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Adaptive low-rank approximations for operator equations:
Accuracy control and computational complexity

Markus Bachmayr and Wolfgang Dahmen

ABSTRACT. The challenge of mastering computational tasks of enormous size
tends to frequently override questioning the quality of the numerical outcome
in terms of accuracy. By this we do not mean the accuracy within the discrete
setting, which itself may also be far from evident for ill-conditioned problems
or when iterative solvers are involved. By accuracy-controlled computation we
mean the deviation of the numerical approximation from the exact solution
of an underlying continuous problem in a relevant metric, which has been the
initiating interest in the first place. Can the accuracy of a numerical result be
rigorously certified — a question that is particularly important in the context of
uncertainty quantification, when many possible sources of uncertainties inter-
act. This is the guiding question throughout this article, which reviews recent
developments of low-rank approximation methods for problems in high spatial
dimensions. In particular, we highlight the role of adaptivity when dealing
with such strongly nonlinear methods that integrate in a natural way issues of
discrete and continuous accuracy.

1. Introduction

1.1. Background. Quantifiable approximation, recovery, estimation of func-
tions of a very large and even infinite number of variables pose enormous challenges
in numerous application contexts of high current interest. The discussion in this
article is guided by two sources of high (spatial) dimensionality, namely

(I) partial differential equations (PDEs) in high-dimensional phase space, and

(IT) families of PDEs depending on a large number of parameters, which could
arise as design parameters or stem from parametrizing random coefficient fields.

The electronic Schrodinger equation for NV particles or Fokker-Planck equations
are typical representatives for (I). Both contain a second order diffusion operator
as highest-order term, which explains the interest in considering high-dimensional
diffusion equations on a product domain as a first model class to be studied. While
from an analytical point of view this is, in principle, a very well understood problem,
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2 MARKUS BACHMAYR AND WOLFGANG DAHMEN

the focus here is on the spatial dimension d being large, even several hundreds or
thousands.

Regarding (II), an intensely studied problem class concerns parameter depen-
dent families of operator equations

(1.1) R(u;p) =0 in Q, wulpo=0, peP,

where this time @ C R™ is a “low-dimensional” domain, typically with m €
{1,2,3}, but the operator depends on a parameter p that may range over a high-
dimensional (or even infinite-dimensional) parameter domain P. In an optimal
control context, P can represent a set of design parameters. Another important
instance of this type of problems arises when p is actually a random field over
some probability space modelling highly complex or micro-structured fields, such
as permeability in a porous media flow. Expanding such a random field, e.g., as a
Karhunen-Loéve expansion, one arrives at a representation of p in terms of param-
eter sequences y = (y1,ya,...) € Y :=[~1,1]7 where in general Z = IN. Evaluating
u(y) = u(p(y)) for many parameter queries, computing quantities of interest of
the states u(y), recovering such states from given observations, or estimating the
underlying parameters are typical tasks in the context of uncertainty quantification.

The common challenge in both problem scenarios (I) and (II) lies in recovering
or approximating functions of a large or even infinite number of variables. Classical
numerical concepts based on (local) mesh refinements are of very limited use, since
they typically suffer from the curse of dimensionality, which roughly means that
numerical costs grow exponentially with the spatial dimension. The perhaps most
promising remedy is to exploit some intrinsic sparsity of solutions with respect to
a priori unknown dictionaries or expansion systems. Technically this amounts to
dealing with approximants that are parametrized in a typically rather nonlinear
fashion, see Section 1.2.

Such a strategy is indirectly taken up by the following quite common approach
to such spatially high-dimensional problems that has been lately attracting signifi-
cant attention. One starts from a (usually fixed) standard finite difference or finite
element discretization, which initially gives rise to a discrete system of equations of
enormous size. Numerical tractability is then achieved by solving the (fixed) dis-
crete problem approximately, restricting approximants to a low-rank tensor format,
see e.g. [16,41,45] and the comments in Section 1.2. The choice of the initial spa-
tial resolution and of the tensor ranks is usually based on an educated guess, with
little or no provision in the solver for updating according to some target tolerances.
So to speak as a tribute to the problem complexity, one is tacitly content with con-
trolling the accuracy of the discrete approzimate solution with respect to the exact
solution of the discrete problem — discrete accuracy — but not with respect to the
actual solution of the underlying continuous problem in a problem-relevant metric.
In stark contrast, in the sequel accuracy or error control will always be understood
in this latter sense with reference to the solution of the original continuous problem.
In fact, the predictive power of models like (I) or (IT) depends among other things
on the ability to quantify this notion of accuracy, which is the central theme in this
article.

Corresponding concepts for low-rank or tensor approximations discussed in this
article target two central aims: (a) developing methods with a rigorous quantifi-
cation of accuracy and (b) understanding how the entailed numerical complexity
scales with increasing accuracy (with respect to the continuous solution). In fact, it
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ADAPTIVE LOW-RANK APPROXIMATIONS FOR OPERATOR EQUATIONS 3

is (b) that allows one to determine in the end whether a certain solver methodology
is actually appropriate or whether numerical efficiency has been compromised at
the expense of any meaningful accuracy.

It is important to note that a favorable answer to (b) is tantamount to saying
that solutions to the continuous problem are “well approximated by low-rank or
tensor expressions”. Such basic approximability properties are discussed in Section
4 for both scenarios (I) and (II) to formulate benchmarks for the performance of
solvers. Devising numerical schemes that are able to best exploit these approxima-
bility properties requires a proper balancing of both error sources, namely keeping
ranks finite and discretizing corresponding tensor factors. Ideally, ranks and low-
dimensional discretizations should evolve in a completely intertwined fashion, which
is a highly nonlinear process. Insisting on error-controlled realization of such pro-
cesses is the overarching objective of subsequent discussions. A central message is
that this is only possible by respecting and exploiting characteristics of the contin-
uous problem, such as intrinsic metrics, which strongly link the discrete and contin-
uous setting. The standard paradigm “first discretize, then analyze” is thus turned
around in that computation is “pretended” to take place in the infinite-dimensional
context. In fact, a convergent iteration formulated in the infinite-dimensional set-
ting is shown to remain convergent when executed only approximately within suit-
able accuracy tolerances. Discretizations are therefore never fixed beforehand, but
adapt at any given stage of the “outer iteration” to such dynamic tolerances.

Therefore, it is important to note that a prior: estimates alone are not quite
sufficient, since they often involve unknown quantities or are valid under assump-
tions that may not hold or are impossible to check. Instead, computable rigorous a
posteriori error control is a key element of the proposed approach that must exploit
the structure of the continuous problem. This can be carried out most conveniently
for those instances of (I) and (II) where, for a proper choice of a Hilbert space V,
corresponding weak formulations

(1.2) a(u,v) = f(v), vey,

are well-posed. This means that the bilinear form a(-,-) : V x V — R is symmetric,
bounded and coercive, i.e., (1.2) is V-elliptic. a(-,-) therefore defines an equivalent
scalar product on V, which means that the operator A : V' — V'’ defined by
(Aw)(v) = a(w,v), w,v € V, is boundedly invertible.

One reason for discussing scenario (I) in comparison to (II) is that the respective
energy spaces V differ in an essential way, which will be seen to affect the numerical
methods in an equally essential way. Nevertheless, the common ground for both (I)
and (II) is the ellipticity of a(-, ) in (1.2), or equivalently, that the induced mapping
A:V — V' is an isomorphism. This means there exist constants 0 < ¢, < C, < 00
such that

(1.3) callwlly < [|[Aw|v: < Collwlly, weV.
Since A(u —w) = f — Aw this implies in particular, that
(1.4) callu —wlly <||f = Awlly: < Collu —wlv, weV,

i.e., errors in the trial norm are equivalent to the dual norm of corresponding
residuals. It is to be stressed that “residual” stands here for the defect in the
infinite-dimensional setting, not within a fixed finite-dimensional discretization.
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4 MARKUS BACHMAYR AND WOLFGANG DAHMEN

Exploiting ellipticity through such error-residual relations is a cornerstone of
the proposed approach. Of course, this is in principle also the starting point of
adaptive finite element techniques in low dimensions. One then uses duality ar-
guments to derive sharp computable approximations to ||f — Aw]||y/. Since these
techniques rely crucially on localization principles, which are natural in a finite el-
ement framework, they are, being fully subject to the curse of dimensionality, in
this form infeasible in high-dimensional regimes. In particular, any type of mesh
would be meaningless in scenario (II), where the number of relevant “activated”
parameters may depend on the target accuracy and may not be known beforehand.

Therefore, we will exploit (1.4) in a different way inspired by adaptive wavelet
methods [19,20]. It hinges on first identifying a Riesz basis for the energy space V.
This allows one to transform (1.2) into an equivalent infinite-dimensional system
of linear equations where the matrix representation A of the operator A is now
an isomorphism from the space of square-summable sequences onto itself, rather
than mapping V onto a different, less smooth space V’. Thus, errors are measured
now in the same (Euclidean) norm as residuals. This transformation “precondi-
tions” the problem already on the infinite-dimensional level. An error-controlled
approximation of residuals then reduces primarily to an adaptive error-controlled
approximate application of the matrix A within a given low-rank or tensor format,
fully intertwining low-rank approximability and spatial sparsity of low-dimensional
tensor factors.

Corresponding computational realizations build essentially on recent impor-
tant developments of tensor calculus, especially for hierarchical tensor formats [13,
14,31,35-37,39,43,47,48]. As previously indicated, a price for rendering high-
dimensional problems practically tractable is to employ non-standard parametriza-
tion formats for approximants, which naturally complicates numerical processing.
The following section attempts to put this into a perspective which is relevant for
the remainder of the discussion.

1.2. Nonlinear approximation and parametrization formats. A numer-
ical approximation of a function u: Q@ — R, with Q C R%, can be regarded as an
algorithmic template for a computable substitute that can be parametrized to re-
semble u. In the most classical scenario, u is supposed to be an element of a
Banach space X endowed with a norm || - ||x, and one looks for increasingly better
approximations to u from a preselected sequence Xy C X of N-dimensional linear
subspaces spanned by computationally accessible basis functions {1, ¢2,...,on}
such as polynomials, splines, or finite elements. Thus, for each N € IN, one seeks a
computational prescription

N
Ppin(z; Nyup, ... un) = Zui%(fﬁ)
i=1

parametrized by the coefficient vector u = (uy,...,uy)? which needs to be ad-
justed to yield small || ®@yin (-; N, u) —u||x. This is also termed linear approximation,
since the approximant is sought in the linear subspace spanned by a preselected set
of N basis functions.

When the spaces X,, are nested, X,, C X,4+1, it is possible to construct an
infinite collection {©1, @2, ...} such that each Xy is spanned by the first N elements
of this collection and the whole collection forms a basis for X in an appropriate
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sense, depending on the nature of the space X. For instance, hierarchical or wavelet
bases fall into this category covering, in particular, the finite element setting.

This latter point of view is useful as it offers a convenient unifying framework
for adapting an approximation procedure to each specific instance of approximants.
With additional parameters A1,..., Ay € IN, one may now consider algorithmic
templates of the form

N
<I)nonlin(w;]\fy uj,... 7uN>>\17 .. 7)‘N) = Zui@&-(fﬂ)’
=1

that allow one to pick those basis functions that are best suited to approximate
the target v within a given budget N. Now approximations are generated from the
nonlinear sets

(15) Yy = U {Z U@y - up € RN} Cc X, up = (U)\))\GA.
ACN,#A=N Xe€A

Since this requires choosing or activating N among the infinitely many basis func-
tions, such a process is called nonlinear approrimation. In practical realizations
one typically generates an increasing sequence of activated index sets A,,, where
the choice of A, 41 exploits information gained from the preceding stage repre-
sented by A,. This form of nonlinear approximation is referred to as adaptive
approzimation. Its rigorous foundation very much relies on being able to quantify
the accuracy obtained at a previous stage n. It is tantamount to asking for certified
a posteriori error bounds, which is a recurrent theme throughout this article. This
issue is precisely what requires intertwining the discrete and continuous setting and
exploiting, in particular, intrinsic problem metrics.

These concepts have been quite successful and are by now fairly well understood
for low spatial dimensions, typically d < 3. In particular, the performance of
such schemes is essentially governed by Besov regularity, that is, smoothness in L,
spaces where p is allowed to be less than one, see [27]. In correspondence to the
isotropic nature of such classical regularity notions, improved accuracy is achieved
by increasing spatial localization. Isotropic localization, however, is precisely what
causes the curse of dimensionality.

In cases with moderately large d (depending on the problem, for instance, the
low two-digit regime), a successful remedy is based on employing product-type basis

functions oy (z) = gog\ll)(:vl) e cpgi) (x4), where z = (x1,...,24), each x; belongs to

R™ for small m, and the wgi) form a low-dimensional basis of the type discussed

above. Associating with each index \; a scale denoted by |);|, typically indicating

that diam(supp <pgi)) ~ 2717l one considers, for instance, expansions of the form

Z wpa(T).

[Arl+-+]Aa| <L

In other words, the a priori activated summands never involve simultaneously many
fine scale basis functions, and the complexity of such expressions scales like 2F L4~
This is the concept of sparse grid or hyperbolic cross approximation. One thus gives
up on isotropic localization. For such approximations to provide high accuracy
one has to demand, however, correspondingly high regularity, which in this context
means controlled mized partial derivatives of appropriate order. While in this form
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6 MARKUS BACHMAYR AND WOLFGANG DAHMEN

such schemes are still linear, they lend themselves to nonlinear versions in natural
ways, see [51].

However, the principle of adaptively activating basis functions from any pres-
elected basis or dictionary may no longer suffice for large d to warrant affordable
computational cost in an accuracy controlled approximation. Instead one has to
resort to yet stronger notions of nonlinearity that may allow one to better capture a
hidden sparsity related to the problem at hand, thus also asking for a deeper under-
standing of the underlying continuous model. In other words, the actual “building
blocks” for representing the target function in the spirit of classical harmonic anal-
ysis, should no longer be pre-determined but rather depend on the problem at hand.

A particularly flexible parametrization format that has been lately attracting
considerable attention are deep neural networks (DNN) of the form

(1~6) Dy (ﬂU; (Vm)) =01 (Z V1,i102,i; ( “*OLyig_1 (Z VL,z'LJJiL) i ))

That is, the mapping taking possibly high dimensional inputs z into an approxima-
tion to u(x) is a concatenation of affine maps followed by a componentwise nonlinear
map, called “activation function”. This approach is based on the presumption that
in many application scenarios target objects are close to what can be covered by
such parametrizations. Although existence of efficient approximations of this type
has been shown for various cases of interest [49,56], guaranteeing convergence and
error control in the actual computation of such approximations currently remains
a wide open problem.

The type of approximation that we focus on here is somewhat “less nonlinear”
than (1.6), but of sufficiently strong nonlinearity to make it suitable for a range of
problems with very large d. The principle is easiest to explain for d = 2: assume
that we have product basis functions ¢; ;(x) = @El)(zl) gp§2)(x2), i,7 € IN. We then
consider adaptive low-rank approximations of the form

(1.7)
i 1 T N1 N2
2 2
. Uy 15U Ny UT g5 Ny | e 1 .2 (1) 2
D), (%7‘, Ny, No, N Ang s 1;11,...,@?"’) = Zzzuk,iukd‘/’,\i (fﬂl)@ﬁj)(l’z)
k=11i=1 j=1

r

N, No r
1
=S (Subel o)) (X ut o)) = Y- ukon) ),
k=1 Vi=1 j=1 k=1

with the additional rank parameter r.

To be specific, suppose we seek to approximate elements u in a tensor product
Hilbert space H = H; ® H,, where H; are separable Hilbert spaces spanned by
the orthonormal bases {@EQ)}Z@N, q = 1,2, respectively. Ideally, given a target
tolerance € > 0, one would like to adapt the rank r as well as the spatial resolution
of “best-suited” modes u},u} as functions of x1, z2, respectively, which is obviously
a highly nonlinear problem. “Best-suited” means that a given target accuracy can
be met with rank r as small as possible. In the present two-dimensional case, this
amounts to approximating the infinite matrix U of basis coefficients with respect
to the full tensor product basis {npl(.l) ® gog»z)}(i,j)emz with respect to the Frobenius
(or Hilbert-Schmidt) norm within the same target tolerance, by a finite low-rank
approzimation U (U?)T, where U! = (u}’k)géil, U2 = (uik)fj%:rl
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Denoting by Uy, n, the finite section of U corresponding to the truncated basis
{3051) ® @;2)}7;SN17]‘§N2, the error ||[U'(U?)T — Ul|us can be split into two portions
By = |[UYU?)T — Up, N, llus and By := [|[Un, n, — Ullus. The vast majority
of studies focuses on controlling only F7, essentially ignoring how the overall error
depends on the spatial discretizations represented by Ni, No, determining F5. In
the current situation d = 2, given a target accuracy ¢ for F;, the minimal rank
r can then be determined by means of the Singular Value Decomposition (SVD)
of Uy, ,n,. Observing that in many cases one can achieve F; < ¢; with r <«
N1, Ny indeed signals a substantial complexity reduction in the number of required
coefficients (N7 + No)r compared to a full array representation involving Nj N,
terms. However, this by itself does not say much about the computational cost of
approximately solving the original problem within some target tolerance e, unless
the error portions Fy and F5 are essentially balanced, which actually depends on the
(full) Hilbert-Schmidt decomposition (HSD) of U. Such an assessment can, however,
not be reached from a linear algebra perspective alone. The central objective of
this article is to highlight concepts that allow one to certifiably control the total
error |[UY(U?)T — Ul|gs for large d, which must involve the underlying continuous
model.

1.3. Layout. Unfortunately, a straightforward extension of the format (1.7)
to d > 2 lacks in general stability. Section 2 is therefore devoted to a brief discussion
of alternate stable tensor formats and their main properties. In Section 3 we outline
a solution strategy for a general class of high-dimensional elliptic operator equations
covering the two scenarios (I) and (II), addressed above, as special cases. Section
4 addresses the approximability of solutions to high-dimensional elliptic problems
by tensor methods. Again, the findings for the two scenarios (I) and (II) turn out
to be quite different. Finally, in Section 5 we present techniques for controlling the
computational complexity of approximations as well as of numerical schemes based
on the general strategy from Section 3, and discuss the conclusions for scenarios (I)
and (IT).

2. Subspace-based tensor formats and nonlinear approximation

2.1. Tensor formats. This section offers a brief review of approximating el-
ements u in a tensor product

(2.1) H:=H ®- - ®H,,

of separable Hilbert spaces H;, endowed with the unique cross-norm ||-|| g associated

with an inner product (-, -) g satisfying <®g:1 Vs, ®?:1 wi) g = H‘Z:l(z)i, Wi H, -

A natural extension of (1.7) to spatial dimensions d > 3 would be to seek
approximations in the form

(2.2) up(z) =Y up(w1) ui(w2) - ui(za),
k=1

which is often referred to as the canonical or CP-format, [15,37]. Again, the
issue is to find suitable modes u} that warrant high accuracy at the expense of a
low rank r. However, first, the class of rank-r tensors is not closed, and second,
best approximations from such classes do in general not exist [26]. Therefore,
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8 MARKUS BACHMAYR AND WOLFGANG DAHMEN

representations in this format need to be treated with care and the observed inherent
instability suggests looking for more stable tensor fomats [37,39,43,46,48,52].

The canonical format is indeed only one special instance of possible tensor
representation formats. A particular type of format with certain restrictions on
the components are tensor networks; for a comprehensive discussion we refer, for
instance, to [13]. In what follows we confine the discussion to the important subclass
of tree networks that heavily draws on the favorable features of the case d = 2.

2.2. Tree-based hierarchical formats. To benefit from SVD concepts also
when d > 2, the key idea is to view a (discrete) tensor u of order d as a matriz by
viewing all multi-indices with respect to some subset o C o* := {1,...,d} as row-
indices, while the multi-indices with respect to the remaining variables in a¢ := a*\
a form the column indices. An SVD of this matrix gives rise to left and right singular
vectors which are now tensors of order #a«, #a, respectively. By successively
further decomposing the left singular vectors then leads to approximations in terms
of tensors of lower and lower order. An underlying successive splitting of groups
of variables into smaller ones can be conveniently organized by a so-called (binary)
dimension tree Ty whose nodes « are subsets of the root o* = {1,...,d}. Ty always
contains the root a*. Each node a of cardinality #« > 1 has a unique pair of
children aq, an € T4 such that o = a3 Uas, a1 Nag = 0, #a; < #a. The set L(Ty)
of leaves of T4 is comprised of the nodes « of cardinality one. The corresponding
so-called hierarchical tensor format was developed by Hackbusch and Kiithn [39],
see also [48].

It will be important for what follows to formalize these concepts in the context
of infinite-dimensional tensor product Hilbert spaces H of the form (2.1). To that
end, consider again for any a € Ty the grouping H = H, ® H,-. The continuous
and linear extension of M (tq ® Uge)V = Ug (Uge, V) H, ., U € Hye, to an operator
Mg (u) for u € H,

(2.3) M, (u) : Hye — H,
is a Hilbert-Schmidt operator from H,- to H,, i.e.,
[Ma(u)llus = llull &,

and hence is compact. In a slight abuse of terminology we refer to M, (u) as
a matricization of u. By the spectral theorem for compact operators, there exist
orthonormal systems {uf }ken, {uz‘c }ren (depending on u) of Hy,, Hye, respectively,
as well as a sequence of nonnegative numbers o tending to zero such that

oo
(2.4) u = Z otud @uf .

k=1
The o are the singular values associated with the matricization My (u). If off =0
for k > r, we say that u has a-rank (at most) r, = r(u) € Ng U {oo} which is the
dimension of the range

(2.5) Uy = Uy (u) := range(M, (u))
of M,(u) and hence equals the a“rank of u. In general, the subspaces U, =
dim {ug : k=1,...,r} are optimal in the sense that

s
(2.6) Hu_2<u,ug®ug°>Hug®ug°H = min {u—w||g : w has a-rank < r}.
H
k=1
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If one further decomposes a = a3 U crg into its children aq, ag, according to T4, one
has the nestedness property

(2.7) Ua C Uay @ Ua,,

see [37] (cf. Corollary 6.18 and Theorem 6.31 there). Whenever (2.7) holds one can
recursively decompose u € U, as follows. For any orthonormal bases {uk} oy Of
Ugs, B € Tq, one can write

’l”al ’I”az

(2.8) up = Y B(ky ke k)upl @ up?. € Ty\ L(Ta),
]i}l 1/(72 1

where B¥(k1, ka, k) = <uk , uk1 ®uy, > The tensors B® are referred to as component
or transfer tensors. Hence any u E H can be recovered exactly in terms of its
expansion tensor u as

(2.9) u—ZZB (k1, ko) uk ®u
ki=1ko=1

with rox = ro; € INU{00}. A recursive substitution of (2.8) therefore parametrizes
au € Uy ® Uy in terms of the transfer tensors B*, a € T\ L(T) and the mode
frames u* € Hy,, p € {1,...,d}. Using the SVD to successively generate the
orthonormal systems (uf);=; is referred to as hierarchical singular value decompo-
sition HSVD.

Before proceeding, let us emphasize that such hierarchical decompositions are
actually identified by the set of pairs

(2.10) E:={e={a,a}:aeTq\{a"}},
called the set of effective edges, see [13]. Different dimension trees can give rise
to the same E and hence to the same matricizations. Such trees are in that sense
equivalent.

In other words, for {a, a¢} € E and any T in the equivalence class determined

by E, either « or o belongs to Ty, and this element is the representer of e = {«, a“}
denoted by [e] € T,4. It is easy to see that

(2.11) #E =2d—3 =: E.

We fix in what follows an enumeration {e;}Z , of the effective edges in E.

As a consequence, for u € H and a given E (and hence all dimension trees in the
corresponding equivalence class) we can write for the corresponding matricizations
and subspaces M;(u) := M, (u), U; = Ui(u) = Ul,(u), respectively. One can
then associate with w its E-rank

E
(2.12) re(u) € (No U {oo})® = (ri),_,,
where r; = r;(u) := dim U;(u) = rank(M;(u)), i =1,...,E.
In summary, any v € H can be parametrized by

: d
(2.13) p(u) == (FE(U)v (Ba)aer\L('ﬂ'd,)a (U“)le)-
Such a parametrization is obviously finite if all transfer tensors have finite ranks,
in particular, when all entries in rg are finite. Moreover, the leaf elements u* must
admit a finite parametrization, e.g. in terms of a truncated orthonormal basis for

H,,. Thus #p(u) € NU{oo} is the total number of parameters needed to represent
u in the above hierarchical format.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



10 MARKUS BACHMAYR AND WOLFGANG DAHMEN

The appeal of such hierarchical tensor decompositions for high-dimensional
approximation lies in the following facts, see also [35,36].

REMARK 2.1. Suppose for a moment that the maximal number of parameters
to determine each leaf mode u* is n and that all entries of rg(u) are bounded by
a fixed r € IN. In view of (2.11), we see that the number of parameters to be
stored is of the order O(dr® + ndr). The total numerical complexity of computing
a HSVD under these premises is of the order of O(dr* + dr?n). In such a situation
the representation and computational complexities of u depend only linearly on the
spatial dimension d.

Thus, approximating a given v € H by properly truncated versions u, for which
#p(u) is of moderate size may open, at least for certain classes of target functions
u € H, a promising avenue to mitigate the curse of dimensionality.

To make this somewhat more precise, note first that the entries of the rank
vectors rg(u) must satisfy in the finite case some compatibility conditions in order to
comply with (2.7). In fact, it follows from the results just stated that fori = 1,..., F
one has r;(u) < 7], ()7}, (). For necessary and sufficient conditions on a rank
vector rg we refer to [37, Section 11.2.3]. In what follows we denote by

(2.14) R =Re C (No U {o0})*

the set of all hierarchical rank vectors satisfying the compatibility conditions for
nestedness (2.7). For any r € R we define then

(2.15) H(r):=={ue H:rj(u)<r;foralli=1,...,E}.

In what follows we will be concerned with employing elements from such hierarchical
tensor classes to approximate solutions to problems of type (I) and (II).

In the previous discussion the dimension tree Ty, and hence E, were kept fixed.
It is certainly an interesting question of how to adapt T4 to a given approximand
u € H, so as to warrant good approximations at the expense of possibly small ranks
r € Re. We will not address this issue in any depth but pause to briefly mention
the following cases of interest. Balanced trees arise when successively splitting the
nodes « into two children of roughly the same cardinality. The opposite case of a
linear tree amounts to always choosing the left child a; have cardinality one (i.e.,
as a leaf node), while collecting the other entries of « in the right child as. The
resulting format is termed Tensor Train (TT) format [48]. Combining pairs of mode
frames and transfer tensors, this gives rise to an explicit (entry-wise) multilinear
representation
(2.16)

T1 Td—1

u(ry, ..., xq) = Z Z ul (z1, k1) u? (kv, 2o, ko) w® (Ko, 3, ks) - -l (24)

k1=1 kag—1=1

with remaining rank parameters ri,79,...,74—1. This format is also known as
matriz product states in physics. The representation complexity is now easily seen
to be O(dnr?) which again nourishes hope to defeat the curse of dimensionality for
suitably nearly-sparse u € H, see e.g. [13,48] for more details.

2.3. Complexity reduction. In contrast to the canonical format the above
subspace based tensor format warrants now the existence of best approximations
in H(r). Following [31,37], we can can state this as follows.
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THEOREM 2.2. For uw € H and Ty a dimension tree from the equivalence class
of E, let r € Ry with 0 < r; < r;(u) fori=1,...,E. Then there exists v € H(r)
such that

lu—v|lg =min{|ju—w|g: ri(w) <r,i=1,...,E}.

Note that as a consequence of (2.7), an element providing a best approximation
to u as in Theorem 2.2 can be written as the result of a projection applied to u; we
make use of this fact in Section 5. While the computation of best approximations
is usually not computationally feasible, near-best approximations can be obtained
at affordable cost: The HSVD produces orthonormal bases (u}c);lz(qf) for each Uj,

associated to the decreasing sequences (0’1(:));;1 of singular values from (2.4). Trun-
cation to lower ranks 7; < r;(u) for each i gives rise to a projection $; into H(F).
It amounts to truncating the corresponding transfer tensors and mode frames in
(2.13), leading to approximations with errors bounded in terms of the quantities

(2.17) Tin() = (D I} (u)‘2>1/27 te(u) = (ZE: Ti, (u)z)%,
i=1

k>r

with the following quasi-optimality property shown in [35].

THEOREM 2.3. Let uw € H. Then for hierarchical ranks ¥ = (7;)E.; € Ry, we
have

Ju—9(u)||a < te(u) < V2d — 3 inf{|lu—v||g:ve HF)}.

The operator $; in essence truncates the i-ranks or equivalently sets corre-
sponding i-singular values to zero and is therefore sometimes referred to as hard
thresholding. While £, does not provide truly best rank r-approximations, the in-
flating constant depends only mildly on the dimension d and it is computationally
feasible at affordable cost. For detailed discussions of how to realize $; efficiently
we refer to [35].

Since H(r) is not a linear space, arithmetic calculations with hierarchical tensors
will inevitably increase ranks. To control complexity it is important to approximate
an element in H(r) by one of smaller ranks in H(), ¥ < r, as well as possible. This
is often referred to as recompression. We defer the discussion of principles of how
to properly balance a rank reduction by recompression with the entailed loss of
accuracy to a later section.

An alternative type of rank reduction is based on the concept of soft thresholding
of singular values. It has the advantage of preserving the contraction properties of
iterative schemes, as considered in more detail in Section 5.2.3. Soft thresholding
as a scalar operation is defined for a given thresholding parameter n > 0 as

(2.18) sp(x) := sgn(x) max{|z| —n,0}, =z €R.
The crucial property of this operation is its non-expansiveness, that is,
(2.19) sy(x) —sy(W)| < v —yl, zyeR.
Note that s, can be characterized variationally by
.or1
(2:20) sn(x) = éau"gmm{glﬂc—yl2 +77|y|},
yeR

which can be used to extend this notion to Hilbert-Schmidt operators. To that
end, we make use of the well-known fact that for any two Hilbert spaces H, H, and
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12 MARKUS BACHMAYR AND WOLFGANG DAHMEN

v,w € H® H with sequences o7 (v), 0 (w) of singular values associated with the
matricizations Mg (v), Mg (w), one has

(2.21) lo™ () = o (w)lle, < llv = wllggg = Mu(v) — My (w)]us.

We can then define the nuclear norm of the matricization My (v) of v by

(2.22) 1Mz (0)l]s = llo™ (0)les
and let
. 1 2
(2.23) 3 (Min(v)) i= arg min {nlMu @)l + 5o =l g 7 }-
weEHR®

Returning now to the setting (2.1), with matricizations M;(u) = Mgy, ,(u),
i =1,...,F, we denote by M; and M[l the mappings taking a v € H into its
matricization M;(u) relative to [e;] € Ty and its inverse, respectively, to set

(2.24) G p(u) == (M;1 08,0 MZ)(u), i1=1,...,E,
and finally
(2.25) G, (u) == (GE77 0---0 617n)(u).

It has been shown in [12] that this inherits the non-expansiveness of the scalar
thresholding operator (2.19),

(2.26) 16,(w) = Syp(v)a < llu— v,
see [12, Prop. 3.2].

3. Solution strategies for operator equations

In this section, we introduce the precise formulations of our main model prob-
lems and their sequence space representations that render them amenable to low-
rank tensor approximations. We then describe a common basic construction prin-
ciple of numerical solvers and present the basic principles of deriving rigorous com-
plexity bounds.

3.1. Problem classes and representative model scenarios. Let us now
consider in more detail the two concrete model problems mentioned in the intro-
duction.

Diffusion problems (I). The first concerns diffusion problems in weak for-
mulations on V := H{ (), where Q = Q x - -+ x 4 is a product domain. We wish
to find w € V for given f € V' such that

(3.1) a(u,v) = /QMVU -Vodr = f(v), veV.

Here we assume for simplicity that Q; = [0,1] and that M € R*9 is constant
and symmetric (with the Poisson problem M = I as a special case). This sta-
tionary boundary value problem also constitutes a first step in treating more gen-
eral evolution or eigenvalue problems on high-dimensional domains. The bilinear
form a(-,-) is ensured to be V-elliptic by the assumption that there exist y,T" > 0
such that v < (M¢&,€) < T for all £ € R?, |¢| = 1. Defining the operator A by
(Au,v) = a(u,v), u,v € V, Lax-Milgram’s Theorem then says that A : V — V' is
an isomorphism.
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It will later be important to note that the energy space V is in this case the
intersection of tensor products of Hilbert spaces

(32) V=)L) ® @ La(Q-1) ® Hy () @ La(Qj41) ® -+ @ La(Qa).

Parametric problems (II). Our second model problem concerns second-
order elliptic PDEs with diffusion coefficients depending in an affine manner on
scalar parameters y € Y := (—1,1)% Now let V := H}(Q)® La(Y, u), with Q ¢ R™
any domain with, e.g., m € {1,2,3}, and let u denote the uniform measure on Y.
Assuming for simplicity right hand sides f € H~1(Q) independent of y € Y, we
consider problems of the form: find v € V' such that for all v € V'

(3.3)  a(u,v) // ) - Vo(y) de dp(y //f )) dx du(y),

where a(y ) =a+ Z _1 Yiti. We assume that a,¢; € Loo(2), for i = 1,...,d,
satisfy Zi:1|wl| < fa for some 6 < 1, which ensures that the bilinear form a(,-) is
V-elliptic and the induced operator A : V' — V' is again an isomorphism. In this
case the energy space V = H}(Q) ® Lo(Y, 1) is a tensor product space endowed
with a cross-norm, since

YM)=®L2((—

Here the case d = oo of countably many parameters, which arises, e.g., in
the Karhunen-Loeve expansion of random fields, is explicitly permitted and the
fact that target functions may depend on infinitely many variables is a particular
challenge in this scenario.

3.2. Sequence space formulation. The crucial role of rigorous a posteriori
error bounds has been emphasized before. Such bounds can be based on the error-
residual relation (1.4) valid for elliptic problems. Rather than employing duality
arguments relying on spatial localization as for problems in low spatial dimensions,
which here are infeasible, we will exploit these relations through first transforming
the continuous problem into an equivalent one where domain and range of the
transformed operator are the same. More precisely, as a first step, to make the
considered variational formulations amenable to the concepts discussed in Section
2, we choose coordinates on the underlying Hilbert spaces via suitable isomorphisms
to f2 sequence spaces, endowed with the norm ||VH§2(I) = > ez |vil*. Linear
mappings of this kind are given by Riesz bases of these spaces: a family & :=
{¢i}tiez in a Hilbert space H is Riesz basis if there exist cg, Cp > 0 such that

(3.4) co||Vleyz) < HZ vigi|
i€z

< C‘I’HVH&(I)v v EE?(I)’

which implies that the corresponding linear mapping Sg : £2(Z) — H,v = > ;7 Vi,
is bounded and continuously invertible. Its adjoint is given by S : H' — €5(Z), 9 —
(¥(¥i))iez- For a detailed description of such Riesz bases in both scenarios (I) and
(IT), the reader is referred to [6,10,11].
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14 MARKUS BACHMAYR AND WOLFGANG DAHMEN

Now suppose one has a Riesz basis ® for the energy space V' on which the
variational problem: find u € V', such that

(35) a(uvv) = f(v)a vev,

is posed. Then, for A:V — V' induced by (3.5), defining A = S;ASs, u = S‘glu
and f = S5 f,

(3.6) Au=f,

is an equivalent reformulation of (3.5) on ¢2(Z). Since A and Sy are isomorphisms,
A : 05(Z) — £5(Z) is a boundedly invertible mapping with the explicit represen-
tation A = (ct(gv)\,a,ol,))A ez (see e.g. [24]). Moreover, it is not hard to verify
that ’

(3.7) a3 IVle@ < NAVIn@) < CaCilvlin@, v e (D).

In what follows we often abbreviate || - || := || - ||¢,(z) if the index domain Z is clear
from the context.

3.3. Iterative solvers with recompression. Assuming that we have a well-
conditioned representation Au = f on a product sequence space ¢5(Z) with 7 =
Ty X -+ x Iy, we now aim to iteratively construct an approximation of the solution
coefficient sequence u in hierarchical low-rank format. Due to the high dimen-
sionality of the index set Z, this is only feasible if all steps in such an iteration
are performed entirely on low-rank representations, which requires corresponding
low-rank representations (or approximations) of A and f.

In our present context of elliptic problems, the most straightforward way of
obtaining a sequence of approximations converging to u is a Richardson iteration:
As a consequence of (3.7), one can find w > 0 such that the iterative scheme

(3.8) u"tt =u"+wf - Au"), n=0,1,2...,

converges to u for any u’. Of course, the iteration (3.8) on an infinite-dimensional
sequence space cannot be directly realized numerically.

Finite supports: First, one needs to ensure that all u™ have finitely many
nonzero entries. Since f and each column of A are generally infinitely supported,
this amounts to an appropriate truncation of Au™ — f, to arrive at a computable
perturbed version

(3.9) u"t =u" —w,r", u’ =0,

of (3.8). The most common strategy is to make an educated guess of a fixed A CZ
and always use r" = (Au" — f)|a, which enforces suppu™ C A for all n. However,
due to the limited accuracy in the residual approximation, the iteration then only
converges to the Galerkin approximation uy given by (A|axa)ua = £|s. Especially
in high-dimensional problems, the appropriate choice (or refinement) of such A to
achieve a certain target error is typically not obvious. Therefore, discretizations
will never be fixed beforehand but will be adaptively updated.

Tensor ranks: A second issue is that, with a basic scheme as in (3.9), the tensor
ranks in the representation of u™ may increase rapidly with respect to n: in the ad-
dition of the low-rank representations of two vectors, their ranks are added, whereas
the action of an operator in low-rank form leads to a multiplication by its ranks. Al-
though methods using fixed-rank representations of all iterates can be constructed
[36,45], which essentially attempt to obtain an approximation by optimizing each
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component in this fixed tensor representation, the high degree of nonlinearity in the
resulting problems makes their convergence analysis an extremely delicate problem.
In addition, such approaches then still need to be coupled with a procedure for rank
adaptation to a given target accuracy.

Thus it is natural to let both the set of activated basis indices and the repre-
sentation ranks evolve over the course of the iteration and hence to gradually refine
both in parallel. The methods of this type that have been studied so far share the
construction principle of combining mappings F,,, providing an error reduction,
with mappings R,, that perform a re-approximation with complexity reduction,

(3.10) u"t =R, (F.(u")).

Here F,, can, in principle, be any procedure providing a guaranteed error reduction,
such as a fixed-point iteration as in (3.8). Since we want this error reduction to hap-
pen with respect to the exact solution u in ¢5(Z), in general, this necessitates that
r”, and hence u™t!, have larger support than u”, and that hierarchical ranks need
to grow during the iteration. Accordingly, R, needs to both eliminate extraneous
basis indices and reduce the ranks of iterates.

This entails a compromise between preserving a sufficient error reduction while
at the same time preventing too large a growth in the representation costs of the
iterates. Ideally, the reduction operation R, should be adjusted to the error re-
duction so as to ensure convergence of the iteration with (up to a multiplicative
constant) the best achievable total computational costs in terms of the number of
operations, that is, to ensure asymptotically optimal complexity. The basic tem-
plate (3.10) has been used in the construction of the first adaptive wavelet methods
with convergence rates [19, 20], where optimality was established. Procedures of
the form (3.10) are also a core ingredient in many iterative methods operating on
low-rank representations, for instance those proposed in [14-16,38,42 45]. The
choices of R, employed in these contributions, corresponding to truncation, for
instance, to fixed ranks or to variable ranks with ad-hoc tolerances, however, do
not ensure a suitable compromise between convergence and complexity.

In Section 5, we consider in detail low-rank solvers with complexity bounds
which ensure that this compromise is met for both scenarios (I) and (II). A crucial
role is played by a suitably abstracted version of a “Coarsening Lemma” that ap-
peared first in [19] in the context of adaptive wavelet methods. At this point, we
next discuss briefly some common aspects of choosing R,, and F,, that can be used
to ensure convergence of u” to u. By the above choice of reference basis functions,
this is equivalent to convergence of the method to the exact solution w in the energy
space V. This requires on the one hand the identification of a sequence of finite
subsets A” = A} x --- x A} such that supp(u™) C A™; and on the other hand, for
a dimension tree assumed to be given, finding hierarchical ranks and constructing
representation coefficients of a hierarchical tensor representation of u™.

Two basic ways of constructing F,, in (3.10) have been considered in the liter-
ature: the first is a perturbed iteration (3.9), where for any given index set A™ and
ranks r™ of u™, one needs to provide a routine that can produce finitely supported
r” in hierarchical format such that ||r” — (Au™ —f)|| <7 for any » > 0. For appro-
priate choices of 1 depending on n, this generally requires an enlarged product set
AP = AT - x AT S AT to satisfy supp(r™), supp(u™tt) € A" More-
over, the tensor representation of u™*! resulting from performing (3.9) in low-rank
format generally has larger ranks r**1. This strategy is considered in [6,9-11].
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16 MARKUS BACHMAYR AND WOLFGANG DAHMEN

The second basic construction of F,,, which is conceptually closer to adaptive
finite element methods, uses sequential Galerkin solves: for given A", define u™
as the corresponding Galerkin solution, u”™ := up». Then, find a product set
A" DA™ such that [|[(Au” — f)[pn+1]| > 7||Au” — f|| for a fixed 7 € (0,1). This
can be achieved by a sufficiently accurate finitely supported approximation r” as
in the case of (3.9). The process of approximating the Galerkin solution upn+1,
e.g., by a Krylov space method, then leads to new hierarchical representation ranks
r"+1. This strategy has been analyzed in [2].

Accordingly, R, is chosen as a composition of a rank reduction as discussed in
Section 2.3, for instance by hard thresholding or soft thresholding of hierarchical
singular values, and a subsequent reduction of active basis indices. The concrete
realizations of F,, and R,, depend on the type of the problem (3.5). They rely on
two essential ingredients discussed next.

3.4. Two core ingredients. The main distinction between the two problem
scenarios (I) and (IT) lies in the structure of the respective energy space V. This has
an essential effect on the approximate evaluation of Au”™. In the case (II) where the
space on which the variational problem is posed is a tensor product space endowed
with a cross norm, such as V = H}(Q)® (®'Z:1 Ly((—1,1), 2dy;)) in (3.3), a choice
of Riesz bases ®g, D1, ..., P4 in each of the (d+ 1) factors leads to a tensor product
Riesz basis ® of V (indexed, say, by IN4*1) and hence S = Sp, ® --- Sp,. As a
consequence, low-rank structures in A and u are preserved in their representations
A o(INTHL) — l5(IN9FL) and u € €(IN9F1); for instance, both A in (3.3) and the
corresponding A can be written as sums of d+ 1 Kronecker products. We then aim
to find, for instance, a low-rank representation of the coefficient sequence u as a
tensor of order d + 1 in hierarchical low-rank format.

3.4.1. Finite rank adaptive scaling. In the case (I) of (3.1), the mapping Ss can,
in general, not be chosen to be of Kronecker rank one. To see this, it is instructive
to consider the case A = —A on Q = (0,1)? in (3.1). A simple choice of basis can be
derived from the Ly-normalized eigenfunctions @, r, of A given by @p, k, (21, 22) =
2sin(mkyx1) sin(mkows) for ki, ko € IN, with corresponding eigenvalues 72 (k? + k3).
The functions g, k,(z1,72) = 27 2(k? + k3) "'/ sin(nk,2;) sin(rkoxs) are thus
an orthonormal basis (that is, a Riesz basis with ¢ = C' = 1) of V = H}(Q2). The
resulting mapping Sg for @ = {@k, k, fren2 then cannot be written as a finite sum of
Kronecker products due to the presence of the factor (k7 4k3)~'/2. This reflects the
fact that Hg () is not endowed with a cross norm, but can rather be characterized
as the intersection of product spaces H{(0,1) ® La(0,1) N La(0,1) ® HE(0,1) with
its natural norm.

As shown by (3.2), the situation for larger d and more general Riesz bases is
analogous, i.e., Riesz bases for the energy space V' do no longer consist of separable
functions. As a result the operator A has in this case infinite rank. In order to
still facilitate in the end an efficient error-controlled approximate application of the
operator representation A requires a judicious preconditioning strategy that realizes
a proper balance between rank growth and stability needed to maintain convergence
in (3.10).

To that end, a particularly well-suited building block are tensor product wavelet
bases, constructed from an Lo-orthonormal wavelet basis {¥)} ey on a one-dimen-
sional domain I; C R, assuming €2 := I; X --- x I;. Here V is an appropriate
set of scale-space indices, where the level of A € V is denoted by |A|. Assuming

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



ADAPTIVE LOW-RANK APPROXIMATIONS FOR OPERATOR EQUATIONS 17

sufficient regularity of the ¥, with Z := X?Zl Vand Uy := 1y, @ -+ @1y, one
has that ¢ := {H‘I’/\H;é‘I/A}A:(/\l,...7/\d)ez is a Riesz basis of H}({2). Here one has
the proportionality ||‘I’AH;{E ~wy = (28Nl 422ah=1/2 yniformly in A, which
leads to a similar lack of separability of Se, see e.g. [19,51].

Instead, the representation T := S, ASy of A with respect to the Lo orthonor-
mal basis ¥ does have a simple low-rank structure. For instance, in the case of the
Laplacian, where A = 8?2 ® I + I ® 03 in the above example with d = 2. However,
T is not bounded on ¢3(Z) and hence cannot be used in (3.8) or its perturbed ver-
sion (3.9). The low-rank structure is unfortunately lost in the boundedly invertible
representation

(3.11) A=S71TS™! (S)aw = (22Nl 4 4 22Raly=12 N e T

after an ideal scaling that takes the topology of V into accout and ensures the
necessary mapping property of A relating errors to residuals.

A crucial point for what follows, however, is that in the case V = Hg(Q),
the departure from the original low-rank structure is still controllable in the sense
that S¢ has efficient and explicitly computable low-rank approximations. One
class of such approximations is provided by exponential sum approximations of the
ideal non-separable scaling factors wy. This is exemplified by the following result,
paraphrased from [11, Thm. 9].

THEOREM 3.1. There exist positive sequences (w;);en, (tj)jen such that for
alxeZ=@Q%, v,

9] d

~(00) ,_ —;221%] ~ ~(c0) WX

(3.12) = ij He L2777 < o0 satisfies wxn — 03| < >
j=1 =1

and in addition, there exists C > 0 such that with

m d
(3’13) (ng) — ij He—tjzzwm’
j=1  i=1
one has
(3.14) or =@M <2, ol —a <mwr, Aen,
or any finite A C Z, provided tha
te A C T ided that
(3.15) m > C(1+ |logn| + r/{leaf\(|logw,\|).

By (3.12), ® := {d;goo)\ll)\})\ez is then also a Riesz basis of H{(f2), with con-
stants cg, Cg independent of d. For finite subsets of Z, the corresponding mapping
Sg has efficient low-rank approximations whose Kronecker rank increases logarith-
mically in the desired error and linearly in

,,,,,

This quantity corresponds roughly to the largest frequency of an activated wavelet
basis element. For problems on H} (), we can thus use the sequence space formu-
lation Au = f with

(3.16) A =S;AS; = SUTS), u=5-"u, f=5%f,
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where S;ol = diag(of)f\oo))AGI. Then, with ®,, := {d)&m)\IIA}AGI, the infinite matrix
Almime) . — S:i AS;  provides an explicit low-rank approximation of A when
mq my

my, ma are chosen appropriately according to (3.14). For instance, in (3.1) with
M =1, using Lo-orthonormality of the 1y,, we have

mi1 Mo d
(m1,m2) _ . . —t;, 22kl g 22lkk] / /
(A WS Wi, Wiy e 72 <1/’)\k,71/},¢k>
Jj1=1j2=1 k=1
. 22I%il g 92lnsl
(317) He b 27 g 2 5/\1‘,!%'
iZk

Note that although this gives dmyms terms of Kronecker rank one, A(™1:2) can
in fact be represented as an operator in hierarchical tensor format with hierarchical
ranks bounded by 2mimsy. One can proceed similarly for f, and the approximate
coefficients of u with respect to the La-basis! {¥,} ez can be recovered by applying
Sz, with sufficiently large m to any finitely supported approximation of u.

In summary, in problems such as (3.1), one arrives at a coupling between the
costs of approximate low-rank representations of A and the activated finite subsets
of basis indices. In terms of the discretizations defined by these subsets, this means
that preconditioning the problem in low-rank form to arrive at a well-conditioned
matrix equation becomes more costly in terms of the arising ranks as the discretiza-
tion is refined. How to dynamically adjust the choice of mj, mo for given target
tolerances i will be taken up again in Section 5. This issue does not arise in scenario
(IT), since there V' is endowed with a cross-norm.

3.4.2. Contractions and tensor coarsening. The reduction operator R,, in (3.10)
must involve, aside from rank-reduction, a mechanism to control represenation com-
plexity in terms of activated basis functions, which is the second core component
in all varients of (3.10). Specifically, this requires the identification of a sequence
of finite subsets A" = AT x --- x A} such that supp(u™) C A" that warrants
sufficient accuracy. In purely sparsity-based adaptive methods, as introduced in
[19,20], such a reduction of indices can be done by keeping the entries of largest
absolute value. In our context, this is not an option: on one hand, directly sorting
the high-dimensional coefficient sequence is not possible for complexity reasons; on
the other hand, the tensor decomposition requires the product structure of index
sets to be preserved. A possible way around these two restrictions, proposed in [4]
and analysed further in [9,11], is to select the relevant basis indices based on the
one-dimensional sequences

(V) = (7(v)) g, € L2(T2),

where

-

ﬂ-g\?(v) = ( Z U/\l7~~,>\i—1,)\i,)\i+1,~-7l/d‘2) 2a

AlseesAim 1, X415, Ad

1Schemes for performing SVD-type approximations in H! directly using La-basis coefficients
have recently been proposed in [1]; however, this leads to weakened quasi-optimality properties.
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which were termed contractions in [9] and can also be regarded as one-dimensional
densities of the tensor. These can be efficiently evaluated using the identity?

1
(3.18) v = ([UGle)", ae
k

in terms of the HSVD mode frames U® and the corresponding sequences of singular
values ¢(?). One easily obtains the following quasi-optimality result for coarsening
based on these sequences.

PROPOSITION 3.2. Let A(v; N) = AW (v; N)x---x AD(v; N) C T be the prod-
uct indezx set corresponding to the N largest elements of {Wg\i)(v): t=1,...,d, A€
Z;}. Then for any A = Ay x - x Ag with Z?zl #A; < N, with

(3.19) sx(v) i= (Z > er)

i=1 \eZ;\A( (v;N)

2

one has
v = (VI < sw(v) < Vd|v = (v[)]-

Note that this result is analogous to Theorem 2.3, and as discussed in further
detail in Section 5, the effect of the two types of reduction operations combined in
R, can be estimated using essentially the same techniques. For finitely supported
input sequences w on Z, in both cases one can implement computational routines
with analogous properties:

— RECOMPRESS(W;77), which performs HSVD hard thresholding, such that
W, = RECOMPRESS(w;7) has hierarchical ranks r, = rg(w,) with
max; 7, (Wy) minimal such that ¢, (w) <7, and hence by Theorem 2.3,
|lw —wylle,(z) < n. This routine has the cost of performing the HSVD as
discussed in Remark 2.1. One has the quasi-optimality property

||[w — COARSEN(w; n)|| < vV2d — 3 (m;ré lw —w] .
re(W)<r,

~ COARSEN(w;7), which determines the product index set A(w;N,) as in
Proposition 3.2 with NN, minimal such that sy, (w) < 71, which ensures
[w — COARSEN(w;n)|| < n. This requires computing W&i)(w) from the
HSVD for all i =1,...,d, A\ € Z;, and (quasi-)sorting these values. From
Proposition 3.2, one has the quasi-optimality property

lw — coARSEN (w3 n)|| < Vdmin|w — (w|3)]],
A

where the minimum is over all A = A x - x A? such that > #A; < N,.

An important feature of the resulting schemes of the form (3.10), with appro-
priately adjusted F,, and R,, is their universality: they require no information on
the approximability of the sought solution u to produce quasi-optimal solutions. In
order to assess the performance of such methods, however, we hypothetically as-
sume u to have certain approximability properties and then show that the method
under consideration will have the expected complexity in such a case without using,
however, any a priori knowledge of such approximability properties.

2A technique of using (3.18) for steering adaptivity in high dimensions was also subsequently
developed independently in [30].
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3.5. Approximation classes. The natural approximability properties to con-
sider are strongly tied to the choice of R,, that is, to the routines RECOMPRESS
and COARSEN; in our case, these properties are the following intrinsic features of u:

(i) The convergence rate of the best approximation in ¢5(Z) of hierarchical
rank r to u as r increases, for instance, as |r|oc — 0.

(ii) The asymptotic decay of the decreasing rearrangement of all values 71';1) (u)
fore=1,...,dand X € Z;.

The notion of approximation classes is a classical means to quantify approxi-
mation properties. Regarding (i), we follow [9] and consider positive and strictly
increasing sequences v = (7(n)) with v(0) = 1 and y(n) — oo as n — co. For
v € (5(T) let

nelNg

VI a5 () = sup y(r) inf |lv—w],
reNg max rg(w)<r
where rg(w) reduces to rank(w) when d = 2 and Z = 7; X Iy, as in the case of
separating spatial and parametric variables in the problem class (IT). It will be seen
in the next section that relevant sequences v cover a wide range from algebraic to
(sub-)exponential rates. This gives rise to the approximation classes

(3.20) Ay () ={v € (S X F) : |V] ap (1) < 0}

For u € Ay (), a hierarchical tensor best approximation is guaranteed to achieve
accuracy € with hierarchical ranks r. whenever

(3.21) maxre > 'y*l(”vHAH(A/) 571).

We will be especially interested in exponential-type decay of low-rank approxima-
tion errors, where with ~(r) = o’ for some ¢, 8> 0, for v e Ay(y) one has

—erP

inf v —w| <[Vl e
max rg(w)<r
and accordingly

_ 1\ 1/8
maxr. > (¢ In(|[v]|an ")) "’

Regarding (ii), for an approximation v of bounded support to u, the number
of nonzero coefficients # supp; v required in each tensor mode to achieve a certain
accuracy depends on the best n-term approximability of the sequences 7(*) (u). This
approximability by sparse sequences is quantified by the classical approzimation
classes A* = A*(J), where s > 0 and J is a countable index set. A is comprised
of all w € ¢5(J) for which the quasi-norm

(3.22) [Wll.as(7) == sup (N +1)° inf [[w—Rpwl|
NeNg #AACS{V

is finite. The approximation of a sequence u € A° up to an error € by a sequence

with N, nonzero entries is ensured with N, > HwHise’é. The separate sparsity
of tensor mode frames for u € ¢2(Z) can be quantified by assumptions of the form
70 (u) € A(T;) fori=1,...,d.

Before turning to the complexity analysis, we next give an overview of available
approximability results that indicate which approximation classes solutions to both
problem types (I) and (II) can be expected to belong to. This will then serve
formulating proper benchmarks for the performance of specifications of algorithms.
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4. Approximability

In this section, we discuss approximability properties of solutions to problems
of both types (I) and (II) with respect to low-rank or hierarchical tensor methods,
partly in comparison with best n-term approximation. These theoretical questions
concerning the “expressive power” of certain approximation formats serve two pur-
poses. On one hand, they help judging which approximation type is best suited
for which problem class. It is clear from the preceding discussions that low-rank or
hierarchical tensor formats, due to their “higher level of nonlinearity” may increase
the computational burden and also raise coding challenges. This should be justified
by a superior performance in terms of the resulting work-accuracy balance.

On the other hand, describing best possible approximability, these results pro-
vide benchmarks for assessing the performance of versions of Algorithm 5.1. This
asks for the computational cost required to meet the target accuracy in a given
format. It includes two basic questions, namely

— What is the representation complexity of a given approximation format
for a given problem class, i.e., the number of degrees of freedom required
by a given approximation format to achieve the target accuracy?

— What is the corresponding computational complexity, that is, can one
devise a numerical method that certifiably achieves a given target accuracy
at at the expense of a computational work that stays as close as possible
to the representation complexity?

In this section we address the first question mainly for low-rank and tensor meth-
ods. This asks for a regularity theory in a broad sense where classical smooth-
ness measures are replaced by quantified approximability. Corresponding notions
of low-rank approximability would delineate the extent to which tensor methods
could ideally mitigate the curse of dimensionality. Such methods exhibit a signif-
icantly higher level of nonlinearity than classical best N-term approximation, but
are more restricted than DNNs, for which comparable theoretical guarantees are
not yet available.

4.1. High-dimensional diffusion. The representation complexity for prob-
lems of the type (3.1) is perhaps best understood for the special case that the
diffusion matrix M is diagonal [25]. In fact, what matters most is the following
structure of the operator A induced by the V-elliptic bilinear form in this case,
namely that

d
(4.1) A=Y"T@ 1A ele- oI,
j=1

has rank d and the “low-dimensional” operators
(4.2) A, H; —» H, (Au,v) =a;(u,v): H; x H; = R,

are Hg-elliptic. The simplest example is A; = —0,,(M;0,,) and H; = Hy(Q;),
Q; CcR™, j=1,...,d. As seen below, it is not important that the A; are second
order operators. Again the energy space V has then the form (3.2) with Hg(£;)
replaced by H;.

While the structure of A may nourish hope that the solution to

(4.3) Au=f on Qp x---xQy
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can be accurately approximated by low-rank functions, A~! as a mapping from V"’
to V has infinite rank which renders the question of quantifiable low-rank approx-
imability less clear. In view of (1.4), it is this mapping property that determines
the representation complexity. We review in this section some results from [25] on
quantified low-rank approximability of solutions to high-dimensional diffusion equa-
tions of the form (4.3), (4.1) that do establish rigorous relations between target
accuracies and rank growth in a “tamed canonical tensor format”, as explained
below. While the canonical format is most convenient for the present purpose, it
can be embedded in the hierarchical tensor format as well, see [13]. The term
“tamed” accounts for the fact that computing in this format is, in general, prone
to instability.

The relevant structural properties of A are conveniently reflected by its eigen-
system. Denoting by {e; r}ren the set of eigenfunctions of the low-dimensional
component operators A; with eigenvalues \; , one easily verifies that

(44) Aeu = )\l/el/7 €y = €1, Q- ® €d,vg>» )\V = >\1,ll1 +---+ )\d,ud~

This allows one to define the smoothness norm

(4.5) loll2 = >~ Abl(v,e)].

velNd

Denoting by H? the space of all v for which ||v]|; is finite, the operator A then acts
as an isometry between these scales, || Al|z(gt+2 uty = 1, t € R. While these norms
exist for all t € R, they are equivalent with classical Sobolev norms only for a
limited range of smoothness around ¢ = 1, depending on the specific problem data.
In particular, one always has V = H!.

Since obviously A, ! is not separable, A=! : H' — H!'*? has infinite rank.
Hence, a bounded rank of data f does not a priori indicate which rank suffices for
an approximate solution to warrant a given accuracy.

We will state next in more precise terms what we mean by low-rank approzima-
bility of a function. Since we will deal with tensors in the CP format, continuing
to denote rank-one functions as (g1 ® -+ ® gq)(z) := g1(x1) - - - ga(xq), we have to
incorporate means to ensure stability. To that end, we consider for r € IN tamed
rank-r tensor classes of the form

r d
Te(H') = {g €H':g= Z@gﬁk)},
k=1 j=

endowed with the “norm-like” quantities

(4.6) gl == it { max {llgll g™} }.
o d_ g g Lk=1,.r

k=1 &j=19;

Controlling ||g||»¢ is to account for the fact that rank-r representations are in general
not unique and to avoid cancellation effects between terms with large norms.
Despite the otherwise inherent instability of the CP format this allows us to
introduce approzimation classes collecting those elements in H that are close to
low-rank tensors in a quantifiable way. To that end, consider for any ¢ > 0 the
K-functional
rt+¢ }

4.7 K,(v,6) = K,(v,6, Ht, H*¢) :=  inf - )
(4.7) (v,6) = Kp(0, 0 B B = inf {0 = gl + g
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Then 61 K,.(v,d) < C means that there exists a rank-r tensor g of smoothness ¢+ ¢
for which ||v — g||: < dC and ||g|,+¢c < C. To relate the achievable accuracy &
to the rank 7, consider as before a strictly increasing sequence of positive numbers
v = (v(n))nen, called a growth sequence. Monotonicity of v ensures that the inverse
71 exists. We now collect in the approzimation class AY = AY(H!, H**¢) all those
v € H! for which the quasi-norm

(4.8) ]| v (e Jre ¢y 2= sup Y(r) K (f,y(r) 5 H HITC),
r€lNg

is finite, i.e., those elements in H* which can be stably approximated by rank-r
tensors in H'T¢ with accuracy O(y(r)~!). In other words, membership of a v to
A7 means that approximating a given v € AY by a tensor in H**¢ within accuracy
e > 0, is guaranteed, in analogy to (3.21), by the rank

(4.9) r=r(e) = [v" (lvll.ar /o).

Since A~! has infinite rank one cannot expect any low-rank approximability
of the data f to be exactly inherited by the solution u = A~'f. The following
result says that a low-rank approximation order O(1/+(r)) for the data f implies a
slightly weaker order O(1/4(r)) for the solution u. The attenuated growth sequence
4(r) is given as follows. Let G(z) = z(Invy(x))?, x > 0, and define

(4.10) 7 = (G (m)).

Since G has super-linear growth, G~! has only sublinear growth causing 4(n) to
have a somewhat weaker growth than ~.

THEOREM 4.1. Assume that the data f belong to AY(H!, H**¢) c H' for some
0 < ¢ < 2. Then, for 4 defined by (4.10), the solution u of (4.3) belongs to
AY(HIF2 HEF2H0) € HU2 and for each v € IN there ezists a u, € T, (HT2HC) such
that

(4.11) = trller2 < CH) T Fllav e meee) s

holds for some fized constant C' independent of r.

The relation between  and 4 is illustrated by taking v(r) = r®, for some pos-
«

itive a. Then 4(r) ~ ( ) , i.e., up to a log-factor 4, the rank approximation

order of the solution exhibits still the same algebraic rate. Instead, for v(r) = e*"
one obtains 4(r) ~ e(®"/ "* and thus a more significant relative degradation of
low-rank approximability caused by A~!. Of course, when f € Tp(H'T¢) has a
finite tamed rank k, it belongs to AY(H?, H**¢) for any growth function 7. This
explains the high efficiency of low-rank approximations to the solution v in such a
case.

The result in Theorem 4.1 is in this form unusual since the approximants u, €
T, (H**2+¢) in (4.11) are not yet determined by finitely many parameters. It remains
to identify numerically viable finitely parametrized approximants @, € 7T, (H!*?+¢)
and bound the complexity of computing them.

We summarize next some related simplified but representative results from [25].
Note first that stable approximability of the data f by somewhat smoother low-
rank expressions in 7,.(H!*¢) can be viewed as excess-regularity of the data that,
according to Theorem 4.1, is in this form inherited by the solution. Moreover, a
rank-one tensor g belongs to H® only if its factors g; belong to the corresponding
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component spaces Hf. Therefore, the excess-regularity ¢ affects the number of
parameters needed to form an e-accurate rank-r approximant.

More precisely, the following facts are somewhat specialized cases of the results
in [25]. For convenience we assume here 1-dimensional component domains 2; C R,
¢ €(0,2], and t = —1. Then, for any f € AY(H~*, H*~!) and any £ > 0 there exists
a u(e) € Trey(HST), which is determined by N(e,d) < oo parameters, such that

(4.12) lu—a(e)h <&, a1 < Crllfllar@-1 w1y,
where
413)  7(e) < CQOY HCIfllavfe)Ine?, N(e.d) < Cade™/Cr(e) <.

Since in view of (4.9), an e-accurate approximation of f requires at most a rank
r(e) S v (|If]l.av /), the solution rank 7(e) is only mildly increased by a factor
of the order of |Ing[?2. Moreover, the total number N(e, d) of degrees of freedom
exceeds an “ideal count” of de~'/¢7(¢), obtained when all tensor factors of u(e) of

smoothness 1 + ¢ were known beforehand, by the factor 7’“(5)%.

A pivotal constituent behind the above results is again approximation by expo-
nential sums. Specifically, one can employ a somewhat simpler version of Theorem
3.1, namely a classical result by Braess and Hackbusch [17,18] stating that

1 K
(4.14) sup | = 8,(a)| < O™, () = Y wpe
k=1

z€[1l,00) ' L

Defining operator exponentials e ~4v through the eigensystems (4.4), one can prove
the following result that takes the scale-change caused by A~! into proper account.

THEOREM 4.2. There exists a constant Cy such that fort < s <1, s—t <2,
one has

(4.15) 1A~ = S, (A)|| e o) < Coe~ 5V eI

Of course, this allows one to determine R(e) such that for any given rank-one
tensor 7 = 71 ® - -- ® T4 one can approximate A~!7 with accuracy € in a desired
smoothness scale by the rank-R(e) tensor

R(e) d
Sr(e)(A)T = Z WR,k:<®€_aR’kAJTj), where R = R(e) ~ |In¢e|?,
k=1 j=1

explaining the rank-increase by a factor |Ine|?.

The representation complezity bounds (4.13) make use of the implied regular-
ity of the tensor factors. They can be extended to bounds for the computational
complexity of actually computing an accuracy controlled low-rank approximant by
devising a numerical scheme for evaluating exponential sums of the form Sg.)(A)7.
Of course, using the eigensystems of A is not a numerically viable option. Instead,
approximating exponential factors of the type e~*47 in low dimensions can be

based on the Dunford integral representation
1

(4.16) e Air; = e (2 — Aj) " trdz,

where I' C C is a suitably chosen analytic curve separating the spectrum of A;

from the left complex half plane, and permitting an analytic extension of the in-
tegrand to a sufficiently wide region, see [25] for details. Sharp estimates for the
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mapping properties of the low-dimensional operator exponentials e~ 4 and using
exponential convergence of sinc-quadrature, one can devise for any given target ac-
curacy € appropriate discretizations of the resolvent problems (21 — A;)u;(z) = 7;
for suitably chosen quadrature points z. Thus, in contrast to earlier work in [32],
using such integral representations, the order of first discretizing the operator A;
and then using quadrature, is here reversed in order to exploit mapping properties
for error controlled computation. When the component operators A; are indeed
second order Hg(Q;)-elliptic and if H® agrees with HJ () N H*(Q;), s € [1,2],
one can bound the number of operations and used degrees of freedom for computing
u(e) by

(4.17) d1+ﬁ/C€*ﬁ/C,y*1(C”fHAW/EN ln5|2 (hl (?))2,

where p is a fixed positive number. This is slightly more pessimistic than (4.13)
but nevertheless shows that the curse of dimensionality is clearly avoided for a wide
scope of data f.

Exponential sum based schemes are very performant but restricted to the par-
ticular operator type (4.1). Nevertheless, in particular, sub-exponential rates are
seen to provide relevant benchmarks for high-dimensional diffusion problems with
low-rank data. The performance of the more general iterative approach, outlined
in Section 3, will therefore be discussed in Section 5 for such benchmarks.

4.2. Multi-parametric problems. As mentioned earlier in Section 3, the
uniform ellipticity assumption on the parametric family a(y),y € Y, ensures ellip-
ticity of (3.3) in the tensor product Hilbert space
(4.18)

d
V= HY(©) © La(Y. ) = Hy (@) ® (@ La((-1.1), %)) = La(Y. Hy(). ).

The mapping u : y — u(y) € H is then well-defined and the set w(Y) C H of
all states that can be attained when traversing the parameter domain, sometimes
referred to as solution manifold, is compact. Hence the Kolmogorov n-widths

dp (u(Y = inf  sup inf ||u(y) —w|v,
(Y ))y =, inf  sup inf [u(y) ~wly

tend to zero. They quantify linear approximability of u(Y) in the worst case
sense with respect to Y viewing u as a mapping into the smaller Bochner space
Loo(Y,HE()). A natural accuracy measure for low-rank approximation in V is
the mean-squared error

(4.19) ulu )= int | min u(y) — wllf o ()

As exploited earlier, best subspaces realizing J,,(u, 1)y are obtained with the
aid of the Hilbert-Schmidt operator M, : Lo(Y, ) — H}(Q) defined by

Mg = /Y u()o(y)du(y),

through its Hilbert-Schmidt decomposition

oo
(4.20) My =" oxvil, 1) Lo(vp)»
k=1
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where 0 = (o%)r>1 € ¢2(IN) is non-negative and non-increasing. Moreover, the
(k)k>1, (Pr)k>1 are orthonormal systems in H}(Q) and La(Y, i), respectively. In
particular, the spaces W, := dim {vy : k = 1,...,n} realize §,(u, u)y and

(421) bl )t = 3 o
k>n
The largest r for which o, > 0 is the rank of M,,.
Since p is a probability measure d,,(u, 1)y is always dominated by the n-widths

so that bounds for d,, provide such for J,, as well. In this context a crucial fact is
holomorphy of the map u, see [21-23], even when d = oo, which is, in particular,
responsible for decay rates of §,,d, that are robust in d.

Quantifying such rates, however, requires distinguishing two fundamental regimes,
namely the case (a) d < oo possibly very large but fixed, and (b) d = co. In (a)
all parametric components y; will be viewed as equally important. In scenario (b)
uniform ellipticity necessitates a decay of the parametric expansion functions ¢; in
Lo ().

4.2.1. Finitely many parameters. It is straightforward to show (for instance,
using Taylor expansion as in [5]) that for fixed d < oo, the n-widths of the solution
manifold u(Y") satisfy
(4.23) dn(u(Y)) g < Cem"”,

where the constants ¢, C' depends on a and r in the uniform ellipticity condition
_ d _ d

r<a-— Ezzl|¢z| <a(y) =a+ Ei:1 Yii. )
The rate (4.23) can be slightly improved to e~meln ™" ynder the assumption

d
(4.24) > Wi =ba fora6e(0,1).
i=1
More precisely, it is shown in [5] that the partial sums uy(y) in a Neumann series
expansion of u(y) can be represented as

n(d—1,k)

(4.25) ue(y) = Y. ki) v,
j=0

for some d-variate polynomials ¢ ; and v; € V, and therefore have at most rank
n(d—1,k) < (k+1)4-1,

Estimates of the type (4.23) give a first justification for the use of sub-exponential
decay rates as benchmark rates. On the other hand, the obtained rates weaken sub-
stantially with increasing d. This has led to a careful study of more specialized types
of parametric expansions to better understand whether and to what extent low-rank
approximation may substantially outperform approximations based on an a priori
fixed expansion system such as tensor product Taylor or Legendre expansions.

An important model case are parametric expansions with piecewise constant
coefficients of the form

d
(4.26) aly) =a+»_y;0;,
=1
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where d < oo, a = 1, 0; = bjXp,, b; € (0,1), and the subdomains D; C Q form a
partition of €.

Specifically, consider first the spatially one-dimensional case 2 = (0,1). As
shown in [5, 6], for any f € H’, u(y) has then finite rank at most 2d — 1. In
fact, u(y)|p, must be spanned for each y by Xr,xXs, F;X; where F/! = f on D;
and F; vanishes at the end points of D;. Boundary conditions and d — 1 continu-
ity conditions at the interior breakpoints leave 2d — 1 degrees of freedom so that
u(y) is contained in a linear space of dimension at most 2d — 1. Since therefore
dag—1(u(Y))y =0, u(y) has at most rank 2d — 1.

For higher spatial dimensions, M, is finite only in exceptional cases. For piece-
wise constant diffusion coefficients of the form (4.26) with 6; = afxp,, significantly
refined information is derived in [5] by decomposing H} () into EB?:l H}(D;) and
its orthogonal complement W with respect to (-,-);. Employing corresponding
orthogonal projections, one can write

d
u(y) = uw(y) + Z u;i(y),
i=1
where the wu;(y) are solutions to

(1 —l—@yi)/ aVu;(y) - Vvdz = / fuvdzr, ve Hy(D;), u(y)|o\p, = 0.
D; D;

i

Since the w; have rank one depending only on y; the portion Zle u;(y) has at
most rank d. To determine the rank of uyy, it is written as the harmonic extension
of a skeleton component ur. It is then shown that ur(y) has a Neumann series
representation which ultimately requires estimating the ranks of its partial sums
Urk(y)

In the case d = 4 and D; being congruent squares, this analysis is carried out
showing that in this case the ranks of the partial sums ug (y) of the Taylor expansion
of u(y) are bounded by 8k + 5, which then leads to a bound d, (u(Y))y < Ce ™.
Hence, for each n € IN one can find functions v} € H}(2), u], € La(Y, u) such that

< e—c’ﬂ
Lo(Y,HY () ™

(4.27) Hu—Zu’,ﬁ@uZ’
k=1

Remarkably, numerical experiments reveal that for partitions into four non-congruent
quadrilaterals, corresponding singular values decay at a significantly slower, yet still
subexponential rate.

Moreover, numerical experiments support a similar behavior for larger d, with ¢
in the estimate (4.27) depending weakly (approximately as 1/d) on d. Very similar
results are obtained for hierarchical tensor approximations, where also the interme-
diate ranks for matricizations with respect to the parametric variables enter. While
to our knowledge, there are no theoretical bounds on these ranks, the numerical
results indicate that the ranks for the spatial matricizations dominate and behave
essentially as in the previous case where the parametric variables are not separated.

4.2.2. Infinitely many parameters. The case d = oo, where we consider diffu-
sion coefficients a(y) = @+ > .o, ¥i¥h; parameterized by y € Y = (—1,1)N, turns
out to be significantly different. A tensor product basis for Ly(Y, u) is provided
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by the product Legendre polynomials L,(y) = [[;2; L, (y;) forve F:={ve
INY: v; = 0 for almost all j € IN}, giving rise to the orthonormal polynomial basis
expansion

(4.28) u(e) = Y wLuly)s w = [ (o) L(w) duy).

veF Y
Also here, a natural first question concerns the separation of spatial and parametric
variables as in (4.27), that is, the approximation of w by functions of the form
Sor_; uf®@uy. The smallest possible error 6, (u, u)y = (3,-,, 07)'/? is attained by
the truncated Hilbert-Schmidt decomposition of M, and thus determined by the
decay of the singular values (o%)gen of M,,.

Truncations of the expansion (4.28) provide alternative low-rank approxima-
tions, where one takes u} := w,,, u), := L,, with (v;)gen chosen such that
||, HHI(Q) > ||, ||H1(Q), which yields an approximation error (3, ||ty H%”(Q))l/2
with n terms. By the best approximation property of the Hilbert-Schmidt decom-
position, clearly >, [lu,, H%P(Q) > konOr

The decay of ||uy, ||g1(q) as k — oo, which depends mainly on the functions
1, and their decay as j — oo, is well studied, see e.g. [7,21-23]. One obtains
results of the type (||luy|lm1(0))ver € £p(F) for some p € (0,2), which implies
(Zk>n||quH§-Il(Q))1/2 < n~Y/PH1/2 There are only very limited results on the
decay of oy, in this setting; it depends also, e.g., on the right hand side f.

The following result on (0% )ren was obtained in [6, §6], adapting arguments
from [7, §4.1]: For Q = (0, 1) and a certain class of v; such that u(y) is easy to han-
dle analytically, there always exists f € H~'(Q) such that (||u, || g1 ())ver € £p(F)
and (o )ken ¢ ¢y (IN) for any p’ < p. In other words, with appropriate f, the singu-
lar values o have the same asymptotic decay as the decreasingly ordered Legendre
coefficient norms ||u,, || g1(q). This also yields lower bounds on the Kolmogorov
widths dy, (w(Y)) a1y > on(u, ) ai) 2 n~1/Pt1/2 in these settings. Thus, the
performance concerning the number of terms n attainable by any low-rank approx-
imation is, for an adverse choice of data f, asymptotically no better than that of
the simpler Legendre expansion (4.28).

As numerical experiments in [6] show, this situation is also observed in generic
examples with typical choices of v; and f, where this has not been proved an-
alytically. In summary, in such problems with infinitely many parameters, one
can therefore only expect limited gains from optimized low-rank approximations
in comparison to Legendre expansions (4.28). Indeed, as explained in more detail
in Section 5, corresponding SVD-based computational methods are generally more
expensive, since they scale nonlinearly with respect to the expansion ranks.

5. Adaptive error control and computational complexity

A central objective in adaptive methods for high-dimensional problems is the
reliable quantification of errors. For scenario (I), one approach to determine rig-
orous error bounds has been recently proposed in [28] employing the Hypercircle
Principle in combination with flux-approximations in tensor-train format. However,
lower bounds do not seem to be available in this format. Hence, while the involved
constant is just one, a quantification of a possible overestimation and its dependence
on d seems to remain unclear. Moreover, the approach does not offer any provi-
sion for updating the given discretization based on the computed bounds. When
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estimating instead residuals directly, as suggested in this article, one issue is the
quality of error estimates, in that one needs to ensure that all involved constants are
controlled and the resulting bounds remain meaningful for large dimension d. For
instance, in naive generalizations of lower-dimensional error estimators, constants
in the estimates may depend exponentially on d. A second issue is the numerical
cost of their evaluation, which should also remain under control for large d.

The approach that we follow here addresses both issues in conjunction with
strategies for updating the approximations. It is based on the proportionality be-
tween errors and residuals (1.4) and approximation of these infinite-dimensional
residuals. To ensure the quality of error estimates for large d, we rely, in particular,
on expressing the underlying problem in terms of suitable basis functions. Achiev-
ing near-optimal computational cost of the residual approximation prohibits, of
course, ever accessing the underlying full coefficient tensor but requires a some-
what specialized treatment in each of the problem scenarios that we consider.

The resulting methods for error estimation can, in principle, be used in various
different constructions of adaptive solvers. In Section 5.2, we combine them with a
scheme for which we can subsequently show near-optimal asymptotic computational
costs.

5.1. Residual approximations. The accuracy-controlled approximation of
residuals Av —f for given finitely represented v, needed in any realization of (3.10),
requires some means of approximating f in the desired form, and more crucially a
scheme for approximately applying the infinite matrix A. Devising such a routine
with provably optimal performance, one faces different obstructions in the two
problem scenarios (I), (II).

(1) Diffusion equations. Recall that an important requirement on a Riesz basis
® for the energy space V is that it is a rescaled version of an orthonormal basis
¥ for Lo(£2); the latter property is crucial for avoiding constants in the estimates
that deteriorate exponentially in d. In this case the (unbounded) representation
T := S, ASy preserves the (formal) low-rank structure of the diffusion operator
while the scaled version A = S AS; = SITSZ! from (3.16) has infinite rank. A
key component of a computable residual approximation in low-rank format thus is to
replace the ideal scaling matrix g;ol by an approximation S;ll. Here, m = m(v,n)
depends through (3.15) on the support of the vector v, which A is to be applied
to, as well as on the target accuracy 7. This ensures that the matrix A,y ) =
S;,ITS;! has now finite rank while, on account of Theorem 3.1, the restriction to
the activated basis elements is still well-conditioned and thus convergence of (3.10)
is still ensured.

The matrix A,,(y,y) is still infinite and its approximate application makes es-
sential use of the near-sparsity or compressibility of properly rescaled versions of the
low-dimensional blocks Tsf) of T'. Exploiting compressibility of such scaled blocks,
in turn, is facilitated by the near-separability of the low-rank scaling matrices.

To indicate how this can be used to approximate the infinite-dimensional resid-
ual Au”™ — f, whose £5-norm is uniformly proportional to the error ||u —u"||s, (1),
within a suitably updated dynamic accuracy tolerance 7,,, we recall the notion of
s*-compressibility which plays a pivotal role in adaptive wavelet methods, [19,20].
An infinite matrix B € RY*V is called s*-compressible if for any 0 < s < s*,
there exist summable positive sequences (¢;);>0, (5;);>0 and for each j > 0,
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there exists B; with at most anj nonzero entries per row and column, such that
IB—B,|| < 8,27,

To approximate Bv for a given v € ¢5(V) one combines a priori knowledge
about the matrix B with a posteriori information on the input v, e.g., by partition-
ing the support of v into disjoint subsets A; corresponding to the magnitude of its
entries in decreasing order. We then define a v-dependent approximation B of B,

J
(5.1) Bv~B,vi=Y B, ;(vls,),

=0

which satisfies

J
IBv = Byv] = (B~ Byoj)(vla,) + B(vla,.,)|
§=0
J
< D IB = B vl [+ BV -
§=0

Note that for j close to J, B;_; is a coarse approximation, whereas the most
accurate approximations of B are applied to the large contributions in v.

For high-dimensional input tensors v € £5(V?), the crucial step is then to apply
approximations of each lower-dimensional component in the tensor decomposition
of T separately in each tensor mode, with accuracies controlled by subdividing
the sequences 7" (v) for each mode i = 1,...,d. As shown in [11], one can then
combine this with the approximate rescaling in a routine APPLY(V;7) : v — Wy,
with
(5.2) w, =S_!

;z(n;\')

TS,

m(n;v)v’

for exponential sum truncation ranks m(n; v) chosen according to (3.15) and com-
pression depth J(7), such that ||[Av —w,| <.

Instead of the energy norm, one can instead measure accuracy in a weaker norm
such as the L2 (€)-norm. Since this is a cross-norm one would intuitively expect
achieving desired accuracy thresholds at the expense of lower ranks. This is indeed
the case as shown in [10], where rigorous error control in Ly () is established again
in the framework of an equivalent problem formulation in sequence space. The rele-
vant mapping properties are now realized through an unsymmetric preconditioning,
which requires only a single scaling operation in each application of A of the form

-2
(53) Am(Vvﬁ) = Sq)m(v,ﬂ)T’

see [10] for further details.

(II) Parametric PDEs. As indicated at the beginning of Section 3.4, one can
tensorize any Riesz-basis ® of H}(Q) with an orthonormal basis of Lo(Y, ). A
natural choice for this orthonormal basis are the product Legendre polynomials as
in Section 4.2.2, with an orthonormal basis given by {L,},eg, where G = IN¢ for
d < oo and by G = F for d = co. The resulting system ® := {¢x ® L, }x,)esxg
is then a Riesz basis of La(Y, H}(Q2)), which we now use to transform (3.3) into an
equivalent system over /5(S x G). Defining then with ¢ := a for j € N,

(54) A‘] = (<ij@A’)V<)0A>>)\7A/€$7 f = (<f7 @A®LV>)(>\,V)€$><Q’
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as well as
(5.5) M; = (/ Yi L (y) Lo (y) du@)) ;o J=1
Y v,v'€G
and My as the identity on ¢5(G), we obtain an equivalent problem
d
(5.6) Au=f, where A:= ZAj ® M;,
3=0

on f5(S x G). Due to the classical three-term recurrence relations for Legendre
polynomials, the matrices M; are bi-diagonal for j > 1.

In the case of fixed finite dimension d < oo, the hierarchical tensor format is
a natural choice. In fact, it poses significantly less difficulties than in the case of
high-dimensional diffusion equations, since the mapping S¢ is a Kronecker product
and the sparse matrices M; need no additional compression. The matrices A; can
be approximated similarly to (5.1), with accuracies controlled by norms of segments
of ||[7™)(v)|| of the spatial contractions

) = (Y vaw
veg
for inputs v € £o(S x G), which can be computed from the HSVD as in (3.18). As
shown in the next section, corresponding complexity estimates are slightly more
favorable than for scenario (I).

In problems with d = oo, residual approximations are more complex due to
the additional requirement of adaptive truncation of dimensionality: to ensure effi-
ciency with controlled errors, the number of parameters y; that are activated needs
to be adjusted to discretization and low-rank approximation errors. This can be
controlled adaptively, taking into account the known decay properties of the pa-
rameter expansion functions |11 (q), via estimates for the operator truncation
error of the type

(5.7) eri=| > A oMy < cus,
i>J

2)1/2, AES,

with some fixed S > 0. Such an adaptation has been considered in [33, 34] for
generic 9;, but as observed in [6], the value of S is strongly influenced by structural
features of this expansion. A particularly favorable case are expansions with a
multilevel structure, where each j is uniquely associated to a pair (£(j), k(j)) with
inverse mapping j(/, k), such that there are O(2™") functions on level £ and

(5.8) > iewl <27, >0,
k

for some a > 0, with a uniform constant C' > 0. Here £(j) € Ny describe the scale
and k(j) € Z™ (with Q@ C R™) the spatial localization of ;. Such a condition
is satisfied in particular when diam(supp(t;)) ~ 24U there exists M > 0 such
that for each ¢, k, the number #{k': suppv;(e,x) N supp Ve py # 0} < M, and
91|y ~ ¢j ~ 27%). Expansions with the property (5.8) can be constructed
for wide classes of random fields, see [8], where one obtains S = a/m.

In principle, for any fixed set of modes z,y1, ...,y , one can apply the hierar-
chical format with J + 1 tensor modes, which leads to some substantial additional
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difficulties in the complexity analysis due to the changing dimensionality. We there-
fore restrict the following discussion to the basic case of separating spatial indices
in § and parametric indices in F as in Section 4.2.2; that is, to estimating errors
in low-rank approximations to u of the form

(5.9) u=> UieUj,

k=1

with U% and I_Ji finitely supported on & and F, respectively. In view of the
results outlined in Section 4.2.2, direct Legendre expansion can be advantageous
compared with (5.9) regarding asymptotic costs. Nevertheless, despite the fact that
the number of terms r is possibly not significantly smaller than for sparse Legendre
expansions, and the total computational cost may in fact be higher, an efficient
computation of low-rank approximations with controlled error in Lo (Y, H3(2)) and
near-optimal basis functions as in (5.9) can still be of interest in many application
scenarios, for instance in the case of many parameter queries.

In the case of a low-rank approximation of the residual with simultaneous sparse
approximation in the tensor modes, the decomposition of v is more involved. For
p,q=0,1,2,... an input v is then decomposed further into segments v, , of rank
2P where p refers to consecutive groups of 27 singular values of v, and ¢ refers to
the best 29-term approximations of the parametric contractions 7)(v), defined by

W (v) = (Z ‘V,\,u|2)1/2.
reS

The routine APPLY(A, v;7) — w,, then yields finitely supported low-rank approxi-
mations

JIp.q 7])
(5.10) Wyi= > > (A @MV,
p,q>0 j=1

with ||w,, — Av| <1, where the number of terms J, ,(n) is determined in an a pos-
teriori fashion from the norms [[v(, || as well as known bounds for the truncation

errors ey, . from (5.7). Moreover, (A;, @ M;)v(, 4 is an error-controlled approxi-
mation of (A; ® M;)vy, q obtained as in (5.1). Here, the change in compressibility
of A; as j — oo, which typically is driven by increasingly oscillatory features of
the functions 1, crucially determines the resulting computational costs. Also in
this respect, a multilevel structure of the parametric expansion, as in (5.8), turns
out to be highly advantageous, in that it also leads to improved compressibility of
the matrices A;. In summary, under this condition one can construct the approx-
imation (5.10) at near-optimal computational costs. For further details, we refer
to [6].

REMARK 5.1. A different technique for residual approximation for such prob-
lems, using finite element discretizations in space but also relying on contractions
7()(v) similarly to the present approach, was proposed in [30] and shown to pro-
vide an upper bound for the error. However, for this method no suitable complexity
estimates are available.
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5.2. Computational complexity of solvers. Independently of any specific
solution algorithm, the residual approximations, discussed above, provide informa-
tion on numerical errors in high-dimensional problems, where the costs of evalu-
ating these approximations in terms of their quality depend only mildly on the
dimensionality of the problem. Such residual approximations can, in particular, be
naturally used in iterative solvers as discussed in Section 3.3, which gradually refine
simultaneous sparse and low-rank approximations.

As indicated earlier, the residual approximations, as well as many further opera-
tions required in iterative solvers, increase the representation complexity of iterates,
especially concerning their tensor representation ranks. The computational com-
plexity of the resulting methods is therefore a crucial issue. Ideally, it should be
directly related to the convergence of corresponding best approximations; in the
case of low-rank approximations, however, one can generally not expect computa-
tional costs to remain strictly proportional to the number of degrees of freedom,
since the costs of many required procedures such as SVD scale nonlinearly in the
ranks.

A basic strategy for controlling approximation complexity, following the tem-
plate (3.10), is to combine error reduction (based, in particular, on residual approx-
imations) with a suitable complexity reduction. Whereas maintaining convergence
to the exact solution is straightforward with the ingredients we have introduced so
far, relating the computational complexity to the quality of best approximations
is substantially more delicate. We now discuss two basic approaches that rely on
hard and soft thresholding with judiciously chosen thresholding parameters.

5.2.1. Hard thresholding. This first approach is based on the observation that
if an input v is known to be quantifiably close to an unknown object u then, using
properly chosen thresholds, these routines produce a new approximation with a
slightly larger error but with near-minimal ranks or representation complexities,
respectively.

We will first frame the basic mechanisms underlying the reduction procedures
in abstract terms. To this end, let H be a Hilbert space and let {S, },c be a family
of subsets from which approximations are selected, where the parameter r controls
their complexity. For v € H and n > 0, let

7(v,n) :=min{r: Gw € S,: ||lv—w| <)},

which is the minimal complexity parameter for which the best approximation from
these sets attains accuracy 7. In addition, assume that there exists a (linear)
orthogonal projection P(v,7) onto Sy, . such that ||v — P(v, n)v| < n.

LEMMA 5.2. For anyr, let Po: H — S, and é,: H — R™ be such that
lo = Pr(v)] < & (o),
where for some k > 0,
ér(0) < 5 inf o~ .

For any o, > 0, and for any u,v € H with ||lu—v| <, let 7 be minimal such
that é7(v) < k(1 + «)n. Then, for v := P:(v) € S one has

(5.11) lu—0|| <(14+&(1+a))n whie 7 <7(u,an).
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PROOF. Given u,v,n > 0 as above, by linearity and orthogonality of P(u,an),
we have for any fixed a > 0

lv = P(u, am)vll i < [[(v —w) — Plu,an)(v —u)|n
(5.12) + [l = Plu,an)ullr < (1+ ).
On the other hand, we have for any r that

o= Bl < inf o= wl,

so that by (5.12), we have for r = 7 (v, an)

o~ Prtpemn @l < 5 _inf o~ wl < 51+

w #(v,an)

Since, by definition  is the minimal index providing accuracy k(1+a)n, we conclude
that 7 < 7(v, an) so that the second relation in (5.11) follows, while the first relation
holds by the triangle inequality. O

Lemma 5.2 means roughly the following: suppose one has constructed an ex-
plicit finitely parametrized approximation v to an unknown w for which an error
bound 7 is known. In the present context v is the result of an error-controlled
reduction step F,, in (3.10). Then, re-approximating the explicitly given v within a
judiciously chosen tolerance, which is somewhat larger than the error bound 7, pro-
vides a new approximation © to the unknown u with a slightly worsened accuracy
but with near-optimal complexity.

More precisely, the approximation complexity of the computed recompressed
approximation ¢ in (5.11) can be quantified in terms of the corresponding best
approximations of u. For instance, take 3, as defined in (1.5), with a fixed basis
{©x}ren, as the approximation sets, where the complex1ty parameter is now the
number of nonzero coefficients » € IN. Both P and P, correspond to retaining the
coefficients of largest absolute value, and k = 1. Thenif u = ), uypy withu € A?,
we have

Flu,e) < e

and thus (5.11) gives ||[u — 0|| < & with © € X7, where

1
X 2+a\:, 1
<

)

_1
s

s €

In this manner, this observation appears first in the context of sparse approxima-
tions with respect to a given basis, as in adaptive wavelet schemes [19, 20].

In the context of hierarchical tensor representations, r is the maximal entry in
the tuple of hierarchical ranks. In the simplest case d = 2, where H = H, ® Hs, we
choose S, as the elements of rank at most r, and P, P, are given by the truncated
Hilbert-Schmidt expansion. Then if o(u) € A%, in a completely analogous way we
obtain |lu — 9| < e with ¢ € S and

1
2 s 1
7 = rank(d) < (%) llor(u)] e

In this setting, cases where low-rank approximations are particularly attractive are
those where u satisfies

inf Ju—v|| < Ce e’
rank(v)<r
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for some C, ¢, 8 > 0, corresponding to exponential-type decay of the singular value
sequence o(u). In such cases we instead obtain

7 =rank(d) < (¢ 'In(C(2+ a)a_la_l))l/ﬁ < |lne)t/?.

For higher-order hierarchical tensors, the near-optimal projection P, can be done
by the routine RECOMPRESS implementing the HSVD hard thresholding operation
where, by Theorem 2.3, kK = v/2d — 3. Under an analogous assumption

inf  Ju—v| < ce=”,

max rg (v)<r

which means that u € AH((e"ﬁ)re]NO), one then obtains

7 = maxrg(0) < (071 In(C(1+(1+ O‘)H)aileil))l/ﬂ'

In the application of Lemma 5.2 to the control of the componentwise sparsity
in each tensor mode, as quantified by the contractions 7(*) in (3.18), r is the total
number of nonzero entries WE\Z) fori=1,...,d and XA € Z;. Proposition 3.2 provides
the corresponding quasi-best approximation procedure P, realized by COARSEN.
As shown in [9], the two reduction procedures for hierarchical tensor decomposi-
tions and componentwise sparsity can be combined to achieve the quasi-optimality
property (5.11) simultaneously with respect to both types of approximation.

A corresponding adaptive scheme can be realized as in Algorithm 5.1 using
the routines COARSEN and RECOMPRESS described in Section 3.4.2, combined with
residual approximations using routines RHS(f; 7)), APPLY(A, v; 7). These latter rou-
tines generate, for any given target tolerance 7 > 0, error-controlled finite-rank and
finitely supported approximations such that

(5.13) If —ruS(£;7)[lenz) <1 [[AV — APPLY (A, vin)l|eyz) < 7-

In all cases, the accuracy requirements are ensured by a posteriori bounds, indepen-
dently of any prior assumptions on or knowledge of the given finitely parametrized
input.

One step in Algorithm 5.1 takes the basic form

(5.14) 1 ¢ COARSEN (RECOMPRESS (0 —wry, . (@) 70e) ncoa),

where r,,, ;. (@) := APPLY(A, u;n4) — RHS(f; ny) with certain tolerances 14, ns, nrc,
Neoa Of comparable size and geometric decay. The algorithm has an inner loop,
where steps (5.14) are applied to achieve an error reduction, corresponding to the
mapping F,, in (3.10). In the outer loop, this is followed by a complexity reduction
by RECOMPRESS and COARSEN with sufficiently large tolerances, see step 11. As
shown in [9], Lemma 5.2 can be applied to infer joint quasi-optimality of hierarchical
ranks and mode frame supports provided that the parameters ki, ko, k3, which
control the relative size of error and complexity reduction tolerances, are chosen as

= (14+ (1 +0a)(V2d—3+ Vd+ \/(2d—3)d)>71,
ko =V2d—3(1+a)ky, k3=Vd(V2d—3+1)(1+a)k;.

(5.15)

REMARK 5.3. It is easy to see that for any given tolerance e, Algorithm
5.1 terminates after O(|Ine|) steps, producing a coeflicient array u. such that
lu —u.l|s,z) < e. We emphasize that convergence of the algorithm is guaranteed

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



36 MARKUS BACHMAYR AND WOLFGANG DAHMEN

Algorithm 5.1 u. = SOLVE(A, f;¢)
w >0 and p € (0,1) such that |T—wA| < p,
input {

ca > [|[A7H], 0 > callf],
K1,K2,K3 € (0, 1) with k1 + ko + k3 < 1, and 51 >0, /32 > 0.
output u. satisfying ||lu. — ul| < e.
1: up:=0

2: k:=0, ] :=min{j: p!(1+ (w+ B1 + B2)j) < 31}

3: while 27%¢g > ¢

4: Wi =g, Jj <0

5. while j < I

A

o ray = APPLY(we: bk — RES(ha)

8: Wi, j+1 ‘= COARSEN (RECOMPRESS(Wy, j — wrk ;i B177k,5 )i B2Mk,; )
9: j—j+1

10: end while

11: Uj41 := COARSEN (RECOMPRESS(Wy, j; k22~ (FH1eg); k327 (FH1)g)

12: k+—k+1
13: end while
14: u. ‘= ug

FIGURE 1. Illustration of Algorithm 5.1, for d = 2 with coefficient
arrays determined by sums of outer products of sparse vectors:
starting from uy, in the inner loop (steps 2—11), ranks are increased
and degrees of freedom are activated (shown in red) in wy, ; for j =
1,...,J. Small coefficients are removed in the re-approximation
step of line 11 to obtain ujy1.

independently of any additional conditions on the unknown solution array u. The
performance of the algorithm, i.e., the numerical cost of computing u., can, of
course, only be quantified under certain assumptions on the solution.

5.2.2. Complezity bounds in model cases. Guided by the findings in Section 4,
we proceed to formulate the relevant assumptions and benchmark properties for
the problem scenarios (I) and (II) for which we will quantify the performance of
Algorithm 5.1. For a detailed account we refer to [10,11], in particular regarding
the dependence on d of various constants.
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In this regard, similar assumptions are suitable for the model problems in sce-
nario (I) and in scenario (II) with d < oo, since in both cases we expect

(5.16) ueAg(y), ~vn)= e, for some ¢, 3> 0.

For the sparse approximability in each tensor mode, we may assume

(5.17) @(u) e A%, i=1,...,d, forsome s> 0.

Then for any € > 0, the result of Algorithm 5.1 after the final complexity reduction
step satisfies®, as a consequence of Lemma 5.2,

(5.18) maxrg(u.) < (|Ine| + Ind)/?

1

(5.19) Z#supp )< arts (Z”ﬂ' ||As) e7w .

Note that # supp (7 (u.)) is the number of degrees of freedom in tensor mode i.
Thus, in other words, ranks and discretization sizes in the result are quasi-optimal.
Moreover, one has

(5.20) ey () S VA ||u|um> >
(5.21) Zlhr (u. ||A<<d1+ma"{“}2||7r<z e -
=1

For the proofs of the estimates (5.18), (5.19), (5.20), (5.21), see [9,11]. Note that
these bounds hold after every execution of the outer loop in Algorithm 5.1, with ¢
replaced by the accuracy 2~ ¥eg of the current iterate uy.

On this basis, we obtain estimates for the total computational complexity of
the adaptive scheme, which depends mainly on the computational costs of residual
approximations in the inner loop. At this point, we need to exploit structural
properties of A. Specifically, we refer to [6,10,11] where s*-compressibility of the
tensor components of A has been established. The value of s* depends on diffusion
coefficients, the choice of the Riesz-basis, and in scenario (II), on the properties
of the parametric expansions. Furthermore, we need to make some additional
technical assumptions concerning approximability of f, including £ € A(y). These
properties of the problem data can, in principle, be verified.

In case (I), for the bound of the complexity of APPLY(A, v;7) — w,, we assume
in addition that u € H*(Q) for some ¢ > 1. One can then bound the ranks (), v)
required for the approximate rescaling g;l(vm). Then one obtains estimates of the
form

(5.22) ri(wy) < (m(n,v))*Rri(v), i=1,...,E,

where R bounds the representation ranks of T (for instance, R = 2 in the case
A = —A). Moreover, whenever s < s*,

1/s
#(supp(r D (wy)) < 7O W) las ) e,
(5.23) 2 (Z )
7D (wi)llas S dllrD (V)] ae,

31f B < 1, the estimate (5.18) can be quantified more precisely in terms of llull 4, (); see [9].
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with hidden constants depending in particular on A; for details, see [11, §6.2]. Thus,
for a certain approximability range s < s*, the approximate operator application
preserves joint mode frame sparsity.

With (5.22), (5.23), and taking into account that the costs of each iteration
in the inner loop are dominated by those for the HSVD of iterates and residual
approximations, we arrive at the bound

(5.24) ops(uy) < dCr 4 (14|Ingl)C2nd+2/8 er

for the total computational costs of Algorithm 5.1, where Cy,Cy > 0 are constants
independent of d and e. Similar (and slightly more favorable) estimates hold for (I)
with error control in Lo, see [10].

In scenario (IT) with d < oo, the situation is similar, but instead of (5.22) one
has the n-independent bound r;(w,) < (d+1)r;(v),i=1,..., E. As a consequence,
the complexity bound improves to

(5.25) ops(ug) < dCl“d|1ns\2/55*%,

with C' > 0 independent of d and ¢.

Concerning the dependence on d, the bounds (5.24), (5.25) are in general far
from sharp: also in the inner loop of Algorithm 5.1, the ranks of iterates typically
remain lower than guaranteed by the available upper bounds. However, the es-
timates (5.24), (5.25) still show a growth in d that is far below exponential, and
thus ensure that low-rank methods can indeed break the curse of dimensionality
for these problems also in terms of their total computational cost.

In scenario (IT) with d = oo, we again consider low-rank approximation with a
single separation between spatial and parametric degrees of freedom as in (5.9). As-
suming that the parametric expansion functions 1; have multilevel structure accord-
ing to (5.8), one immediately obtains from the results in [7] that 709 (u), 7)) (u) €
A? for any s < a/m. In view of the discussion in 4.2.2, for the singular values o(u)
of u, this implies o(u) € A® for any s < a/m. Unfortunately, one cannot in general
expect stronger summability of o(u); that is, in this setting the singular values of
u generally decay only algebraically.

In this case, as a consequence of Lemma 5.2, one has

_1 1
(5.26) rank(u.) S e F[lo(w)| i, llo(ue)llas S flo(a)llas,

as well as estimates for # supp 7(9 (u.), i = x,y, analogous to (5.19), (5.21).

Under certain assumptions on the parametric representation of the diffusion co-
efficient, the compressibility on A ; is quantified in [6] based on which APPLY(V;7) —
W, as in (5.10), is shown to exhibit near optimal performance also in this case.
Specifically, one has

1
(V)| . (1 + log n)*/?,
lo(wn)llas S llo(v)]las (1 + [log n)) 7,

rank(w,) < nF

as well as

7 (wg)las S 170 () s (1 + [Hog ) */”
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and analogous bounds for |7 (w;,)|| 4s. These estimates show a logarithmic degra-
dation in the target tolerances. Nevertheless, they allow one to establish the esti-

mate

¢ 1 12 =111 ()1 ¢
(5:27)  ops(u) S (1+ loge) (= Flowla ) Y0 e T,
i€{x,y}

where ¢ > 0 depends on s, on cond(A), and on the parameters in Algorithm 5.1.
Further details can be found in [6]. Thus, in this case with algebraic decay of singu-
lar values, although the arising ranks are quasi-optimal, the quadratic dependence
of the cost of the SVD on these ranks leads to substantially less favorable costs
of low-rank approximations. This effect is essentially unavoidable by any low-rank
scheme using a separation of spatial and parametric variables.

REMARK 5.4. As outlined in Section 3.3, an alternative to the perturbed
Richardson iteration in Algorithm 5.1 consists in solving a sequence of Galerkin
discretizations that are successively refined using residual approximations as con-
sidered in Section 5.1. As shown in [2], such an approach leads to analogous as-
ymptotic complexity bounds, with potential for quantitative improvements in the
numerical costs.

5.2.3. Soft thresholding. A second basic approach to control the complexity of
iterates in a scheme of the form (3.10) is to choose a reduction operation R,, which
is non-expansive, that is, |Rn,(u) — Rp(v)]| < |lu — v||. As a consequence, if F,
is a contraction, then R, o F,, is still a contraction for each n. This applies, in
particular, to the soft thresholding operation, which can be applied entry-wise to
sparse expansions, or to the hierarchical singular values of tensors as discussed in
Section 2.3.

Compared to the truncation of the HSVD by hard thresholding, one has the
interesting feature that convergence of the iteration is preserved regardless of the
thresholding value. Rather than thresholding with a sufficiently large tolerance
whenever a sufficient error reduction has been achieved, one can therefore simply
threshold in every iteration step, with parameters that decrease sufficiently slowly.

Let us take a closer look at this in the case F,, = F, that is, the underlying
iteration is stationary. One key observation for establishing quasi-optimality of
ranks is that the limit of the iteration with the thresholded mapping &, o F can
be related to the thresholded exact solution.

LEMMA 5.5. Let F be a contraction with Lipschitz constant p < 1 and unique
fixed point u, let a > 0 and let u® be the unique fixed point of G, o F. Then

(L +) "M ISa(u) —ull < JJu” —ull < (1= p)"H|Ga(u) — ul.

Up to mildly dimension-dependent constants (recall that F = 2d — 3), the rank
reduction by &, produces quasi-optimal ranks:

(i) In the case of algebraic decay of singular values, that is, o(9(u) € A*
with s > 0 for i = 1,...,E, with C, = max;||c® (u)|| 45, we have
[Salu) —ul < ECzIL,/s(QSJrl)aQS/(QS"'l) with ranks
max rg (S, (u)) < (O, sa 1)/ (2sHD),
This means that ||G4(u) —u)|| < e with
(5.28) max rg(So (u)) < (EC, )Y e~ Ys.
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(i) If o (u) < Ce=*" for k € N with C,c, 8 > 0, then [|S4(u) — u| <
C1E(1 + |log a|)*/ P with ranks

max rg(Sq(u)) < (¢ Hlog Ca™)? < Cy(1 + |log al)/?.
This gives ||Gq(u) — u)|| < e, for e < 1, with
(5.29) max rg (S, (u)) < Cs(1 + [loge|)/?,

where Cy,C5,C35 > 0 depend on C, ¢, 5.

The link from thresholded approximations to the approximability of exact so-
lutions is provided by the following lemma.

LEMMA 5.6. Let u,v € H, a > 0, and € > 0 such that ||u —v|| <e.
() If oD (u) € A* with s >0 for alli=1,...,F, then

4e?

ri(Ga(v)) < el + C’s(Ha(i)(u)HAsofl)Q/(QS*l) .

(i) If 0,(:) (u) < Ce—ck’ for k € N with C,c,8 > 0, then

ri(6a(v)) < 40%2 + (¢t ln(QCofl))l/ﬁ.

To obtain an iterative method with quasi-optimal ranks for all iterates, it thus
suffices to ensure that the first terms of order £2/a? in the above estimates remain
comparable to the respective second terms by decreasing « sufficiently slowly.

For elliptic problems in well-conditioned representations Au = f, this can be
realized using a Richardson iteration (3.8). Let w > 0 be such that £ := || —wA| <
1. The basic iterative method applied to the present problem has the form

(5.30) u't =6,, (v —w(Au" - f)), n>0,
with u’ = 0 and o, — 0 determined (according to [12, Alg. 2]) as follows: set
ag = w||f]|2/(d — 1), and for a fixed B > ||A]|, take

1 ; +1 1-¢ +1
Ga e e LTS AT

Qan,  else.

As shown in [12], the scheme given by (5.30), (5.31), converges linearly and
each iterate u” satisfies quasi-optimal rank estimates of the form (5.28) or (5.29)
provided that the exact solution u has the corresponding approximability.

This is potentially stronger than the result for hard thresholding, where one
cannot rule out that ranks in the inner loop of Algorithm 5.1 between steps 3 and 11
cumulatively increase due to repeated (approximate) application of A before being
reduced to near-optimality in step 11. In contrast, in (5.30), (5.31), the iterates
are returned to quasi-optimality after every single application of A. However, in
the form given above and in [12], the soft thresholding method still assumes a fized
discretization (or an idealized iteration on the full sequence space) and does not yet
incorporate adaptive discretizations.
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6. Conclusions and outlook

The methods discussed in this article rest on two conceptual pillars. First,
they invoke strategies for estimating errors with respect to the underlying contin-
uous problem in highly nonlinear approximations of solutions of high-dimensional
PDESs, combining adaptive discretizations with low-rank expansions. Exploiting the
mapping properties of the underlying continuous operator is essential. These strate-
gies are based on the approximate evaluation of residuals in function spaces and
are guaranteed to remain computationally feasible even in very high-dimensional
settings as they progress from coarse to fine with certified accuracy at each stage.

Second, they employ basic complezity reduction mechanisms for ensuring quasi-
optimality of computed approximations. That is, they ensure that their representa-
tion complexities remain comparable to those of corresponding best approximations
of the same accuracy. This can be achieved, in particular, by the truncation of the
hierarchical singular value decomposition up to a judiciously chosen tolerance. An
alternate strategy is based on soft thresholding, which has the advantage of pre-
serving the convergence of iterative methods for any thresholding parameter.

The combination of the approximate residual evaluations with such recompres-
sion strategies enables the construction of iterative methods that converge to the
exact solutions of the continuous problem with near-optimal computational costs.
As we have noted, soft thresholding can, in principle, give slightly stronger bounds
on the total computational complexity, since the ranks of all iterates are under con-
trol, and the bounds are therefore less dependent on the ranks of operators. This
approach, however, has not yet been combined with adaptive discretizations.

We have confined the discussion to highlighting the essential conceptual mech-
anisms. Corresponding findings are illustrated by first numerical experiments in
[6,10,11]; in particular, comparisons with other methods are given in [10]. While
these experiments confirm the near-optimal asymptotic complexity bounds for the
resulting methods, much room is certainly left for optimizing corresponding con-
crete implementations with regard to quantitative practical performance.

Concerning the basic construction of solvers, there is a variety of methods that
follow a quite different philosophy in using minimization principles for optimizing
tensor decompositions for fized discretizations, for instance ALS [40,50,55], DMRG
[63,54], AMEn [29], or Riemannian optimization methods [44]. Comparably little
is known, however, on their global convergence properties, let alone the total com-
putational complexity of such methods in relation to the output accuracy. As a
possible further direction, they could, however, serve as additional inner iterations
for accelerating the convergence of error-controlled methods as considered here.

Here we have concentrated on the application to linear operator equations. For
other problem classes, such as eigenvalue problems or time-dependent problems,
only rather preliminary results on error-controlled low-rank methods are available,
see, e.g., [3,4]. Many additional challenges in the application of the basic principles
discussed here to such problems remain open.
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