

Multi-reference alignment in high dimensions: sample complexity and phase transition

Elad Romanov ^{*}, Tamir Bendory[†], and Or Ordentlich[‡]

Abstract. Multi-reference alignment entails estimating a signal in \mathbb{R}^L from its circularly-shifted and noisy copies. This problem has been studied thoroughly in recent years, focusing on the finite-dimensional setting (fixed L). Motivated by single-particle cryo-electron microscopy, we analyze the sample complexity of the problem in the high-dimensional regime $L \rightarrow \infty$. Our analysis uncovers a phase transition phenomenon governed by the parameter $\alpha = L/(\sigma^2 \log L)$, where σ^2 is the variance of the noise. When $\alpha > 2$, the impact of the unknown circular shifts on the sample complexity is minor. Namely, the number of measurements required to achieve a desired accuracy ε approaches σ^2/ε for small ε ; this is the sample complexity of estimating a signal in additive white Gaussian noise, which does not involve shifts. In sharp contrast, when $\alpha \leq 2$, the problem is significantly harder and the sample complexity grows substantially quicker with σ^2 .

Key words. multi-reference alignment, information-theoretic lower bounds, estimation in high dimensions, mathematics of cryo-EM imaging

17 **AMS subject classifications.** 62B10, 94A15, 94A12, 62F99

18 **1. Introduction.** We study the sample complexity of the multi-reference alignment (MRA)
 19 model: the problem of estimating a signal from its circularly-shifted and noisy copies. Specif-
 20ically, let $X \sim \mathcal{N}(0, I)$ be an L -dimensional vector with i.i.d. standard normal entries. We
 21 collect n independent measurements of random cyclic shifts of X , corrupted by additive white
 22 Gaussian noise:

$$(1.1) \quad Y_i = R_{\ell_i} X + \sigma Z_i, \quad i = 1, \dots, n,$$

25 where R_ℓ denotes a cyclic shift, namely, $(R_\ell X)_j = X_{(j+\ell) \bmod L}$ for all $j = 0, \dots, L-1$, $Z_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, I)$, and $\ell_i \stackrel{i.i.d.}{\sim} \text{Uniform}(\{0, \dots, L-1\})$ are statistically independent of X . Given the 26 measurements $Y^n = (Y_1, \dots, Y_n)$, one is interested in constructing an estimator $\hat{X} = \hat{X}(Y^n)$ 27 of the signal. Importantly, the unknown shifts ℓ_1, \dots, ℓ_n —while their estimation might be a 28 means to an end—are nuisance variables. Figure 1 shows an example of a measurement drawn 29 from (1.1). 30

31 This paper focuses on the high-dimensional regime, where the dimension of the signal
 32 grows indefinitely $L \rightarrow \infty$. In this setting, we wish to characterize the relations between the
 33 number of measurements n , the length of each observation L , and the noise level σ^2 that allow
 34 estimating X to a prescribed accuracy. This is in contrast to previous works, surveyed in
 35 Section 3, which analyzed the interplay between n and σ , while considering a fixed L .

*School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel (elad.romanov@mail.huji.ac.il).

[†]School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel (bendory@tauex.tau.ac.il).

[†]School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel (or.ordentlich@mail.huji.ac.il).

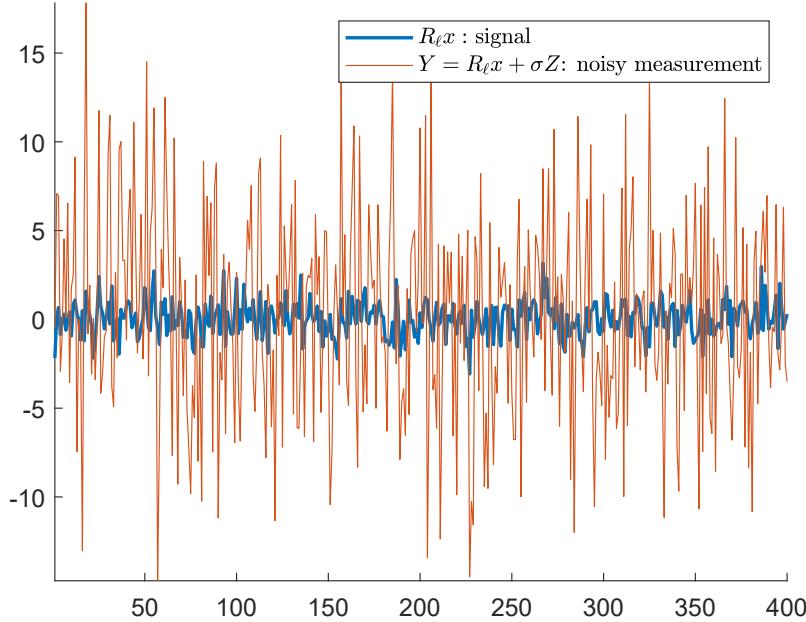


Figure 1. An example of a measurement drawn from (1.1) for $\alpha = 2$ and $L = 400$. The corresponding noise level is $\sigma^2 = 33.38$.

36 It is important to note that given the measurements, there is no way to distinguish between
 37 X and its cyclic shift since $P_{Y^n|X=x} = P_{Y^n|X=R_1x} = \dots = P_{Y^n|X=R_{L-1}x}$. Therefore, we can
 38 only estimate the orbit of X under the group of circular shifts \mathbb{Z}_L . Accordingly, we use the
 39 following distortion measure

40 (1.2)
$$\rho(X, \hat{X}) = \frac{1}{L} \min_{\ell=0, \dots, L-1} \|X - R_\ell \hat{X}\|^2.$$

 41

42 In the sequel, we loosely say that we aim to estimate X rather than its orbit, and refer to
 43 $\mathbb{E}\rho(X, \hat{X})$ as the MSE.

44 **Sample complexity.** Our goal in this paper is to characterize the smallest possible number
 45 of measurements required to achieve a desired MSE in terms of the dimension L and the noise
 46 level σ^2 . To that end, we define the smallest MSE attainable by any estimator as

47 (1.3)
$$\text{MSE}_{\text{MRA}}^*(L, \sigma^2, n) := \inf_{\hat{X}} \mathbb{E}\rho(X, \hat{X}(Y^n)),$$

 48

49 and the sample complexity of the MRA problem

50 (1.4)
$$n_{\text{MRA}}^*(L, \sigma^2, \varepsilon) := \min \{n : \text{MSE}_{\text{MRA}}^*(L, \sigma^2, n) \leq \varepsilon\}.$$

52 We define the signal-to-noise ratio (SNR) by

53 (1.5)
$$\text{SNR} := \frac{\mathbb{E}\|X\|^2}{\sigma^2} = \frac{L}{\sigma^2}.$$

54 This definition is consistent with previous works which considered a fixed L and $\sigma \rightarrow \infty$,
 55 implying $\text{SNR} \rightarrow 0$; see Section 3.

56 The asymptotics in our model turn out to be particularly interesting when the dimension,
 57 the noise level, and the SNR are simultaneously large. In particular, it will be convenient to
 58 parametrize the noise variance by

59 (1.6)
$$\sigma^2(\alpha) = \frac{L}{\alpha \log L} \iff \alpha = \frac{L}{\sigma^2 \log L} = \frac{\text{SNR}}{\log L}.$$

 60

61 Accordingly, we define $\text{MSE}_{\text{MRA}}^*(L, \alpha, n) := \text{MSE}_{\text{MRA}}^*(L, \sigma^2(\alpha), n)$ and $n_{\text{MRA}}^*(L, \alpha, \varepsilon) := n_{\text{MRA}}^*(L, \sigma^2(\alpha), \varepsilon)$. ■

62 **Motivation.** The MRA model is mainly motivated by single-particle cryo-electron mi-
 63 croscopy (cryo-EM)—a leading technology to constitute the 3-D structure of biological mol-
 64 ecules. In its most simplified version, the cryo-EM problem involves reconstructing a 3-D
 65 structure from its multiple noisy tomographic projections, taken after the structure has been
 66 rotated by an unknown 3-D rotation. In analogy, in the MRA model (1.1) the signal X is
 67 measured after an unknown circular shift. In Theorem 2.3, we extend the basic model to
 68 include a projection; we refer to this model as the projected MRA model. This projection
 69 plays the role, to some extent, of the tomographic projection in cryo-EM. Section 7 discusses
 70 further potential extensions.

71 The correspondence between MRA and cryo-EM, while admittedly not perfect, has mo-
 72 tivated an extensive study of the MRA problem in recent years. For example, the resolution
 73 limitations of MRA were analyzed in [12] in order to draw an analogy to the achievable reso-
 74 lution of cryo-EM—a crucial aspect from a biological standpoint. More relevant to this work,
 75 in [3, 6, 8, 32], the sample complexity of the MRA and cryo-EM models were analyzed for a fixed
 76 dimension L . Remarkably, it was shown that in the low noise regime (small σ), the number
 77 of measurements should scale like σ^2 , while in the high noise regime (large σ) n must increase
 78 with σ^6 ; see further discussion in Section 3.

79 Our high-dimensional analysis is motivated by the size of modern cryo-EM datasets. In
 80 a typical cryo-EM experiment, the number of measurements and the dimension of the 3-
 81 D structure are of the same order of a few millions. For example, a 3-D structure of size
 82 $200 \times 200 \times 200$ voxels resulting in 8,000,000 parameters to be estimated. Since a typical
 83 noise level in a cryo-EM dataset is $\sigma^2 \approx 100$, the anticipated parameter regime is $\alpha \gg 1$. We
 84 do emphasize, however, that these numbers should be taken with some degree of skepticism:
 85 while cryo-EM is a motivation for studying the MRA problem, these are ultimately quite
 86 different problems, and practical cryo-EM setups involve additional complications, that are
 87 not captured by MRA [10]. In fact, high-dimensional statistical analysis has been already
 88 proven to be effective for cryo-EM data processing. For example, a covariance estimation
 89 technique based on high-dimensional analysis (the so-called spiked model) has significantly
 90 improved image denoising [14].

91 **Information-theoretic background and asymptotic notation.** The analysis of this work is
 92 greatly based on information-theoretic notions and techniques. For completeness, we review
 93 the relevant definitions in supporting information (SI) appendix, Section SM1.

94 We also repeatedly use asymptotic notation. For sequences $a = a(L)$ and $b = b(L)$, we
 95 write $a(L) = O(b(L))$ if there exists a constant $C > 0$ such that $a(L) \leq Cb(L)$ for all L .
 96 Similarly, $a(L) = \Omega(b(L))$ means $a(L) \geq Cb(L)$. Occasionally, we use $a(L) = O_\beta(b(L))$ to

97 signify explicitly that C depends on some parameter β . The notation $a(L) = o(b(L))$ means
 98 $a(L)/b(L) \rightarrow 0$ as $L \rightarrow \infty$. In particular, if $a(L) = o(1)$ then $a(L) \rightarrow 0$ asymptotically.
 99 Similarly, $a(L) = \omega(b(L))$ means $a(L)/b(L) \rightarrow \infty$.

100 **Reproducibility.** The code to reproduce the figures is publicly available at <https://github.com/TamirBendory/high-dimensional-mra-bounds>.¹

102 **Supporting information (SI).** Due to space constraints, we have relegated the proofs of
 103 several technical claims to the SI appendix. In addition to those, the SI contains a brief review
 104 of all information-theoretic notions necessary to follow this work (Section SM1), as well as
 105 some additional discussion which is somewhat tangential to our main results (Section SM2).

106 **2. Main results and discussion.**

107 **Phase transition..** This work focuses on the asymptotic setting where L tends to infinity.
 108 Our first main finding is that in this asymptotic limit there is a transition in terms of the
 109 behavior of the sample complexity. For $\alpha > 2$, the MRA problem is essentially as easy
 110 as estimating a signal in additive white Gaussian noise (AWGN), with no random shifts.
 111 More precisely, for sufficiently small distortion ε , the sample complexity tends to the sample
 112 complexity of estimating a signal in AWGN, $n_{\text{AWGN}}^*(L, \alpha, \varepsilon) = \lceil (\frac{1}{\varepsilon} - 1) \sigma^2(\alpha) \rceil$, which behaves
 113 as $\frac{\sigma^2(\alpha)}{\varepsilon}$ for small ε . In sharp contrast, for $\alpha \leq 2$ the problem becomes substantially harder.

114 **Theorem 2.1.** *The sample complexity of the MRA model (1.1) obeys:*

115 1. *For any $\alpha > 2$ we have*

$$116 \quad \lim_{\varepsilon \rightarrow 0} \lim_{L \rightarrow \infty} \frac{n_{\text{MRA}}^*(L, \alpha, \varepsilon)}{\sigma^2(\alpha)/\varepsilon} = \lim_{\varepsilon \rightarrow 0} \lim_{L \rightarrow \infty} \frac{n_{\text{MRA}}^*(L, \alpha, \varepsilon)}{n_{\text{AWGN}}^*(L, \alpha, \varepsilon)} = 1.$$

118 2. *For any $\alpha \leq 2$ and any $\varepsilon < 1$ we have*

$$119 \quad n_{\text{MRA}}^*(L, \alpha, \varepsilon) = \omega(\sigma^2 \log(1/\varepsilon)).$$

121 *In particular, for fixed ε ,*

$$122 \quad \lim_{L \rightarrow \infty} \frac{n_{\text{MRA}}^*(L, \alpha, \varepsilon)}{n_{\text{AWGN}}^*(L, \alpha, \varepsilon)} = \infty.$$

124 In part 1 of Theorem 2.1, the lower bound $\frac{n_{\text{MRA}}^*(L, \alpha, \varepsilon)}{n_{\text{AWGN}}^*(L, \alpha, \varepsilon)} \geq 1$ is trivial: estimating in
 125 the MRA model is harder than estimating a signal in AWGN (namely, when the shifts are
 126 known). A small subtlety is that the distortion measure $\mathbb{E}\rho(X, \hat{X})$ is a bit weaker than the
 127 standard definition of MSE, $\mathbb{E}\|X - \hat{X}\|^2$, as it allows for any cyclic shift. However, we show
 128 in Section 5 that, as expected, this has a vanishing effect for large L . In order to show
 129 that $\lim_{\varepsilon \rightarrow 0} \lim_{L \rightarrow \infty} \frac{n_{\text{MRA}}^*(L, \alpha, \varepsilon)}{n_{\text{AWGN}}^*(L, \alpha, \varepsilon)} \leq 1$ we introduce an algorithm that for any $\alpha > 2$ requires
 130 about $\sigma^2(\alpha)/\varepsilon$ samples to achieve $\mathbb{E}\rho(X, \hat{X}) \leq \varepsilon$, provided that ε is sufficiently small and L
 131 is sufficiently large. The sole purpose of the estimation procedure is establishing an upper
 132 bound; its computational complexity is exponential in L and thus the procedure is far from
 133 being efficient. More specifically, it is based on a two-step procedure. First, we construct a δ -net

¹Our expectation-maximization implementation is based on the code of [11].

134 that, by definition, contains a member close to X and look for the most likely candidate within
 135 that net given the measurements. Second, we use this candidate in order to determine almost
 136 all shifts $\hat{\ell}_i$, and then estimate the signal by alignment and averaging $\hat{X} = \frac{1}{n} \sum_{i=1}^n R_{-\hat{\ell}_i} Y_i$.
 137 The details are given in Section 6.

138 In order to establish part 2 of Theorem 2.1, we show that for $\alpha \leq 2$ the mutual information
 139 (MI) $I(X; Y)$ between X and a single MRA measurement grows with L significantly slower
 140 than $I(X; X + \sigma Z)$, as in estimating a signal in AWGN. The details are given in Section 5.

141 Although our results are *asymptotic* in L , the transition in the difficulty of the problem
 142 around $\alpha = 2$, as predicted by Theorem 2.1, is evident already for relatively small L . Figure 2
 143 presents the root MSE (RMSE) as a function of α for different values of L . We take our
 144 estimator \hat{X} to be the output of the expectation-maximization (EM) algorithm [11, 20], which
 145 is the standard choice for MRA; see details in Section 3. For large values of L and large α , the
 146 error of EM tends to that of estimating a signal in AWGN, implying that it detects the shifts
 147 accurately. For smaller values of α , the error grows rapidly, especially when $\alpha < 2$. We note
 148 that the observed transition in the vicinity of $\alpha = 2$, at the values of L considered in Figure 2
 149 (few 100s), appears to not be very sharp. Our proofs suggest that perhaps this behavior is to
 150 be expected: the concentration rates we are able to derive for some of the quantities relevant
 151 to the analysis is quite slow (inverse polynomial in L , with a very small exponent when α is
 152 close to 2).

153 **Connection with template matching.** At this point, the reader may wonder what is the
 154 intuitive interpretation of $\alpha = 2$. To answer this question we now introduce the *template*
 155 *matching problem*, which is studied in detail in Section 4. In this problem, we are given X
 156 and one MRA measurement $Y = R_\ell X + Z$, where X , R_ℓ and Z are distributed as above, and
 157 our goal is to recover the shift R_ℓ . We will see that in the asymptotic setting, $\alpha = 2$ is the
 158 critical threshold for this problem. That is, the error probability in recovering R_ℓ from (X, Y)
 159 approaches 0 for all $\alpha > 2$, and approaches 1 for all $\alpha < 2$.

160 In the MRA problem, recovering the shifts is harder, as we do not have access to X .
 161 We nevertheless show that for $\alpha > 2$, given enough measurements, it is possible to recover a
 162 fraction approaching 1 of the shifts correctly. On the other hand, recovering a large fraction of
 163 the shifts correctly for $\alpha < 2$ is impossible since it is impossible even in the template matching
 164 model. Intuitively, if we cannot recover almost all shifts, the attained MSE should be much
 165 worse than in estimating a signal in AWGN, which means that the sample complexity should
 166 be much higher for $\alpha < 2$. Our bounds in Section 5 formalize this intuition.

167 To illustrate the phase transition for template matching, we conducted a “genie-aided”
 168 experiment, presented in Figure 3. In this experiment, we use the true X (the “genie”) in
 169 order to estimate the shifts by $\hat{\ell}_i = \arg \max_{\ell \in \{0, \dots, L-1\}} \langle R_\ell X, Y_i \rangle$. Then, we estimate the signal
 170 by aligning the measurements and averaging $\hat{X} = \frac{1}{n} \sum_{i=1}^n R_{-\hat{\ell}_i} Y_i$. For large values of α , the
 171 recovery error converges to the error of estimating a signal in AWGN. For smaller α values,
 172 and in particular $\alpha < 2$, the recovery error rapidly increases.

173 **Tighter lower bound for the low SNR regime.** Theorem 2.1 shows that for all $\alpha \leq 2$ and
 174 fixed $\varepsilon < 1$ the shifts make a difference: the sample complexity with unknown shifts (i.e., the
 175 MRA problem) is $\omega(\sigma^2(\alpha) \log(1/\varepsilon))$, and is therefore substantially greater than the sample
 176 complexity when the shifts are known. For $\alpha < 1$, we were able to prove a much stronger lower

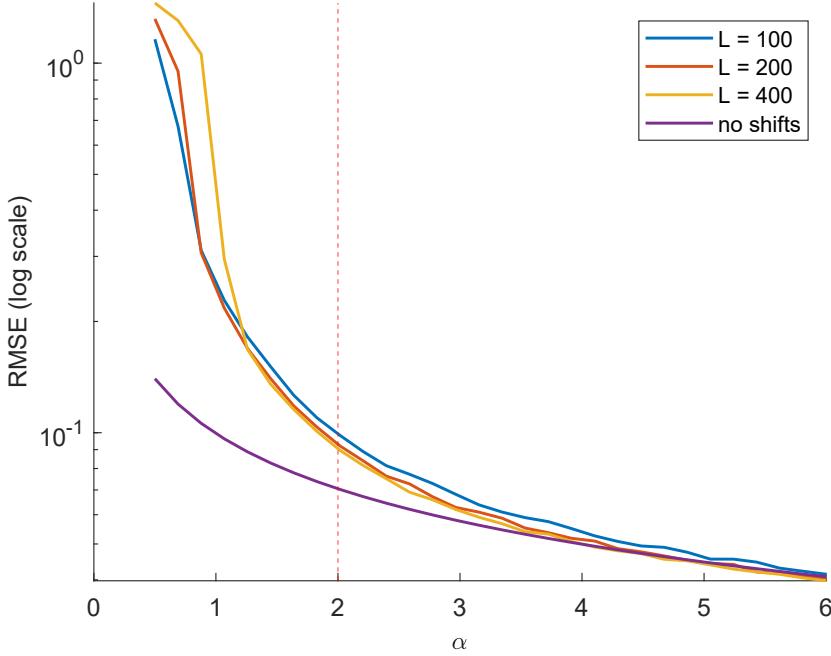


Figure 2. The RMSE of EM (averaged over 100 trials) as a function of α for different values of L . The number of measurements was set to be $n(L) = 100L/\log(L)$. An example of a single measurement appears in Figure 1. For large values of α , the error reduces to the error of estimating a signal in AWGN, $\sqrt{\frac{\sigma^2}{\sigma^2+n}} = \frac{1}{\sqrt{1+100\alpha}}$, suggesting that EM performs as if the shifts were known. For small values of α , and in particular $\alpha < 2$, the error rapidly increases.

177 bound on the sample complexity.

178 **Theorem 2.2.** For any $0 < \alpha < 1$, and $0 < \varepsilon < 1$,

179 (2.1)
$$n_{MRA}^*(L, \alpha, \varepsilon) = \Omega(L^{2-\alpha} \log(1/\varepsilon)).$$

181

182 Theorems 2.1 and 2.2 are proved in Section 5.

183 **The sample complexity of the projected MRA model.** Recall that MRA serves as a toy model
 184 of the cryo-EM reconstruction problem. An additional complication arising in cryo-EM is a
 185 fixed tomographic projection, a line integral, also known as the X-ray transform. To account
 186 for this effect, we extend our basic model (1.1) to the *projected multi-reference alignment*
 187 *problem* (PMRA) model:²

188 (2.2)
$$Y_i = \pi_S R_{\ell_i} X + \sigma Z_i.$$

189 Here, $\pi_S : \mathbb{R}^L \rightarrow \mathbb{R}^{L'}$ is matrix projecting a vector in \mathbb{R}^L to $\mathbb{R}^{L'}$ by keeping only the coordinates
 190 that belong to a subset $S \subset [L]$ of size $L' \leq L$ and discarding the rest, and $Z_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, I)$ are

²We mention that other projected MRA models were studied in [6, 12].

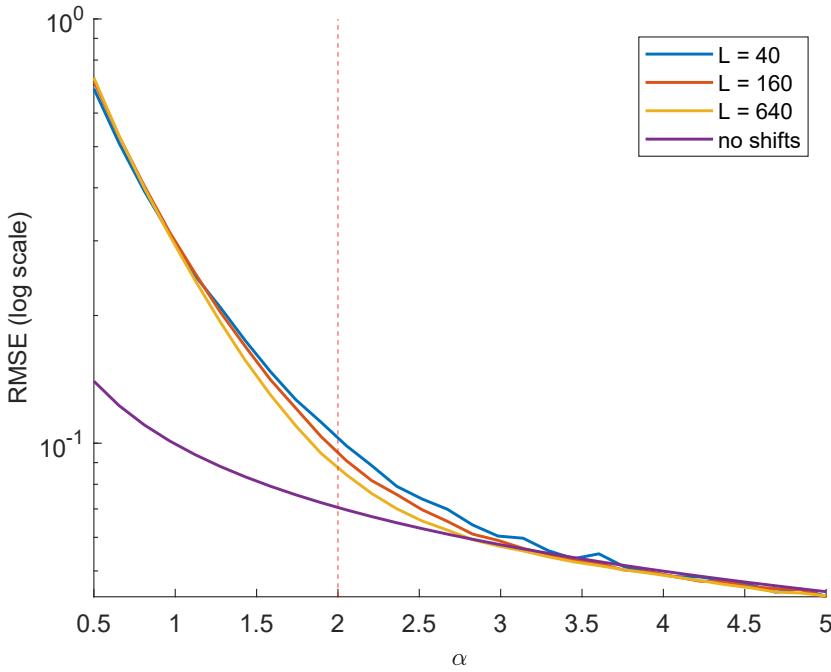


Figure 3. A “genie-aided” experiment: the true X is used to estimate the shifts $\hat{\ell}_1, \dots, \hat{\ell}_n$, as in the template matching problem, and then the signal is estimated by aligning all measurements and averaging $\hat{X} = \frac{1}{n} \sum_{i=1}^n R_{-\hat{\ell}_i} Y_i$. The figure presents the RMSE (averaged over 50 trials) as a function of α for different values of L . The number of measurements was set to be $n(L) = 100L/\log(L)$. For large values of α , the error reduces to the error of estimating a signal in AWGN (i.e., when the shifts are known) $\sqrt{\frac{\sigma^2}{\sigma^2+n}} = \frac{1}{\sqrt{1+100\alpha}}$. For small values of α , and in particular $\alpha < 2$, the template matching error quickly increases.

192 L' -dimensional i.i.d. Gaussian vectors. We assume that S is fixed and known to the estimator.
 193 As in MRA without the projection, the goal is to reconstruct X up to a circular shift, that is,
 194 produce an estimate \hat{X} such that $\mathbb{E}\rho(X, \hat{X})$ is as small as possible.

195 We study the PMRA problem in an asymptotic setting where $L, L', \sigma^2 \rightarrow \infty$ simultaneously.
 196 It makes sense to adopt a slightly different scaling for the noise in PMRA, as

$$197 \quad (2.3) \quad \sigma^2 = \sigma_{\text{PMRA}}^2(\alpha) = \frac{L'}{\alpha \log(L)}.$$

198 The reason for this particular scaling will be made clear from the analysis: the numerator is the
 199 total signal energy available in a single measurement, $\mathbb{E}\|\pi_S R_{\ell_i} X\|^2 = L'$; the $\log(L)$ factor is
 200 \log the size of the group of shifts. In Section 7 we provide some remarks as to how to extend our
 201 results to other groups. Similarly to our notation for the MRA model, we denote the smallest
 202 attainable MSE in the PMRA model as $\text{MSE}_{\text{PMRA}}^*(L, \alpha, n)$, and the sample complexity as
 203 $n_{\text{PMRA}}^*(L, \alpha, \varepsilon)$.

204 **Theorem 2.3.** Suppose that $\sigma_{\text{PMRA}}^2(\alpha)$ is scaled as in (2.3), and $L, L' \rightarrow \infty$, so that $L' \leq L$
 205 and $L' = \omega(\log(L))$ (that is, L grows strictly less than exponentially fast in L'). The sample
 206 complexity of the PMRA model (2.2) obeys the following lower bounds:

207 1. For any $\alpha > 2$ and $0 < \varepsilon < 1$ we have that

208 (2.4)
$$209 n_{PMRA}^*(L, \alpha, \varepsilon) \geq \frac{L}{L'} \left(\frac{1}{\varepsilon} - 1 \right) \sigma_{PMRA}^2(\alpha) (1 + o(1)).$$

210 2. For any $\alpha \leq 2$ and $0 < \varepsilon < 1$ we have that

211 (2.5)
$$212 n_{PMRA}^*(L, \alpha, \varepsilon) = \omega \left(\frac{L}{L'} \sigma_{PMRA}^2(\alpha) \log(1/\varepsilon) \right).$$

213 The proof of the theorem relies heavily on the proof of Theorem 2.1. Due to space constraints,
 214 a proof sketch is relegated to the SI appendix, see Section SM6. We conjecture that at high
 215 SNR ($\alpha > 2$), the lower bound given in Theorem 2.3 is in fact tight at very low MSE (formally
 216 $\varepsilon \rightarrow 0$, as in Theorem 2.1).

217 *Extension to other signal priors and group actions.* In section 7 we describe briefly how one
 218 could modify our proofs to account for other i.i.d. signal priors (besides Gaussian) and finite
 219 group actions.

220 **3. Prior art.** The multi-reference alignment problem was introduced by [7], and fully
 221 formulated in [8]. The general MRA model reads

222 (3.1)
$$223 Y_i = T_i(g_i \circ X) + \sigma Z_i, \quad i = 1, \dots, n,$$

224 where g_i is a random element of a compact group G (drawn from a possibly unknown distribu-
 225 tion over G) acting on a vector space $X \in \mathbb{X}$, and T_i , $i = 1, \dots, n$, are known linear operators.
 226 If $T_i = I$ for all i , g_i are drawn uniformly from the group of cyclic shifts \mathbb{Z}_L , and $X \sim \mathcal{N}(0, I)$,
 227 then (3.1) reduces to the MRA model (1.1). This model can be thought of as a special case
 228 of a Gaussian mixture model, where all centers are connected through a group action (i.e., a
 229 cyclic shift). If $T_i = \pi_S$ for all i , we get the projected MRA model (2.2). In cryo-EM—the
 230 main motivation of this work— G is the group of 3-D rotations $SO(3)$, \mathbb{X} is the space of 3-D
 231 “band-limited” functions (that is, functions that can be expanded by finitely many basis func-
 232 tions), and T_i encodes the (fixed) tomographic projection, as well as other linear effects, such
 233 as the microscope’s point spread function (which varies across images) and sampling [10, 41].

234 The sample complexity of the MRA model (1.1), in the minimax sense, was first studied
 235 in [9, 32]. The focus of these works, as well as the rest of the works mentioned in this section,
 236 is on the regime where the noise level σ and number of measurements n diverge, while the
 237 dimension of each measurement L is fixed, implying $SNR \rightarrow 0$. These results were extended
 238 to the general MRA model (3.1) by [6] and [3] (the latter generalizes the framework proposed
 239 in [1]). These papers constitute an intimate connection between the MRA model and the
 240 method of moments—a classical estimation technique. Let \bar{d} be the lowest order moment
 241 that distinguishes two different signals (signals that are not in the same orbit) given a specific
 242 MRA model (namely, fixed T_i , \mathbb{X} , and a distribution over G). Then, unless $n \cdot SNR^{\bar{d}} \rightarrow \infty$, the
 243 MSE is bounded from below. More informally, the moments determine the optimal (minimax)
 244 estimation rate of the problem. For example, for the MRA model (1.1) it is known that the
 245 third moment determines a generic signal uniquely (in this work we only consider normal i.i.d.
 246 signals that fall into this category), i.e., $\bar{d} = 3$, and thus $n \cdot SNR^3 \gg 1$ is a necessary condition.

247 Remarkably, this phenomenon was observed empirically in context of cryo-EM early on by
 248 Sigworth [39].

249 In this work, we propose an alternative explanation for the statistical difficulty of MRA
 250 at low SNR, in a setting where the signal X is “generic” (specifically, $X \sim \mathcal{N}(0, I)$) and the
 251 dimension is very large. The separation between the two SNR regimes we identify is *not*
 252 given in terms of moments; instead, it is characterized in terms of a very natural estimation-
 253 theoretic question: is it possible, in an information-theoretic sense, to consistently recover the
 254 unknown shifts (nuisance parameters) themselves? As we scale $\text{SNR} = \alpha \log L$, the threshold
 255 $\alpha = 2$, separating the high and low SNR regimes, is exactly the threshold for the shift recovery
 256 problem. Note that in this high-dimensional setting, we find that the low SNR regime in fact
 257 extends beyond the case $\text{SNR} \rightarrow 0$ to unbounded values of SNR (provided that it grows slowly
 258 enough with L)—this is in contrast to previous works that study MRA in fixed dimension.

259 From the algorithmic perspective, two main computational frameworks were applied to
 260 MRA problems. The first approach is based on expectation-maximization (EM)—a popular
 261 heuristic to maximize the posterior distribution [20]. EM is the most popular and successful
 262 methodology to elucidate high-resolution 3-D structures using cryo-EM [10, 37], and it was
 263 successfully applied to a variety of MRA setups [1, 11, 12, 16, 31]. A recent work [22] studies
 264 the likelihood landscape for the general MRA model (3.1), where G is a discrete group and
 265 $T_i = I$. The latter paper shows that when the dimension is fixed and the SNR is sufficiently
 266 high, the log likelihood has certain favorable features from an optimization perspective; their
 267 results give a compelling argument for why EM seems to give good performance for MRA in
 268 high SNR. In [17], it is shown that usually maximum likelihood achieves the parametric rate
 269 $\rho(X, \hat{X}_{\text{MLE}}) \sim 1/n$, although in some cases the rate can be $\sim 1/\sqrt{n}$.

270 The second algorithmic framework is based on the method of moments. This approach
 271 has an appealing property: it requires only one pass over the measurements, and thus its
 272 computational load is relatively low, unless L is large [1, 11, 16, 31, 32, 35]. In addition, as men-
 273 tioned, it achieves the optimal estimation rate when L is fixed and $\text{SNR} \rightarrow 0$. Consequently, a
 274 variety of moment-based algorithms were proposed. For example, the authors of [32] suggest
 275 estimating the third-order tensor moment of the signal $T^{(3)} = L^{-1} \sum_{\ell=0}^{L-1} (R_\ell X)^{\otimes 3}$, from which
 276 X can be recovered by Jenrich’s method [24, 29]. Using the robustness analysis of [23], they
 277 were able to show that $n = O(\varepsilon^{-1} \sigma^6 \text{poly}(L))$ samples suffice to achieve $\rho(X, \hat{X}) \leq \varepsilon$ with
 278 constant probability. This bound depends polynomially on both the dimensional and on the
 279 inverse smallest DFT coefficient of X ; when $X \sim \mathcal{N}(0, I)$, one can verify that typically all the
 280 DFT coefficients of X are greater than $\Omega(L^{-1/2})$. The $\text{poly}(L)$ dependence is not computed
 281 explicitly, but to the best of our understanding, the analysis of [23] provides a significantly
 282 worse dimensional scaling than the $\Omega(L^2)$ in our lower bound (as $\alpha \rightarrow 0$). Another work [11]
 283 studies recovery by bispectrum inversion, which is equivalent to the third-order moment if
 284 the distribution of shifts is uniform. They argue that when L is fixed, the sample complexity
 285 should scale like $O(\sigma^6)$, hiding an implicit dependence on L . The method of moments was
 286 also applied to cryo-EM and related technologies, see for example [21, 26, 30, 38], as well as to
 287 additional MRA setups [2, 5, 25].

288 A recent work [27] establishes an enticing connection between likelihood-based techniques
 289 and the method of moments for the general MRA model (3.1) for fixed L , $\text{SNR} \rightarrow 0$, and
 290 $T_i = I$. Specifically, it was shown that likelihood optimization in the low SNR regime reduces

291 to a sequence of moment matching problems. In addition, the method of moments is also
 292 closely-related to invariant theory and thus tools from the latter field can be applied to analyze
 293 MRA models; see in particular [6].

294 **4. Phase transition of template matching.** Suppose that the shifts R_{ℓ_i} are all known.
 295 In this scenario, estimating the signal is easy: one needs to align each observation $R_{\ell_i}^{-1}y_i$ and
 296 average out the noise. Therefore, if possible, it makes sense to try and estimate the shifts. In
 297 this section, we study the problem of estimating a shift when the signal is assumed to be known
 298 (which is not the case in MRA); we refer to this problem as *template matching*. Specifically,
 299 suppose that one has access to a signal, a “template” $X \in \mathbb{R}^L$, and observes a single sample
 300 $Y = R_{\ell}X + \sigma Z$, where $X \sim \mathcal{N}(0, I)$, $R_{\ell} \sim \text{Uniform}(\{0, \dots, L-1\})$ is a random uniform shift,
 301 $Z \sim \mathcal{N}(0, I)$, and R_{ℓ} , Z and X are mutually independent. The goal, then, is to recover R_{ℓ}
 302 from X and Y .³

303 While the template matching problem seems to be significantly easier than the MRA
 304 problem, we show a surprising phenomenon: in high dimensions, template matching and MRA
 305 share the exact same phase transition point. In particular, it turns out that in high dimensions,
 306 under our parameterization $\sigma^2(\alpha)$, which amounts to $L/\sigma^2 = \alpha \log(L)$, the template matching
 307 problem displays a *sharp recoverability threshold*. That is: (i) whenever $\alpha > 2$, the random
 308 shift can be recovered with error probability $p_e \rightarrow 0$ as $L \rightarrow \infty$; (ii) whenever $\alpha < 2$, the shift
 309 cannot be consistently recovered, and in fact for any estimator, $p_e \rightarrow 1$.

310 Observe that the optimal estimator (in the sense of maximum a posteriori probability) for
 311 R_{ℓ} is given by:

$$312 \quad (4.1) \quad \widehat{R}_{\text{MAP}} = \operatorname{argmin}_{\ell'} \|X - R_{\ell'}^{-1}Y\|^2 = \operatorname{argmax}_{\ell'} \frac{\langle X, R_{\ell'}^{-1}Y \rangle}{\|X\|^2}.$$

313 Denote its error probability by

$$314 \quad (4.2) \quad p_e = \Pr\left(R_{\ell} \neq \widehat{R}_{\text{MAP}}\right).$$

315 We start by establishing that with overwhelming probability, the template X is “incoher-
 316 ent”, in the sense that the correlations $\langle X, R_{\ell'}X \rangle / \|X\|^2$ are very small, unless $\ell' = 0$. The
 317 lemma is proved in Appendix SM3.

318 **Lemma 4.1.** *For $\kappa > 0$, let $\mathcal{A}(\kappa)$ be the event that*

$$319 \quad |L^{-1}\|X\|^2 - 1| < \kappa \quad \text{and} \quad \max_{\ell' \neq 0} L^{-1} |\langle X, R_{\ell'}X \rangle| \leq \kappa,$$

320 and let $\overline{\mathcal{A}(\kappa)}$ be its complement. Then,

$$321 \quad \Pr(\overline{\mathcal{A}(\kappa)}) \leq 2L \exp(-cL \min(\kappa, \kappa^2)),$$

322 for a universal constant $c > 0$. In particular, one can choose a sequence $\kappa = \kappa_L$ such that
 323 $\kappa \rightarrow 0$ sufficiently slowly, for example, $\kappa = CL^{-1/2} \log(L)$ for $C > 0$ large enough, so that
 324 $\Pr(\mathcal{A}_L(\kappa_L)) = 1 - o(1)$.

³A more general setting, where X is not necessarily Gaussian, and $R_{\ell}X$ goes through some general channel, not necessarily Gaussian, was studied by Wang, Hu, and Shayevitz [45], but under different asymptotics.

325 Let

326 (4.3)
$$\Theta_{\ell'} = \frac{\langle X, R_{\ell'}^{-1} Y \rangle}{\|X\|^2} = \frac{\langle X, R_{\ell-\ell'} X \rangle}{\|X\|^2} + \frac{\sigma \langle X, R_{\ell'}^{-1} Z \rangle}{\|X\|^2},$$

327 and

328 (4.4)
$$W_{\ell'} = \|X\|^{-1} \langle X, R_{\ell'}^{-1} Z \rangle.$$

329 Recalling that $\hat{R}_{\text{MAP}} = \text{argmax}_{\ell'} \Theta_{\ell'}$, and plugging $\sigma^2 = (\alpha \log(L))^{-1} L$, Lemma 4.1 implies
330 that with high probability,

331 (4.5)
$$\Theta_{\ell'} = \begin{cases} 1 + (1 + o(1)) \frac{1}{\sqrt{\alpha \log(L)}} \cdot W_{\ell} & \text{if } \ell' = \ell, \\ o(1) + (1 + o(1)) \frac{1}{\sqrt{\alpha \log(L)}} \cdot W_{\ell'} & \text{if } \ell' \neq \ell. \end{cases}$$

332 Notice that for every ℓ' , $W_{\ell'} \sim \mathcal{N}(0, 1)$, being the projection of $R_{\ell'}^{-1} Z \sim \mathcal{N}(0, I)$ onto a
333 unit vector $X/\|X\|$. This clearly implies that $\Theta_{\ell} \xrightarrow{p} 1$ as $L \rightarrow \infty$. Thus, to analyze the error of
334 the MAP estimator, it simply remains to understand the behavior of $\max_{\ell'} W_{\ell'}$. To this end,
335 we recall the following three results. We start with a well-known fact about the maximum of
336 i.i.d. standard Gaussians:

337 **Lemma 4.2.** *Let Z_1, \dots, Z_L be i.i.d $\mathcal{N}(0, 1)$ random variables. Then, as $L \rightarrow \infty$,*

338
$$\mathbb{E} \left[\max_{\ell} Z_{\ell} \right] / \sqrt{2 \log(L)} \rightarrow 1.$$

339 The upper bound $\mathbb{E} [\max_{\ell} Z_{\ell}] \leq \sqrt{2 \log(L)}$ is elementary, and holds even when Z_1, \dots, Z_L are
340 not independent. The proof follows from $\mathbb{E} \max_{\ell} Z_{\ell} \leq \beta^{-1} \log \mathbb{E} \max_{\ell} e^{\beta Z_{\ell}} \leq \beta^{-1} \log \mathbb{E} \sum_{\ell=1}^L e^{\beta Z_{\ell}} =$
341 $\beta/2 + \beta^{-1} \log(L)$, which holds for all $\beta > 0$; now take $\beta = \sqrt{2 \log(L)}$. The proof of the match-
342 ing lower bound, on the other hand, is more involved and follows from results in extreme value
343 theory, see, for instance, Example 1.1.7 in [19]. We also use the following “quantitative” version
344 of the Sudakov-Fernique inequality:

345 **Lemma 4.3 (Theorem 2.2.5 in [4]).** *Let (X_1, \dots, X_L) and (Y_1, \dots, Y_L) be Gaussian vectors
346 so that $\mathbb{E}[X_i] = \mathbb{E}[Y_i]$ for all i . Set*

347
$$\gamma_{i,j}^X = \mathbb{E}(X_i - X_j)^2, \quad \gamma_{i,j}^Y = \mathbb{E}(Y_i - Y_j)^2,$$

348 and $\gamma = \max_{i,j} |\gamma_{i,j}^X - \gamma_{i,j}^Y|$. Then

349
$$\left| \mathbb{E} \left[\max_i X_i \right] - \mathbb{E} \left[\max_i Y_i \right] \right| \leq \sqrt{2\gamma \log(L)}.$$

350 To get concentration around the mean, we use (a simple case of) the Borell-TIS inequality:

351 **Lemma 4.4.** *Let (X_1, \dots, X_L) be a Gaussian vector, and set $\sigma^2 = \max_i \mathbb{E}[X_i^2]$. Then*

352
$$\Pr \left(\left| \max_i X_i - \mathbb{E} \left[\max_i X_i \right] \right| \geq t \right) \leq 2e^{-t^2/2\sigma^2}.$$

353 See, e.g., [4, Theorem 2.1.1] (there only a one sided bound is stated; the other side follows the
 354 same way). The following is now an immediate corollary of Lemmas 4.1, 4.2, 4.3 and 4.4:

355 **Theorem 4.5 (Sharp threshold for template matching).** *If $\alpha > 2$, then $p_e \rightarrow 0$ as $L \rightarrow \infty$.
 356 Conversely, if $\alpha < 2$, then $p_e \rightarrow 1$.*

357 *Proof.* We start by estimating $\mathbb{E} \max_{\ell'} W_{\ell'}$. Choose $\kappa = o(1)$ such that the event $\mathcal{A}(\kappa)$ of
 358 Lemma 4.1 holds with probability $1 - o(1)$. Conditioned on X , $\{W_{\ell'}\}_{\ell'=0,\dots,L-1}$ is a centered
 359 Gaussian vector, with covariance

$$360 \quad C_{i,j}(X) = \mathbb{E}[W_i W_j \mid X] = \|X\|^{-2} \langle R_i X, R_j X \rangle,$$

361 whereby under \mathcal{A} , $|C_{i,j}(X) - \delta_{i,j}| = o(1)$.

362 Let $(\tilde{W}_1, \dots, \tilde{W}_{L-1})$ be i.i.d $\mathcal{N}(0, 1)$ random variables. By Lemmas 4.2 and 4.3, conditioned
 363 on X and under \mathcal{A} ,

$$364 \quad \mathbb{E}[\max_{\ell'} W_{\ell'} \mid X, \mathcal{A}] = \mathbb{E}[\max_{\ell'} \tilde{W}_{\ell'}] + o(\sqrt{\log(L)}) = \sqrt{(2+o(1)) \log(L)}.$$

365 Lemma 4.4 gives us a uniform (in X) concentration inequality, conditioned on X and under
 366 \mathcal{A} ,

$$367 \quad \Pr \left(\left| \max_{\ell'} W_{\ell'} - \sqrt{2 \log(L)} \right| \geq \sqrt{\varepsilon \log(L)} \mid X, \mathcal{A} \right) \leq 2L^{-(\varepsilon+o(1))/2},$$

368 so that

$$369 \quad \Pr \left(\left| \max_{\ell'} W_{\ell'} - \sqrt{2 \log(L)} \right| \geq \sqrt{\varepsilon \log(L)} \right) \leq 2L^{-(\varepsilon+o(1))/2} + \Pr(\mathcal{A}) = o_{\varepsilon}(1).$$

370 Thus, we have shown that $\max_{\ell'} W_{\ell'}/\sqrt{2 \log(L)} \xrightarrow{p} 1$. Using equation (4.5), we deduce that
 371 $\Theta_{\ell} \xrightarrow{p} 1$ whereas $\max_{\ell' \neq \ell} \Theta_{\ell'} \xrightarrow{p} \sqrt{2/\alpha}$. Since $\hat{R}_{\text{MAP}} = \text{argmax}_{\ell'} \Theta_{\ell'}$, we conclude that $p_e \rightarrow 0$
 372 when $\alpha > 2$ and $p_e \rightarrow 1$ when $\alpha < 2$. \blacksquare

373 *A remark on the relation between template matching and synchronization..* In the MRA model,
 374 one does not have access to the true template and thus needs to estimate the relative shifts
 375 based solely on the data; this problem is referred to as *synchronization*.

376 For simplicity, let us assume we are given two measurements $Y_1 = X + \sigma Z_1$ and $Y_2 =$
 377 $R_{\ell} X + \sigma Z_2$, and would like to estimate R_{ℓ} (recall that X is unknown). The optimal (MAP)
 378 estimator is $\hat{R}_{\text{syn}} = \text{argmax}_{\ell'} \Pr(R_{\ell'} \mid Y_1, Y_2)$. It is straightforward to show that

$$379 \quad \begin{aligned} \hat{R}_{\text{syn}} &= \text{argmax}_{\ell'} \langle Y_1, R_{\ell'}^{-1} Y_2 \rangle = \text{argmax}_{\ell'} \langle (X + \sigma Z_1), R_{\ell'}^{-1} (R_{\ell} X + \sigma Z_2) \rangle \\ 380 &= \text{argmax}_{\ell'} \left\{ \langle X, R_{\ell-\ell'} X \rangle + \sigma \langle X, R_{\ell'}^{-1} Z_2 \rangle + \sigma \langle X, R_{\ell-\ell'}^{-1} Z_1 \rangle + \sigma^2 \langle Z_1, R_{\ell'}^{-1} Z_2 \rangle \right\}. \end{aligned}$$

382 In order for this to consistently return the true relative shift R_{ℓ} , one needs to ensure that the
 383 “noise” term,

$$384 \quad \sigma \langle X, R_{\ell'}^{-1} Z_2 \rangle + \sigma \langle X, R_{\ell-\ell'}^{-1} Z_1 \rangle + \sigma^2 \langle Z_1, R_{\ell'}^{-1} Z_2 \rangle$$

385 is small compared to $\|X\|^2 \sim L$. The “typical” size of the first two terms is $\sigma \langle X, R_{\ell'}^{-1} Z_2 \rangle +$
 386 $\sigma \langle X, R_{\ell-\ell'}^{-1} Z_1 \rangle \sim \sigma \sqrt{L}$, whereas the third is $\sigma^2 \langle Z_1, R_{\ell'}^{-1} Z_2 \rangle \sim \sigma^2 \sqrt{L}$, and is therefore the

387 dominant one for large σ . Thus, to succeed with non-vanishing probability, we need that
 388 $\sigma^2 \sqrt{L} \lesssim L$, that is, $\sigma^2 \lesssim \sqrt{L}$. In the regime we are interested in, the noise level is $\sigma^2 \sim$
 389 $L/\log(L)$, and this turns out to be far too large.

390 We mention in passing that if many measurements are available, one can leverage the
 391 redundancy in the data to recover the true relative shifts in challenging environments; see for
 392 example [15, 33, 36, 40, 42].

393 **5. Sample complexity lower bounds.**

394 **5.1. The information-theoretic method for estimation lower bounds.** We employ a
 395 standard information-theoretic method of obtaining estimation error lower bounds, via rate-
 396 distortion theory (see e.g. [34]). We refer the reader to SI Appendix SM1 for a basic review of
 397 the information-theoretic definitions and facts we use in this section. Let \hat{X} be an estimator
 398 of X from the measurements $Y^n = (Y_1, \dots, Y_n)$, which achieves expected error (“distortion”)

399 (5.1)
$$\mathbb{E}\rho(X, \hat{X}) = L^{-1} \mathbb{E} \min_{\ell=0, \dots, L-1} \|X - R_\ell^{-1} \hat{X}\|^2 \leq \varepsilon.$$

400 Since the estimator depends only on the measurements, and not on X , the triplet $X - Y^n - \hat{X}$
 401 constitutes a Markov chain. Hence, by the data processing inequality (Proposition SM1.3 item
 402 3) we have that $I(X; \hat{X}) \leq I(X; Y^n)$. We lower-bound $I(X; \hat{X})$ by the *rate distortion function*
 403 (RDF) $R(\cdot)$ associated with the source $X \sim \mathcal{N}(0, I)$, and distortion measure $\rho(\cdot, \cdot)$:

404
$$R(\varepsilon) = \min_{P_{W|X}: \mathbb{E}\rho(X, W) \leq \varepsilon} I(X; W).$$

405 The minimization here is done over conditional distributions $P_{W|X}$, or equivalently, over joint
 406 distributions $P_{X,W}$ whose X -marginal is P_X —in our case $\mathcal{N}(0, I)$ —obeying the average dis-
 407 tortion constraint $\mathbb{E}\rho(X, W) \leq \varepsilon$. Since the conditional distribution $P_{\hat{X}|X}$ is, by definition,
 408 feasible for this minimization problem, we have $R(\varepsilon) \leq I(X; \hat{X})$. Combining this with the
 409 upper bound $I(X; \hat{X}) \leq I(X; Y^n)$, we get

410 (5.2)
$$R(\varepsilon) \leq I(X; Y^n),$$

411 and we shall next derive a lower bound for $R(\varepsilon)$ in terms of ε .

412 **5.2. A lower bound on the rate-distortion function.** We start by obtaining a lower bound
 413 on the RDF. While the RDF problem for a Gaussian source under MSE distortion measure is
 414 classical, the MSE up to the best alignment (the distortion measure we consider) is somewhat
 415 non-standard. Obtaining a precise expression for the true RDF seems difficult, but a simple
 416 lower bound can be obtained as follows.

417 **Proposition 5.1.** *For an L dimensional i.i.d. Gaussian vector $X \sim \mathcal{N}(0, I)$, and distortion
 418 measure $\rho(\cdot, \cdot)$ as defined in (1.2), the rate distortion function satisfies*

419
$$R(\varepsilon) \geq \frac{L}{2} \log\left(\frac{1}{\varepsilon}\right) - \log(L).$$

420

421

422 *Proof.* By definition of the rate distortion function, to establish the claim we need to
 423 show that for any conditional distribution (“test-channel”) $P_{W|X}$ that satisfies the constraint
 424 $\mathbb{E}\rho(X, W) \leq \varepsilon$, where $\rho(X, W) = L^{-1} \min_{\ell=0, \dots, L-1} \|X - R_\ell^{-1}W\|^2$, it holds that $I(X; W) \geq$
 425 $\frac{L}{2} \log\left(\frac{1}{\varepsilon}\right) - \log(L)$. To that end, let $R = R(X, W) = \operatorname{argmin}_{\ell' \in [0, \dots, L-1]} \|X - R_{\ell'} W\|$ be the
 426 difference minimizing shift. By the chain law of MI (Proposition SM1.3 item 2),

427 (5.3)
$$I(X; W) = I(X; W, R) - I(X; R|W) \geq I(X; W, R) - \log(L),$$

429 where we used $I(X; R|W) \leq H(R|W) \leq \log(L)$; the former follows from the definition of
 430 MI and non-negativity of entropy (Proposition SM1.1 item 1), and the latter follows from
 431 Proposition SM1.1 item 2 as the random variable R can take at most L values. Recall that
 432 $L^{-1}\mathbb{E}\|X - RW\|^2 \leq \varepsilon$ by definition of R . We therefore have that

433
$$I(X; RW) \geq \min_{P_{W'|X}: L^{-1}\mathbb{E}\|X - W'\|^2 \leq \varepsilon} I(X; W') = \frac{L}{2} \log\left(\frac{1}{\varepsilon}\right),$$

 434

435 where in the second equality we have used the well-known expression for the quadratic Gauss-
 436 ian rate distortion function (Proposition SM1.4). Thus, using the data processing inequality
 437 (Proposition SM1.3 item 3), we have

438
$$I(X; W, R) \geq I(X; RW) \geq \frac{L}{2} \log\left(\frac{1}{\varepsilon}\right).$$

 439

440 Substituting this into (5.3) establishes the claim. ■

441 Combining Proposition 5.1 with equation (5.2), we get

442
$$I(X; Y^n) \geq R(\varepsilon) \geq \frac{L}{2} \log\left(\frac{1}{\varepsilon}\right) - \log(L).$$

443 Setting $\varepsilon = \mathbb{E}\rho(X, \hat{X})$, we have obtained the following bound:

444 **Corollary 5.2.** *Suppose that $X \sim \mathcal{N}(0, I)$ is an L dimensional i.i.d. Gaussian vector, \hat{X} is
 445 any estimator of X from Y_1, \dots, Y_n , and $\rho(\cdot, \cdot)$ is as defined in (1.2). Then*

446
$$\mathbb{E}\rho(X, \hat{X}) \geq \exp\left(-\frac{2I(X, Y^n) + 2\log(L)}{L}\right) = \exp(-2L^{-1} \cdot I(X, Y^n) + o(1)).$$

447 Equivalently,

448
$$\text{MSE}_{MRA}^*(L, \alpha, n) \geq \exp\left(-\frac{2I(X, Y^n) + 2\log(L)}{L}\right) = \exp(-2L^{-1} \cdot I(X, Y^n) + o(1)).$$

 449

450 Corollary 5.2 tells us that an upper bound on the MI $I(X; Y^n)$ would give us a lower
 451 bound on the expected error of any estimator of X from $Y^n = (Y_1, \dots, Y_n)$. We devote the
 452 next section to deriving such upper bounds.

453 **5.3. Upper bounds on the mutual information.** We start with the rather trivial observation
 454 that the MI between the signal X and the measurements Y^n is smaller than the MI
 455 in a problem where there are no random shifts, which is equal to $\frac{L}{2} \log(1 + n\sigma^{-2})$. The next
 456 lemma formalizes this intuition and quantifies the MI difference between the two problems.

457 **Lemma 5.3.** *The mutual information between the signal X and measurements Y_1, \dots, Y_n is*

458 (5.4)
$$I(X; Y^n) = \frac{L}{2} \log(1 + n\sigma^{-2}) - I(R^n; X|Y^n),$$

 459

460 where $R^n = (R_{\ell_1}, \dots, R_{\ell_n})$. In particular, $I(X; Y^n) \leq \frac{L}{2} \log(1 + n\sigma^{-2})$.

461 **Proof.** Let $\tilde{Y}_i = R_{\ell_i}^{-1} Y_i = X + \sigma R_{\ell_i}^{-1} Z_i$. We may write

462
$$\begin{aligned} I(X; Y^n) &= I(X; Y^n, R^n) - I(X; R^n|Y^n) \\ 463 &= I(X; \tilde{Y}^n, R^n) - I(X; R^n|Y^n) \\ 464 &= I(X; \tilde{Y}^n) + I(X; R^n|\tilde{Y}^n) - I(X; R^n|Y^n), \end{aligned}$$

466 where the first and third equalities follow by the chain rule for MI (Proposition SM1.3 item
 467 2), and the second follows from Proposition SM1.3 item 4, and the fact that the mapping
 468 $(Y^n, R^n) \mapsto (\tilde{Y}^n, R^n)$ is invertible. By the fact that the Gaussian distribution is rotation
 469 invariant, and in particular $R_{\ell_i}^{-1} Z \sim \mathcal{N}(0, I)$, we have that R^n is statistically independent of
 470 (X, \tilde{Y}^n) , and consequently

471
$$I(X; R^n|\tilde{Y}^n) = H(R^n|\tilde{Y}^n) - H(R^n|\tilde{Y}^n, X) = H(R^n) - H(R^n) = 0,$$

473 where the first equality follows by definition of conditional mutual information and the second
 474 by Proposition SM1.3.5. It remains to compute $I(X; \tilde{Y}^n)$. To this end, note that conditioned on $X = x$, the measurements $\tilde{Y}_1, \dots, \tilde{Y}_n$ are simply i.i.d. Gaussian measurements
 475 $\tilde{Y}_i \sim \mathcal{N}(x, \sigma^2 I)$. It is well-known that in this case, the sample mean $\frac{1}{n} \sum_{i=1}^n \tilde{Y}_i = X$ is a
 476 sufficient statistic of \tilde{Y}^n for X . Conditioned on $X = x$, the sample mean has distribution
 477 $\frac{1}{n} \sum_{i=1}^n \tilde{Y}_i \sim \mathcal{N}(x, \sigma^2/n \cdot I)$, therefore,

479 (5.5)
$$I(X; \tilde{Y}^n) = I\left(X; \frac{1}{n} \sum_{i=1}^n \tilde{Y}_i\right) = I(X; X + \mathcal{N}(0, \sigma^2/n \cdot I)) = \frac{L}{2} \log(1 + n\sigma^{-2}),$$

 480

481 where the last equality follows from Proposition SM1.3 item 6. ■

482 Combining Corollary 5.2 and Lemma 5.3, we obtain the following lower bound, that es-
 483 sentially says the MSE in the MRA model is no better than in estimating a signal in AWGN.

484 **Corollary 5.4.** *The smallest attainable MSE in the MRA model satisfies*

485
$$\text{MSE}_{MRA}^*(L, \sigma^2, n) \geq \frac{L^{-\frac{2}{L}}}{1 + n\sigma^{-2}} = \frac{1}{1 + n\sigma^{-2}}(1 + o(1)),$$

 486

487 and the sample complexity satisfies

488
$$n_{MRA}^*(L, \sigma^2, \varepsilon) \geq \left\lceil \left(\frac{L^{-\frac{2}{L}}}{\varepsilon} - 1 \right) \sigma^2 \right\rceil = n_{AWGN}^*(L, \sigma^2, \varepsilon)(1 + o(1)).$$

 489

490 Lemma 5.3 tells us that the gap between $I(X; Y^n)$ and the MI in estimating a signal
 491 in AWGN, without the shifts, $\frac{L}{2} \log(1 + n\sigma^{-2})$, is $I(X; R^n|Y^n)$. This quantity is intimately
 492 related to a multi-sample version of the template matching problem, as was considered in
 493 Section 4. This connection will be exploited later on, when we derive an upper bound on the
 494 single sample MI $I(X; Y_i)$.

495 **Information combining.** Observe that the measurements Y_1, \dots, Y_n are mutually independent
 496 and identically distributed conditioned on X ; that is, the samples are obtained by passing
 497 the same signal X independently through a memoryless channel. By Proposition SM1.3 item
 498 5, this implies that

$$499 \quad (5.6) \quad I(X; Y^n) \leq \sum_{i=1}^n I(X; Y_i) = nI(X; Y),$$

500 where $Y = R_\ell X + \sigma Z$ is a single measurement in the MRA model. Substituting (5.6) into
 502 Corollary 5.2, yields the following.

503 **Proposition 5.5.** *The smallest attainable MSE in the MRA model satisfies*

$$504 \quad 505 \quad \text{MSE}_{\text{MRA}}^*(L, \sigma^2, n) \geq L^{-\frac{2}{L}} \exp\left(-n \frac{2}{L} I(X; Y)\right) = \exp\left(-n \frac{2}{L} I(X; Y)\right) (1 + o(1)),$$

506 and the sample complexity satisfies

$$507 \quad 508 \quad n_{\text{MRA}}^*(L, \sigma^2, \varepsilon) \geq \frac{L}{2} \cdot \frac{\log\left(\frac{1}{\varepsilon}\right) - \frac{2 \log(L)}{L}}{I(X; Y)} = \log\left(\frac{1}{\varepsilon}\right) \cdot \frac{L}{2I(X; Y)} (1 + o(1)),$$

509 where $Y = R_\ell X + \sigma Z$ is a single measurement in the MRA model.

510 It is important to emphasize at this point that the bound in (5.6) becomes very loose for
 511 n sufficiently large. Indeed, Lemma 5.3 implies that $I(X; Y^n)$ should scale at best logarithmically,
 512 rather than linearly, with n . Consequently, the lower bound on $\text{MSE}_{\text{MRA}}^*(L, \sigma^2, n)$
 513 in Proposition 5.5 decreases exponentially fast with n , whereas we know from Corollary 5.4
 514 that it cannot decrease faster than the parametric rate of $1/n$ as in estimating a signal in
 515 AWGN. Despite its grossly wrong dependence on n , the upper bound $I(X; Y^n) \leq nI(X; Y)$
 516 does suffice to say something non-trivial about the sample complexity of the problem. As seen
 517 from Proposition 5.5: in order for the estimation error to be strictly bounded away from one,
 518 one needs at least $\Omega(L \cdot I(X; Y)^{-1})$ samples. We will see that this rather “naïve” analysis is
 519 already enough to accurately separate between a “high SNR” and a “low SNR” regime, where
 520 the behavior of the MRA problem is qualitatively different. Intuitively, as the measurements
 521 Y_1, \dots, Y_n are only dependent through the random variable X , if n is so small that it is im-
 522 possible to learn much about X from Y^n , the dependence between Y_1, \dots, Y_n must be weak.
 523 Thus, in that regime, ignoring this dependence and bounding $I(X; Y^n) \leq nI(X; Y)$ is a rather
 524 accurate estimate.

525 The problem of obtaining a stronger bound on multi-sample MI $I(X; Y^n)$ in terms of the
 526 single-sample MI $I(X; Y)$ is an instance of a so-called *information combining* problem. Several
 527 problems of this type have been studied in the information theory literature, mostly dealing

528 with binary channels [28, 43]. In our case, we believe this problem to be quite hard, at least
 529 in the low SNR regime, and thus we could not obtain a tighter bound. Deriving such bounds
 530 can yield stronger lower bounds on $\text{MSE}_{\text{MRA}}^*(L, \alpha, n)$ in the low-SNR regime ($\alpha < 2$) than the
 531 ones we obtain here using the simple bound $I(X; Y^n) \leq nI(X; Y)$.

532 *Roadmap.* We will devote the rest of this section to deriving upper bounds on $I(X; Y)$.
 533 These bounds, together with Proposition 5.5, will immediately imply lower bounds on the MSE
 534 and the sample complexity. In particular, we will derive two bounds, using different methods,
 535 that will be effective in two SNR regimes.

- 536 • We estimate the mutual information using Jensen's inequality to facilitate the compu-
 537 tation of several expectations. One could expect this method to give somewhat tight
 538 results when $I(X; Y)$ is very small, and indeed, we shall see that when $0 < \alpha < 1$,
 539 we obtain a bound $I(X; Y) = O(L^{\alpha-1})$, which tends to 0 as $L \rightarrow \infty$. For $\alpha \geq 1$, the
 540 obtained bound will turn out to be too loose.
- 541 • In Lemma 5.3 we have found that $I(X; X + \sigma Z) - I(X; Y) = I(X, R_\ell|Y)$. We lower
 542 bound this gap using a Fano-like inequality, which in the case $\alpha < 2$ amounts to
 543 “quantifying” how well R_ℓ can be estimated from X and Y , in a somewhat more precise
 544 sense than Theorem 4.5 (which tells us that in this case, the error is $p_e = 1 - o(1)$). This
 545 will allow us to show that when $\alpha < 2$, $I(X; Y) = o(\log(L))$. We will not, however, be
 546 able to recover the estimate in the case of $0 < \alpha < 1$ using this method.

547 **5.3.1. MI bound at very low SNR ($\alpha < 1$).** We first express $I(X; Y)$ in the following
 548 way:

549 **Lemma 5.6.** *Suppose that $X \sim \mathcal{N}(0, I)$, $Z \sim \mathcal{N}(0, I)$, and $R \sim \text{Uniform}(\{R_0, \dots, R_{L-1}\})$
 550 are mutually independent. Then,*

$$551 \quad I(X; Y) = \frac{L}{2} \log(1 + \sigma^{-2}) - L\sigma^{-2} + \mathbb{E}_{X, Z} \left[\log \mathbb{E}_R \exp \left(\frac{1}{\sigma^2} \langle X + \sigma Z, RX \rangle \right) \right].$$

552 *Proof.* Write $I(X; Y) = h(Y) - h(Y|X)$. Note that for any shift R_ℓ , $R_\ell X \sim \mathcal{N}(0, I)$
 553 and therefore $Y \sim \mathcal{N}(0, (1 + \sigma^2)I)$; this means that $Y = R_\ell X + \sigma Z$ is independent of R_ℓ .
 554 The differential entropy of Y is $h(Y) = h(\mathcal{N}(0, (1 + \sigma^2)I)) = \frac{L}{2} \log(2\pi e) + \frac{L}{2} \log(1 + \sigma^2)$, by
 555 Proposition SM1.1 item 3.

556 Let us now write the conditional differential entropy explicitly. The conditional density of Y
 557 given X is $p_{Y|X}(y|x) = \mathbb{E}_R \left[(2\pi\sigma^2)^{-L/2} \exp \left(-\frac{1}{2\sigma^2} \|y - RX\|^2 \right) \right]$ for uniform R . The conditional
 558 entropy is then simply

$$\begin{aligned} 559 \quad h(Y|X) &= \mathbb{E}_{X, Y} [-\log p_{Y|X}(Y|X)] \\ 560 &= \frac{L}{2} \log(2\pi\sigma^2) - \mathbb{E}_{X, Y} \left[\log \mathbb{E}_R \exp \left(-\frac{1}{2\sigma^2} \|Y - RX\|^2 \right) \right] \\ 561 &= \frac{L}{2} \log(2\pi\sigma^2) - \mathbb{E}_{X, Y} \left[\log \mathbb{E}_R \exp \left(-\frac{1}{2\sigma^2} (\|Y\|^2 + \|X\|^2 - 2\langle Y, RX \rangle) \right) \right] \\ 562 &= \frac{L}{2} \log(2\pi\sigma^2) + \frac{L + (1 + \sigma^2)L}{2\sigma^2} - \mathbb{E}_{X, Y} \left[\log \mathbb{E}_R \exp \left(\frac{1}{\sigma^2} \langle Y, RX \rangle \right) \right]. \\ 563 \end{aligned}$$

564 It remains to compute the expectation with respect to the joint distribution of X and Y in
 565 the last term. Recall that we can write $Y = R'X + \sigma Z$ for $R' \sim \text{Uniform}(\{R_0, \dots, R_{L-1}\})$

566 and $Z \sim \mathcal{N}(0, I)$, both independent of X . Alternatively, we could also write $Y = R'(X + \sigma Z)$,
 567 which defines the exact same joint distribution between X and Y , due to the orthogonal
 568 invariance of $Z \sim \mathcal{N}(0, I)$; this second form is slightly more convenient in what follows. Since
 569 R is uniformly distributed,

$$570 \quad \mathbb{E}_{X,Z,R'} \left[\log \mathbb{E}_R \exp \left(\frac{1}{\sigma^2} \langle R'(X + \sigma Z), RX \rangle \right) \right] = \mathbb{E}_{X,Z,R'} \left[\log \mathbb{E}_R \exp \left(\frac{1}{\sigma^2} \langle (X + \sigma Z), (R')^{-1} RX \rangle \right) \right] \\ 571 \quad = \mathbb{E}_{X,Z} \left[\log \mathbb{E}_R \exp \left(\frac{1}{\sigma^2} \langle (X + \sigma Z), RX \rangle \right) \right], \quad \blacksquare$$

573 that is, we can “drop” R' . The claimed formula now readily follows. \blacksquare

574 The following proposition is the main estimate of this section. The proof uses some prop-
 575 erties of the spectrum of R_ℓ , stated and proved in Appendix SM4.

576 **Proposition 5.7.** *We have the following upper bound on the single sample MI:*

$$577 \quad I(X; Y) \leq \log \left(1 + L^{-1} e^{\sigma^{-2} L} \right) + O(\sigma^{-4} L).$$

578 In particular, if $\sigma^{-2} L = \alpha \log(L)$ for $0 < \alpha < 1$, then the MI asymptotically vanishes as
 579 $L \rightarrow \infty$ with $I(X; Y) \leq L^{-1+\alpha}(1 + o(1))$.

580 *Proof.* By the concavity of the log function, we always have $\mathbb{E}_W \log(W) \leq \log(\mathbb{E}W)$. Thus,

$$581 \quad \mathbb{E}_{X,Z} \left[\log \mathbb{E}_R \exp \left(\frac{1}{\sigma^2} \langle X + \sigma Z, RX \rangle \right) \right] \leq \mathbb{E}_X \left[\log \mathbb{E}_{Z,R} \exp \left(\frac{1}{\sigma^2} \langle X + \sigma Z, RX \rangle \right) \right] \\ 582 \quad = \mathbb{E}_X \left[\log \mathbb{E}_R \exp \left(\frac{1}{\sigma^2} \langle X, RX \rangle + \frac{1}{2\sigma^2} \|RX\|^2 \right) \right] \\ 583 \quad = \mathbb{E}_X \left[\log \mathbb{E}_R \exp \left(\frac{1}{\sigma^2} \langle X, RX \rangle + \frac{1}{2\sigma^2} \|X\|^2 \right) \right] \\ 584 \quad = \frac{1}{2} \sigma^{-2} L + \mathbb{E}_X \left[\log \mathbb{E}_R \exp \left(\frac{1}{\sigma^2} \langle X, RX \rangle \right) \right] \\ 585 \quad \leq \frac{1}{2} \sigma^{-2} L + \log \mathbb{E}_{R,X} \exp \left(\frac{1}{\sigma^2} \langle X, RX \rangle \right).$$

587 Plugging into the expression in Lemma 5.6, we get

$$588 \quad I(X; Y) \leq \frac{L}{2} \log(1 + \sigma^{-2}) - \frac{1}{2} L \sigma^{-2} + \log \mathbb{E}_{R,X} \exp \left(\frac{1}{\sigma^2} \langle X, RX \rangle \right).$$

589 Note that as $L, \sigma^2 \rightarrow \infty$, already $\frac{L}{2} \log(1 + \sigma^{-2}) - \frac{1}{2} L \sigma^{-2} = O(\sigma^{-4} L)$. Observe that $\langle X, RX \rangle =$
 590 $\langle X, R^\top X \rangle = \frac{1}{2} \langle X, (R + R^\top) X \rangle$. By Lemma SM4.1, all the matrices $R_\ell + R_\ell^\top$ are diagonalized
 591 by some orthonormal basis with eigenvalues $\{2 \cos(\frac{2\pi}{L} k\ell)\}_{k=0}^{L-1}$. By the orthogonal invariance
 592 of $X \sim \mathcal{N}(0, I)$, there are i.i.d. $W_{k,\ell} \sim \mathcal{N}(0, 1)$ such that for all ℓ ,

$$593 \quad \sigma^{-2} \langle X, R_\ell X \rangle = \sigma^{-2} \sum_{k=0}^{L-1} \cos \left(\frac{2\pi}{L} k\ell \right) W_{k,\ell}^2.$$

594 Recall that the moment generating function of a χ^2 random variable is

$$595 \quad \mathbb{E}_{W \sim \mathcal{N}(0,1)}[e^{tW^2}] = (1 - 2t)^{-1/2} \quad \text{for } t > 1/2,$$

596 see, e.g, [18, page 621]. Therefore, assuming σ^2 is sufficiently large (e.g., $\sigma^2 > 2$),

$$597 \quad \log \mathbb{E}_{R,X} \exp \left(\frac{1}{\sigma^2} \langle X, RX \rangle \right) = \log \left[L^{-1} \sum_{\ell=0}^{L-1} \prod_{k=0}^{L-1} \left(1 - 2\sigma^{-2} \cos \left(\frac{2\pi}{L} k\ell \right) \right)^{-1/2} \right] \\ 598 \quad = \log \sum_{\ell=0}^{L-1} e^{\psi_\ell} - \log(L), \\ 599$$

600 where

$$601 \quad \psi_\ell = -\frac{1}{2} \sum_{k=0}^{L-1} \log \left(1 - 2\sigma^{-2} \cos \left(\frac{2\pi}{L} k\ell \right) \right).$$

602 Expanding the log function to first order around 1 and noting that $\sum_{k=0}^{L-1} \cos \left(\frac{2\pi}{L} k\ell \right) = L \cdot \mathbf{1}_{\{\ell=0\}}$
603 (see Lemma SM4.1), for large values of L and σ^2 , we get

$$604 \quad \psi_\ell = \sum_{k=0}^{L-1} \sigma^{-2} \cos \left(\frac{2\pi}{L} k\ell \right) + O(\sigma^{-4}L) = \begin{cases} \sigma^{-2}L + O(\sigma^{-4}L) & \text{if } \ell = 0, \\ O(\sigma^{-4}L) & \text{otherwise.} \end{cases}$$

605 Thus, we have the estimate

$$606 \quad \log \sum_{\ell=0}^{L-1} e^{\psi_\ell} - \log(L) = \log \left(\frac{1}{L} e^{\sigma^{-2}L + O(\sigma^{-4}L)} + \frac{L-1}{L} e^{O(\sigma^{-4}L)} \right) \\ 607 \quad = \log \left(1 + L^{-1} e^{\sigma^{-2}L} \right) + O(\sigma^{-4}L), \\ 608$$

609 from which the claimed result immediately follows. ■

610 Observe that for $\alpha > 1$, Proposition 5.7 gives an upper bound of the order $I(X;Y) = O(\log(L))$. It will turn out that when $\alpha > 2$, this is indeed the right order of magnitude.
611 However, for $1 < \alpha \leq 2$ the bound is too loose, and in fact $I(X;Y) = o(\log(L))$.

613 **5.3.2. MI bound using template matching.** We start from Lemma 5.3 which gives, for
614 $n = 1$ and $Y = RX + \sigma Z$, $I(X;Y) = \frac{L}{2} \log(1 + \sigma^{-2}) - I(R;X|Y)$. We make the important
615 observation that R and Y are independent; indeed, regardless of R , it holds that $Y|R \sim$
616 $\mathcal{N}(0, (1 + \sigma^2)I)$. We remark, however, that when $n > 1$, Y^n is not independent of R^n . We can
617 therefore use Proposition SM1.1 item 5, and Proposition SM1.1 item 2 to write

$$618 \quad I(R;X|Y) = H(R|Y) - H(R|X,Y) = H(R) - H(R|X,Y) = \log(L) - H(R|X,Y),$$

619 so that

$$620 \quad (5.7) \quad I(X;Y) = \frac{L}{2} \log(1 + \sigma^{-2}) - \log(L) + H(R|X,Y).$$

621 The following is now an immediate consequence of Fano's inequality (Proposition SM1.2)
622 and Theorem 4.5.

623 **Proposition 5.8.** Suppose that $\sigma^{-2}L = \alpha \log(L)$ with $\alpha > 2$. Then,

$$624 \quad I(X;Y) = \frac{L}{2} \log(1 + \sigma^{-2}) - (1+o(1)) \log(L) \\ 625 \quad = \left(\frac{\alpha}{2} - 1 + o(1) \right) \log(L) + O(\sigma^{-4}L).$$

627 *Proof.* We estimate $H(R|X, Y)$. Clearly, $H(R|X, Y) \geq 0$ by non-negativity of entropy
628 (Proposition SM1.1 item 1). As for an upper bound, by Fano's inequality (Proposition SM1.2),
629 for any estimator \hat{R} of R from X, Y , the error probability $p_e = \Pr(R \neq \hat{R})$ satisfies

$$630 \quad H(R|X, Y) \leq \log 2 + p_e \log(L).$$

631 By Theorem 4.5, \hat{R}_{MAP} has error $p_e \rightarrow 0$, which means that $H(R|X, Y) = o(1) \cdot \log(L) =$
632 $o(\log(L))$. Plugging this into equation (5.7) and expanding $\frac{L}{2} \log(1 + \sigma^{-2}) = \frac{\alpha}{2} \log(L) +$
633 $O(\sigma^{-4}L)$, we obtain the desired estimate for $I(X;Y)$. ■

634 Proposition 5.8 above will not be needed for our main results, but its proof serves as good
635 exposition towards bounding the conditional entropy $H(R|X, Y)$ in the harder case $\alpha \leq 2$.
636 When $\alpha < 2$ we have $p_e \rightarrow 1$, so that it is no longer true that $H(R|X, Y) = o(\log(L))$. Indeed,
637 since $I(X;Y) = (\alpha/2 - 1) \log(L) + O(\sigma^{-4}L) + H(R|X, Y)$, we must have that $H(R|X, Y) \geq$
638 $(1 - \alpha/2 - o(1)) \log(L)$, since the MI is non-negative. While, indeed, in this regime R cannot
639 be recovered from X, Y , we can still obtain a non-trivial upper bound (of the form $c(\alpha) \log(L)$)
640 for some $c(\alpha) < 1$ on the conditional entropy $H(R|X, Y)$; the idea is that given X, Y , we can
641 form a relatively small list that contains R with high probability.

642 Our goal, then, is to non-trivially upper bound $H(R|X, Y)$ in the regime $\alpha \leq 2$ where
643 $p_e \not\rightarrow 0$. Let $\tau > 0$, and denote by S_τ the set of τ -likely shifts:

$$644 \quad (5.8) \quad S_\tau = \left\{ R' : \frac{\langle X, (R')^{-1}Y \rangle}{\|X\|^2} \geq 1 - \tau \right\}.$$

645 The analysis of Section 4 tells us that for any $\tau > 0$, the true shift R belongs with high
646 probability to the set S_τ . Moreover, when $\alpha > 2$ (and $\tau > 0$ is a sufficiently small constant), in
647 fact with high probability $S_\tau = \{R\}$. When $\alpha \leq 2$ this will no longer be the case; nonetheless,
648 we show that $|S_\tau|$ is with high probability significantly smaller than L . This means that
649 given X and Y , we can produce a list of likely candidates for R which is much smaller than
650 the entire group of shifts. The following lemma is proved in the SI Appendix, Section SM5.

651 **Lemma 5.9.** Let $\kappa, \tau, \zeta > 0$. Set $M = L^{1 - \frac{1}{2}\alpha(1-\kappa)(1-\tau-\frac{\kappa}{1-\kappa})^2 + \zeta}$, and assume that $\alpha \leq 2$.
652 Then

$$653 \quad (5.9) \quad \Pr(R \notin S_\tau \text{ or } |S_\tau| > M) \leq 2L e^{-cL \min(\kappa, \kappa^2)} + L^{-\frac{1}{2}\alpha(1-\kappa)(1-\tau-\frac{\kappa}{1-\kappa})^2} + 2L^{-\zeta},$$

655 where $c > 0$ is the universal constant of Lemma 4.1.

656 Lemma 5.9 implies that there are slowly decaying sequences $\tau = \tau_L = o(1), \delta = \delta_L = o(1)$
657 such that the event

$$658 \quad \mathcal{B} = \left\{ R \in S_{\tau_L} \text{ and } |S_{\tau_L}| \leq L^{1 - \frac{1}{2}\alpha + \delta_L} \right\}$$

659 holds with high probability of $\Pr(\mathcal{B}) = 1 - o(1)$. We use this to bound the conditional entropy
660 $H(R|X, Y)$, and obtain a bound on the MI:

661 Proposition 5.10. Suppose that $\alpha \leq 2$. Then,

662
$$I(X; Y) = o(\log(L)).$$

663 *Proof.* We upper bound the conditional entropy $H(R|X, Y)$ using a “Fano-like” argument.
664 Let E be the indicator for the event \mathcal{B} above. Since E is completely deterministic given
665 (R, X, Y) , we have that $H(E|R, X, Y) = 0$ by Proposition SM1.1 item 1 and by the chain rule
666 of entropy (Proposition SM1.1 item 4) we have

667
$$\begin{aligned} H(R|X, Y) &= H(R|X, Y) + H(E|R, X, Y) \\ 668 &= H(R, E|X, Y) \\ 669 &= H(E|X, Y) + H(R|X, Y, E) \\ 670 &\leq H(E) + H(R|X, Y, E = 1) \Pr(E = 1) + H(R|X, Y, E = 0) \Pr(E = 0), \end{aligned}$$

672 where we have bounded $H(E|X, Y) \leq H(E)$ using Proposition SM1.1 item 5, and expanded
673 $H(R|X, Y, E)$ according to the definition of conditional entropy, averaging only with respect
674 to E .

675 Now, given that $E = 1$, we know that R belongs to \mathcal{S}_{τ_L} , which has size $|\mathcal{S}_{\tau_L}| \leq M =$
676 $L^{1 - \frac{1}{2}\alpha + \delta_L}$. Hence, $H(R|X, Y, E = 1) \leq \log(M) = (1 - \frac{1}{2}\alpha + \delta_L) \log(L)$ by Proposition SM1.1
677 item 2, and by the same reason $H(R|X, Y, E = 0) \leq \log(L)$. By definition, $\Pr(E = 1) =$
678 $\Pr(\mathcal{B}) = 1 - o(1)$, and $H(E) \leq \log(2)$ by Proposition SM1.1 item 2. Thus, $H(R|X, Y) \leq$
679 $(1 - \frac{1}{2}\alpha + o(1)) \log(L)$. Plugging this into Eq. (5.7),

680
$$\begin{aligned} I(X; Y) &= \frac{L}{2} \log(1 + \sigma^{-2}) - \log(L) + H(R|X, Y) \\ 681 &= \left(\frac{\alpha}{2} - 1 + o(1)\right) \log(L) + O(\sigma^{-4}L) + \left(1 - \frac{\alpha}{2} + o(1)\right) \log(L) \\ 682 &= o(\log(L)) + O(\sigma^{-4}L), \end{aligned}$$

684 as claimed. ■

685 *Remark 5.11.* One might wonder if the argument above (if carried out delicately enough)
686 can match the estimate $I(X; Y) = O(L^{-1+\alpha})$ we have already seen for $\alpha < 1$. Unfortunately,
687 the bound $\Pr(|S_\tau| \geq M) \leq 2L^{-\delta}$ (using Markov’s inequality; see the proof of Lemma 5.9 in
688 SI Appendix, Section SM5) is already too crude for that purpose: since we need to choose
689 $\delta = o(1)$, the $o(1)$ correction above must decay slower than L^{-c} (for any $c > 0$).

690 **5.3.3. Proof of main results.** We are ready to prove Theorem 2.2 and the sample com-
691 plexity lower bounds of Theorem 2.1.

692 *Proof of Theorems 2.1 (lower bounds) and 2.2..*

- 693 • Theorem 2.1, $\alpha > 2$ (lower bound): Corollary 5.4 immediately implies that $\lim_{\varepsilon \rightarrow 0} \lim_{L \rightarrow \infty} \frac{n_{\text{MRA}}^*(L, \alpha, \varepsilon)}{\sigma^2/\varepsilon} \geq$
694 1.
- 695 • Theorem 2.1, $\alpha \leq 2$: Combining Proposition 5.5 and Proposition 5.10, give $n_{\text{MRA}}^*(L, \alpha, \varepsilon) =$
696 $\omega\left(\frac{L}{\log(L)} \log(1/\varepsilon)\right) = \omega\left(\sigma^2 \log(1/\varepsilon)\right)$.
- 697 • Theorem 2.2, $\alpha < 1$: Combining Proposition 5.5 and Proposition 5.7 yield $n_{\text{MRA}}^*(L, \alpha, \varepsilon) =$
698 $\Omega(L^{2-\alpha} \log(1/\varepsilon))$.

699 The proof of the upper bound $\lim_{\varepsilon \rightarrow 0} \lim_{L \rightarrow \infty} \frac{n_{\text{MRA}}^*(L, \alpha, \varepsilon)}{\sigma^2/\varepsilon} \leq 1$ for $\alpha > 2$ (item (1) of Theorem 2.1) appears in Section 6.

701 **6. Sample complexity upper bound for $\alpha > 2$ via brute-force template matching.** In
 702 this section we propose a recovery algorithm for the high SNR regime $\alpha > 2$, which essentially
 703 matches our $\Omega(L/\log L)$ lower bound on the sample complexity. Our goal here is not to propose
 704 a new MRA algorithm, but rather to establish a matching upper bound on the *statistical*
 705 *difficulty* of the problem; that is, we are studying the fundamental information-theoretic (rather
 706 than computational) limits of MRA.⁴ In particular, the proposed algorithm is computationally
 707 intractable, and involves a brute-force search on an exponentially sized set of candidates.
 708 Moreover, our approach is tailored to the case $\alpha > 2$, which is exactly the SNR regime where
 709 template matching is statistically possible.

710 *Outline of our algorithm.* Before diving into the technical details of our proposed scheme,
 711 we give a brief outline of the approach. The estimation algorithm works in two stages. Suppose
 712 we are given n independent samples. We divide them into two subsamples of sizes n_1 and n_2 ,
 713 $n_1 + n_2 = n$. We do this so to ensure that the estimator \widehat{Q} produced in step 1 is statistically
 714 independent of the additive noise in the samples used for step 2. This simplifies our analysis
 715 considerably. The two stages performed by the algorithm are the following.

- 716 *Brute-force search for a template:* In the first stage, we use the first n_1 samples to find
 717 some direction $\widehat{Q} \in \mathbb{S}^{L-1}$ (here \mathbb{S}^{L-1} is the unit sphere in \mathbb{R}^L) such that \widehat{Q} is sufficiently
 718 well-aligned with some shift of the true signal, that is, $\max_{\ell} L^{-1/2} \langle X, R_{\ell}^{-1} \widehat{Q} \rangle \geq 1 - \eta$,
 719 where $\eta = \eta(\alpha)$ is small. To do this, we consider a fine-enough cover of the sphere, $\mathcal{N} \subset$
 720 \mathbb{S}^{L-1} , and take $\widehat{Q} \in \mathcal{N}$ as the minimizer of a certain score: $\widehat{Q} = \operatorname{argmin}_{Q \in \mathcal{N}} \sum_{i=1}^{n_1} s_i(Q)$,
 721 where $s_i(Q)$ is computed from the i -th sample Y_i . Minimizing $\sum_{i=1}^{n_1} s_i(Q)$ over \mathbb{S}^{L-1}
 722 boils down to a brute-force search over the cover, whose size is exponential in L . Hence,
 723 this algorithm is not efficient. In principle, one could take at this point $\sqrt{L} \widehat{Q} \approx \|X\| \widehat{Q}$
 724 as an estimator for X . Unfortunately, the MSE of this estimator decays at a suboptimal
 725 rate with respect to the number of samples n ; this is remedied by the second step.
- 726 *Alignment and averaging:* Using \widehat{Q} from the previous step, we perform template matching
 727 on the remaining n_2 samples Y_1, \dots, Y_{n_2} in order to estimate their shifts relative
 728 to \widehat{Q} :

$$\widehat{R}_{\ell_i} = \operatorname{argmax}_{\ell} \langle Y_i, R_{\ell} \widehat{Q} \rangle.$$

730 The final estimator for X is then the average of the aligned measurements:

$$\widehat{X} = \frac{1}{n_2} \sum_{i=1}^{n_2} \widehat{R}_{\ell_i}^{-1} Y_i.$$

732 All the missing technical details are provided in the next two sections. Due to space constraints,
 733 the proofs of all lemmas are given in the SI Appendix, Section SM7.

⁴ This distinction is not trivial in general. In the context of MRA, for instance, previous papers conjectured that a natural extension of the MRA model, called heterogeneous MRA, suffers from a fundamental computational-statistical gap [6, 16]. We *do not* claim, however, that such a computational-statistical gap holds for the MRA model considered in this paper, with α close to 2.

734 *Main result of this section..* The main result of this section is the following:

735 **Proposition 6.1.** *Suppose that $\alpha > 2$, fix $\varepsilon > 0$, and let $n, L \rightarrow \infty$. Then, there exists some*
 736 *$c(\alpha) > 0$ depending on α such that if*

737
$$n_1 = c(\alpha)\sigma^2, \quad n_2 = (1 + o(1))\frac{\sigma^2}{\varepsilon},$$

738 *then the estimator \widehat{X} returned by our algorithm satisfies $\rho(X, \widehat{X}) \leq \varepsilon$ with probability $1 - o(1)$.*

739 Note that when $\varepsilon > 0$ is small, the sample complexity is dominated by n_2 :

740
$$n = c(\alpha)\sigma^2 + (1 + o(1))\frac{\sigma^2}{\varepsilon} \approx (1 + o(1))\frac{\sigma^2}{\varepsilon},$$

741 and thus almost independent of the constant $c(\alpha)$. Proposition 6.1 should be compared with
 742 the optimal achievable MSE for estimating a signal in AWGN, without the shifts $L^{-1}\mathbb{E}\|X -$
 743 $\widehat{X}_{\text{MMSE}}\|^2 = \frac{\sigma^2}{\sigma^2 + n}$.

744 **Proof of Theorem 2.1 (upper bound).** The upper bound for $\alpha > 2$ follows readily from
 745 Proposition 6.1. To show this, we construct a new estimator $[\widehat{X}]$ as follows: $[\widehat{X}] = \widehat{X}$ if
 746 $\|\widehat{X}\| \leq 10\sqrt{L}$ and $[\widehat{X}] = 0$ otherwise. Note that under the high-probability event $\|X\| \leq 2\sqrt{L}$,
 747 necessarily $\rho(X, [\widehat{X}]) \leq \rho(X, \widehat{X})$. Write

748
$$\mathbb{E}\rho(X, [\widehat{X}]) = \mathbb{E}\left[\rho(X, [\widehat{X}])\mathbb{1}_{\|X\| \leq 2\sqrt{L}}\right] + \mathbb{E}\left[\rho(X, [\widehat{X}])\mathbb{1}_{\|X\| > 2\sqrt{L}}\right].$$

750 Under $\|X\| \leq 2\sqrt{L}$, the random variable $\rho(X, [\widehat{X}])$ is bounded by a constant, hence by Propo-
 751 sition 6.1,

752
$$\mathbb{E}\left[\rho(X, [\widehat{X}])\mathbb{1}_{\|X\| \leq 2\sqrt{L}}\right] \leq \varepsilon + o(1),$$

753 since $\rho(X, \widehat{X}) \leq \varepsilon$ holds w.p. $1 - o(1)$. As for the other term,

754
$$\mathbb{E}\left[\rho(X, [\widehat{X}])\mathbb{1}_{\|X\| > 2\sqrt{L}}\right] \leq \mathbb{E}\left[L^{-1/2}(\|X\| + 10L^{1/2})\mathbb{1}_{\|X\| > 2\sqrt{L}}\right] \leq 6\mathbb{E}\left[L^{-1/2}\|X\|\mathbb{1}_{L^{-1/2}\|X\| > 2}\right],$$

755 so that by Cauchy-Schwartz,

756
$$\mathbb{E}\left[L^{-1/2}\|X\|\mathbb{1}_{L^{-1/2}\|X\| > 2}\right] \leq (L^{-1}\mathbb{E}\|X\|^2)^{1/2} \left(\Pr(\|X\| > 2\sqrt{L})\right)^{1/2} = o(1).$$

757 Thus, $[\widehat{X}]$ uses $n = [(1 + o(1))/\varepsilon + c(\alpha)]\sigma^2$ samples and achieves $\mathbb{E}\rho(X, [\widehat{X}]) \leq \varepsilon + o(1)$, so
 758 that

759
$$\limsup_{L \rightarrow \infty} \frac{n_{\text{MRA}}^*(L, \alpha, \varepsilon)}{\sigma^2/\varepsilon} \leq 1 + O_\alpha(\varepsilon).$$

760 **Class of “nice signals.”** Before getting to the details of the algorithm, in the analysis that
 761 follows, it is convenient to treat the signal X as fixed and belonging some class of “nice” signals.
 762 Specifically, we require that: (i) the signal is sufficiently uncorrelated with its shifts, in that
 763 $L^{-1}\langle X, R_\ell X \rangle \approx 0$ for all $\ell \neq 0$, and its norm is concentrated around $L^{-1}\|X\|^2 \approx 1$; (ii) The
 764 Fourier (DFT) coefficients of X are uniformly bounded.

765 Let $f_0, \dots, f_{L-1} \in \mathbb{C}^L$ be the DFT basis vectors, that is, $(f_\ell)_j = L^{-1/2} e^{\frac{2\pi i}{L} \ell j}$, and $\mathcal{F} \in U(L)$
 766 be the matrix whose columns are f_0, \dots, f_{L-1} , so that $\mathcal{F}^* X \in \mathbb{C}^L$ are the Fourier coefficients
 767 of X (here \mathcal{F}^* denotes the Hermitian conjugate of \mathcal{F} .) For $\kappa > 0$, we formally consider the set
 (6.1)

$$768 \quad \mathbb{X}_\kappa = \left\{ X \in \mathbb{R}^L \quad : \quad \max_\ell |L^{-1} \langle X, R_\ell X \rangle - \mathbb{1}_{\{\ell=0\}}| \leq \kappa, \quad \text{and } \|\mathcal{F}^* X\|_\infty \leq \sqrt{10 \log(L)} \right\},$$

769 where $\mathbb{1}_{\{\ell=0\}} = 1$ when $\ell = 0$ and is zero otherwise. We take $\kappa = o(1)$ sufficiently large so to
 770 ensure that when $X \sim \mathcal{N}(0, I)$, the constraint $\max_\ell |L^{-1} \langle X, R_\ell X \rangle - \mathbb{1}_{\{\ell=0\}}| \leq \kappa$ holds with
 771 probability $1 - o(1)$ as $L \rightarrow \infty$; by Lemma 4.1, we may choose $\kappa = c \log(L)/\sqrt{L}$ for $c > 0$ a
 772 large enough constant. Let \mathbb{X} be the set corresponding to such choice. To lighten the notation,
 773 we will not keep track of κ explicitly, instead referring to all vanishing terms as $o(1)$. For the
 774 other constraint, the exact bound $\|\mathcal{F}^* X\|_\infty \leq \sqrt{10 \log(L)}$ is somewhat arbitrary, in that 10
 775 can be replaced with any constant greater than 4. The following is quite immediate at this
 776 point:

777 **Lemma 6.2.** *Suppose that $X \sim \mathcal{N}(0, I)$. Then, $\Pr(X \notin \mathbb{X}) = o(1)$.*

778 We note that it is likely that without assuming that the estimation is over a class of “nice”
 779 signals (for example, the class \mathbb{X}_κ), the situation changes. On that note, we mention the
 780 work [17], where it is shown that there are signals X for which the MLE only attains the rate
 781 $\rho(X, \hat{X}_{\text{MLE}}) \sim n^{-1/2}$.

782 **6.1. Step 1: Brute force template matching.** Recall that our intermediate goal here is
 783 to find a direction $\hat{Q} \in \mathbb{S}^{L-1}$ such that $\max_\ell L^{-1/2} \langle X, R_\ell^{-1} \hat{Q} \rangle \geq 1 - \eta$, where $\eta > 0$ is some
 784 desired accuracy level. Since, assuming $X \in \mathbb{X}$, for any $Q \in \mathbb{S}^{L-1}$,

$$785 \quad \left\| \frac{X}{\|X\|} - R_\ell^{-1} Q \right\|^2 = 2 - 2 \left\langle \frac{X}{\|X\|}, R_\ell^{-1} Q \right\rangle = 2 - 2L^{-1/2} \langle X, R_\ell^{-1} Q \rangle + o(1),$$

786 then taking \mathcal{N} to be a $\sqrt{\eta}$ -cover of \mathbb{S}^{L-1} , it must contain some $Q \in \mathcal{N}$ with $L^{-1/2} \langle Q, R_\ell^{-1} X \rangle \geq$
 787 $1 - \frac{1}{2}\eta + o(1)$. It is well known that one can find a cover of the sphere which is not too large:

788 **Lemma 6.3.** *[Lemma 5.13 in [44]] There exists an $\sqrt{\eta}$ -cover \mathcal{N} of \mathbb{S}^{L-1} of size $|\mathcal{N}| \leq$
 789 $(3/\sqrt{\eta})^L$. That is, there exists a set $\mathcal{N} \subset \mathbb{S}^{L-1}$ of size $|\mathcal{N}| \leq (3/\sqrt{\eta})^L$, such that $\forall X \in$
 790 $\mathbb{S}^{L-1}, \exists Q \in \mathcal{N}$ with $\|X - Q\| \leq \sqrt{\eta}$.*

791 For each $Q \in \mathcal{N}$, we define its per-sample score:

$$792 \quad s_i(Q) = s_i^\eta(Q) = \mathbb{1} \left[\max_\ell L^{-1/2} \langle Y_i, R_\ell^{-1} Q \rangle \geq 1 - \frac{3}{4}\eta \right],$$

793 and the total score $s(Q) = \sum_{i=1}^{n_1} s_i(Q)$, n_1 being the number of samples allocated for this step.
 794 That is, $s(Q)$ is the number of samples Y_i such that $L^{-1/2} \langle Q, R_\ell^{-1} Y_i \rangle \geq 1 - \frac{3}{4}\eta$ for some ℓ .
 795 The returned estimator is then simply

$$796 \quad \hat{Q} = \operatorname{argmax}_{Q \in \mathcal{N}} s(Q).$$

797 Note that $s_i(\cdot)$ could be thought of as a discontinuous proxy for the log-likelihood (restricted
 798 to $X \in \mathbb{S}^{L-1}$): $\log P(Y_i|X) = \log \sum_{\ell=0}^{L-1} \exp\left(\frac{1}{\sigma^2} \langle X, R_\ell^{-1} Y_i \rangle\right) + \text{constant}$. When σ is small,
 799 the log-likelihood is essentially dominated by $\max_\ell \sigma^{-2} \langle X, R_\ell^{-1} Y_i \rangle$. Maximizing the likelihood
 800 is computationally more straightforward (in the sense that this is a continuous optimization
 801 problem, no need to quantize the domain as we do); however, analyzing the MLE directly
 802 appears to be difficult [22, 27].

803 We start by showing that there are only a few shifts ℓ such that $L^{-1/2} \langle X, R_\ell^{-1} Q \rangle$ are all
 804 large.

805 **Lemma 6.4.** *Suppose that $X \in \mathbb{X}$. For $Q \in \mathbb{S}^{L-1}$, let*

$$806 \quad N_Q(h) = \left| \left\{ \ell : L^{-1/2} |\langle X, R_\ell^{-1} Q \rangle| \geq h \right\} \right|.$$

807 Then, $N_Q(h) \leq h^{-2} \|\mathcal{F}^* X\|_\infty^2 \leq h^{-2} \cdot 10 \log(L)$.

808 We next show that if $\max_\ell L^{-1/2} \langle X, R_\ell^{-1} Q \rangle$ is small, then with high probability the score
 809 $s(Q)$ is not large.

810 **Lemma 6.5.** *Assume that $X \in \mathbb{X}$, $\alpha > 2$, $\eta < 1 - \sqrt{2/\alpha}$, and L is large enough so that
 811 $\log(L) \leq L^{3\eta^2\alpha/128}$. Suppose that $Q \in \mathbb{S}^{L-1}$ is such that $\max_\ell L^{-1/2} \langle X, R_\ell^{-1} Q \rangle \leq 1 - \eta$, then*

$$812 \quad \Pr(s(Q) \geq n_1/2) \leq \left[16 \left(2 + \frac{640}{\left(1 - \sqrt{\frac{2}{\alpha}}\right)^2} \right) L^{-\eta^2\alpha/128} \right]^{n_1/2}.$$

813 Next, we prove that if $\max_\ell \langle X, R_\ell^{-1} Q \rangle$ is sufficiently large, then $s(Q)$ is large with high
 814 probability.

815 **Lemma 6.6.** *Assume that $X \in \mathbb{X}$, $\alpha > 2$, and L is large enough so that $L^{\eta^2\alpha/64} \geq 4$.
 816 Suppose that $Q \in \mathbb{S}^{L-1}$ is such that $\max_\ell \langle X, R_\ell^{-1} Q \rangle \geq 1 - 5\eta/8$. Then,*

$$817 \quad \Pr(s(Q) < n_1/2) \leq e^{-n_1/32}.$$

818 We are now ready to conclude the analysis of Step 1 of our algorithm.

819 **Proposition 6.7.** *Assume that $X \in \mathbb{X}$, $\alpha > 2$, and $\eta < 1 - \sqrt{2/\alpha}$. Then, there is constant
 820 $c > 0$, such that whenever*

$$821 \quad n_1 \geq c \frac{L \log(1/\eta)}{\alpha \eta^2 \log(L)} = c \frac{\sigma^2 \log(1/\eta)}{\eta^2},$$

822 the vector $\widehat{Q} = \operatorname{argmax}_{Q \in \mathcal{N}} s(Q)$ satisfies $\max_\ell \langle X, R_\ell^{-1} Q \rangle \geq 1 - \eta$ with probability $1 - o(1)$ as
 823 $n_1, L \rightarrow \infty$. In fact, the error probability decays exponentially fast with n_1 .

824 **Proof.** As argued in the beginning of this section, the $\sqrt{\eta}$ -cover \mathcal{N} contains some $Q \in$
 825 \mathbb{S}^{L-1} such that $L^{-1/2} \langle X, R_\ell^{-1} Q \rangle \geq 1 - \eta/2 - o(1) \geq 1 - 5\eta/8$ for some ℓ . By Lemma 6.6,
 826 with probability greater than $1 - e^{-n_1/32}$, this vector has score $s(Q) \geq n_1/2$. It therefore

827 suffices to show that with high probability, all the vectors $Q \in \mathcal{N}$ that are bad, meaning that
 828 $\max_{\ell} L^{-1/2} \langle X, R_{\ell}^{-1} Q \rangle < 1 - \eta$, have score $s(Q) < n_1/2$. By Lemmas 6.3 and 6.5,

$$\begin{aligned} 829 \quad & \Pr(\exists \text{bad } Q \in \mathcal{N} : s(Q) \geq n_1/2) \leq |\mathcal{N}| \cdot \Pr(s(Q) \geq n_1/2 \mid Q \text{ is bad}) \\ 830 \quad & \leq (9/\eta)^{L/2} \cdot \left[16 \left(2 + \frac{640}{\left(1 - \sqrt{\frac{2}{\alpha}}\right)^2} \right) L^{-\eta^2 \alpha / 128} \right]^{n_1/2} \\ 831 \quad & \leq \left(C(\alpha) e^{-c_1 \eta^2 \alpha \log(L) + c_2 \frac{L}{n} \log(1/\eta)} \right)^{n_1}, \end{aligned}$$

832 where $c_1, c_2 > 0$ are absolute constants, and $C(\alpha)$ depends on α . Then, this probability tends
 833 to 0 as $n_1, L \rightarrow \infty$ (exponentially fast in n_1) whenever $n_1 \geq c \frac{L \log(1/\eta)}{\alpha \eta^2 \log(L)}$ for some other $c > 0$. ■

834 Note that at this point we could take $\widehat{X} = L^{1/2} \cdot \widehat{Q}$ as an estimator for X , so that

$$835 \quad \rho(X, \widehat{X}) = \min_{\ell} \|L^{-1/2} X - R_{\ell}^{-1} Q\|^2 \leq 2\eta + o(1),$$

836 holds with high probability. For *fixed* η , this estimator indeed captures the correct dimensional
 837 scaling of the sample complexity, namely, that $n = O(L/(\alpha \log L))$ samples are sufficient to
 838 get non-trivial alignment error. However, its dependence on η is seemingly quite bad: for
 839 estimating a signal in AWGN, without the shifts, the optimal dependence on η should look
 840 like $O(L/(\alpha \log L) \cdot \eta^{-1})$, rather than the much worse $O(L/(\alpha \log L) \cdot \eta^{-2} \log(1/\eta))$ we were
 841 able to show. In the next section, we see how to achieve this “correct” rate by essentially
 842 recovering the shifts on all but a vanishing fraction of the samples, and averaging the properly
 843 aligned measurements.

844 **6.2. Step 2: Achieving optimal MSE decay rate by alignment and averaging.** Suppose
 845 that one has access to a known template $Q \in \mathbb{S}^{L-1}$, such that $\langle X, Q \rangle \geq 1 - \eta$. Since
 846 $L^{-1} \|X\|^2 = 1 + o(1)$, this is the same as having $\|L^{-1/2} X - Q\|^2 \leq 2\eta + o(1)$, and since
 847 $\max_{\ell \neq 0} L^{-1} |\langle X, R_{\ell} X \rangle| = o(1)$, we see that for any $\ell \neq 0$,

$$848 \quad \|L^{-1/2} R_{\ell} X - Q\| \geq \|L^{-1/2} [R_{\ell} X - X]\| - \|L^{-1/2} X - Q\| \geq \sqrt{2} - \sqrt{2\eta} - o(1).$$

849 In particular, we see that when $\sqrt{2\eta} < \sqrt{2} - \sqrt{2\eta}$, that is, $\eta < 1/4$ (and L is sufficiently large),
 850 there is a *unique* ℓ (specifically, $\ell = 0$) such that $\|L^{-1/2} X - R_{\ell} Q\|^2 \leq 2\eta + o(1)$. In that case,
 851 the idea of matching a sample $Y_i = R_{\ell_i} X + \sigma Z$ against the template Q becomes well-posed,
 852 in the sense that its desired outcome is clear: we would like to recover the shift R_{ℓ_i} .

853 **Lemma 6.8.** *Assume that $X \in \mathbb{X}$ and $\alpha > 2$. Let $Y = R_{\ell} X + \sigma Z$, and suppose that
 854 $Q \in \mathbb{S}^{L-1}$ is independent of Y and satisfies $\max_{\ell'} L^{-1/2} \langle X, R_{\ell'}^{-1} Q \rangle \geq 1 - \eta$, where*

$$855 \quad \sqrt{\eta} < \frac{1}{2} (1 - \sqrt{2/\alpha}).$$

856 Denote the maximizing shift by ℓ^* . Let $\widehat{\ell} = \operatorname{argmax}_{\ell'} \langle Y, R_{\ell'} Q \rangle$. Then

$$857 \quad \Pr(\widehat{\ell} \neq \ell - \ell^*) \leq 2L^{-\frac{1}{2}\alpha(1/2-1/\sqrt{2\alpha}-\sqrt{\eta})^2+o(1)}.$$

859 Given Lemma 6.8, we propose the following estimation strategy. Suppose we would like
 860 to estimate X up to error $\rho(X, \hat{X}) \leq \varepsilon < 1$. Fix some $\eta > 0$ with $\sqrt{\eta} < (1 - \sqrt{2/\alpha})/2$ (for
 861 concreteness, say $\eta = (1 - \sqrt{2/\alpha})^2/16$). We first apply the algorithm of Step 1 (Seton 6.1) to
 862 obtain $\hat{Q} \in \mathbb{S}^{L-1}$ such that $\max_{\ell} \langle X, R_{\ell}^{-1} \hat{Q} \rangle \geq 1 - \eta$. Assuming that $n_1 \geq \frac{c \log(1/\eta)}{\eta^2} \sigma^2 = c_{\eta} \sigma^2$,
 863 we are successful with probability $1 - o(1)$. Let ℓ^* be such that $\langle X, R_{\ell^*}^{-1} Q \rangle \geq 1 - \eta$. Next, for
 864 n_2 new independent samples, we compute for each measurement $\hat{\ell}_i = \operatorname{argmax}_{\ell} \langle Y_i, R_{\ell} \hat{Q} \rangle$ and
 865 return the aligned sample average:

866 (6.2)
$$\hat{X} = \frac{1}{n_2} \sum_{i=1}^{n_2} R_{\hat{\ell}_i}^{-1} Y_i.$$

867 Lemma 6.8 tells us that we should expect most of the aligned measurements $R_{\hat{\ell}_i}^{-1} Y_i$ to be
 868 well-aligned with $R_{\ell^*} X$, that is, $R_{\hat{\ell}_i}^{-1} Y_i = R_{\ell^*} X + \mathcal{N}(0, \sigma^2 I)$. This means that, $\hat{X} \approx R_{\ell^*} X +$
 869 $\mathcal{N}(0, (\sigma^2/n_2) I)$, hence $\rho(X, \hat{X}) \leq L^{-1} \|R_{\ell^*} X - \hat{X}\|^2 \approx \sigma^2/n_2$, which is smaller than ε if
 870 $n_2 \geq \sigma^2/\varepsilon$. We make this argument precise below:

871 **Proposition 6.9.** *Assume that $X \in \mathbb{X}$ and $\alpha > 2$. Fix $\varepsilon > 0$ and some $\eta < \frac{1}{2}(1 - \sqrt{2/\alpha})^2$.
 872 Let $\hat{Q} \in \mathbb{S}^{L-1}$ be the output of Step 1 (run with a tuning parameter η and n_1 samples). Let \hat{X}
 873 be as in equation (6.2), computed from n_2 new samples. Suppose that $n_1, n_2, L \rightarrow \infty$ with*

874
$$n_1/\sigma^2 \rightarrow \gamma_1, \quad n_2/\sigma^2 \rightarrow \frac{\gamma_2}{\varepsilon},$$

875 where γ_1 and γ_2 are constants satisfying

876
$$\gamma_1 = \gamma_1(\eta) \geq \frac{c \log(1/\eta)}{\eta^2}, \quad \gamma_2 > 1,$$

877 (c being the universal constant from Proposition 6.7). Then,

878
$$\Pr \left(\rho(X, \hat{X}) \leq \varepsilon \right) \rightarrow 1.$$

879 Proposition 6.1 now immediately follows from Lemma 6.2 and Proposition 6.9.

880 **7. Conclusions and extensions.** In this work we have studied the sample complexity of
 881 the MRA problem in the limit of large L . In this regime, we have shown that the parameter
 882 $\alpha = \frac{\sigma^2 \log L}{L}$ plays a crucial role in characterizing the best attainable performance of any
 883 estimator.

884 As mentioned above, the MRA model is primarily motivated by the cryo-EM technology
 885 to constitute the 3-D structure of biological molecules. In the cryo-EM literature, it was shown
 886 that it is effective to assume that the molecule was drawn from a Gaussian prior with decaying
 887 power spectrum [37]. In addition, the 3-D rotations are usually not distributed uniformly
 888 over the group $SO(3)$. We now discuss briefly how these different aspects can be potentially
 889 incorporated into our framework.

890 *Prior on the signal.* Our model assumes a Gaussian i.i.d. prior on the signal X to be
 891 reconstructed. While this assumption lends itself to a relatively clean analysis, and allows to
 892 compare our bounds on $n_{\text{MRA}}^*(L, \alpha, \varepsilon)$ to the simple benchmark $n_{\text{AWGN}}^*(L, \alpha, \varepsilon)$, many of our
 893 results can be generalized to treat other priors on X . In particular, all of our sample complexity
 894 lower bounds are based on lower bounding the mutual information between X and \hat{X} under
 895 the constraint $\mathbb{E}[\rho(X, \hat{X})] \leq \varepsilon$ on the one hand, and upper bounding $I(X; Y^n)$ under the MRA
 896 model, on the other hand. In Proposition 5.1 we have relied on the Gaussian rate distortion
 897 function to lower bound $I(X; \hat{X})$ for any estimator that achieves MSE at most ε . For X whose
 898 distribution is not $\mathcal{N}(0, I)$, we can either compute the corresponding rate distortion function
 899 explicitly, or simply apply Shannon's lower bound $R(D) \geq h(X) - \frac{L}{2} \log(2\pi e D)$, see [13]. Our
 900 upper bounds on $I(X; Y^n)$ in the regime $\alpha > 1$ are based on Lemma 5.3, followed by lower
 901 bounding $I(R^n; X|Y^n)$ using Fano-like arguments. It is easy to see that (5.4) continues to hold,
 902 with \leq instead of $=$, for any random variable X with $\mathbb{E}\|X\|^2 \leq L$. Furthermore, the lower
 903 bounds on $I(R^n; X|Y^n)$ we derive in Section 5.3.2 remain valid whenever $\frac{\|X\|}{L}$ is sufficiently
 904 concentrated around 1 and $\frac{\langle X, R_\ell X \rangle}{L}$ is sufficiently concentrated around 0 for all $\ell = 1, \dots, L-1$.
 905 In particular, this is the case for (sufficiently light-tailed) i.i.d. zero-mean and unit variance
 906 distributions. In light of the discussion above, we see that the parameter $\alpha = \frac{\sigma^2 \log L}{L}$ is of great
 907 importance whenever the random signal X satisfies the above concentration requirements and
 908 has differential entropy proportional to L .

909 *Shift distribution.* Assuming uniform prior on the i.i.d. shifts $R_{\ell_1}, \dots, R_{\ell_n}$ is a worst-case
 910 analysis. Indeed, for any given distribution, shifting all measurements again $R_{u_i} Y_i$, for $u_i \stackrel{i.i.d.}{\sim}$
 911 Uniform($\{0, \dots, L-1\}$) before feeding them to the estimator leads to (1.1). However, previous
 912 works (for fixed L) showed that harnessing non-uniformity can make a big difference in the
 913 sample complexity [1, 38]. With some effort, our upper bounds on $I(X; Y^n)$ in the regime $\alpha > 1$
 914 should also extend to treat this case. Here, the main challenge is to generalize Lemma 5.9 to
 915 the case of non-uniform distribution, i.e., to find a sharp estimate on the smallest possible size
 916 of a list of candidates for the true shift, which contains the true shift with high probability.

917 *Extension to other groups.* We believe that many aspects of our information-theoretical
 918 analysis can be generalized to other (families of) discrete groups, denoted here by \mathcal{G}_L , which
 919 satisfy the following properties (roughly speaking): (i) If X is suitably generic and $g \neq h$,
 920 then $\langle gX, hX \rangle$ is very small - concretely, if $X \sim \mathcal{N}(0, I)$, then $\mathbb{E}[\langle gX, hX \rangle] = 0$; (ii) The
 921 size of the group $|\mathcal{G}_L|$ does not grow too fast (strictly less than exponentially fast in L).
 922 These conditions imply that whenever X is isotropic and sufficiently light-tailed (e.g., sub-
 923 Gaussian), $\{gX\}_{g \in \mathcal{G}}$ are “almost orthogonal.” The proper noise scaling to consider would then
 924 be $\sigma^2 = \frac{L}{\alpha \log |\mathcal{G}_L|}$, with $\alpha = 2$ being the critical noise level—this comes from the fact that
 925 $\max_{g \in \mathcal{G}_L} \langle gX, Z \rangle \approx \sqrt{2 \log |\mathcal{G}_L|}$. For continuous compact groups, we suspect that one might
 926 be able to apply some of our arguments by cleverly discretizing the suitable group action.
 927 Carrying out a program of this type seems as a promising direction for future research.

928 **Acknowledgment.** E.R. and O.O. are supported in part by the ISF under Grant 1791/17.
 929 E.R. is supported in part by an Einstein-Kaye fellowship from the Hebrew University of
 930 Jerusalem. T.B. is supported in part by NSF-BSF grant no. 2019752, and the Zimin In-
 931 stitute for Engineering Solutions Advancing Better Lives.

933 [1] E. ABBE, T. BENDORY, W. LEEB, J. M. PEREIRA, N. SHARON, AND A. SINGER, *Multireference*
934 *alignment is easier with an aperiodic translation distribution*, IEEE Transactions on Information
935 Theory, 65 (2018), pp. 3565–3584.

936 [2] E. ABBE, J. M. PEREIRA, AND A. SINGER, *Sample complexity of the boolean multireference alignment*
937 *problem*, in 2017 IEEE International Symposium on Information Theory (ISIT), IEEE, 2017, pp. 1316–
938 1320.

939 [3] E. ABBE, J. M. PEREIRA, AND A. SINGER, *Estimation in the group action channel*, in 2018 IEEE
940 International Symposium on Information Theory (ISIT), IEEE, 2018, pp. 561–565.

941 [4] R. J. ADLER AND J. E. TAYLOR, *Random fields and geometry*, Springer Science & Business Media, 2009.

942 [5] Y. AIZENBUD, B. LANDA, AND Y. SHKOLNISKY, *Rank-one multi-reference factor analysis*, arXiv preprint
943 arXiv:1905.12442, (2019).

944 [6] A. S. BANDEIRA, B. BLUM-SMITH, J. KILEEL, A. PERRY, J. WEED, AND A. S. WEIN, *Estimation*
945 *under group actions: recovering orbits from invariants*, arXiv preprint arXiv:1712.10163, (2017).

946 [7] A. S. BANDEIRA, M. CHARIKAR, A. SINGER, AND A. ZHU, *Multireference alignment using semidefinite*
947 *programming*, in Proceedings of the 5th conference on Innovations in theoretical computer science,
948 ACM, 2014, pp. 459–470.

949 [8] A. S. BANDEIRA, Y. CHEN, R. R. LEDERMAN, AND A. SINGER, *Non-unique games over compact groups*
950 *and orientation estimation in cryo-EM*, Inverse Problems, 36 (2020), p. 064002.

951 [9] A. S. BANDEIRA, P. RIGOLLET, AND J. WEED, *Optimal rates of estimation for multi-reference alignment*,
952 arXiv preprint arXiv:1702.08546, (2017).

953 [10] T. BENDORY, A. BARTESAGHI, AND A. SINGER, *Single-particle cryo-electron microscopy: Mathematical*
954 *theory, computational challenges, and opportunities*, IEEE Signal Processing Magazine, 37 (2020),
955 pp. 58–76.

956 [11] T. BENDORY, N. BOUMAL, C. MA, Z. ZHAO, AND A. SINGER, *Bispectrum inversion with application*
957 *to multireference alignment*, IEEE Transactions on signal processing, 66 (2017), pp. 1037–1050.

958 [12] T. BENDORY, A. JAFFE, W. LEEB, N. SHARON, AND A. SINGER, *Super-resolution multi-reference*
959 *alignment*, arXiv preprint arXiv:2006.15354, (2020).

960 [13] T. BERGER, *Rate distortion theory: A mathematical basis for data compression*, Prentice-Hall, 1971.

961 [14] T. BHAMRE, T. ZHANG, AND A. SINGER, *Denoising and covariance estimation of single particle cryo-EM*
962 *images*, Journal of structural biology, 195 (2016), pp. 72–81.

963 [15] N. BOUMAL, *Nonconvex phase synchronization*, SIAM Journal on Optimization, 26 (2016), pp. 2355–2377.

964 [16] N. BOUMAL, T. BENDORY, R. R. LEDERMAN, AND A. SINGER, *Heterogeneous multireference alignment:*
965 *A single pass approach*, in 2018 52nd Annual Conference on Information Sciences and Systems (CISS),
966 IEEE, 2018, pp. 1–6.

967 [17] V.-E. BRUNEL, *Learning rates for gaussian mixtures under group action*, in Conference on Learning
968 Theory, 2019, pp. 471–491.

969 [18] G. CASELLA AND R. BERGER, *Statistical Inference*, Duxbury advanced series, Duxbury Thomson Learning,
970 2 ed., 2002.

971 [19] L. DE HAAN AND A. FERREIRA, *Extreme value theory: an introduction*, Springer Science & Business
972 Media, 2007.

973 [20] A. P. DEMPSTER, N. M. LAIRD, AND D. B. RUBIN, *Maximum likelihood from incomplete data via*
974 *the EM algorithm*, Journal of the Royal Statistical Society: Series B (Methodological), 39 (1977),
975 pp. 1–22.

976 [21] J. J. DONATELLI, P. H. ZWART, AND J. A. SETHIAN, *Iterative phasing for fluctuation X-ray scattering*,
977 Proceedings of the National Academy of Sciences, 112 (2015), pp. 10286–10291.

978 [22] Z. FAN, Y. SUN, T. WANG, AND Y. WU, *Likelihood landscape and maximum likelihood estimation for*
979 *the discrete orbit recovery model*, arXiv preprint arXiv:2004.00041, (2020).

980 [23] N. GOYAL, S. VEMPALA, AND Y. XIAO, *Fourier PCA and robust tensor decomposition*, in Proceedings
981 of the forty-sixth annual ACM symposium on Theory of computing, 2014, pp. 584–593.

982 [24] R. A. HARSHMAN, *Foundations of the PARAFAC procedure: Models and conditions for an explanatory*
983 *multimodal factor analysis*, (1970).

984 [25] M. HIRN AND A. LITTLE, *Wavelet invariants for statistically robust multi-reference alignment*, arXiv

985 preprint arXiv:1909.11062, (2019).

986 [26] Z. KAM, *The reconstruction of structure from electron micrographs of randomly oriented particles*, Journal
987 of Theoretical Biology, 82 (1980), pp. 15–39.

988 [27] A. KATSEVICH AND A. BANDEIRA, *Likelihood maximization and moment matching in low SNR Gaussian
989 mixture models*, arXiv preprint arXiv:2006.15202, (2020).

990 [28] I. LAND, S. HUETTINGER, P. A. HOEHER, AND J. B. HUBER, *Bounds on information combining*, IEEE
991 Transactions on Information Theory, 51 (2005), pp. 612–619.

992 [29] S. E. LEURGANS, R. T. ROSS, AND R. B. ABEL, *A decomposition for three-way arrays*, SIAM Journal
993 on Matrix Analysis and Applications, 14 (1993), pp. 1064–1083.

994 [30] E. LEVIN, T. BENDORY, N. BOUMAL, J. KILEEL, AND A. SINGER, *3D ab initio modeling in cryo-EM by
995 autocorrelation analysis*, in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI
996 2018), IEEE, 2018, pp. 1569–1573.

997 [31] C. MA, T. BENDORY, N. BOUMAL, F. SIGWORTH, AND A. SINGER, *Heterogeneous multireference align-
998 ment for images with application to 2D classification in single particle reconstruction*, IEEE Transac-
999 tions on Image Processing, 29 (2019), pp. 1699–1710.

1000 [32] A. PERRY, J. WEED, A. S. BANDEIRA, P. RIGOLLET, AND A. SINGER, *The sample complexity of
1001 multireference alignment*, SIAM Journal on Mathematics of Data Science, 1 (2019), pp. 497–517.

1002 [33] A. PERRY, A. S. WEIN, A. S. BANDEIRA, AND A. MOITRA, *Message-passing algorithms for synchroniza-
1003 tion problems over compact groups*, Communications on Pure and Applied Mathematics, 71 (2018),
1004 pp. 2275–2322.

1005 [34] Y. POLYANSKIY AND Y. WU, *Lecture notes on information theory*, (2019). http://people.lids.mit.edu/yp/homepage/data/itlectures_v5.pdf.

1006 [35] T. PUMIR, A. SINGER, AND N. BOUMAL, *The generalized orthogonal Procrustes problem in the high
1007 noise regime*, arXiv preprint arXiv:1907.01145, (2019).

1008 [36] E. ROMANOV AND M. GAVISH, *The noise-sensitivity phase transition in spectral group synchronization
1009 over compact groups*, Applied and Computational Harmonic Analysis, (2019).

1010 [37] S. H. SCHERES, *RELION: implementation of a Bayesian approach to cryo-EM structure determination*,
1011 Journal of structural biology, 180 (2012), pp. 519–530.

1012 [38] N. SHARON, J. KILEEL, Y. KHOO, B. LANDA, AND A. SINGER, *Method of moments for 3D single
1013 particle ab initio modeling with non-uniform distribution of viewing angles*, Inverse Problems, 36
1014 (2020), p. 044003.

1015 [39] F. J. SIGWORTH, *A maximum-likelihood approach to single-particle image refinement*, Journal of struc-
1016 tural biology, 122 (1998), pp. 328–339.

1017 [40] A. SINGER, *Angular synchronization by eigenvectors and semidefinite programming*, Applied and compu-
1018 tational harmonic analysis, 30 (2011), pp. 20–36.

1019 [41] A. SINGER, *Mathematics for cryo-electron microscopy*, Proceedings of the International Congress of Math-
1020 ematicians, (2018).

1021 [42] A. SINGER AND Y. SHKOLNISKY, *Three-dimensional structure determination from common lines in cryo-
1022 EM by eigenvectors and semidefinite programming*, SIAM journal on imaging sciences, 4 (2011),
1023 pp. 543–572.

1024 [43] I. SUTSKOVER, S. SHAMAI, AND J. ZIV, *Extremes of information combining*, IEEE Transactions on
1025 Information Theory, 51 (2005), pp. 1313–1325.

1026 [44] R. VAN HANDEL, *Probability in high dimension*, tech. report, PRINCETON UNIV NJ, 2014.

1027 [45] L. WANG, S. HU, AND O. SHAYEVITZ, *Quickest sequence phase detection*, IEEE Transactions on Infor-
1028 mation Theory, 63 (2017), pp. 5834–5849.

1029