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5  Abstract. Multi-reference alignment entails estimating a signal in R from its circularly-shifted and noisy copies.

6 This problem has been studied thoroughly in recent years, focusing on the finite-dimensional setting
7 (fixed L). Motivated by single-particle cryo-electron microscopy, we analyze the sample complexity
8 of the problem in the high-dimensional regime L — oco. Our analysis uncovers a phase transition
9 phenomenon governed by the parameter o = L/(0%log L), where ¢ is the variance of the noise.
10 When « > 2, the impact of the unknown circular shifts on the sample complexity is minor. Namely,
11 the number of measurements required to achieve a desired accuracy e approaches o2 /e for small ¢;
12 this is the sample complexity of estimating a signal in additive white Gaussian noise, which does not
13 involve shifts. In sharp contrast, when a < 2, the problem is significantly harder and the sample

14 complexity grows substantially quicker with o2.

15  Key words. multi-reference alignment, information-theoretic lower bounds, estimation in high dimensions, math-lii
16 ematics of cryo-EM imaging

17 AMS subject classifications. 62B10, 94A15, 94A12, 62F99

18 1. Introduction. We study the sample complexity of the multi-reference alignment (MRA)
19 model: the problem of estimating a signal from its circularly-shifted and noisy copies. Specif-
20 ically, let X ~ N(0,I) be an L-dimensional vector with i.i.d. standard normal entries. We
21 collect n independent measurements of random cyclic shifts of X, corrupted by additive white
22 Gaussian noise:

23 (1.1) Yi =Ry, X + 07, i=1,...,n,

25 where Ry denotes a cyclic shift, namely, (R¢X); = X(j4)moa r forall j =0,..., L -1, Z; S
26 N(0,1), and ¢; b Uniform({0,...,L — 1}) are statistically independent of X. Given the
27 measurements Y = (Y1,...,Y},), one is interested in constructing an estimator X=X (Ym™)
28 of the signal. Importantly, the unknown shifts ¢y, ..., ¢,—while their estimation might be a
29 means to an end—are nuisance variables. Figure 1 shows an example of a measurement drawn
30 from (1.1).

31 This paper focuses on the high-dimensional regime, where the dimension of the signal
32 grows indefinitely L — co. In this setting, we wish to characterize the relations between the
33 number of measurements n, the length of each observation L, and the noise level o2 that allow
34 estimating X to a prescribed accuracy. This is in contrast to previous works, surveyed in
35 Section 3, which analyzed the interplay between n and o, while considering a fixed L.
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Figure 1.  An ezample of a measurement drawn from (1.1) for o = 2 and L = 400. The corresponding
noise level is o° = 33.38.

It is important to note that given the measurements, there is no way to distinguish between
X and its cyclic shift since Pyn|x—; = Pyn|x—p,» = '+ = Pyn|x=g,_,»- Therefore, we can
only estimate the orbit of X under the group of circular shifts Zy. Accordingly, we use the
following distortion measure

N 1
(1.2) p(X,X) =7, min X - R X|.

In the sequel, we loosely say that we aim to estimate X rather than its orbit, and refer to
Ep(X, X) as the MSE.

Sample complexity. Our goal in this paper is to characterize the smallest possible number
of measurements required to achieve a desired MSE in terms of the dimension L and the noise
level o2. To that end, we define the smallest MSE attainable by any estimator as

(1.3) MSE% g (L, 02, n) := inf Ep(X, X (Y™)),
X

and the sample complexity of the MRA problem
(1.4) nima (L, 0%, ¢) :=min {n : MSEjjga(L,0% n) <e}.
We define the signal-to-noise ratio (SNR) by

E|X|? L

>
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MULTI-REFERENCE ALIGNMENT IN HIGH DIMENSIONS 3

This definition is consistent with previous works which considered a fixed L and ¢ — oo,
implying SNR— 0; see Section 3.

The asymptotics in our model turn out to be particularly interesting when the dimension,
the noise level, and the SNR are simultaneously large. In particular, it will be convenient to
parametrize the noise variance by

(1.6) o (a) =

Accordingly, we define MSE{ g a (L, @, n) := MSE3 g (L, 0%(a), n) and nipa (Ls o, €) := nipa (L, 0% (), €) ||

Motivation. The MRA model is mainly motivated by single-particle cryo-electron mi-
croscopy (cryo-EM)—a leading technology to constitute the 3-D structure of biological mol-
ecules. In its most simplified version, the cryo-EM problem involves reconstructing a 3-D
structure from its multiple noisy tomographic projections, taken after the structure has been
rotated by an unknown 3-D rotation. In analogy, in the MRA model (1.1) the signal X is
measured after an unknown circular shift. In Theorem 2.3, we extend the basic model to
include a projection; we refer to this model as the projected MRA model. This projection
plays the role, to some extent, of the tomographic projection in cryo-EM. Section 7 discusses
further potential extensions.

The correspondence between MRA and cryo-EM, while admittedly not perfect, has mo-
tivated an extensive study of the MRA problem in recent years. For example, the resolution
limitations of MRA were analyzed in [12] in order to draw an analogy to the achievable reso-
lution of cryo-EM—a crucial aspect from a biological standpoint. More relevant to this work,
in [3,6,8,32], the sample complexity of the MRA and cryo-EM models were analyzed for a fixed
dimension L. Remarkably, it was shown that in the low noise regime (small o), the number
of measurements should scale like o2, while in the high noise regime (large o) n must increase
with ¢9; see further discussion in Section 3.

Our high-dimensional analysis is motivated by the size of modern cryo-EM datasets. In
a typical cryo-EM experiment, the number of measurements and the dimension of the 3-
D structure are of the same order of a few millions. For example, a 3-D structure of size
200 x 200 x 200 voxels resulting in 8,000,000 parameters to be estimated. Since a typical
noise level in a cryo-EM dataset is 02 ~ 100, the anticipated parameter regime is o > 1. We
do emphasize, however, that these numbers should be taken with some degree of skepticism:
while cryo-EM is a motivation for studying the MRA problem, these are ultimately quite
different problems, and practical cryo-EM setups involve additional complications, that are
not captured by MRA [10]. In fact, high-dimensional statistical analysis has been already
proven to be effective for cryo-EM data processing. For example, a covariance estimation
technique based on high-dimensional analysis (the so-called spiked model) has significantly
improved image denoising [14].

Information-theoretic background and asymptotic notation. The analysis of this work is
greatly based on information-theoretic notions and techniques. For completeness, we review
the relevant definitions in supporting information (SI) appendix, Section SMI.

We also repeatedly use asymptotic notation. For sequences a = a(L) and b = b(L), we
write a(L) = O(b(L)) if there exists a constant C' > 0 such that a(L) < Cb(L) for all L.
Similarly, a(L) = Q(b(L)) means a(L) > Cb(L). Occasionally, we use a(L) = Og(b(L)) to

L L SNR
= a= = )
alog L o?logL logL
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4 E. ROMANOV, T. BENDORY, AND O. ORDENTLICH

signify explicitly that C' depends on some parameter 3. The notation a(L) = o(b(L)) means
a(L)/b(L) — 0 as L — oo. In particular, if a(L) = o(1) then a(L) — 0 asymptotically.
Similarly, a(L) = w(b(L)) means a(L)/b(L) — oo.

Reproducibility. The code to reproduce the figures is publicly available at https://github.
com/TamirBendory /high-dimensional-mra-bounds.!

Supporting information (SI). Due to space constraints, we have relegated the proofs of
several technical claims to the SI appendix. In addition to those, the SI contains a brief review
of all information-theoretic notions necessary to follow this work (Section SM1), as well as
some additional discussion which is somewhat tangential to our main results (Section SM2).

2. Main results and discussion.

Phase transition.. This work focuses on the asymptotic setting where L tends to infinity.
Our first main finding is that in this asymptotic limit there is a transition in terms of the
behavior of the sample complexity. For o > 2, the MRA problem is essentially as easy
as estimating a signal in additive white Gaussian noise (AWGN), with no random shifts.
More precisely, for sufficiently small distortion e, the sample complexity tends to the sample
complexity of estimating a signal in AWGN, nywan (L, o, ) = [(2 — 1) 0%(@)], which behaves
as @ for small €. In sharp contrast, for a < 2 the problem becomes substantially harder.

Theorem 2.1. The sample complexity of the MRA model (1.1) obeys:
1. For any a > 2 we have

i lim PrA(D@08) g Phipa(Loane)

=1
e=0L—o0  0%(a)/e e—0 L—oo 0y yean(L, o €)

2. For any a < 2 and any € < 1 we have

nipa(L,a,e) = w (0% log (1/€)) .
In particular, for fized ¢,

lim nypa(Ls; v, €) _
L—oo 0y wan(L, o, €)

ny L,ae . . . . .
*MLL) > 1 is trivial: estimating in
nawan (Lae)

the MRA model is harder than estimating a signal in AWGN (namely, when the shifts are
known). A small subtlety is that the distortion measure Ep(X, X) is a bit weaker than the
standard definition of MSE, E||X — X||2, as it allows for any cyclic shift. However, we show
in Section 5 that, as expected, this has a vanishing effect for large L. In order to show
nyga (Lsa58)

that lim._,9limyz_ .o e Lot

In part 1 of Theorem 2.1, the lower bound

< 1 we introduce an algorithm that for any « > 2 requires

about o2(a)/e samples to achieve Ep(X, X) < e, provided that ¢ is sufficiently small and L
is sufficiently large. The sole purpose of the estimation procedure is establishing an upper
bound; its computational complexity is exponential in L and thus the procedure is far from
being efficient. More specifically, it is based on a two-step procedure. First, we construct a é-net

'Our expectation-maximization implementation is based on the code of [11].

This manuscript is for review purposes only.
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MULTI-REFERENCE ALIGNMENT IN HIGH DIMENSIONS 5

that, by definition, contains a member close to X and look for the most likely candidate within
that net given the measurements. Second, we use this candidate in order to determine almost
all shifts E}, and then estimate the signal by alignment and averaging X = %Z;;l R—ZiYi'
The details are given in Section 6.

In order to establish part 2 of Theorem 2.1, we show that for a < 2 the mutual information
(MI) I(X;Y) between X and a single MRA measurement grows with L significantly slower
than I(X; X + 0Z), as in estimating a signal in AWGN. The details are given in Section 5.

Although our results are asymptotic in L, the transition in the difficulty of the problem
around a = 2, as predicted by Theorem 2.1, is evident already for relatively small L. Figure 2
presents the root MSE (RMSE) as a function of « for different values of L. We take our
estimator X to be the output of the expectation-maximization (EM) algorithm [11,20], which
is the standard choice for MRA; see details in Section 3. For large values of L and large «, the
error of EM tends to that of estimating a signal in AWGN, implying that it detects the shifts
accurately. For smaller values of «, the error grows rapidly, especially when a < 2. We note
that the observed transition in the vicinity of o = 2, at the values of L considered in Figure 2
(few 100s), appears to not be very sharp. Our proofs suggest that perhaps this behavior is to
be expected: the concentration rates we are able to derive for some of the quantities relevant
to the analysis is quite slow (inverse polynomial in L, with a very small exponent when « is
close to 2).

Connection with template matching. At this point, the reader may wonder what is the
intuitive interpretation of « = 2. To answer this question we now introduce the template
matching problem, which is studied in detail in Section 4. In this problem, we are given X
and one MRA measurement Y = Ry X + Z, where X, Ry, and Z are distributed as above, and
our goal is to recover the shift R,. We will see that in the asymptotic setting, o = 2 is the
critical threshold for this problem. That is, the error probability in recovering R, from (X,Y)
approaches 0 for all o > 2, and approaches 1 for all o < 2.

In the MRA problem, recovering the shifts is harder, as we do not have access to X.
We nevertheless show that for o > 2, given enough measurements, it is possible to recover a
fraction approaching 1 of the shifts correctly. On the other hand, recovering a large fraction of
the shifts correctly for o < 2 is impossible since it is impossible even in the template matching
model. Intuitively, if we cannot recover almost all shifts, the attained MSE should be much
worse than in estimating a signal in AWGN, which means that the sample complexity should
be much higher for av < 2. Our bounds in Section 5 formalize this intuition.

To illustrate the phase transition for template matching, we conducted a “genie-aided”
experiment, presented in Figure 3. In this experiment, we use the true X (the “genie”) in
order to estimate the shifts by l; = arg maXee{o,...,L—1}<R€X» Y;). Then, we estimate the signal
by aligning the measurements and averaging X = %Z?ﬂ R @Yi' For large values of a, the
recovery error converges to the error of estimating a signal in AWGN. For smaller « values,
and in particular a < 2, the recovery error rapidly increases.

Tighter lower bound for the low SNR regime. Theorem 2.1 shows that for all a < 2 and
fixed € < 1 the shifts make a difference: the sample complexity with unknown shifts (i.e., the
MRA problem) is w (¢%() log(1/¢)), and is therefore substantially greater than the sample
complexity when the shifts are known. For @ < 1, we were able to prove a much stronger lower

This manuscript is for review purposes only.
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Figure 2. The RMSE of EM (averaged over 100 trials) as a function of « for different values of L. The

number of measurements was set to be n(L) = 100L/log(L). An exzample of a single measurement appears in
Figure 1. For large values of «, the error reduces to the error of estimating a signal in AWGN, % =

\/ﬁ7 suggesting that EM performs as if the shifts were known. For small values of o, and in particular
a < 2, the error rapidly increases.

bound on the sample complexity.

Theorem 2.2. For any0 < a <1, and0<e <1,
(2.1) nyra(L,a,e) =Q (LQ_O‘ log(1/e)) .

Theorems 2.1 and 2.2 are proved in Section 5.

The sample complexity of the projected MRA model. Recall that MRA serves as a toy model
of the cryo-EM reconstruction problem. An additional complication arising in cryo-EM is a
fixed tomographic projection, a line integral, also known as the X-ray transform. To account
for this effect, we extend our basic model (1.1) to the projected multi-reference alignment
problem (PMRA) model:?

(2.2) Y, =nmsRy, X + 0Z;.
Here, g : R — RL is matrix projecting a vector in R” to RY by keeping only the coordinates

that belong to a subset S C [L] of size L' < L and discarding the rest, and Z; v (0,1I) are

2We mention that other projected MRA models were studied in [6,12].
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Figure 3. A “genie-aided” experiment: the true X is used to estimate the shifts 21, cee ,én, as in the

template matching problem, and then the signal is estimated by aligning all measurements and averaging X =
%Z?:l R_; Y. The figure presents the RMSE (averaged over 50 trials) as a function of « for different values
of L. The number of measurements was set to be n(L) = 100L/log(L). For large values of ., the error reduces

a2+n
values of o, and in particular o < 2, the template matching error quickly increases.

to the error of estimating a signal in AWGN (i.e., when the shifts are known) ,/"—2 = \/ﬁ. For small

L’-dimensional i.i.d. Gaussian vectors. We assume that S is fixed and known to the estimator.
As in MRA without the projection, the goal is to reconstruct X up to a circular shift, that is,
produce an estimate X such that Ep(X, X ) is as small as possible.

We study the PMRA problem in an asymptotic setting where L, L', 02 — oo simultane-
ously. It makes sense to adopt a slightly different scaling for the noise in PMRA, as

L/
alog(L)’
The reason for this particular scaling will be made clear from the analysis: the numerator is the
total signal energy available in a single measurement, E||7gRy, X||?> = L’; the log(L) factor is
log the size of the group of shifts. In Section 7 we provide some remarks as to how to extend our
results to other groups. Similarly to our notation for the MRA model, we denote the smallest
attainable MSE in the PMRA model as MSEpypa(L, o, n), and the sample complexity as
npvra (L, o, €).

Theorem 2.3. Suppose that ofy\pa (@) is scaled as in (2.3), and L, L' — oo, so that L' < L

and L' = w(log(L)) (that is, L grows strictly less than exponentially fast in L'). The sample
complezity of the PMRA model (2.2) obeys the following lower bounds:

(2.3) o = opygra(@) =

This manuscript is for review purposes only.
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1. For any a> 2 and 0 < € < 1 we have that

(2.4) whuna(Li0.9) = 75 (£ 1) obuna @)1 + o(1).

2. For any a <2 and 0 < e <1 we have that
* L 2
(2.5) npypa(L,o,e) =w fUPMRA(a) log(1/e) | -

The proof of the theorem relies heavily on the proof of Theorem 2.1. Due to space constraints,
a proof sketch is relegated to the SI appendix, see Section SM6. We conjecture that at high
SNR (a > 2), the lower bound given in Theorem 2.3 is in fact tight at very low MSE (formally
¢ — 0, as in Theorem 2.1).

Extension to other signal priors and group actions. In section 7 we describe briefly how one
could modify our proofs to account for other i.i.d. signal priors (besides Gaussian) and finite
group actions.

3. Prior art. The multi-reference alignment problem was introduced by [7], and fully
formulated in [8]. The general MRA model reads

(3.1) Y =Ti(gio X)+ 0Z;, i=1,...,n,

where g; is a random element of a compact group G (drawn from a possibly unknown distribu-
tion over G) acting on a vector space X € X, and T;, ¢ = 1,...,n, are known linear operators.
If T; = I for all 4, g; are drawn uniformly from the group of cyclic shifts Z, and X ~ N(0, 1),
then (3.1) reduces to the MRA model (1.1). This model can be thought of as a special case
of a Gaussian mixture model, where all centers are connected through a group action (i.e., a
cyclic shift). If T; = mg for all i, we get the projected MRA model (2.2). In cryo-EM—the
main motivation of this work—G is the group of 3-D rotations SO(3), X is the space of 3-D
“band-limited” functions (that is, functions that can be expanded by finitely many basis func-
tions), and 7T; encodes the (fixed) tomographic projection, as well as other linear effects, such
as the microscope’s point spread function (which varies across images) and sampling [10,41].

The sample complexity of the MRA model (1.1), in the minimax sense, was first studied
in [9,32]. The focus of these works, as well as the rest of the works mentioned in this section,
is on the regime where the noise level ¢ and number of measurements n diverge, while the
dimension of each measurement L is fixed, implying SNR — 0. These results were extended
to the general MRA model (3.1) by [6] and [3] (the latter generalizes the framework proposed
in [1]). These papers constitute an intimate connection between the MRA model and the
method of moments—a classical estimation technique. Let d be the lowest order moment
that distinguishes two different signals (signals that are not in the same orbit) given a specific
MRA model (namely, fixed T}, X, and a distribution over ). Then, unless n- SNR? — oo, the
MSE is bounded from below. More informally, the moments determine the optimal (minimax)
estimation rate of the problem. For example, for the MRA model (1.1) it is known that the
third moment determines a generic signal uniquely (in this work we only consider normal i.i.d.
signals that fall into this category), i.e., d = 3, and thus n-SNR? >> 1 is a necessary condition.

This manuscript is for review purposes only.
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MULTI-REFERENCE ALIGNMENT IN HIGH DIMENSIONS 9

Remarkably, this phenomenon was observed empirically in context of cryo-EM early on by
Sigworth [39].

In this work, we propose an alternative explanation for the statistical difficulty of MRA
at low SNR, in a setting where the signal X is “generic” (specifically, X ~ N(0,1)) and the
dimension is very large. The separation between the two SNR regimes we identify is not
given in terms of moments; instead, it is characterized in terms of a very natural estimation-
theoretic question: is it possible, in an information-theoretic sense, to consistently recover the
unknown shifts (nuisance parameters) themselves? As we scale SNR = a/log L, the threshold
a = 2, separating the high and low SNR regimes, is exactly the threshold for the shift recovery
problem. Note that in this high-dimensional setting, we find that the low SNR regime in fact
extends beyond the case SNR — 0 to unbounded values of SNR (provided that it grows slowly
enough with L)—this is in contrast to previous works that study MRA in fixed dimension.

From the algorithmic perspective, two main computational frameworks were applied to
MRA problems. The first approach is based on expectation-maximization (EM)—a popular
heuristic to maximize the posterior distribution [20]. EM is the most popular and successful
methodology to elucidate high-resolution 3-D structures using cryo-EM [10, 37|, and it was
successfully applied to a variety of MRA setups [1,11,12,16,31]. A recent work [22] studies
the likelihood landscape for the general MRA model (3.1), where G is a discrete group and
T; = I. The latter paper shows that when the dimension is fixed and the SNR is sufficiently
high, the log likelihood has certain favorable features from an optimization perspective; their
results give a compelling argument for why EM seems to give good performance for MRA in
high SNR. In [17], it is shown that usually maximum likelihood achieves the parametric rate
p(X, XyLg) ~ 1/n, although in some cases the rate can be ~ 1/,/n.

The second algorithmic framework is based on the method of moments. This approach
has an appealing property: it requires only one pass over the measurements, and thus its
computational load is relatively low, unless L is large [1,11,16,31,32,35]. In addition, as men-
tioned, it achieves the optimal estimation rate when L is fixed and SNR — 0. Consequently, a
variety of moment-based algorithms were proposed. For example, the authors of [32] suggest
estimating the third-order tensor moment of the signal 73 = =1 ZZL;Ol(RgX )3, from which
X can be recovered by Jenrich’s method [24,29]. Using the robustness analysis of [23], they
were able to show that n = O (e~'¢®poly(L)) samples suffice to achieve p(X, )?) < ¢ with
constant probability. This bound depends polynomially on both the dimensional and on the
inverse smallest DFT coefficient of X; when X ~ A(0, I), one can verify that typically all the
DFT coefficients of X are greater than Q(L~'/2). The poly(L) dependence is not computed
explicitly, but to the best of our understanding, the analysis of [23] provides a significantly
worse dimensional scaling than the (L?) in our lower bound (as a — 0). Another work [11]
studies recovery by bispectrum inversion, which is equivalent to the third-order moment if
the distribution of shifts is uniform. They argue that when L is fixed, the sample complexity
should scale like O(0%), hiding an implicit dependence on L. The method of moments was
also applied to cryo-EM and related technologies, see for example [21, 26,30, 38|, as well as to
additional MRA setups 2,5, 25].

A recent work [27] establishes an enticing connection between likelihood-based techniques
and the method of moments for the general MRA model (3.1) for fixed L, SNR — 0, and
T; = I. Specifically, it was shown that likelihood optimization in the low SNR regime reduces

This manuscript is for review purposes only.
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10 E. ROMANOV, T. BENDORY, AND O. ORDENTLICH

to a sequence of moment matching problems. In addition, the method of moments is also
closely-related to invariant theory and thus tools from the latter field can be applied to analyze
MRA models; see in particular [6].

4. Phase transition of template matching. Suppose that the shifts R,, are all known.
In this scenario, estimating the signal is easy: one needs to align each observation R[ilyi and
average out the noise. Therefore, if possible, it makes sense to try and estimate the shifts. In
this section, we study the problem of estimating a shift when the signal is assumed to be known
(which is not the case in MRA); we refer to this problem as template matching. Specifically,
suppose that one has access to a signal, a “template” X € R, and observes a single sample
Y = Ry X +0Z, where X ~ N(0,I), Ry ~ Uniform({0,...,L —1}) is a random uniform shift,
Z ~ N(0,1I), and Ry, Z and X are mutually independent. The goal, then, is to recover Ry
from X and Y.

While the template matching problem seems to be significantly easier than the MRA
problem, we show a surprising phenomenon: in high dimensions, template matching and MRA
share the exact same phase transition point. In particular, it turns out that in high dimensions,
under our parameterization o%(a), which amounts to L/o? = a/log(L), the template matching
problem displays a sharp recoverability threshold. That is: (i) whenever o > 2, the random
shift can be recovered with error probability p. — 0 as L — oo; (ii) whenever o < 2, the shift
cannot be consistently recovered, and in fact for any estimator, p, — 1.

Observe that the optimal estimator (in the sense of maximum a posteriori probability) for

Ry is given by:
- X, R,'Y
(4.1) Ryap = argmin | X — R, 'Y ||* = argmax <HX€H2>
4 4

Denote its error probability by
(4.2) pe = Pr <Rg ” EMAP) :

We start by establishing that with overwhelming probability, the template X is “incoher-
ent”, in the sense that the correlations (X, Ry X)/||X||? are very small, unless ¢ = 0. The
lemma is proved in Appendix SM3.

Lemma 4.1. For k > 0, let A(k) be the event that
IL_l”X”Q_l} <K and Ig,lg())(L_lKX?Rf’X)’ SI{,

and let A(k) be its complement. Then,
Pr(A(k)) < 2L exp (—cL min(k, /{2)) ,

for a universal constant ¢ > 0. In particular, one can choose a sequence Kk = Ky such that
k — 0 sufficiently slowly, for example, k = CL™1/2 log(L) for C' > 0 large enough, so that
PI“(.AL(HL)) =1- 0(1).

3 A more general setting, where X is not necessarily Gaussian, and R, X goes through some general channel,
not necessarily Gaussian, was studied by Wang, Hu, and Shayevitz [45], but under different asymptotics.

This manuscript is for review purposes only.
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325 Let

<XaRZ/1Y> <X7RZ—€’X> O-<XaRZ/1Z>
326 (4.3 Op = =
'+ (43) N X T XE
327 and
328 (4.4) Wy = X||"YX, R, Z).

329  Recalling that Ryiap = argmax, O, and plugging 02 = (alog(L))™'L, Lemma 4.1 implies
330 that with high probability,

1+ (140(1)——1— W, if ¢ =4,

oo alog(L)

331 (45) Op = 1 1 1 1 W oy
0()+(+0())m‘ 1 if £ # L.

332 Notice that for every ¢/, Wy ~ N(0,1), being the projection of R[,lZ ~ N(0,1) onto a

333 unit vector X/[ X||. This clearly implies that ©; 2 1 as L — co. Thus, to analyze the error of
334 the MAP estimator, it simply remains to understand the behavior of maxy Wy . To this end,
335 we recall the following three results. We start with a well-known fact about the maximum of
336 i.i.d. standard Gaussians:

337 Lemma 4.2. Let Zy,...,Zy be i.i.d N(0,1) random variables. Then, as L — oo,
338 E {m?x Zg:| /v/2log(L) — 1.

339 The upper bound E [max, Z;] < /2log(L) is elementary, and holds even when Z1, ..., Zy, are

340 not independent. The proof follows from E max; Z; < ! log Emaxy e/%t < f~1logE Z£=1 eBZe :I
311 3/2+ B tlog(L), which holds for all 8 > 0; now take 3 = /21og(L). The proof of the match-

342 ing lower bound, on the other hand, is more involved and follows from results in extreme value

343 theory, see, for instance, Example 1.1.7 in [19]. We also use the following “quantitative” version

344  of the Sudakov-Fernique inequality:

345 Lemma 4.3 (Theorem 2.2.5in [4]). Let (X1,...,X1) and (Y1,...,Yr) be Gaussian vectors
346 so that E[X;] = E[Y;] for alli. Set

347 vy =E(X; — X;)?, 4 =E(Yi - Y))?,

348 and v = max; j |’yz),(] - 73;| Then

349 ‘E [max Xi] —E [max Y;} < /2vlog(L).

(2 (2
350  To get concentration around the mean, we use (a simple case of) the Borell-TIS inequality:
351 Lemma 4.4. Let (X1,...,X) be a Gaussian vector, and set o = max; E[X?]. Then
352 Pr <’maxXi —-E [m'axXz} > t) < e /207,

(2 (2

This manuscript is for review purposes only.
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12 E. ROMANOV, T. BENDORY, AND O. ORDENTLICH

See, e.g., [4, Theorem 2.1.1] (there only a one sided bound is stated; the other side follows the
same way). The following is now an immediate corollary of Lemmas 4.1, 4.2,4.3 and 4.4:

Theorem 4.5 (Sharp threshold for template matching). If o > 2, then pe — 0 as L — oo.
Conversely, if a < 2, then p, — 1.

Proof. We start by estimating E max, Wy. Choose k = o(1) such that the event A(k) of
Lemma 4.1 holds with probability 1 — o(1). Conditioned on X, {Wp}p—o 11 is a centered
Gaussian vector, with covariance

Cij(X) =E[W;W; | X] = | X *(R:X,R; X),

whereby under A, [C; ;(X) — d; ;| = o(1).
Let (Wy,...,Wr_1) beii.d N(0,1) random variables. By Lemmas 4.2 and 4.3, conditioned
on X and under A,

E [mﬁx Wy

X, A] = Efmax Wy + o(y/log(L)) = /(2+0(1)) log(L).

Lemma 4.4 gives us a uniform (in X) concentration inequality, conditioned on X and under

Pr <‘m€a}x Wy — 210g(L)’ > y/elog(L) ‘ X, _,4) < QL_(5+0(1))/2’

)

so that
Pr (’mﬁx Wy — 2log(L)‘ > \/slog(L)> < oL~ (E+e()/2 | py (A) = o0-(1).
Thus, we have shown that maxy Wy /+/2log(L) 2, 1. Using equation (4.5), we deduce that

O; 5 1 whereas maxy ¢ Op TN /2/a. Since }AQMAP = argmaxy O, we conclude that p. — 0
when a > 2 and p. — 1 when a < 2. |

A remark on the relation between template matching and synchronization.. In the MRA model,
one does not have access to the true template and thus needs to estimate the relative shifts
based solely on the data; this problem is referred to as synchronization.

For simplicity, let us assume we are given two measurements Y7 = X + 077 and Y, =
Ry X + 073, and would like to estimate R (recall that X is unknown). The optimal (MAP)
estimator is Rgyy = argmax, Pr(Rp|Y7,Y>2). It is straightforward to show that

}/ésyn = argmax (Y7, Rz,1Y2> = argmax((X + 0Z1), RZ,I(RKX +0Zs))
e e
= argmax { (X, R_p X) + 0(X,R;' Zo) + o(X, R, ', Z1) + 0*(Z1, R, Z5) } .
ZI

In order for this to consistently return the true relative shift Ry, one needs to ensure that the
“noise” term,

o(X, R, Za) + o(X, R,y Z1) + 0°(Z1, R, Zo)

is small compared to || X||? ~ L. The “typical” size of the first two terms is o(X, R,'Z) +
o(X, Rz_lz,Zﬁ ~ o+ L, whereas the third is O'2<Z1,R£_,1Z2> ~ 02V/L, and is therefore the

This manuscript is for review purposes only.
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MULTI-REFERENCE ALIGNMENT IN HIGH DIMENSIONS 13

dominant one for large o. Thus, to succeed with non-vanishing probability, we need that
o2VL < L, that is, o? = VL. In the regime we are interested in, the noise level is o2 ~
L/log(L), and this turns out to be far too large.

We mention in passing that if many measurements are available, one can leverage the
redundancy in the data to recover the true relative shifts in challenging environments; see for
example [15,33,36,40,42].

5. Sample complexity lower bounds.

5.1. The information-theoretic method for estimation lower bounds. We employ a
standard information-theoretic method of obtaining estimation error lower bounds, via rate-
distortion theory (see e.g. [34]). We refer the reader to SI Appendix SM1 for a basic review of
the information-theoretic definitions and facts we use in this section. Let X be an estimator
of X from the measurements Y = (Y7,...,Y,,), which achieves expected error (“distortion”)

(5.1) Ep(X,X)=L"'E min | X — R7IX|?<e.

Uy

Since the estimator depends only on the measurements, and not on X, the triplet X —Y" — X
constitutes a Markov chain. Hence, by the data processing inequality (Proposition SM1.3 item
3) we have that I(X; X) < I(X;Y™). We lower-bound I(X; X) by the rate distortion function
(RDF) R() associated with the source X ~ AN(0,I), and distortion measure p(-,-):

R(e) = min I(X;W).
PW\X:]EP(X)W)SE

The minimization here is done over conditional distributions Py x, or equivalently, over joint
distributions Py s whose X-marginal is Px—in our case N(0,I)—obeying the average dis-

tortion constraint Ep(X, W) < e. Since the conditional distribution P)?l « 18, by definition,
feasible for this minimization problem, we have R(s) < I(X ' X ). Combining this with the

upper bound I(X; X) < I(X;Y™), we get
(5.2) R(e) < I(X;Y™),

and we shall next derive a lower bound for R(e) in terms of €.

5.2. A lower bound on the rate-distortion function. We start by obtaining a lower bound
on the RDF. While the RDF problem for a Gaussian source under MSE distortion measure is
classical, the MSE up to the best alignment (the distortion measure we consider) is somewhat
non-standard. Obtaining a precise expression for the true RDF seems difficult, but a simple
lower bound can be obtained as follows.

Proposition 5.1. For an L dimensional i.i.d. Gaussian vector X ~ N(0,1), and distortion
measure p(-,-) as defined in (1.2), the rate distortion function satisfies

R(e) > glog C) ~log(L).

This manuscript is for review purposes only.
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14 E. ROMANOV, T. BENDORY, AND O. ORDENTLICH

Proof. By definition of the rate distortion function, to establish the claim we need to
show that for any conditional distribution (“test-channel”) Py x that satisfies the constraint
Ep(X,W) < e, where p(X, W) = L™ mins—o, -1 | X — B, 'W|?, it holds that I(X;W) >
Llog (%) —log(L). To that end, let R = R(X,W) = argming ¢y 1y [|X — ReW|| be the
difference minimizing shift. By the chain law of MI (Proposition SM1.3 item 2),

(5.3) I(X:W) = I(X; W, R) — I(X; RIW) > I(X; W, R) — log(L),

where we used I(X;R|W) < H(R|W) < log(L); the former follows from the definition of
MI and non-negativity of entropy (Proposition SM1.1 item 1), and the latter follows from
Proposition SM1.1 item 2 as the random variable R can take at most L values. Recall that
L'E|| X — RW|? < ¢ by definition of R. We therefore have that

L 1
I(X;W’)=210g< )

I(X;RW) > .

> min
Py x: LB X-W|[2<e

where in the second equality we have used the well-known expression for the quadratic Gauss-
ian rate distortion function (Proposition SM1.4). Thus, using the data processing inequality
(Proposition SM1.3 item 3), we have

L. (1
I(X;W.R) > I(X; RW) > 7 log <€) .

Substituting this into (5.3) establishes the claim. [ ]

Combining Proposition 5.1 with equation (5.2), we get

I(X:Y") > R(e) > glog (i) log(L).

Setting £ = Ep(X, X), we have obtained the following bound:

Corollary 5.2. Suppose that X ~ N(0,1) is an L dimensional i.i.d. Gaussian vector, X is
any estimator of X from Y1,...,Y,, and p(-,-) is as defined in (1.2). Then

S <_2[(X, Y™) + 2log(L)

Ep(X, X) > exp 7 ) =exp (—2L7" - I(X,Y")+0(1)) .

Equivalently,

2I(X,Y™) +2log(L)
L

MSEypa(L, a,n) > exp (— ) =exp (—2L7" - I(X,Y")+0(1)) .

Corollary 5.2 tells us that an upper bound on the MI I(X;Y™) would give us a lower
bound on the expected error of any estimator of X from Y™ = (Y1,...,Y,). We devote the
next section to deriving such upper bounds.

This manuscript is for review purposes only.
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5.3. Upper bounds on the mutual information. We start with the rather trivial obser-
vation that the MI between the signal X and the measurements Y is smaller than the MI
in a problem where there are no random shifts, which is equal to %log(l +no~2). The next
lemma formalizes this intuition and quantifies the MI difference between the two problems.

Lemma 5.3. The mutual information between the signal X and measurements Y1,...,Y, is
L
(5.4) [(X;Y") = 5 log(1 + no~?) — I(R™; X|Y™),

where R™ = (Ry,, ..., Ry,). In particular, I(X;Y") < %log(l +no?).
Proof. Let 172 = RZ?Y; =X+ JRZlZi. We may write
I(X;y")=I1(X;Y", R") — I[(X;R"|Y")
=I(X;Y", R") — I(X; R"|Y™)
=I(X;Y™) + I(X;R"|Y"™) — I(X; R"Y™),
where the first and third equalities follow by the chain rule for MI (Proposition SM1.3 item
2), and the second follows from Proposition SM1.3 item 4, and the fact that the mapping

(Y™, R") — (Y™ R") is invertible. By the fact that the Gaussian distribution is rotation
invariant, and in particular RZZ,IZ ~ N(0,7), we have that R™ is statistically independent of

(X,Y™), and consequently
I(X;R"|Y™) = H(R"Y™) — H(R"|Y",X) = H(R") — H(R") =0

where the first equality follows by definition of conditional mutual information and the second
by Proposition SM1.3.5. It remains to compute I(X;f/”). To this end, note that con-
ditioned on X = z, the measurements Y;,...,Y, are simply i.i.d. Gaussian measurements
Y; ~ N(x,0%I). Tt is well-known that in this case, the sample mean %Z?:l V; = X is a
sufficient statistic of Y™ for X. Conditioned on X = z, the sample mean has distribution
LS~ Y ~ N(z,02/n - I), therefore,

- 1 o - L _
(5.5) I(X;y") =1 <X; - z;y) =1(X;X+N(0,0°/n-1)) = 5 log(1+no 2),
1=

where the last equality follows from Proposition SM1.3 item 6. |

Combining Corollary 5.2 and Lemma 5.3, we obtain the following lower bound, that es-
sentially says the MSE in the MRA model is no better than in estimating a signal in AWGN.

Corollary 5.4. The smallest attainable MSE in the MRA model satisfies

1
> e
“14noc2 14+no2

SIS

MSE}pa(L, 0%, n) (14 0(1)),

and the sample complexity satisfies

n}‘\/IRA(L,U2,5) > {( — 1) 02-‘ = nZWGN(L,O'27€)(1 + o(1)).

This manuscript is for review purposes only.
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16 E. ROMANOV, T. BENDORY, AND O. ORDENTLICH

Lemma 5.3 tells us that the gap between I(X;Y™) and the MI in estimating a signal
in AWGN, without the shifts, £log(1 +no=2), is I(X; R"|Y™). This quantity is intimately
related to a multi-sample version of the template matching problem, as was considered in
Section 4. This connection will be exploited later on, when we derive an upper bound on the
single sample MI I(X;Y;).

Information combining. Observe that the measurements Yi,...,Y, are mutually indepen-
dent and identically distributed conditioned on X; that is, the samples are obtained by passing
the same signal X independently through a memoryless channel. By Proposition SM1.3 item
5, this implies that

(5.6) I(X;Y”)SiI(X;E)ZnI(X;Y),
=1

where Y = RyX + 0Z is a single measurement in the MRA model. Substituting (5.6) into
Corollary 5.2, yields the following.

Proposition 5.5. The smallest attainable MSE in the MRA model satisfies

v

MSE}pa(L, 0% n) > L™ exp <—niI(X; Y)) = exp <—niI(X; Y)) (1+0(1)),

and the sample complexity satisfies

__ 2log (L)

oo (1
thna(£10%e)> P <t (1) oot

where Y = RyX + 07 is a single measurement in the MRA model.

It is important to emphasize at this point that the bound in (5.6) becomes very loose for
n sufficiently large. Indeed, Lemma 5.3 implies that I(X;Y™) should scale at best logarth-
mically, rather than linearly, with n. Consequently, the lower bound on MSEjga (L, 0%, n)
in Proposition 5.5 decreases exponentially fast with n, whereas we know from Corollary 5.4
that it cannot decrease faster than the parametric rate of 1/n as in estimating a signal in
AWGN. Despite its grossly wrong dependence on n, the upper bound I(X;Y™) < nl(X;Y)
does suffice to say something non-trivial about the sample complexity of the problem. As seen
from Proposition 5.5: in order for the estimation error to be strictly bounded away from one,
one needs at least Q(L - I(X;Y)~!) samples. We will see that this rather “naive” analysis is
already enough to accurately separate between a “high SNR” and a “low SNR” regime, where
the behavior of the MRA problem is qualitatively different. Intuitively, as the measurements
Y1,...,Y, are only dependent through the random variable X, if n is so small that it is im-
possible to learn much about X from Y™, the dependence between Y7,...,Y, must be weak.
Thus, in that regime, ignoring this dependence and bounding I(X;Y"™) < nl(X;Y) is a rather
accurate estimate.

The problem of obtaining a stronger bound on multi-sample MI I(X;Y™) in terms of the
single-sample MI I(X;Y") is an instance of a so-called information combining problem. Several
problems of this type have been studied in the information theory literature, mostly dealing

This manuscript is for review purposes only.
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MULTI-REFERENCE ALIGNMENT IN HIGH DIMENSIONS 17

with binary channels [28,43]. In our case, we believe this problem to be quite hard, at least
in the low SNR regime, and thus we could not obtain a tighter bound. Deriving such bounds
can yield stronger lower bounds on MSE} A (L, @, n) in the low-SNR regime (o < 2) than the
ones we obtain here using the simple bound I(X;Y") < nI(X;Y)).

Roadmap. We will devote the rest of this section to deriving upper bounds on I(X;Y).
These bounds, together with Proposition 5.5, will immediately imply lower bounds on the MSE
and the sample complexity. In particular, we will derive two bounds, using different methods,
that will be effective in two SNR regimes.

o We estimate the mutual information using Jensen’s inequality to facilitate the compu-
tation of several expectations. One could expect this method to give somewhat tight
results when I(X;Y) is very small, and indeed, we shall see that when 0 < a < 1,
we obtain a bound I(X;Y) = O(L*1), which tends to 0 as L — co. For a > 1, the
obtained bound will turn out to be too loose.

e In Lemma 5.3 we have found that I(X; X +0Z) — I(X;Y) = I(X, R¢|Y). We lower
bound this gap using a Fano-like inequality, which in the case a < 2 amounts to
“quantifying” how well Ry can be estimated from X and Y, in a somewhat more precise
sense than Theorem 4.5 (which tells us that in this case, the error is p. = 1—o0(1)). This
will allow us to show that when o < 2, I(X;Y) = o(log(L)). We will not, however, be
able to recover the estimate in the case of 0 < a < 1 using this method.

5.3.1. MI bound at very low SNR (« < 1). We first express I(X;Y) in the following
way:

Lemma 5.6. Suppose that X ~ N(0,I), Z ~ N(0,1), and R ~ Uniform({Ry,...,Rr_1})
are mutually independent. Then,

L 1
I(X;Y) = 7 log(1 + 03~ Lo ?+Exyz {ngR exp <U2<X +0Z, RX>>] :

Proof. Write I(X;Y) = h(Y) — h(Y]X). Note that for any shift Ry, ReX ~ N(0,I)
and therefore Y ~ N(0, (1 + 02)I); this means that Y = RyX + 0Z is independent of R;.
The differential entropy of Y is h(Y) = h(N(0, (1 + o)) = Llog(2me) + L log(1 + 0?), by
Proposition SM1.1 item 3.

Let us now write the conditional differential entropy explicitly. The conditional density of Y’
given X is py | x (y|lz) = Er [(2#02)_”2 exp (-ﬁ”y — Rz||?)] for uniform R. The conditional
entropy is then simply

MY |X) =Exy [—logpyx(Y]X)]

L 1
= —log(2m0?) —Exy |logEgrexp [ —=— |V — RX|?
2 ’ 202

L 1
= Liog(zno)  Exy flog Enesp (— 5y (VI + X7 - 207, X)) )|

L+ (1+0?)L 1
(202) —Exy [logERexp (02<Y, RX>>] .

It remains to compute the expectation with respect to the joint distribution of X and Y in
the last term. Recall that we can write Y = R'X + oZ for R’ ~ Uniform({Ry,...,Rp_1})

L
=3 log(2m0?) +

This manuscript is for review purposes only.
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18 E. ROMANOV, T. BENDORY, AND O. ORDENTLICH

and Z ~ N(0,1), both independent of X. Alternatively, we could also write Y = R'(X 4+ 072),
which defines the exact same joint distribution between X and Y, due to the orthogonal
invariance of Z ~ N (0, I); this second form is slightly more convenient in what follows. Since
R is uniformly distributed,

Ex.zr [logER exp <012<R’(X + aZ),RX))] =Exzr [ngR exp (;((X +0Z), (R’)_lRX)>]
—Exz [ngR exp ( L (X +02), RX))] ,

that is, we can “drop” R’. The claimed formula now readily follows. |

The following proposition is the main estimate of this section. The proof uses some prop-
erties of the spectrum of Ry, stated and proved in Appendix SM4.

Proposition 5.7. We have the following upper bound on the single sample MI:
I(X;Y) < log (1 + L*leﬂL) +0(0™*L).

In particular, if c72L = alog(L) for 0 < a < 1, then the MI asymptotically vanishes as
L — oo with I(X;Y) < L™1(1 4 0(1)).

Proof. By the concavity of the log function, we always have Ey log(W) < log(EW). Thus,
Ex,z [logEReXp < (X +0Z, RX))} <Ex logEZRexp ( (X +0Z, RX))]

1
=Ex logERexp( (X,RX) + 02\|RX||2)]

1 1
=Ex logERexp< (X,RX) + QHXH2>]

1
=50 o 2L+ Ex [logERexp< (X, RX>>]

| /\

0 2L +1ogEg x exp < (X, RX>)
Plugging into the expression in Lemma 5.6, we get
I(X;Y)Sglog(l—ka )—§LO' +log ER, x exp <X RX)

Note that as L 0% — o0, already £ log(1+072)—3Lo~2 = O(c7*L). Observe that (X, RX) =
(X,RTX) =X, (R+ RT) ). By Lemma SM4.1, all the matrices R;+ R} are diagonalized

by some orthonormal basis with eigenvalues {2 cos (27r k:é) . By the orthogonal invariance
of X ~ N(0,1), there are i.i.d. Wy, ~ N(0,1) such that for all l,

L-1

2
“2X,ReX) =02 cos <L7Tk€> W2,
k=0

This manuscript is for review purposes only.
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Recall that the moment generating function of a y? random variable is
Ewnople™ 1=0-26)""2 fort>1/2,
see, e.g, [18, page 621]. Therefore, assuming o2 is sufficiently large (e.g., 02 > 2),

1 L-1L-1 o -1/2
logER x exp <02<X7 RX)> = log [Ll Z H <1 — 202 cos (LM)) ]

{=0 k=0

L1
= log Z eVt —log(L),

=0

where
14 o
WPy = —3 Z log <1 — 20 2cos <Lk€>) .
k=0

Expanding the log function to first order around 1 and noting that Zé;& coS (%’Tké) = L1y

(see Lemma SM4.1), for large values of L and o2, we get

L—-1 —9 4 .
B 5 2m 4y JO UL+ O(c~*L) if £ =0,
e = kE_Oa Ccos < 7 kl)+O(c L) = O(0—L)

otherwise.

Thus, we have the estimate

= 1 L-1

-2 —4 - —4
log Z e¥t —log(L) = log (LeU L+O(e™L) 4 7 Ol L)>
=0
= log <1 + L_leasz) +0(c7L),

from which the claimed result immediately follows. |

Observe that for a > 1, Proposition 5.7 gives an upper bound of the order I(X;Y) =
O(log(L)). It will turn out that when o > 2, this is indeed the right order of magnitude.
However, for 1 < a < 2 the bound is too loose, and in fact I(X;Y) = o(log(L)).

5.3.2. Ml bound using template matching. We start from Lemma 5.3 which gives, for
n=1andY = RX +0Z, I(X;Y) = %log(l +072) — I(R; X|Y). We make the important
observation that R and Y are independent; indeed, regardless of R, it holds that Y|R ~
N(0, (1+0?)I). We remark, however, that when n > 1, Y™ is not independent of R". We can
therefore use Proposition SM1.1 item 5, and Proposition SM1.1 item 2 to write

I(R; X|Y)=H(R|Y)— H(R|X,Y) = H(R) — HR|X,Y) = log(L) — H(R|X,Y),
so that
(5.7) I(X;Y) = glog(l +072) —log(L) + H(R|X,Y).

The following is now an immediate consequence of Fano’s inequality (Proposition SM1.2)
and Theorem 4.5.
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Proposition 5.8. Suppose that 0 2L = alog(L) with a > 2. Then,
L
I(X;Y) = 5 log(1 + 07 2) — (1+0(1)) log(L)

- (% 14 0(1)> log(L) + O(0~*L).

Proof. We estimate H(R|X,Y). Clearly, H(R|X,Y) > 0 by non-negativity of entropy
(Proposition SM1.1 item 1). As for an upper bound, by Fano’s inquality (Proposition SM1.2),
for any estimator R of R from X,Y, the error probability p. = Pr(R # R) satisfies

H(R|X,Y) < log2 + p.log(L).

By Theorem 4.5, Ryap has error p, — 0, which means that H(R|X,Y) = o(1) - log(L) =
o(log(L)). Plugging this into equation (5.7) and expanding Zlog(l + o=2) = %log(L) +
O(c~*L), we obtain the desired estimate for I(X;Y). [ ]

Proposition 5.8 above will not be needed for our main results, but its proof serves as good
exposition towards bounding the conditional entropy H(R|X,Y) in the harder case a < 2.
When a < 2 we have p. — 1, so that it is no longer true that H(R|X,Y) = o(log(L)). Indeed,
since I(X;Y) = (a/2 — 1)log(L) + O(c~*L) + H(R|X,Y), we must have that H(R|X,Y) >
(1 —a/2—o0(1))log(L), since the MI is non-negative. While, indeed, in this regime R cannot
be recovered from X, Y, we can still obtain a non-trivial upper bound (of the form ¢(«)log(L)
for some ¢(a) < 1) on the conditional entropy H(R|X,Y); the idea is that given X,Y, we can
form a relatively small list that contains R with high probability.

Our goal, then, is to non-trivially upper bound H(R|X,Y) in the regime o < 2 where
pe 7 0. Let 7 > 0, and denote by S; the set of 7-likely shifts:

/\—1
(5.8) ST:{R':<X’|(|J;(|)|2Y>217'}.

The analysis of Section 4 tells us that for any 7 > 0, the true shift R belongs with high
probability to the set S;. Moreover, when o > 2 (and 7 > 0 is a sufficiently small constant), in
fact with high probability S; = {R}. When « < 2 this will no longer be the case; nonetheless,
we show that |S;| is with high probability significantly smaller than L. This means that
given X and Y, we can produce a list of likely candidates for R which is much smaller than
the entire group of shifts. The following lemma is proved in the SI Appendix, Section SM5.

o N2
Lemma 5.9. Let k,7,( > 0. Set M = pimzet-m(l-r—15%) ¢ and assume that o < 2.
Then

. k \2
(5.9) Pr(R¢ S, or |S;| > M) < 2Le~cbmin(rr?) 4 p=5a(-m(1-r=35)" 4 op—C

where ¢ > 0 is the universal constant of Lemma 4.1.

Lemma 5.9 implies that there are slowly decaying sequences 7 = 77, = 0(1),d = 1, = o(1)
such that the event )
B= {R €S, and |S,,| < L1_§a+5L}

holds with high probability of Pr(B) = 1 —o0(1). We use this to bound the conditional entropy
H(R|X,Y), and obtain a bound on the MI:

This manuscript is for review purposes only.



MULTI-REFERENCE ALIGNMENT IN HIGH DIMENSIONS 21

661 Proposition 5.10. Suppose that o < 2. Then,
662 I(X;Y) = o(log(L)).
663 Proof. We upper bound the conditional entropy H(R|X,Y") using a “Fano-like” argument.

664 Let E be the indicator for the event B above. Since F is completely deterministic given
665 (R,X,Y), we have that H(F|R, X,Y) = 0 by Proposition SM1.1 item 1 and by the chain rule
666 of entropy (Proposition SM1.1 item 4) we have

667 H(R|X,Y)=H(R|X,Y)+ H(E|R,X,Y)

668 =H(R,E|X,Y)

669 = H(E|X,Y)+ H(R|X,Y,E)

670 < H(E)+ H(R|X,Y,E=1)Pr(E =1)+ H(R|X,Y,E = 0) Pr(E = 0),

672 where we have bounded H(E|X,Y) < H(FE) using Proposition SM1.1 item 5, and expanded
673 H(R|X,Y, E) according to the definition of conditional entropy, averaging only with respect
674 to FE.

675 Now, given that F = 1, we know that R belongs to S;, , which has size |S;, | < M =
676 L1=zo+L, Hence, H(R|X,Y,E = 1) <log(M) = (1 — a + 6.) log(L) by Proposition SM1.1
677 item 2, and by the same reason H(R|X,Y,E = 0) < log(L). By definition, Pr(E = 1) =
678 Pr(B) = 1 —o0(1), and H(F) < log(2) by Proposition SM1.1 item 2. Thus, H(R|X,Y) <
679 (1= 2a+o(1)) log(L). Plugging this into Eq. (5.7),

680 I(X;Y) = glog(l +072) —log(L) + H(R|X,Y)

681 - % 1+ 0(1)) log(L) + O(c~*L) + (1 - % + 0(1)) log(L)

683 = o(log(L)) + O(o L),

684 as claimed. |
685 Remark 5.11. One might wonder if the argument above (if carried out delicately enough)

636 can match the estimate I(X;Y) = O(L~17%) we have already seen for a < 1. Unfortunately,
687 the bound Pr(|S,| > M) < 2L7% (using Markov’s inequality; see the proof of Lemma 5.9 in
688 SI Appendix, Section SM5) is already too crude for that purpose: since we need to choose
689§ = o(1), the o(1) correction above must decay slower than L=¢ (for any ¢ > 0).

690 5.3.3. Proof of main results. We are ready to prove Theorem 2.2 and the sample com-
691 plexity lower bounds of Theorem 2.1.
692 Proof of Theorems 2.1 (lower bounds) and 2.2..

693 e Theorem 2.1, & > 2 (lower bound): Corollary 5.4 immediately implies that lim._,o limy,_,~ nMR; Lsa < >I
694 1.

695 e Theorem 2.1, o < 2: Combining Proposition 5.5 and Proposition 5.10, give nyga (L, o, ) =[]

696 w (log( log(1/€)> w (0% log(1/e)).

697 . Theorem 2.2, a < 1: Combining Proposition 5.5 and Proposition 5.7 yield nyp 2 (L, o, ) =|

698 QL% log(l/e)).
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The proof of the upper bound lim._,glimyz . w < 1 for @ > 2 (item (1) of Theo-

o?/e
rem 2.1) appears in Section 6.

6. Sample complexity upper bound for a > 2 via brute-force template matching. In
this section we propose a recovery algorithm for the high SNR regime o > 2, which essentially
matches our 2(L/ log L) lower bound on the sample complexity. Our goal here is not to propose
a new MRA algorithm, but rather to establish a matching upper bound on the statistical
difficulty of the problem; that is, we are studying the fundamental information-theoretic (rather
than computational) limits of MRA. * In particular, the proposed algorithm is computationally
intractable, and involves a brute-force search on an exponentially sized set of candidates.
Moreover, our approach is tailored to the case v > 2, which is exactly the SNR regime where
template matching is statistically possible.

Outline of our algorithm. Before diving into the technical details of our proposed scheme,
we give a brief outline of the approach. The estimation algorithm works in two stages. Suppose
we are given n independent samples. We divide them into two subsamples of sizes n1 and no,
n1 + ne = n. We do this so to ensure that the estimator @ produced in step 1 is statistically
independent of the additive noise in the samples used for step 2. This simplifies our analysis
considerably. The two stages performed by the algorithm are the following.

L. Brute-force search for a template: In the first stage, we use the first n; samples to find
some direction @ € SI71 (here SE~1 is the unit sphere in R”) such that @ is sufficiently
well-aligned with some shift of the true signal, that is, max, L~1/2(X, Rflé)\) >1—-mn,
where n = n(« ) is small. To do this, we consider a fine- enough cover of the sphere, N' C
St=1, and take Q € N as the minimizer of a certain score: Q = argmingep it 5:(Q),
Where s;(Q) is computed from the i-th sample Y;. Minimizing Y 1, s;(Q) over S¥1
boils down to a brute-force search over the cover, whose size is exponential in L. Hence,
this algorithm is not efficient. In principle, one could take at this point vVLQ ~ || X ||Q
as an estimator for X. Unfortunately, the MSE of this estimator decays at a suboptimal
rate with respect to the number of samples n; this is remedied by the second step.

2. Alignment and averaging: Using @ from the previous step, we perform template match-
ing on the remaining ny samples Y7,...,Y,, in order to estimate their shifts relative
to @:

}A%gi = argmax (Y}, Rg@).
1

The final estimator for X is then the average of the aligned measurements:
~ 1 ~ 1
X=—> R,'Y.

All the missing technical details are provided in the next two sections. Due to space constraints,
the proofs of all lemmas are given in the SI Appendix, Section SM7.

4 This distinction is not trivial in general. In the context of MRA, for instance, previous papers con-
jectured that a natural extension of the MRA model, called heterogeneous MRA, suffers from a fundamental
computational-statistical gap [6,16]. We do not claim, however, that such a computational-statistical gap holds
for the MRA model considered in this paper, with « close to 2.
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Main result of this section.. The main result of this section is the following:

Proposition 6.1. Suppose that o > 2, fiz € > 0, and let n, L — oo. Then, there exists some
c(a)) > 0 depending on « such that if

0.2
ny = c(a)o?, no=(1+ 0(1))?,

then the estimator X returned by our algorithm satisfies p(X, )A() < € with probability 1 —o(1).
Note that when € > 0 is small, the sample complexity is dominated by no:

2 2

T~ (L+o(1)

n=cla)o? + (1 + 0(1))?

and thus almost independent of the constant ¢(«). Proposition 6.1 should be compared with
the optimal achievable MSE for estimating a signal in AWGN, without the shifts L~ E[| X —

o2

Xumsel? = ;75

Proof of Theorem 2.1 (upper bound). The upper bound for a > 2 follows readily from
Proposition 6.1. To show this, we construct a new estimator [X] as follows: [X] = X if
1X|| < 10vVI andA[)? ] = 0 otherwise. Note that under the high-probability event || X|| < 2V/L,
necessarily p(X, [X]) < p(X, X). Write

Ep(X,[X]) = E [p(X, KD ¢ coyz] +E [p(X, XD oy -

Under || X|| < 2v/L, the random variable p(X, [X]) is bounded by a constant, hence by Propo-
sition 6.1,

E [0, (XD <ayz] <2+ 0(1),

since p(X, X) < e holds w.p. 1 —o(1). As for the other term,

E [p(X, Ry sayz] < B [LV20X) + 10028 ¢y 7] < 6B [LV21X 15172 x00]
so that by Cauchy-Schwartz,

) ) 1/2
B (L 21X 0 vapsa] < (CBIXIEDY? (PrX) > 2VE)) =0

(1)
Thus, [X] uses n = [(1 + o(1))/e + ()] 02 samples and achieves Ep(X, [X]) < € + o(1), so
that . I
lim sup w <1+ Oq(e).
L—o0 a /6
Class of “nice signals.”. Before getting to the details of the algorithm, in the analysis that
follows, it is convenient to treat the signal X as fixed and belonging some class of “nice” signals.
Specifically, we require that: (i) the signal is sufficiently uncorrelated with its shifts, in that
L %X, RyX) ~ 0 for all £ # 0, and its norm is concentrated around L~ X|? ~ 1; (ii) The
Fourier (DFT) coefficients of X are uniformly bounded.
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Let fo,..., fr—1 € CL be the DFT basis vectors, that is, (fo)j = L_1/2e%£j, and F € U(L)
be the matrix whose columns are fo, ..., fr_1, so that F*X € C¥ are the Fourier coefficients
of X (here F* denotes the Hermitian conjugate of F.) For k > 0, we formally consider the set
(6.1)

X, = {X eRL maX\L (X, R X) —Lgy—gy| <k, and [|[F*X o < 1010g(L)},

where 1gy—_gy = 1 when £ = 0 and is zero otherwise. We take x = o(1) sufficiently large so to
ensure that when X ~ N(0,1), the constraint max, |[L~'(X, Ry X) — 1 {= 0}‘ < k holds with
probability 1 — o(1) as L — oo; by Lemma 4.1, we may choose x = clog(L)/v/'L for ¢ > 0 a
large enough constant. Let X be the set corresponding to such choice. To lighten the notation,
we will not keep track of x explicitly, instead referring to all vanishing terms as o(1). For the
other constraint, the exact bound || F*X|| < 4/10log(L) is somewhat arbitrary, in that 10
can be replaced with any constant greater than 4. The following is quite immediate at this
point:

Lemma 6.2. Suppose that X ~ N (0,I). Then, Pr(X ¢ X) = o(1).

We note that it is likely that without assuming that the estimation is over a class of “nice”
signals (for example, the class X), the situation changes. On that note, we mention the
work [17], where it is shown that there are signals X for which the MLE only attains the rate

p(X, Xnig) ~ n~ V2.

6.1. Step 1: Brute force template matching. Recall that our intermediate goal here is
to find a direction Q € SY~! such that max, L‘1/2<X, RZIQ> > 1—mn, where n > 0 is some
desired accuracy level. Since, assuming X € X, for any @ € SV,

X
[ - ]| =2-2(pg m0) =22 ) o)

then taking N to be a /-cover of SL=1, it must contain some @ € N with L~12(Q, Re_lX) >
1— 777 + o(1). It is well known that one can find a cover of the sphere which is not too large:

Lemma 6.3. [Lemma 5.13 in [{4]] There exists an \/n-cover N of SE=1 of size |N| <
(3/ym¥E. That is, there exists a set N C SE=1 of size |N| < (3/\/m)F, such that VX €
~1,3Q e N with | X — Q|| < /1.

For each (Q € NV, we define its per-sample score:

Q) = s1(Q) =1 |max LY, R71Q) > 1~ 2y

and the total score s(Q) = Y i, ,(Q), n1 being the number of samples allocated for this step.
That is, s(Q) is the number of samples Y; such that L_1/2<Q,R;1Yi> 1- 777 for some /.
The returned estimator is then simply

~

Q = argmax s(Q).
QeN
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Note that s;(-) could be thought of as a discontinuous proxy for the log-likelihood (restricted
to X € SIN): log P(Y;|X) = log ZEL:_Ol exp (#(X, R;'Y;)) + constant. When o is small,
the log-likelihood is essentially dominated by max,o~2(X, R21Yi>. Maximizing the likelihood
is computationally more straightforward (in the sense that this is a continuous optimization
problem, no need to quantize the domain as we do); however, analyzing the MLE directly
appears to be difficult [22,27].

We start by showing that there are only a few shifts ¢ such that L_1/2<X, Rle> are all
large.

Lemma 6.4. Suppose that X € X. For Q € SF=1, let
No(h) = Hz LTV (X, R7Q)| > h}’

Then, Ng(h) < h72||F*X||% < h=2-10log(L).

We next show that if max, L~1/2(X, R21Q> is small, then with high probability the score
s(@Q) is not large.

Lemma 6.5. Assume that X € X, a > 2, n < 1 —+/2/«, and L is large enough so that
log(L) < L37°a/128 Suppose that Q € S is such that max, L~/?(X, R21Q> <1-—mn, then

ni/2

Pr(s(Q) >n1/2) < |16 2+&2 1,-na/128
(-

Next, we prove that if max,(X, R;1Q> is sufficiently large, then s(Q) is large with high
probability.

Lemma 6.6. Assume that X € X, a > 2, and L is large enough so that Ln*a/64 > 4.
Suppose that Q € SE~1 is such that max,(X, R;1Q> >1—5n/8. Then,
Pr(s(Q) < ny/2) < e ™/32,

We are now ready to conclude the analysis of Step 1 of our algorithm.

Proposition 6.7. Assume that X € X, a > 2, and n < 1 — \/2/c. Then, there is constant
c > 0, such that whenever

Llog(1/n)  o%log(1/n)
2 bl

c

an?log(L) U
the vector @ = argmaxge 5(Q) satisfies max, (X, RE_IQ> > 1 —n with probability 1 — o(1) as
ni, L = oo. In fact, the error probability decays exponenentially fast with ny.

Proof. As argued in the beginning of this section, the /f-cover N contains some @ €
SE=1 such that L7Y2(X, R,;'Q) > 1 —n/2 — o(1) > 1 — 55/8 for some £. By Lemma 6.6,
with probability greater than 1 — e~"1/32 this vector has score s(Q) > ny/2. It therefore
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suffices to show that with high probability, all the vectors Q € N that are bad, meaning that
max, L~Y2(X, R;'Q) < 1 — n, have score s(Q) < n1/2. By Lemmas 6.3 and 6.5,

Pr(3bad Q € N : s(Q) > n1/2) < |N|-Pr(s(Q) > n1/2|Q is bad)
ni/2
640 oy
=0

< (C(a)e—canalog(L)-i-cg% log(l/n))nl 7

< (9/m)E% (16 | 2+

where c¢1, ¢ > 0 are absolute constants, and C(«) depends on «. Then, this probability tends

Llog(1/n)

an?log(L) for some other ¢ > 0.1

to 0 as ny, L — oo (exponentially fast in n; ) whenever n; > ¢
Note that at this point we could take X =112. @ as an estimator for X, so that

p(X, X) = min | L72X — R7IQ|* < 20+ o(1),

holds with high probability. For fixed 7, this estimator indeed captures the correct dimensional
scaling of the sample complexity, namely, that n = O(L/(alog L) samples are sufficient to
get non-trivial alignment error. However, its dependence on 7 is seemingly quite bad: for
estimating a signal in AWGN, without the shifts, the optimal dependence on 7 should look
like O(L/(alog L) - n~ 1), rather than the much worse O (L/(alog L) - n~2log(1/n)) we were
able to show. In the next section, we see how to achieve this “correct” rate by essentially
recovering the shifts on all but a vanishing fraction of the samples, and averaging the properly
aligned measurements.

6.2. Step 2: Achieving optimal MSE decay rate by alignment and averaging. Sup-
pose that one has access to a known template Q@ € S~!, such that (X,Q) > 1 — 7. Since
LY X|? = 1+ o(1), this is the same as having ||[L=/2X — Q||?> < 21 + o(1), and since
maxyzo L7H(X, ReX)| = o(1), we see that for any ¢ # 0,

1L 2R X = QI 2 IL72[ReX = X]|| = IL72X = Q| = V2 — /21 — o(1).

In particular, we see that when /2 < v/2— /21, that is, n < 1 /4 (and L is sufficiently large),
there is a unique ¢ (specifically, £ = 0) such that ||L~Y2X — R,Q|> < 2n+ o(1). In that case,
the idea of matching a sample Y; = R, X + 0Z against the template ) becomes well-posed,
in the sense that its desired outcome is clear: we would like to recover the shift Ry, .

Lemma 6.8. Assume that X € X and a > 2. Let Y = RyX + oZ, and suppose that
Q € SY71 is independent of Y and satisfies maxy L~1/2(X, Rz,lQ> >1—mn, where

1
Vn < 5(1 —v2/a).
Denote the mazimizing shift by £*. Let [ = argmaxy (Y, RpQ). Then

Pr (g# 0 E*) < o1 -3(1/2-1/vV2a=yn) +o(1).
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Given Lemma 6.8, we propose the following estimation strategy. Suppose we would like
to estimate X up to error p(X,X) < e < 1. Fix some > 0 with /7 < (1 — /2/a)/2 (for
concreteness, say 7 = (1 — 1/2/a)?/16). We first apply the algorithm of Step 1 (Setion 6.1) to
obtain @ € SE~1 such that max(X, Rf@) > 1 —n. Assuming that n; > w 2 = ¢,0?,
we are successful with probability 1 — o(1). Let £* be such that (X R;'Q) > 1 —n. Next, for

ng new independent samples, we compute for each measurement 6 = argmax,(Y;, RgQ) and
return the aligned sample average:

n2

= 1
2 X == ~ly;.
(6.2) o ;Rei

Lemma 6.8 tells us that we should expect most of the aligned measurements RilYZ- to be
well-aligned with Ry« X, that is, RilYi = Ry« X + N(0,0%I). This means that, X ~ Ry X +
N(0, (62 /n2)I), hence p(X,X) < L7|Rp-X — X|? ~ 02/ns, which is smaller than e if
ng > 0% /e. We make this argument precise below:

Proposition 6.9. Assume that X € X and o > 2. Fiz e > 0 and some n < (1 —/2/a)%

Let @ e S be the output of Step 1 (run with a tuning parameter n and ny samples). Let X
be as in equation (6.2), computed from ny new samples. Suppose that ny,ng, L — oo with

2
n1/02—>’)/1, n2/02—>%,

where v1 and vy are constants satisfying

-, clog(1/n)

M= 71(77) el 7]2 Y2 > ]-a

(¢ being the universal constant from Proposition 6.7). Then,
Pr (p(X, X) < 6) — 1.

Proposition 6.1 now immediately follows from Lemma 6.2 and Proposition 6.9.

7. Conclusions and extensions. In this work we have studied the sample complexity of
the MRA problem in the limit of large L. In this regime, we have shown that the parameter

o bgL plays a crucial role in characterizing the best attainable performance of any

o =
estimator

As mentioned above, the MRA model is primarily motivated by the cryo-EM technology
to constitute the 3-D structure of biological molecules. In the cryo-EM literature, it was shown
that it is effective to assume that the molecule was drawn from a Gaussian prior with decaying
power spectrum [37]. In addition, the 3-D rotations are usually not distributed uniformly
over the group SO(3). We now discuss briefly how these different aspects can be potentially

incorporated into our framework.

This manuscript is for review purposes only.



890
891
892
893
894
895
896
897
898
899
900
901
902
903

904
905
906
907
908
909

910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927

928
929
930
931

28 E. ROMANOV, T. BENDORY, AND O. ORDENTLICH

Prior on the signal. Our model assumes a Gaussian i.i.d. prior on the signal X to be
reconstructed. While this assumption lends itself to a relatively clean analysis, and allows to
compare our bounds on njg (L, @, €) to the simple benchmark nan(L, @, €), many of our
results can be generalized to treat other priors on X. In particular, all of our sample complexity
lower bounds are based on lower bounding the mutual information between X and X under
the constraint E[p(X, X)] < e on the one hand, and upper bounding I(X;Y") under the MRA
model, on the other hand. In Proposition 5.1 we have relied on the Gaussian rate distortion
function to lower bound I(X; X) for any estimator that achieves MSE at most e. For X whose
distribution is not N(0, ), we can either compute the corresponding rate distortion function
explicitly, or simply apply Shannon’s lower bound R(D) > h(X) — % log(2meD), see [13]. Our
upper bounds on I(X;Y™) in the regime a > 1 are based on Lemma 5.3, followed by lower
bounding I(R"™; X|Y™) using Fano-like arguments. It is easy to see that (5.4) continues to hold,
with < instead of =, for any random variable X with E||X|? < L. Furthermore, the lower

[RY]
L

bounds on I(R"; X|Y™) we derive in Section 5.3.2 remain valid whenever is sufficiently

concentrated around 1 and @ is sufficiently concentrated around O forall ¢ =1,..., L—1.
In particular, this is the case for (sufficiently light-tailed) i.i.d. zero-mean and unit variance
distributions. In light of the discussion above, we see that the parameter a = UZI%L is of great
importance whenever the random signal X satisfies the above concentration requirements and
has differential entropy proportional to L.

Shift distribution. Assuming uniform prior on the i.i.d. shifts Ry,,..., Ry, is a worst-case
analysis. Indeed, for any given distribution, shifting all measurements again R,,Y;, for u; S
Uniform({0,...,L—1}) before feeding them to the estimator leads to (1.1). However, previous
works (for fixed L) showed that harnessing non-uniformity can make a big difference in the
sample complexity [1,38]. With some effort, our upper bounds on I(X;Y™) in the regime o > 1
should also extend to treat this case. Here, the main challenge is to generalize Lemma 5.9 to
the case of non-uniform distribution, i.e., to find a sharp estimate on the smallest possible size
of a list of candidates for the true shift, which contains the true shift with high probability.

Extension to other groups. We believe that many aspects of our information-theoretical
analysis can be generalized to other (families of) discrete groups, denoted here by Gr, which
satisfy the following properties (roughly speaking): (i) If X is suitably generic and g # h,
then (¢gX,hX) is very small - concretely, if X ~ AN(0,I), then E[(¢9X,hX)] = 0; (ii) The
size of the group |Gr| does not grow too fast (strictly less than exponentially fast in L).
These conditions imply that whenever X is isotropic and sufficiently light-tailed (e.g., sub-
Gaussian), {gX }4c¢ are “almost orthogonal.” The proper noise scaling to consider would then
be o2 = “Tog 0L’ with @ = 2 being the critical noise level—this comes from the fact that

maxgeg, (9X, Z) =~ y/2log|Gr|. For continuous compact groups , we suspect that one might
be able to apply some of our arguments by cleverly discretizing the suitable group action.
Carrying out a program of this type seems as a promising direction for future research.
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