 ∣∣∣∣E [max
i
Xi

]
− E

[
max
i
Yi

]∣∣∣∣ ≤√2γ log(L).349

To get concentration around the mean, we use (a simple case of) the Borell-TIS inequality:350

Lemma 4.4. Let (X1, . . . , XL) be a Gaussian vector, and set σ2 = maxi E[X2
i ]. Then351

Pr

(∣∣∣∣max
i
Xi − E

[
max
i
Xi

]∣∣∣∣ ≥ t) ≤ 2e−t
2/2σ2

.352
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See, e.g., [4, Theorem 2.1.1] (there only a one sided bound is stated; the other side follows the353
same way). The following is now an immediate corollary of Lemmas 4.1, 4.2,4.3 and 4.4:354

Theorem 4.5 (Sharp threshold for template matching). If α > 2, then pe → 0 as L → ∞.355
Conversely, if α < 2, then pe → 1.356

Proof. We start by estimating Emax`′W`′ . Choose κ = o(1) such that the event A(κ) of357
Lemma 4.1 holds with probability 1− o(1). Conditioned on X, {W`′}`′=0,...,L−1 is a centered358
Gaussian vector, with covariance359

Ci,j(X) = E[WiWj

∣∣X] = ‖X‖−2〈RiX,RjX〉,360

whereby under A, |Ci,j(X)− δi,j | = o(1).361
Let (W̃1, . . . , W̃L−1) be i.i.dN (0, 1) random variables. By Lemmas 4.2 and 4.3, conditioned362

on X and under A,363

E[max
`′

W`′
∣∣X,A] = E[max

`′
W̃`′ ] + o(

√
log(L)) =

√
(2+o(1)) log(L).364

Lemma 4.4 gives us a uniform (in X) concentration inequality, conditioned on X and under365
A,366

Pr

(∣∣∣∣max
`′

W`′ −
√

2 log(L)

∣∣∣∣ ≥√ε log(L)
∣∣∣X,A) ≤ 2L−(ε+o(1))/2,367

so that368

Pr

(∣∣∣∣max
`′

W`′ −
√

2 log(L)

∣∣∣∣ ≥√ε log(L)

)
≤ 2L−(ε+o(1))/2 + Pr

(
A
)

= oε(1).369

Thus, we have shown that max`′W`′/
√

2 log(L)
p→ 1. Using equation (4.5), we deduce that370

Θ`
p→ 1 whereas max`′ 6=` Θ`′

p→
√

2/α. Since R̂MAP = argmax`′ Θ`′ , we conclude that pe → 0371
when α > 2 and pe → 1 when α < 2.372

A remark on the relation between template matching and synchronization.. In the MRAmodel,373
one does not have access to the true template and thus needs to estimate the relative shifts374
based solely on the data; this problem is referred to as synchronization.375

For simplicity, let us assume we are given two measurements Y1 = X + σZ1 and Y2 =376
R`X + σZ2, and would like to estimate R` (recall that X is unknown). The optimal (MAP)377
estimator is R̂syn = argmax`′ Pr(R`′ |Y1, Y2). It is straightforward to show that378

R̂syn = argmax
`′
〈Y1, R

−1
`′ Y2〉 = argmax

`′
〈(X + σZ1), R−1

`′ (R`X + σZ2)〉379

= argmax
`′

{
〈X,R`−`′X〉+ σ〈X,R−1

`′ Z2〉+ σ〈X,R−1
`−`′Z1〉+ σ2〈Z1, R

−1
`′ Z2〉

}
.380

381

In order for this to consistently return the true relative shift R`, one needs to ensure that the382
“noise” term,383

σ〈X,R−1
`′ Z2〉+ σ〈X,R−1

`−`′Z1〉+ σ2〈Z1, R
−1
`′ Z2〉384

is small compared to ‖X‖2 ∼ L. The “typical” size of the first two terms is σ〈X,R−1
`′ Z2〉 +385

σ〈X,R−1
`−`′Z1〉 ∼ σ

√
L, whereas the third is σ2〈Z1, R

−1
`′ Z2〉 ∼ σ2

√
L, and is therefore the386
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dominant one for large σ. Thus, to succeed with non-vanishing probability, we need that387
σ2
√
L / L, that is, σ2 /

√
L. In the regime we are interested in, the noise level is σ2 ∼388

L/ log(L), and this turns out to be far too large.389
We mention in passing that if many measurements are available, one can leverage the390

redundancy in the data to recover the true relative shifts in challenging environments; see for391
example [15, 33, 36,40,42].392

5. Sample complexity lower bounds.393

5.1. The information-theoretic method for estimation lower bounds. We employ a394
standard information-theoretic method of obtaining estimation error lower bounds, via rate-395
distortion theory (see e.g. [34]). We refer the reader to SI Appendix SM1 for a basic review of396
the information-theoretic definitions and facts we use in this section. Let X̂ be an estimator397
of X from the measurements Y n = (Y1, . . . , Yn), which achieves expected error (“distortion”)398

(5.1) Eρ(X, X̂) = L−1E min
`=0,...,L−1

‖X −R−1
` X̂‖2 ≤ ε.399

Since the estimator depends only on the measurements, and not on X, the triplet X−Y n− X̂400
constitutes a Markov chain. Hence, by the data processing inequality (Proposition SM1.3 item401
3) we have that I(X; X̂) ≤ I(X;Y n). We lower-bound I(X; X̂) by the rate distortion function402
(RDF) R(·) associated with the source X ∼ N (0, I), and distortion measure ρ(·, ·):403

R(ε) = min
PW |X :Eρ(X,W )≤ε

I(X;W ).404

The minimization here is done over conditional distributions PW |X , or equivalently, over joint405
distributions PX,W whose X-marginal is PX—in our case N (0, I)—obeying the average dis-406
tortion constraint Eρ(X,W ) ≤ ε. Since the conditional distribution P

X̂|X is, by definition,407

feasible for this minimization problem, we have R(ε) ≤ I(X; X̂). Combining this with the408
upper bound I(X; X̂) ≤ I(X;Y n), we get409

(5.2) R(ε) ≤ I(X;Y n),410

and we shall next derive a lower bound for R(ε) in terms of ε.411

5.2. A lower bound on the rate-distortion function. We start by obtaining a lower bound412
on the RDF. While the RDF problem for a Gaussian source under MSE distortion measure is413
classical, the MSE up to the best alignment (the distortion measure we consider) is somewhat414
non-standard. Obtaining a precise expression for the true RDF seems difficult, but a simple415
lower bound can be obtained as follows.416

Proposition 5.1. For an L dimensional i.i.d. Gaussian vector X ∼ N (0, I), and distortion417
measure ρ(·, ·) as defined in (1.2), the rate distortion function satisfies418

R(ε) ≥ L

2
log

(
1

ε

)
− log(L).419

420
421

This manuscript is for review purposes only.



14 E. ROMANOV, T. BENDORY, AND O. ORDENTLICH

Proof. By definition of the rate distortion function, to establish the claim we need to422
show that for any conditional distribution (“test-channel”) PW |X that satisfies the constraint423

Eρ(X,W ) ≤ ε, where ρ(X,W ) = L−1 min`=0,...L−1 ‖X − R−1
` W‖2, it holds that I(X;W ) ≥424

L
2 log

(
1
ε

)
− log(L). To that end, let R = R(X,W ) = argmin`′∈[0,...,L−1] ‖X − R`′W‖ be the425

difference minimizing shift. By the chain law of MI (Proposition SM1.3 item 2),426

I(X;W ) = I(X;W,R)− I(X;R|W ) ≥ I(X;W,R)− log(L),(5.3)427428

where we used I(X;R|W ) ≤ H(R|W ) ≤ log(L); the former follows from the definition of429
MI and non-negativity of entropy (Proposition SM1.1 item 1), and the latter follows from430
Proposition SM1.1 item 2 as the random variable R can take at most L values. Recall that431
L−1E‖X −RW‖2 ≤ ε by definition of R. We therefore have that432

I(X;RW ) ≥ min
PW ′|X :L−1E‖X−W ′‖2≤ε

I(X;W ′) =
L

2
log

(
1

ε

)
,433

434

where in the second equality we have used the well-known expression for the quadratic Gauss-435
ian rate distortion function (Proposition SM1.4). Thus, using the data processing inequality436
(Proposition SM1.3 item 3), we have437

I(X;W,R) ≥ I(X;RW ) ≥ L

2
log

(
1

ε

)
.438

439

Substituting this into (5.3) establishes the claim.440

Combining Proposition 5.1 with equation (5.2), we get441

I(X;Y n) ≥ R(ε) ≥ L

2
log

(
1

ε

)
− log(L) .442

Setting ε = Eρ(X, X̂), we have obtained the following bound:443

Corollary 5.2. Suppose that X ∼ N (0, I) is an L dimensional i.i.d. Gaussian vector, X̂ is444
any estimator of X from Y1, . . . , Yn, and ρ(·, ·) is as defined in (1.2). Then445

Eρ(X, X̂) ≥ exp

(
−2I(X,Y n) + 2 log(L)

L

)
= exp

(
−2L−1 · I(X,Y n)+o(1)

)
.446

Equivalently,447

MSE∗MRA(L,α, n) ≥ exp

(
−2I(X,Y n) + 2 log(L)

L

)
= exp

(
−2L−1 · I(X,Y n)+o(1)

)
.448

449

Corollary 5.2 tells us that an upper bound on the MI I(X;Y n) would give us a lower450
bound on the expected error of any estimator of X from Y n = (Y1, . . . , Yn). We devote the451
next section to deriving such upper bounds.452
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5.3. Upper bounds on the mutual information. We start with the rather trivial obser-453
vation that the MI between the signal X and the measurements Y n is smaller than the MI454
in a problem where there are no random shifts, which is equal to L

2 log(1 + nσ−2). The next455
lemma formalizes this intuition and quantifies the MI difference between the two problems.456

Lemma 5.3. The mutual information between the signal X and measurements Y1, . . . , Yn is457

I(X;Y n) =
L

2
log(1 + nσ−2)− I(Rn;X|Y n),(5.4)458

459

where Rn = (R`1 , . . . , R`n). In particular, I(X;Y n) ≤ L
2 log(1 + nσ−2).460

Proof. Let Ỹi = R−1
`i
Yi = X + σR−1

`i
Zi. We may write461

I(X;Y n) = I(X;Y n, Rn)− I(X;Rn|Y n)462

= I(X; Ỹ n, Rn)− I(X;Rn|Y n)463

= I(X; Ỹ n) + I(X;Rn|Ỹ n)− I(X;Rn|Y n),464465

where the first and third equalities follow by the chain rule for MI (Proposition SM1.3 item466
2), and the second follows from Proposition SM1.3 item 4, and the fact that the mapping467
(Y n, Rn) 7→ (Ỹ n, Rn) is invertible. By the fact that the Gaussian distribution is rotation468
invariant, and in particular R−1

`i
Z ∼ N (0, I), we have that Rn is statistically independent of469

(X, Ỹ n), and consequently470

I(X;Rn|Ỹ n) = H(Rn|Ỹ n)−H(Rn|Ỹ n, X) = H(Rn)−H(Rn) = 0,471472

where the first equality follows by definition of conditional mutual information and the second473
by Proposition SM1.3.5. It remains to compute I(X; Ỹ n). To this end, note that con-474
ditioned on X = x, the measurements Ỹ1, . . . , Ỹn are simply i.i.d. Gaussian measurements475
Yi ∼ N (x, σ2I). It is well-known that in this case, the sample mean 1

n

∑n
i=1 Ỹi = X is a476

sufficient statistic of Ỹ n for X. Conditioned on X = x, the sample mean has distribution477
1
n

∑n
i=1 Ỹi ∼ N (x, σ2/n · I), therefore,478

I(X; Ỹ n) = I

(
X;

1

n

n∑
i=1

Ỹi

)
= I

(
X;X +N (0, σ2/n · I)

)
=
L

2
log(1 + nσ−2),(5.5)479

480
where the last equality follows from Proposition SM1.3 item 6.481

Combining Corollary 5.2 and Lemma 5.3, we obtain the following lower bound, that es-482
sentially says the MSE in the MRA model is no better than in estimating a signal in AWGN.483

Corollary 5.4. The smallest attainable MSE in the MRA model satisfies484

MSE∗MRA(L, σ2, n) ≥ L−
2
L

1 + nσ−2
=

1

1 + nσ−2
(1 + o(1)),485

486

and the sample complexity satisfies487

n∗MRA(L, σ2, ε) ≥

⌈(
L−

2
L

ε
− 1

)
σ2

⌉
= n∗AWGN(L, σ2, ε)(1 + o(1)).488

489
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16 E. ROMANOV, T. BENDORY, AND O. ORDENTLICH

Lemma 5.3 tells us that the gap between I(X;Y n) and the MI in estimating a signal490
in AWGN, without the shifts, L

2 log(1 + nσ−2), is I(X;Rn|Y n). This quantity is intimately491
related to a multi-sample version of the template matching problem, as was considered in492
Section 4. This connection will be exploited later on, when we derive an upper bound on the493
single sample MI I(X;Yi).494

Information combining. Observe that the measurements Y1, . . . , Yn are mutually indepen-495
dent and identically distributed conditioned on X; that is, the samples are obtained by passing496
the same signal X independently through a memoryless channel. By Proposition SM1.3 item497
5, this implies that498

I(X;Y n) ≤
n∑
i=1

I(X;Yi) = nI(X;Y ),(5.6)499

500

where Y = R`X + σZ is a single measurement in the MRA model. Substituting (5.6) into501
Corollary 5.2, yields the following.502

Proposition 5.5. The smallest attainable MSE in the MRA model satisfies503

MSE∗MRA(L, σ2, n) ≥ L−
2
L exp

(
−n 2

L
I(X;Y )

)
= exp

(
−n 2

L
I(X;Y )

)
(1 + o(1)),504

505

and the sample complexity satisfies506

n∗MRA(L, σ2, ε) ≥ L

2
·

log
(

1
ε

)
− 2 log (L)

L

I(X;Y )
= log

(
1

ε

)
· L

2I(X;Y )
(1 + o(1)),507

508

where Y = R`X + σZ is a single measurement in the MRA model.509

It is important to emphasize at this point that the bound in (5.6) becomes very loose for510
n sufficiently large. Indeed, Lemma 5.3 implies that I(X;Y n) should scale at best logarth-511
mically, rather than linearly, with n. Consequently, the lower bound on MSE∗MRA(L, σ2, n)512
in Proposition 5.5 decreases exponentially fast with n, whereas we know from Corollary 5.4513
that it cannot decrease faster than the parametric rate of 1/n as in estimating a signal in514
AWGN. Despite its grossly wrong dependence on n, the upper bound I(X;Y n) ≤ nI(X;Y )515
does suffice to say something non-trivial about the sample complexity of the problem. As seen516
from Proposition 5.5: in order for the estimation error to be strictly bounded away from one,517
one needs at least Ω(L · I(X;Y )−1) samples. We will see that this rather “naïve” analysis is518
already enough to accurately separate between a “high SNR” and a “low SNR” regime, where519
the behavior of the MRA problem is qualitatively different. Intuitively, as the measurements520
Y1, . . . , Yn are only dependent through the random variable X, if n is so small that it is im-521
possible to learn much about X from Y n, the dependence between Y1, . . . , Yn must be weak.522
Thus, in that regime, ignoring this dependence and bounding I(X;Y n) ≤ nI(X;Y ) is a rather523
accurate estimate.524

The problem of obtaining a stronger bound on multi-sample MI I(X;Y n) in terms of the525
single-sample MI I(X;Y ) is an instance of a so-called information combining problem. Several526
problems of this type have been studied in the information theory literature, mostly dealing527

This manuscript is for review purposes only.



MULTI-REFERENCE ALIGNMENT IN HIGH DIMENSIONS 17

with binary channels [28, 43]. In our case, we believe this problem to be quite hard, at least528
in the low SNR regime, and thus we could not obtain a tighter bound. Deriving such bounds529
can yield stronger lower bounds on MSE∗MRA(L,α, n) in the low-SNR regime (α < 2) than the530
ones we obtain here using the simple bound I(X;Y n) ≤ nI(X;Y )).531

Roadmap. We will devote the rest of this section to deriving upper bounds on I(X;Y ).532
These bounds, together with Proposition 5.5, will immediately imply lower bounds on the MSE533
and the sample complexity. In particular, we will derive two bounds, using different methods,534
that will be effective in two SNR regimes.535

• We estimate the mutual information using Jensen’s inequality to facilitate the compu-536
tation of several expectations. One could expect this method to give somewhat tight537
results when I(X;Y ) is very small, and indeed, we shall see that when 0 < α < 1,538
we obtain a bound I(X;Y ) = O(Lα−1), which tends to 0 as L → ∞. For α ≥ 1, the539
obtained bound will turn out to be too loose.540
• In Lemma 5.3 we have found that I(X;X + σZ) − I(X;Y ) = I(X,R`|Y ). We lower541

bound this gap using a Fano-like inequality, which in the case α < 2 amounts to542
“quantifying” how well R` can be estimated from X and Y , in a somewhat more precise543
sense than Theorem 4.5 (which tells us that in this case, the error is pe = 1−o(1)). This544
will allow us to show that when α < 2, I(X;Y ) = o(log(L)). We will not, however, be545
able to recover the estimate in the case of 0 < α < 1 using this method.546

5.3.1. MI bound at very low SNR (α < 1). We first express I(X;Y ) in the following547
way:548

Lemma 5.6. Suppose that X ∼ N (0, I), Z ∼ N (0, I), and R ∼ Uniform({R0, . . . , RL−1})549
are mutually independent. Then,550

I(X;Y ) =
L

2
log(1 + σ−2)− Lσ−2 + EX,Z

[
logER exp

(
1

σ2
〈X + σZ,RX〉

)]
.551

Proof. Write I(X;Y ) = h(Y ) − h(Y |X). Note that for any shift R`, R`X ∼ N (0, I)552
and therefore Y ∼ N (0, (1 + σ2)I); this means that Y = R`X + σZ is independent of R`.553
The differential entropy of Y is h(Y ) = h(N (0, (1 + σ2)I) = L

2 log(2πe) + L
2 log(1 + σ2), by554

Proposition SM1.1 item 3.555
Let us now write the conditional differential entropy explicitly. The conditional density of Y556

given X is pY |X(y|x) = ER
[
(2πσ2)−L/2 exp

(
− 1

2σ2 ‖y −Rx‖2
)]

for uniform R. The conditional557
entropy is then simply558

h(Y |X) = EX,Y
[
− log pY |X(Y |X)

]
559

=
L

2
log(2πσ2)− EX,Y

[
logER exp

(
− 1

2σ2
‖Y −RX‖2

)]
560

=
L

2
log(2πσ2)− EX,Y

[
logER exp

(
− 1

2σ2

(
‖Y ‖2 + ‖X‖2 − 2〈Y,RX〉

))]
561

=
L

2
log(2πσ2) +

L+ (1 + σ2)L

2σ2
− EX,Y

[
logER exp

(
1

σ2
〈Y,RX〉

)]
.562

563

It remains to compute the expectation with respect to the joint distribution of X and Y in564
the last term. Recall that we can write Y = R′X + σZ for R′ ∼ Uniform({R0, . . . , RL−1})565
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and Z ∼ N (0, I), both independent of X. Alternatively, we could also write Y = R′(X+σZ),566
which defines the exact same joint distribution between X and Y , due to the orthogonal567
invariance of Z ∼ N (0, I); this second form is slightly more convenient in what follows. Since568
R is uniformly distributed,569

EX,Z,R′
[
logER exp

(
1

σ2
〈R′(X + σZ), RX〉

)]
= EX,Z,R′

[
logER exp

(
1

σ2
〈(X + σZ), (R′)−1RX〉

)]
570

= EX,Z
[
logER exp

(
1

σ2
〈(X + σZ), RX〉

)]
,571

572

that is, we can “drop” R′. The claimed formula now readily follows.573

The following proposition is the main estimate of this section. The proof uses some prop-574
erties of the spectrum of R`, stated and proved in Appendix SM4.575

Proposition 5.7. We have the following upper bound on the single sample MI:576

I(X;Y ) ≤ log
(

1 + L−1eσ
−2L
)

+O(σ−4L).577

In particular, if σ−2L = α log(L) for 0 < α < 1, then the MI asymptotically vanishes as578
L→∞ with I(X;Y ) ≤ L−1+α(1 + o(1)).579

Proof. By the concavity of the log function, we always have EW log(W ) ≤ log(EW ). Thus,580

EX,Z
[
logER exp

(
1

σ2
〈X + σZ,RX〉

)]
≤ EX

[
logEZ,R exp

(
1

σ2
〈X + σZ,RX〉

)]
581

= EX
[
logER exp

(
1

σ2
〈X,RX〉+

1

2σ2
‖RX‖2

)]
582

= EX
[
logER exp

(
1

σ2
〈X,RX〉+

1

2σ2
‖X‖2

)]
583

=
1

2
σ−2L+ EX

[
logER exp

(
1

σ2
〈X,RX〉

)]
584

≤ 1

2
σ−2L+ logER,X exp

(
1

σ2
〈X,RX〉

)
.585

586

Plugging into the expression in Lemma 5.6, we get587

I(X;Y ) ≤ L

2
log(1 + σ−2)− 1

2
Lσ−2 + logER,X exp

(
1

σ2
〈X,RX〉

)
.588

Note that as L, σ2 →∞, already L
2 log(1+σ−2)− 1

2Lσ
−2 = O(σ−4L). Observe that 〈X,RX〉 =589

〈X,R>X〉 = 1
2〈X, (R+R>)X〉. By Lemma SM4.1, all the matrices R` +R>` are diagonalized590

by some orthonormal basis with eigenvalues {2 cos
(

2π
L k`

)
}L−1
k=0 . By the orthogonal invariance591

of X ∼ N (0, I), there are i.i.d. Wk,` ∼ N (0, 1) such that for all `,592

σ−2〈X,R`X〉 = σ−2
L−1∑
k=0

cos

(
2π

L
k`

)
W 2
k,`.593
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Recall that the moment generating function of a χ2 random variable is594

EW∼N (0,1)[e
tW 2

] = (1− 2t)−1/2 for t > 1/2 ,595

see, e.g, [18, page 621]. Therefore, assuming σ2 is sufficiently large (e.g., σ2 > 2),596

logER,X exp

(
1

σ2
〈X,RX〉

)
= log

[
L−1

L−1∑
`=0

L−1∏
k=0

(
1− 2σ−2 cos

(
2π

L
k`

))−1/2
]

597

= log
L−1∑
`=0

eψ` − log(L),598

599

where600

ψ` = −1

2

L−1∑
k=0

log

(
1− 2σ−2 cos

(
2π

L
k`

))
.601

Expanding the log function to first order around 1 and noting that
∑L−1

k=0 cos
(

2π
L k`

)
= L·1{`=0}602

(see Lemma SM4.1), for large values of L and σ2, we get603

ψ` =

L−1∑
k=0

σ−2 cos

(
2π

L
k`

)
+O(σ−4L) =

{
σ−2L+O(σ−4L) if ` = 0,

O(σ−4L) otherwise.
604

Thus, we have the estimate605

log
L−1∑
`=0

eψ` − log(L) = log

(
1

L
eσ
−2L+O(σ−4L) +

L− 1

L
eO(σ−4L)

)
606

= log
(

1 + L−1eσ
−2L
)

+O(σ−4L),607
608

from which the claimed result immediately follows.609

Observe that for α > 1, Proposition 5.7 gives an upper bound of the order I(X;Y ) =610
O(log(L)). It will turn out that when α > 2, this is indeed the right order of magnitude.611
However, for 1 < α ≤ 2 the bound is too loose, and in fact I(X;Y ) = o(log(L)).612

5.3.2. MI bound using template matching. We start from Lemma 5.3 which gives, for613
n = 1 and Y = RX + σZ, I(X;Y ) = L

2 log(1 + σ−2) − I(R;X|Y ). We make the important614
observation that R and Y are independent; indeed, regardless of R, it holds that Y |R ∼615
N (0, (1 +σ2)I). We remark, however, that when n > 1, Y n is not independent of Rn. We can616
therefore use Proposition SM1.1 item 5, and Proposition SM1.1 item 2 to write617

I(R;X|Y ) = H(R|Y )−H(R|X,Y ) = H(R)−H(R|X,Y ) = log(L)−H(R|X,Y ),618

so that619

(5.7) I(X;Y ) =
L

2
log(1 + σ−2)− log(L) +H(R|X,Y ).620

The following is now an immediate consequence of Fano’s inequality (Proposition SM1.2)621
and Theorem 4.5.622
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Proposition 5.8. Suppose that σ−2L = α log(L) with α > 2. Then,623

I(X;Y ) =
L

2
log(1 + σ−2)− (1+o(1)) log(L)624

=
(α

2
− 1 + o(1)

)
log(L) +O(σ−4L).625

626

Proof. We estimate H(R|X,Y ). Clearly, H(R|X,Y ) ≥ 0 by non-negativity of entropy627
(Proposition SM1.1 item 1). As for an upper bound, by Fano’s inquality (Proposition SM1.2),628
for any estimator R̂ of R from X,Y , the error probability pe = Pr(R 6= R̂) satisfies629

H(R|X,Y ) ≤ log 2 + pe log(L).630

By Theorem 4.5, R̂MAP has error pe → 0, which means that H(R|X,Y ) = o(1) · log(L) =631
o(log(L)). Plugging this into equation (5.7) and expanding L

2 log(1 + σ−2) = α
2 log(L) +632

O(σ−4L), we obtain the desired estimate for I(X;Y ).633

Proposition 5.8 above will not be needed for our main results, but its proof serves as good634
exposition towards bounding the conditional entropy H(R|X,Y ) in the harder case α ≤ 2.635
When α < 2 we have pe → 1, so that it is no longer true that H(R|X,Y ) = o(log(L)). Indeed,636
since I(X;Y ) = (α/2 − 1) log(L) + O(σ−4L) + H(R|X,Y ), we must have that H(R|X,Y ) ≥637
(1− α/2− o(1)) log(L), since the MI is non-negative. While, indeed, in this regime R cannot638
be recovered from X,Y , we can still obtain a non-trivial upper bound (of the form c(α) log(L)639
for some c(α) < 1) on the conditional entropy H(R|X,Y ); the idea is that given X,Y , we can640
form a relatively small list that contains R with high probability.641

Our goal, then, is to non-trivially upper bound H(R|X,Y ) in the regime α ≤ 2 where642
pe 6→ 0. Let τ > 0, and denote by Sτ the set of τ -likely shifts:643

(5.8) Sτ =

{
R′ :

〈X, (R′)−1Y 〉
‖X‖2

≥ 1− τ
}
.644

The analysis of Section 4 tells us that for any τ > 0, the true shift R belongs with high645
probability to the set Sτ . Moreover, when α > 2 (and τ > 0 is a sufficiently small constant), in646
fact with high probability Sτ = {R}. When α ≤ 2 this will no longer be the case; nonetheless,647
we show that |Sτ | is with high probability significantly smaller than L. This means that648
given X and Y , we can produce a list of likely candidates for R which is much smaller than649
the entire group of shifts. The following lemma is proved in the SI Appendix, Section SM5.650

Lemma 5.9. Let κ, τ, ζ > 0. Set M = L1− 1
2
α(1−κ)(1−τ− κ

1−κ)
2
+ζ , and assume that α ≤ 2.651

Then652

Pr (R /∈ Sτ or |Sτ | > M) ≤ 2Le−cLmin(κ,κ2) + L−
1
2
α(1−κ)(1−τ− κ

1−κ)
2

+ 2L−ζ ,(5.9)653654

where c > 0 is the universal constant of Lemma 4.1.655

Lemma 5.9 implies that there are slowly decaying sequences τ = τL = o(1), δ = δL = o(1)656
such that the event657

B =
{
R ∈ SτL and |SτL | ≤ L

1− 1
2
α+δL

}
658

holds with high probability of Pr(B) = 1− o(1). We use this to bound the conditional entropy659
H(R|X,Y ), and obtain a bound on the MI:660
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Proposition 5.10. Suppose that α ≤ 2. Then,661

I(X;Y ) = o(log(L)).662

Proof. We upper bound the conditional entropy H(R|X,Y ) using a “Fano-like” argument.663
Let E be the indicator for the event B above. Since E is completely deterministic given664
(R,X, Y ), we have that H(E|R,X, Y ) = 0 by Proposition SM1.1 item 1 and by the chain rule665
of entropy (Proposition SM1.1 item 4) we have666

H(R|X,Y ) = H(R|X,Y ) +H(E|R,X, Y )667

= H(R,E|X,Y )668

= H(E|X,Y ) +H(R|X,Y,E)669

≤ H(E) +H(R|X,Y,E = 1) Pr(E = 1) +H(R|X,Y,E = 0) Pr(E = 0),670671

where we have bounded H(E|X,Y ) ≤ H(E) using Proposition SM1.1 item 5, and expanded672
H(R|X,Y,E) according to the definition of conditional entropy, averaging only with respect673
to E.674

Now, given that E = 1, we know that R belongs to SτL , which has size |SτL | ≤ M =675

L1− 1
2
α+δL . Hence, H(R|X,Y,E = 1) ≤ log(M) =

(
1− 1

2α+ δL
)

log(L) by Proposition SM1.1676
item 2, and by the same reason H(R|X,Y,E = 0) ≤ log(L). By definition, Pr(E = 1) =677
Pr(B) = 1 − o(1), and H(E) ≤ log(2) by Proposition SM1.1 item 2. Thus, H(R|X,Y ) ≤678 (
1− 1

2α+ o(1)
)

log(L). Plugging this into Eq. (5.7),679

I(X;Y ) =
L

2
log(1 + σ−2)− log(L) +H(R|X,Y )680

=
(α

2
− 1 + o(1)

)
log(L) +O(σ−4L) +

(
1− α

2
+ o(1)

)
log(L)681

= o(log(L)) +O(σ−4L),682683

as claimed.684

Remark 5.11. One might wonder if the argument above (if carried out delicately enough)685
can match the estimate I(X;Y ) = O(L−1+α) we have already seen for α < 1. Unfortunately,686
the bound Pr(|Sτ | ≥ M) ≤ 2L−δ (using Markov’s inequality; see the proof of Lemma 5.9 in687
SI Appendix, Section SM5) is already too crude for that purpose: since we need to choose688
δ = o(1), the o(1) correction above must decay slower than L−c (for any c > 0).689

5.3.3. Proof of main results. We are ready to prove Theorem 2.2 and the sample com-690
plexity lower bounds of Theorem 2.1.691

Proof of Theorems 2.1 (lower bounds) and 2.2..692

• Theorem 2.1, α > 2 (lower bound): Corollary 5.4 immediately implies that limε→0 limL→∞
n∗MRA(L,α,ε)

σ2/ε
≥693

1.694
• Theorem 2.1, α ≤ 2: Combining Proposition 5.5 and Proposition 5.10, give n∗MRA(L,α, ε) =695

ω
(

L
log(L) log(1/ε)

)
= ω

(
σ2 log(1/ε)

)
.696

• Theorem 2.2, α < 1: Combining Proposition 5.5 and Proposition 5.7 yield n∗MRA(L,α, ε) =697
Ω(L2−α log(1/ε)).698
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The proof of the upper bound limε→0 limL→∞
n∗MRA(L,α,ε)

σ2/ε
≤ 1 for α > 2 (item (1) of Theo-699

rem 2.1) appears in Section 6.700

6. Sample complexity upper bound for α > 2 via brute-force template matching. In701
this section we propose a recovery algorithm for the high SNR regime α > 2, which essentially702
matches our Ω(L/ logL) lower bound on the sample complexity. Our goal here is not to propose703
a new MRA algorithm, but rather to establish a matching upper bound on the statistical704
difficulty of the problem; that is, we are studying the fundamental information-theoretic (rather705
than computational) limits of MRA. 4 In particular, the proposed algorithm is computationally706
intractable, and involves a brute-force search on an exponentially sized set of candidates.707
Moreover, our approach is tailored to the case α > 2, which is exactly the SNR regime where708
template matching is statistically possible.709

Outline of our algorithm. Before diving into the technical details of our proposed scheme,710
we give a brief outline of the approach. The estimation algorithm works in two stages. Suppose711
we are given n independent samples. We divide them into two subsamples of sizes n1 and n2,712
n1 + n2 = n. We do this so to ensure that the estimator Q̂ produced in step 1 is statistically713
independent of the additive noise in the samples used for step 2. This simplifies our analysis714
considerably. The two stages performed by the algorithm are the following.715

1. Brute-force search for a template: In the first stage, we use the first n1 samples to find716
some direction Q̂ ∈ SL−1 (here SL−1 is the unit sphere in RL) such that Q̂ is sufficiently717
well-aligned with some shift of the true signal, that is, max` L

−1/2〈X,R−1
` Q̂〉 ≥ 1− η,718

where η = η(α) is small. To do this, we consider a fine-enough cover of the sphere, N ⊂719
SL−1, and take Q̂ ∈ N as the minimizer of a certain score: Q̂ = argminQ∈N

∑n1
i=1 si(Q),720

where si(Q) is computed from the i-th sample Yi. Minimizing
∑n1

i=1 si(Q) over SL−1721
boils down to a brute-force search over the cover, whose size is exponential in L. Hence,722
this algorithm is not efficient. In principle, one could take at this point

√
LQ̂ ≈ ‖X‖Q̂723

as an estimator forX. Unfortunately, the MSE of this estimator decays at a suboptimal724
rate with respect to the number of samples n; this is remedied by the second step.725

2. Alignment and averaging: Using Q̂ from the previous step, we perform template match-726
ing on the remaining n2 samples Y1, . . . , Yn2 in order to estimate their shifts relative727
to Q̂:728

R̂`i = argmax
`
〈Yi, R`Q̂〉.729

The final estimator for X is then the average of the aligned measurements:730

X̂ =
1

n2

n2∑
i=1

R̂−1
`i
Yi.731

All the missing technical details are provided in the next two sections. Due to space constraints,732
the proofs of all lemmas are given in the SI Appendix, Section SM7.733

4 This distinction is not trivial in general. In the context of MRA, for instance, previous papers con-
jectured that a natural extension of the MRA model, called heterogeneous MRA, suffers from a fundamental
computational-statistical gap [6,16]. We do not claim, however, that such a computational-statistical gap holds
for the MRA model considered in this paper, with α close to 2.
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Main result of this section.. The main result of this section is the following:734

Proposition 6.1. Suppose that α > 2, fix ε > 0, and let n,L→∞. Then, there exists some735
c(α) > 0 depending on α such that if736

n1 = c(α)σ2, n2 = (1 + o(1))
σ2

ε
,737

then the estimator X̂ returned by our algorithm satisfies ρ(X, X̂) ≤ ε with probability 1− o(1).738

Note that when ε > 0 is small, the sample complexity is dominated by n2:739

n = c(α)σ2 + (1 + o(1))
σ2

ε
≈ (1 + o(1))

σ2

ε
,740

and thus almost independent of the constant c(α). Proposition 6.1 should be compared with741
the optimal achievable MSE for estimating a signal in AWGN, without the shifts L−1E‖X −742

X̂MMSE‖2 = σ2

σ2+n
.743

Proof of Theorem 2.1 (upper bound). The upper bound for α > 2 follows readily from744
Proposition 6.1. To show this, we construct a new estimator [X̂] as follows: [X̂] = X̂ if745
‖X̂‖ ≤ 10

√
L and [X̂] = 0 otherwise. Note that under the high-probability event ‖X‖ ≤ 2

√
L,746

necessarily ρ(X, [X̂]) ≤ ρ(X, X̂). Write747

Eρ(X, [X̂]) = E
[
ρ(X, [X̂])1‖X‖≤2

√
L

]
+ E

[
ρ(X, [X̂])1‖X‖>2

√
L

]
.748

749

Under ‖X‖ ≤ 2
√
L, the random variable ρ(X, [X̂]) is bounded by a constant, hence by Propo-750

sition 6.1,751

E
[
ρ(X, [X̂])1‖X‖≤2

√
L

]
≤ ε+ o(1) ,752

since ρ(X, X̂) ≤ ε holds w.p. 1− o(1). As for the other term,753

E
[
ρ(X, [X̂])1‖X‖>2

√
L

]
≤ E

[
L−1/2(‖X‖+ 10L1/2)1‖X‖>2

√
L

]
≤ 6E

[
L−1/2‖X‖1L−1/2‖X‖>2

]
,754

so that by Cauchy-Schwartz,755

E
[
L−1/2‖X‖1L−1/2‖X‖>2

]
≤
(
L−1E[‖X‖2]

)1/2 (
Pr(‖X‖ > 2

√
L)
)1/2

= o(1) .756

Thus, [X̂] uses n = [(1 + o(1))/ε+ c(α)]σ2 samples and achieves Eρ(X, [X̂]) ≤ ε + o(1), so757
that758

lim sup
L→∞

n∗MRA(L,α, ε)

σ2/ε
≤ 1 +Oα(ε).759

Class of “nice signals.”. Before getting to the details of the algorithm, in the analysis that760
follows, it is convenient to treat the signal X as fixed and belonging some class of “nice” signals.761
Specifically, we require that: (i) the signal is sufficiently uncorrelated with its shifts, in that762
L−1〈X,R`X〉 ≈ 0 for all ` 6= 0, and its norm is concentrated around L−1‖X‖2 ≈ 1; (ii) The763
Fourier (DFT) coefficients of X are uniformly bounded.764
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Let f0, . . . , fL−1 ∈ CL be the DFT basis vectors, that is, (f`)j = L−1/2e
2πi
L
`j , and F ∈ U(L)765

be the matrix whose columns are f0, . . . , fL−1, so that F∗X ∈ CL are the Fourier coefficients766
of X (here F∗ denotes the Hermitian conjugate of F .) For κ > 0, we formally consider the set767
(6.1)

Xκ =

{
X ∈ RL : max

`

∣∣L−1〈X,R`X〉 − 1{`=0}
∣∣ ≤ κ, and ‖F∗X‖∞ ≤

√
10 log(L)

}
,768

where 1{`=0} = 1 when ` = 0 and is zero otherwise. We take κ = o(1) sufficiently large so to769
ensure that when X ∼ N (0, I), the constraint max`

∣∣L−1〈X,R`X〉 − 1{`=0}
∣∣ ≤ κ holds with770

probability 1 − o(1) as L → ∞; by Lemma 4.1, we may choose κ = c log(L)/
√
L for c > 0 a771

large enough constant. Let X be the set corresponding to such choice. To lighten the notation,772
we will not keep track of κ explicitly, instead referring to all vanishing terms as o(1). For the773
other constraint, the exact bound ‖F∗X‖∞ ≤

√
10 log(L) is somewhat arbitrary, in that 10774

can be replaced with any constant greater than 4. The following is quite immediate at this775
point:776

Lemma 6.2. Suppose that X ∼ N (0, I). Then, Pr(X /∈ X) = o(1).777

We note that it is likely that without assuming that the estimation is over a class of “nice”778
signals (for example, the class Xκ), the situation changes. On that note, we mention the779
work [17], where it is shown that there are signals X for which the MLE only attains the rate780
ρ(X, X̂MLE) ∼ n−1/2.781

6.1. Step 1: Brute force template matching. Recall that our intermediate goal here is782
to find a direction Q̂ ∈ SL−1 such that max` L

−1/2〈X,R−1
` Q̂〉 ≥ 1 − η, where η > 0 is some783

desired accuracy level. Since, assuming X ∈ X, for any Q ∈ SL−1,784 ∥∥∥∥ X

‖X‖
−R−1

` Q

∥∥∥∥2

= 2− 2

〈
X

‖X‖
, R−1

` Q

〉
= 2− 2L−1/2〈X,R−1

` Q〉+ o(1),785

then taking N to be a √η-cover of SL−1, it must contain some Q ∈ N with L−1/2〈Q,R−1
` X〉 ≥786

1− 1
2η + o(1). It is well known that one can find a cover of the sphere which is not too large:787

Lemma 6.3. [Lemma 5.13 in [44]] There exists an √η-cover N of SL−1 of size |N | ≤788
(3/
√
η)L. That is, there exists a set N ⊂ SL−1 of size |N | ≤ (3/

√
η)L, such that ∀X ∈789

SL−1 , ∃Q ∈ N with ‖X −Q‖ ≤ √η.790

For each Q ∈ N , we define its per-sample score:791

si(Q) = sηi (Q) = 1

[
max
`
L−1/2〈Yi, R−1

` Q〉 ≥ 1− 3

4
η

]
,792

and the total score s(Q) =
∑n1

i=1 si(Q), n1 being the number of samples allocated for this step.793
That is, s(Q) is the number of samples Yi such that L−1/2〈Q,R−1

` Yi〉 ≥ 1 − 3
4η for some `.794

The returned estimator is then simply795

Q̂ = argmax
Q∈N

s(Q).796
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Note that si(·) could be thought of as a discontinuous proxy for the log-likelihood (restricted797
to X ∈ SL−1): logP (Yi|X) = log

∑L−1
`=0 exp

(
1
σ2 〈X,R−1

` Yi〉
)

+ constant. When σ is small,798

the log-likelihood is essentially dominated by max` σ
−2〈X,R−1

` Yi〉. Maximizing the likelihood799
is computationally more straightforward (in the sense that this is a continuous optimization800
problem, no need to quantize the domain as we do); however, analyzing the MLE directly801
appears to be difficult [22, 27].802

We start by showing that there are only a few shifts ` such that L−1/2〈X,R−1
` Q〉 are all803

large.804

Lemma 6.4. Suppose that X ∈ X. For Q ∈ SL−1, let805

NQ(h) =
∣∣∣{` : L−1/2

∣∣〈X,R−1
` Q〉

∣∣ ≥ h}∣∣∣ .806

Then, NQ(h) ≤ h−2‖F∗X‖2∞ ≤ h−2 · 10 log(L).807

We next show that if max` L
−1/2〈X,R−1

` Q〉 is small, then with high probability the score808
s(Q) is not large.809

Lemma 6.5. Assume that X ∈ X, α > 2, η < 1 −
√

2/α, and L is large enough so that810

log(L) ≤ L3η2α/128. Suppose that Q ∈ SL−1 is such that max` L
−1/2〈X,R−1

` Q〉 ≤ 1− η, then811

Pr (s(Q) ≥ n1/2) ≤

16

2 +
640(

1−
√

2
α

)2

L−η
2α/128


n1/2

.812

Next, we prove that if max`〈X,R−1
` Q〉 is sufficiently large, then s(Q) is large with high813

probability.814

Lemma 6.6. Assume that X ∈ X, α > 2, and L is large enough so that Lη2α/64 ≥ 4.815
Suppose that Q ∈ SL−1 is such that max`〈X,R−1

` Q〉 ≥ 1− 5η/8. Then,816

Pr(s(Q) < n1/2) ≤ e−n1/32.817

We are now ready to conclude the analysis of Step 1 of our algorithm.818

Proposition 6.7. Assume that X ∈ X, α > 2, and η < 1 −
√

2/α. Then, there is constant819
c > 0, such that whenever820

n1 ≥ c
L log(1/η)

αη2 log(L)
= c

σ2 log(1/η)

η2
,821

the vector Q̂ = argmaxQ∈N s(Q) satisfies max`〈X,R−1
` Q〉 ≥ 1− η with probability 1− o(1) as822

n1, L→∞. In fact, the error probability decays exponenentially fast with n1.823

Proof. As argued in the beginning of this section, the √η-cover N contains some Q ∈824

SL−1 such that L−1/2〈X,R−1
` Q〉 ≥ 1 − η/2 − o(1) ≥ 1 − 5η/8 for some `. By Lemma 6.6,825

with probability greater than 1 − e−n1/32, this vector has score s(Q) ≥ n1/2. It therefore826

This manuscript is for review purposes only.



26 E. ROMANOV, T. BENDORY, AND O. ORDENTLICH

suffices to show that with high probability, all the vectors Q ∈ N that are bad, meaning that827
max` L

−1/2〈X,R−1
` Q〉 < 1− η, have score s(Q) < n1/2. By Lemmas 6.3 and 6.5,828

Pr (∃bad Q ∈ N : s(Q) ≥ n1/2) ≤ |N | · Pr
(
s(Q) ≥ n1/2

∣∣Q is bad
)

829

≤ (9/η)L/2 ·

16

2 +
640(

1−
√

2
α

)2

L−η
2α/128


n1/2

830

≤
(
C(α)e−c1η

2α log(L)+c2
L
n

log(1/η)
)n1

,831
832

where c1, c2 > 0 are absolute constants, and C(α) depends on α. Then, this probability tends833

to 0 as n1, L→∞ (exponentially fast in n1 ) whenever n1 ≥ c L log(1/η)
αη2 log(L)

for some other c > 0.834

Note that at this point we could take X̂ = L1/2 · Q̂ as an estimator for X, so that835

ρ(X, X̂) = min
`
‖L−1/2X −R−1

` Q‖2 ≤ 2η + o(1),836

holds with high probability. For fixed η, this estimator indeed captures the correct dimensional837
scaling of the sample complexity, namely, that n = O(L/(α logL) samples are sufficient to838
get non-trivial alignment error. However, its dependence on η is seemingly quite bad: for839
estimating a signal in AWGN, without the shifts, the optimal dependence on η should look840
like O(L/(α logL) · η−1), rather than the much worse O

(
L/(α logL) · η−2 log(1/η)

)
we were841

able to show. In the next section, we see how to achieve this “correct” rate by essentially842
recovering the shifts on all but a vanishing fraction of the samples, and averaging the properly843
aligned measurements.844

6.2. Step 2: Achieving optimal MSE decay rate by alignment and averaging. Sup-845
pose that one has access to a known template Q ∈ SL−1, such that 〈X,Q〉 ≥ 1 − η. Since846
L−1‖X‖2 = 1 + o(1), this is the same as having ‖L−1/2X − Q‖2 ≤ 2η + o(1), and since847
max`6=0 L

−1|〈X,R`X〉| = o(1), we see that for any ` 6= 0,848

‖L−1/2R`X −Q‖ ≥ ‖L−1/2[R`X −X]‖ − ‖L−1/2X −Q‖ ≥
√

2−
√

2η − o(1).849

In particular, we see that when
√

2η <
√

2−
√

2η, that is, η < 1/4 (and L is sufficiently large),850
there is a unique ` (specifically, ` = 0) such that ‖L−1/2X −R`Q‖2 ≤ 2η + o(1). In that case,851
the idea of matching a sample Yi = R`iX + σZ against the template Q becomes well-posed,852
in the sense that its desired outcome is clear: we would like to recover the shift R`i .853

Lemma 6.8. Assume that X ∈ X and α > 2. Let Y = R`X + σZ, and suppose that854
Q ∈ SL−1 is independent of Y and satisfies max`′ L

−1/2〈X,R−1
`′ Q〉 ≥ 1− η, where855

√
η <

1

2
(1−

√
2/α).856

Denote the maximizing shift by `∗. Let ̂̀= argmax`′〈Y,R`′Q〉. Then857

Pr
(̂̀ 6= `− `∗

)
≤ 2L−

1
2
α(1/2−1/

√
2α−√η)

2
+o(1).858
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Given Lemma 6.8, we propose the following estimation strategy. Suppose we would like859
to estimate X up to error ρ(X, X̂) ≤ ε < 1. Fix some η > 0 with √η < (1 −

√
2/α)/2 (for860

concreteness, say η = (1−
√

2/α)2/16). We first apply the algorithm of Step 1 (Setion 6.1) to861

obtain Q̂ ∈ SL−1 such that max`〈X,R−1
` Q̂〉 ≥ 1− η. Assuming that n1 ≥ c log(1/η)

η2
σ2 = cησ

2,862

we are successful with probability 1− o(1). Let `∗ be such that 〈X,R−1
`∗ Q〉 ≥ 1− η. Next, for863

n2 new independent samples, we compute for each measurement ̂̀i = argmax`〈Yi, R`Q̂〉 and864
return the aligned sample average:865

(6.2) X̂ =
1

n2

n2∑
i=1

R−1̂̀
i
Yi.866

Lemma 6.8 tells us that we should expect most of the aligned measurements R−1̂̀
i
Yi to be867

well-aligned with R`∗X, that is, R−1̂̀
i
Yi = R`∗X +N (0, σ2I). This means that, X̂ ≈ R`∗X +868

N (0, (σ2/n2)I), hence ρ(X, X̂) ≤ L−1‖R`∗X − X̂‖2 ≈ σ2/n2, which is smaller than ε if869
n2 ≥ σ2/ε. We make this argument precise below:870

Proposition 6.9. Assume that X ∈ X and α > 2. Fix ε > 0 and some η < 1
2(1 −

√
2/α)2.871

Let Q̂ ∈ SL−1 be the output of Step 1 (run with a tuning parameter η and n1 samples). Let X̂872
be as in equation (6.2), computed from n2 new samples. Suppose that n1, n2, L→∞ with873

n1/σ
2 → γ1, n2/σ

2 → γ2

ε
,874

where γ1 and γ2 are constants satisfying875

γ1 = γ1(η) ≥ c log(1/η)

η2
, γ2 > 1,876

(c being the universal constant from Proposition 6.7). Then,877

Pr
(
ρ(X, X̂) ≤ ε

)
→ 1.878

Proposition 6.1 now immediately follows from Lemma 6.2 and Proposition 6.9.879

7. Conclusions and extensions. In this work we have studied the sample complexity of880
the MRA problem in the limit of large L. In this regime, we have shown that the parameter881

α = σ2 logL
L plays a crucial role in characterizing the best attainable performance of any882

estimator.883
As mentioned above, the MRA model is primarily motivated by the cryo-EM technology884

to constitute the 3-D structure of biological molecules. In the cryo-EM literature, it was shown885
that it is effective to assume that the molecule was drawn from a Gaussian prior with decaying886
power spectrum [37]. In addition, the 3-D rotations are usually not distributed uniformly887
over the group SO(3). We now discuss briefly how these different aspects can be potentially888
incorporated into our framework.889
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Prior on the signal. Our model assumes a Gaussian i.i.d. prior on the signal X to be890
reconstructed. While this assumption lends itself to a relatively clean analysis, and allows to891
compare our bounds on n∗MRA(L,α, ε) to the simple benchmark n∗AWGN(L,α, ε), many of our892
results can be generalized to treat other priors on X. In particular, all of our sample complexity893
lower bounds are based on lower bounding the mutual information between X and X̂ under894
the constraint E[ρ(X, X̂)] ≤ ε on the one hand, and upper bounding I(X;Y n) under the MRA895
model, on the other hand. In Proposition 5.1 we have relied on the Gaussian rate distortion896
function to lower bound I(X; X̂) for any estimator that achieves MSE at most ε. For X whose897
distribution is not N (0, I), we can either compute the corresponding rate distortion function898
explicitly, or simply apply Shannon’s lower bound R(D) ≥ h(X)− L

2 log(2πeD), see [13]. Our899
upper bounds on I(X;Y n) in the regime α > 1 are based on Lemma 5.3, followed by lower900
bounding I(Rn;X|Y n) using Fano-like arguments. It is easy to see that (5.4) continues to hold,901
with ≤ instead of =, for any random variable X with E‖X‖2 ≤ L. Furthermore, the lower902

bounds on I(Rn;X|Y n) we derive in Section 5.3.2 remain valid whenever ‖X‖L is sufficiently903

concentrated around 1 and 〈X,R`X〉L is sufficiently concentrated around 0 for all ` = 1, . . . , L−1.904
In particular, this is the case for (sufficiently light-tailed) i.i.d. zero-mean and unit variance905

distributions. In light of the discussion above, we see that the parameter α = σ2 logL
L is of great906

importance whenever the random signal X satisfies the above concentration requirements and907
has differential entropy proportional to L.908

Shift distribution. Assuming uniform prior on the i.i.d. shifts R`1 , . . . , R`n is a worst-case909

analysis. Indeed, for any given distribution, shifting all measurements again RuiYi, for ui
i.i.d.∼910

Uniform({0, . . . , L−1}) before feeding them to the estimator leads to (1.1). However, previous911
works (for fixed L) showed that harnessing non-uniformity can make a big difference in the912
sample complexity [1,38]. With some effort, our upper bounds on I(X;Y n) in the regime α > 1913
should also extend to treat this case. Here, the main challenge is to generalize Lemma 5.9 to914
the case of non-uniform distribution, i.e., to find a sharp estimate on the smallest possible size915
of a list of candidates for the true shift, which contains the true shift with high probability.916

Extension to other groups. We believe that many aspects of our information-theoretical917
analysis can be generalized to other (families of) discrete groups, denoted here by GL, which918
satisfy the following properties (roughly speaking): (i) If X is suitably generic and g 6= h,919
then 〈gX, hX〉 is very small - concretely, if X ∼ N (0, I), then E[〈gX, hX〉] = 0; (ii) The920
size of the group |GL| does not grow too fast (strictly less than exponentially fast in L).921
These conditions imply that whenever X is isotropic and sufficiently light-tailed (e.g., sub-922
Gaussian), {gX}g∈G are “almost orthogonal.” The proper noise scaling to consider would then923
be σ2 = L

α log |GL| , with α = 2 being the critical noise level—this comes from the fact that924

maxg∈GL〈gX,Z〉 ≈
√

2 log |GL|. For continuous compact groups , we suspect that one might925
be able to apply some of our arguments by cleverly discretizing the suitable group action.926
Carrying out a program of this type seems as a promising direction for future research.927
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