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Abstract—Empirical Dynamic Modeling (EDM) is a nonlinear
time series causal inference framework. The latest implementa-
tion of EDM, cppEDM, has only been used for small datasets
due to computational cost. With the growth of data collection
capabilities, there is a great need to identify causal relationships
in large datasets. We present mpEDM, a parallel distributed
implementation of EDM optimized for modern GPU-centric
supercomputers. We improve the original algorithm to reduce
redundant computation and optimize the implementation to fully
utilize hardware resources such as GPUs and SIMD units. As a
use case, we run mpEDM on AI Bridging Cloud Infrastructure
(ABCI) using datasets of an entire animal brain sampled at single
neuron resolution to identify dynamical causation patterns across
the brain. mpEDM is 1,530× faster than cppEDM and a dataset
containing 101,729 neuron was analyzed in 199 seconds on 512
nodes. This is the largest EDM causal inference achieved to date.

Keywords-Empirical Dynamic Modeling, Causal Inference,
Parallel Distributed Computing, GPU, High-Performance Com-
puting, Neuroscience

I. INTRODUCTION

Reverse-engineering and building a digital reconstruction

of the brain is one of the greatest scientific challenges of

today. A recent study on the mouse cortex [1] showed that

97% of the possible connections between neurons exist. This

result suggests that it is likely more informative to investi-

gate the dynamic interactions between neurons rather than

the static connectivity between them to fully understand the

function of the brain. Based on this insight, we are building

mathematical and computational tools to analyze the dynamic

interactions between neurons based on Empirical Dynamic

Modeling (EDM).

EDM is a nonlinear time series causal inference framework

based on the generalized Takens’ embedding theorem on state

space reconstruction [2]. EDM is used to study and predict the

behavior of nonlinear dynamical systems. Convergent Cross

Mapping (CCM) is one of the EDM algorithms that allows

to estimate the existence and strength of the causal strength

between two time series in a dynamical system [3].

In this study, we utilize CCM to infer the causal rela-

tionships between every neuron in an entire brain and con-

struct a causal map that describes the dynamic interactions

among neurons. For this purpose, we have recorded the neural

activity (i.e. firing rate) of an entire larval zebrafish brain

at singe-neuron resolution by using light sheet fluorescence

microscopy. The original implementation of EDM, cppEDM,

has mostly been used for individual time series of relatively

short length and and mostly small numbers of variables for

its computational cost. Since a larval zebrafish brain contains

approximately 105 neurons, a staggering number of 1010

cross mappings need to be performed in total. CCM of this

enormous scale has never been achieved so far because of the

sheer amount of computation required.

The goal of this paper is to develop a highly scalable and

optimized implementation of EDM that is able to analyze

the whole zebrafish brain dataset within a reasonable time.

We present mpEDM1, a parallel distributed implementation

of EDM optimized for execution on modern GPU-centric su-

percomputers. We improve the original algorithm in cppEDM

to reduce redundant computation and optimize the implemen-

tation to fully utilize hardware resources such as GPUs and

SIMD units.

Our evaluation on AI Bridging Cloud Infrastructure (ABCI),

Japan’s most high performance supercomputer as of today,

demonstrated the unprecedented performance of mpEDM.

mpEDM was used to analyze a dataset containing the activity

1https://github.com/keichi/mpEDM
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of 53,053 neurons in only 20 seconds using 512 ABCI nodes.

In contrast, cppEDM took 8.5 hours to analyze the same

dataset using the same number of nodes [4]. Furthermore,

mpEDM analyzed a larger dataset containing 101,729 neurons

in 199 seconds on 512 nodes. To our knowledge, this is the

largest CCM calculation achieved to date. This result shows

the potential for mpEDM and ABCI to analyze even larger

datasets in the future.

The rest of this paper is structured as follows. Section II

describes the background of this research and EDM algorithm.

Section III explains our proposal to improve the algorithm of

the EDM for parallelization and to support GPU architecture.

Section IV evaluates the performance of mpEDM and presents

the scientific outcomes obtained with mpEDM. Finally, sec-

tion V concludes this paper and discusses future work.

II. BACKGROUND

A. Causal Map of the Zebrafish Brain at Single Neuron
Resolution

To understand the human brain activity dynamics with

a complexity of 1011 neurons and 1015 synapses at single

neuron resolution is currently a technically impossible task.

Similarly a mouse brain with 7.6×107 neurons is not tractable

because mammalian brains are opaque and it is impossible

to image a complete mouse brain. With this in mind, the

zebrafish embryo is an attractive model system with 120,000

neurons and transgenic technology as well as natural brain

transparency. The zebrafish embryo is sufficiently complex to

exhibit interesting behaviors and is technologically feasible

to study to infer basic principles of systems neuroscience.

Even in the case of the larval zebrafish with about 120,000

neurons we do not have the physical connectivity map, that

is the connectome of the larval zebrafish, nor do we have the

synaptic strengths which are pieces of information required to

understand the brain starting from the physical connectivity.

Complicating this notion, recent work from the mouse brain

shows that 97% of possible physical connections exist within

the mouse cortex thus making it difficult to analyze. Given

this difficulty, using an analogy of a city; to understand how

a city works it will be easier to understand the city from the

traffic patterns than from the street map. Thus, we wished

to analyze the fish brain at single neuron resolution from a

network activity dynamics perspective. Although imperfect,

we used neural activity imaging data of an entire brain at single

cell resolution in a behaving larval zebrafish (a transparent

vertebrate) to extract all relationships in an intact vertebrate

brain.

To achieve this, we recorded whole brain neural activity

patterns in multiple animals experiencing hypoxia using a

Selective Plane Illumination Microscope (SPIM) [5]. We ob-

tained data from the entire 5-day-old larval brain (120,000

neurons) at 2 Hz in response to hypoxia for varying amounts

of time typically ranging from 1,500 time steps to up to

8,000+ [6].

CCM allows the inference of causation from nonlinear time

series even with substantial noise and complete absence of

Reconstructed Manifold Mx Reconstructed Manifold My

Manifold M

Time Delayed Embedding

Time series

Smooth Mapping

Fig. 1: Basic Idea Behind Empirical Dynamic Modeling

correlation [7], [8]. We used CCM and other tools from the

EDM framework for the inference of existence, strength and

sign of causal relationships within the neural activity network

of the transparent larval fish brain [5]. CCM determines

whether and how much causality exists between individual

neurons. The adjacency in the network is determined by time

delay cross mapping [8]. Predictive accuracy values give the

interaction strength allow us to infer relationships within the

neural network without observing the physical connectivity.

As a test case, we have collected multiple data sets of lengths

around 1600 time steps at 2 Hz which contain 50,000–80,000

active neurons in most cases. We have analyzed this data

and show that the generated time series are suitable for

causal network inference using the EDM framework and thus

demonstrated a proof of principle of computational tractability.

B. Empirical Dynamic Modeling

EDM is a mathematical framework designed for studying

nonlinear dynamical systems. EDM is based upon the concept

of state space reconstruction (SSR) [9]. Takens’ theorem states

that the attractor manifold of a multivariate dynamical system

can be reconstructed from time lagged coordinates of a single

time series variable [10]. Figure 1 illustrates the concept of

state spaces reconstruction. In this example, three causally

related time series variables x(t), y(t) and z(t) that constitute

a dynamical system form an attractor manifold M in the state

space. A shadow manifold Mx can be reconstructed using the

time delayed embeddings of x (x(t), x(t− τ), x(t− 2τ), . . . ),

where τ denotes the time lag. In the same manner, lags of y
form a shadow manifold My . Takens’ theorem states that the

reconstructed manifolds Mx and My preserve essential mathe-

matical properties (such as the topology) of the true manifold

M . In particular, there exist smooth mappings between M ,

Mx, and My , suggesting that neighbors in Mx are neighbors

in My as well.

Simplex projection is a nonlinear forecasting algorithm

often used for estimating the dimensionality of a dynamical
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system. In simplex projection, the input time series is split into

two halves: library x and target y. Both halves are embedded

into E-dimensional state space by using delayed embeddings.

Given a point y(tp) = (y(tp), y(tp − 1), . . . , y(tp − E +
1)) in the target state space, its E + 1 nearest neighbors

(i.e. vertices of the simplex enclosing y(tp)) are searched

from the embedded library. Suppose those neighbors are

x1(t1),x2(t2), . . . ,xE+1(tE+1). A forecast y(tp+1) can be

made by averaging the future of the neighbors in the library:

x1(t1 + 1),x2(t2 + 1), . . . ,xE+1(tE+1 + 1). This prediction

is performed for every point in y and the results are compared

with the true y to evaluate the prediction accuracy. This entire

procedure is repeated for different E values and the E that

achieves the highest prediction accuracy is determined as the

optimal embedding dimension of the dynamical system.

CCM determines the existence and strength of causality

between two time series variables [11]. It works similar to

simplex projection, but instead of predicting within a single

time series, CCM predicts one time series from another. If y
can be predicted from x with significant accuracy, we conclude

that y CCM causes x.

There have been extensive studies on causal inference.

Structural Causal Model (SCM) is one of the most popular

causal models [12] based on statistical modeling of equilib-

rium systems. In contrast to SCM, EDM is based on the

principle of state-space reconstruction shown in Takens’ theo-

rem of non-equilibrium systems. Granger causality is another

causal inference technique based on statistical modeling [13].

Granger causality however as stated by Granger himself,

only works with linear and stochastic systems and cannot

be applied to a nonlinear dynamical system. Compared to

these alternatives, EDM is better suited to find the causal

relationships in a nonlinear dynamical system such as the

brain. Tajima et al. [14] also applied embedding theorems

in nonlinear state-space reconstruction to analyze a dynamic

system. They also built on the causality inference method from

Sugihara et al. [3] in their work.

EDM has been successfully applied to diverse research

fields [15]. In neuroscience, CCM was applied to identify the

effective connectivity between brain areas from magnetoen-

cephalography (MEG) data [16]. In ecology, Grziwotz et al.
found the causal relationships between the environment and

mosquito abundance by using CCM [17]. Environmental fac-

tors, such as temperature, precipitation, dew point, air pressure,

and mean tide level were identified to causally affect mosquito

abundance. Ma et al. applied simplex projection to forecast

wind generation [18]. In [19], an EDM algorithm called S-

Map [20] was used to find the relationship between harvested

and unharvested fish in terms of size, age, and others. Luo

et al. applied CCM to estimate the causal relationships of

user behavior in an online social network [21]. These use

cases demonstrate the wide applicability of EDM to analyze

nonlinear dynamical systems.

C. cppEDM

cppEDM [22] is the latest implementation of the EDM

framework. cppEDM is a general purpose C++ library used as

a backend by rEDM [23] and pyEDM [24], which are EDM

implementations for the R and Python language, respectively.

We have identified two major issues in cppEDM that hinder

large-scale analysis on HPC systems: redundant computation

and lack of GPU support. Since cppEDM is a general purpose

library, it provides a one-to-one cross mapping function to

identify the causality between a selected combinations of time

series variables. The all-to-all cross mapping function is im-

plemented by reusing the one-to-one cross mapping function.

This results in redundant computation. Additionally, cppEDM

is a reference implementation of EDM; therefore, it is not

optimized for a specific hardware architecture such as GPUs.

Furthermore, cppEDM suffers from significant load imbalance

among workers because it performs static decomposition of

the problem. In fact, a performance evaluation in a previous

work showed that the runtime of workers varied greatly from

5 hours to 8.5 hours [4].

III. MPEDM

In this section, we first outline the original causal inference

algorithm in cppEDM. Then, we describe the algorithmic

improvement and the design of the inter-node and intra-node

parallelization in mpEDM.

A. Original Algorithm

Algorithm 1 outlines the causal inference algorithm in

cppEDM. The input to the algorithm is an L × N array ts,

where L is the number of time steps within a time series

and N is the number of time series. In addition to the input

dataset, maximum embedding dimension Emax and time lag

τ need to be supplied. The output is an N × N casual

map ρ. The algorithm consists of two phases: (1) simplex

projection and (2) CCM. Simplex projection finds the optimal

embedding dimension for each time series. CCM estimates the

causal relationship between two time series using the optimal

embedded dimension obtained in the first phase. Note that in

the original definition of CCM, predictions are made multiple

times using randomly subsampled library sets of different sizes

and it is tested whether increasing the library set size improves

the prediction accuracy. In this research, we excluded this

step since the convergence test passes in most cases if the

prediction using the full library set achieves high accuracy.

In the first phase, simplex projection (line 1–11) takes a

time series in the dataset and splits into into library, the first

half, and target, the second half (line 3–4). Next, both library

and target are embedded into E-dimensional space using time

delayed embeddings. A k-nearest neighbors (kNN) search is

performed in the state space to find the E + 1 nearest target

points from each library point (line 5). The search results

are stored in two lookup tables indices and distances, both

of which are two-dimensional arrays of shape L × (E + 1).
Element (i, j) in the indices array is the index of the j-th

nearest target point from library point i, whereas element (i, j)
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Algorithm 1: Causal Inference in cppEDM

Input: Dataset ts (N time series of length L),

maximum embedding dimension Emax

Output: N ×N causal map ρ
// Phase 1: Simplex projection

1 for i ← 1 to N do
2 for E ← 1 to Emax do
3 library ← First half of ts[i]
4 target ← Second half of ts[i]
5 indices, distances ← kNN(library, target, E)
6 distances ←normalize(distances)
7 prediction ←

lookup(indices, distances, library, E)
8 ρ[E] ← corrcoef(target, prediction)
9 end

10 optE[i] ← argmax
E

ρ[E]

11 end
// Phase 2: CCM

12 for i ← 1 to N do
13 for j ← 1 to N do
14 indices, distances ←

kNN(ts[i], ts[i], optE[j])
15 distances ←normalize(distances)
16 prediction ←

lookup(indices, distances, ts[j], optE[j])
17 ρ[i, j] ← corrcoef(ts[j], prediction)
18 end
19 end

in the distances array is the Euclidean distance between the

library point i and its j-th nearest target point. The distances
array is then converted to exponential scale and each row is

normalized (line 6). A one step ahead prediction of a target

point is made by (1) obtaining the indices of its E+1 library

neighbors from indices, (2) obtaining the one step ahead

values of those library points from library and (3) computing

a weighted average of the future library points using distances
(line 7). Finally, Pearson’s correlation coefficient is computed

to evaluate the predictive skill of the simplex projection using

the prediction results and real observed withheld values (line

8). This is repeated for every E ranging from 1 to Emax (≤20

in practice). The E value that achieves the highest accuracy

is determined to be the optimal embedding dimension for the

time series and stored in optE (line 10).

In the second phase, CCM (line 12–19) works similar to

simplex projection but predicts between two different time

series. A given library time series is used to cross predict

another target time series in the dataset to evaluate whether

the latter is the cause of the former. It computes and normalizes

the kNN tables from the library time series (line 14–15) and

uses the tables to predict the target time series (line 16).

Note that simplex projection predicts within the same time

series while CCM predicts across two different time series.

Therefore, the kNN tables computed in the simplex projection

phase cannot be reused in the CCM phase. The correlation

between the predicted values and the actual values represents

strength of causality (line 17). In this manner, causal inference

is performed for all combinations of time series in the dataset.

We have profiled cppEDM and found out that over 97% of

the total runtime is spent in the kNN search. In addition, we

have discovered that the time delayed embedding in cppEDM

replicates the time series E + 1 times and causes significant

memory overhead.

B. Improved Algorithm

The key observation behind our algorithmic improvement is

that the kNN lookup table for CCM is constructed from the

library time series only, and the target time series is not used.

This suggests that once the kNN lookup table is computed for

a particular library time series, we can reuse the precomputed

table to make predictions for every target time series. This

improvement is trivial if N is in the same order as Emax,

which was the case in previous use cases of EDM. However,

in our use case N is equal to the number of active neurons in a

zebrafish brain, which is roughly 105. Therefore, the potential

speedup becomes significantly large.

Algorithm 2 shows the pseudocode of the improved causal

inference algorithm in mpEDM. The simplex projection algo-

rithm is unchanged from cppEDM but its kNN and lookup

functions are parallelized and optimized. The CCM algorithm

in mpEDM is improved in the following manner. For each

library time series, we first compute the kNN lookup tables

for every embedding dimension ranging from 1 to Emax (line

4–7). Then, we iterate through all target time series and

use the precomputed lookup table for the optimal embedding

dimension of the target time series to predict the target time

series (line 9–10). Finally, we compute the correlation between

the prediction and the actual target to estimate the causality

(line 11).

Algorithms 3 outlines the kNN function for CPU. We first

calculate the all-to-all distances between every library and

target point in the state space. Note that we do not explicitly

create the time series embeddings on memory but we compute

them on-the-fly to reduce memory footprint and increase cache

hit. In addition, both indices and distances are stored in

row-major format to match the access pattern. Then, each

row in the distances and indices arrays is partially sorted

in descending order using the distances as sort keys. We use

heap sort to implement partial sort. After the sorting, both

arrays are trimmed from L× L to L× (E + 1) and returned.

Algorithm 4 shows the kNN function for GPU. In the GPU

version, we create time series embeddings on the host and

transfer them to the device. The kNN search is executed on

the GPU and the resulting kNN tables are returned to the host.

Algorithm 5 outlines the lookup function. It uses the kNN

lookup tables indices and distances of the library time

series. For each target point, the indices of its E+1 neighbors

are retrieved from the indices table. Then, those neighbors are
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Algorithm 2: Causal Inference in mpEDM

Input: Dataset ts (N time series of length L),

maximum embedding dimension Emax

Output: N ×N causal map ρ
// Phase 1: Simplex projection

1 for i ← 1 to N do
// Same as cppEDM (Algorithm 1)

2 end

// Phase 2: CCM
3 for i ← 1 to N do
4 for E ← 1 to Emax do
5 indices[E], distances[E] ←

kNN(ts[i], ts[i], E)
6 distances ←normalize(distances)
7 end
8 for j ← 1 to N do
9 Ej ← optE[j]

10 prediction ←
lookup(indices[Ej ], distances[Ej ], ts[j], Ej)

11 ρ[i, j] ← corrcoef(ts[j], prediction)
12 end
13 end

accumulated using the weights stored in the distances table.

Finally, the function returns the predicted target time series.

The average time complexity of each algorithm is analyzed

as follows. The time complexity of the kNN function in

Algorithm 3 and 4 is O(L2E) because the all-to-all dis-

tance calculation is O(L2E) and the sorting is approximately

O(L2 logE). The time complexity of the lookup function in

Algorithm 5 is O(LE). By combining these results, the time

complexity of simplex projection in mpEDM is O(NL2E),
which is the same as cppEDM. The time complexity of CCM

in mpEDM, on the other hand, is O(NL2E2 + N2LE). In

cppEDM, the time complexity of CCM is O(N2L2E). As

a result, the time complexity of the whole causal inference

algorithm in mpEDM is O(NL2E2 +N2LE).

C. Inter-Node Parallelism

To distribute the work across multiple compute nodes, we

naturally choose the loops with the highest granularity. That

is, the two outermost loops that iterate over the time series

(line 1–2 and 3–13 in Algorithm 2). We implement a simple

master-worker framework based on MPI to distribute these

loops. To dynamically distribute work and mitigate load imbal-

ance among workers, we adopt self-scheduling in our master-

worker framework. In self-scheduling, the master accounts and

dispatches tasks to workers. Each worker performs assigned

tasks, and once it completes, the worker asks the master for a

new task.

The high-level organization of the inter-node parallelism

is as follows. First, the workers execute the embedding di-

mension phase. The optimal embedding dimension for each

time series is reported back to the master. Once the first

Algorithm 3: kNN for CPU

Input: library and target time series, embedding

dimension E, time lag τ
Output: Arrays diatances and indices for lookup

// All-to-all distance calculation
1 for i ← 1 to L do
2 for k ← 1 to E do
3 distances[i, :] ← 0
4 for j ← 1 to L do
5 indices[i, j] ← j
6 distances[i, j] ← distances[i, j] +

(target[kτ+i]− library[kτ+j])2

7 end
8 end
9 end
// Sorting

10 top k ← E+1

11 for i ← 1 to L do
12 indices[i, :] ←

partialSort(indices, distances, top k)
13 end

Algorithm 4: kNN for GPU

Input: library and target time series, embedding

dimension E, time lag τ
Output: Arrays diatances and indices for lookup

// Embedding
1 for i ← 1 to E do
2 for j ← 1 to L do
3 libraryBlock[i, j] ← library[iτ+j]
4 targetBlock[i, j] ← target[iτ+j]
5 end
6 end
// All-to-all distance calculation

and sorting
7 top k ← E+1

8 Copy libraryBlock and targetBlock to device

9 indices, distances ←
nearestNeighbour(libraryBlock, targetBlock, top k)

10 Copy indices and distances to host

phase is complete, the master broadcasts optE to all workers.

Subsequently, the workers execute the all-to-all CCM phase.

The final results are written to the file system by each worker

to alleviate the load on the master.

Both the input dataset and the inferred causal map are

stored as HDF5 [25] files for easy integration with the pre/post

processing workflow. The workers read the input HDF5 file in

parallel and keep the entire dataset on memory during the

execution. Every time a worker completes a cross map, the

worker writes an element of the causal map asynchronously

to the output HDF5 file. This small random write pattern,

however, is known to be slow on parallel file systems. In fact,
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Algorithm 5: Lookup

Input: Array of indices and distances, target time

series, embedding dimension E of target
Output: Prediction of the time series prediction

1 for i ← 1 to L do
2 prediction[i] ← 0
3 for j ← 1 to E + 1 do
4 idx ← indices[i, j]
5 dist ← distances[i, j]
6 prediction[i] ←

prediction[i] + target[idx] · dist
7 end
8 end

we observed that write I/O becomes a significant bottleneck

of the application on GPFS. We therefore take advantage

of BeeOND (BeeGFS On Demand) [26], the burst buffer

deployed on ABCI. BeeOND combines local SSDs installed

on the compute nodes and provides an on-demand parallel file

system to a job. The workers write the results to BeeOND to

minimize I/O overhead.

D. Intra-Node Parallelism

We focus our efforts to parallelize and optimize the kNN

kernel since it is the primary bottleneck in cppEDM as dis-

cussed in section III-A. We design and implement kNN kernels

for both CPU and GPU architecture to ensure that mpEDM can

efficiently run on a wide variety of computing platforms. In the

kNN kernel for CPU shown in Algorithm 3, the two loops that

iterate over the time steps within a time series are parallelized

using OpenMP (line 1–9 and 10–13 in Algorithm 3). We also

utilize OpenMP 4.0 SIMD directives to vectorize the innermost

loop explicitly. Note that the nested loops are ordered such that

the memory accesses in the innermost loop are contiguous.

In the kNN kernel for GPU shown in Algorithm 4, we

take advantage of ArrayFire [27], a highly optimized library

for GPU-accelerated computing. ArrayFire provides backends

for CUDA, OpenCL and CPU, but in this paper we only

use the CUDA backend since ABCI is installed with Tesla

V100 GPUs. The kNN algorithm implemented in ArrayFire

is essentially the same as our CPU implementation. ArrayFire

uses a block-wide parallel radix sort implementation in the

CUDA UnBound (CUB) template library. Since each ABCI

compute node is equipped with four GPUs, we also distribute

the work across multiple GPUs. To achieve this, the loop that

iterates over E (line 4–7 in Algorithm 2) is parallelized such

that each GPU computes lookup tables for one or more E.

We dynamically schedule this loop to ensure load balancing

across GPUs because the runtime of the kNN kernel depends

on E as discussed in section III-B.

For the lookup kernel shown in Algorithm 5, we currently

only have a CPU version of this kernel. The time step loop

is parallelized using OpenMP (line 1–8 in Algorithm 5). This

kernel is heavily memory bandwidth bound since it requires

random memory access.

IV. EVALUATION

The computational performance of mpEDM was evaluated

on ABCI. Furthermore, we present the scientific outcomes

obtained using mpEDM.

A. Evaluation Environment

ABCI [28] is the world’s first large-scale Open AI Com-

puting Infrastructure, which is constructed and operated by

the National Institute of Advanced Industrial Science and

Technology (AIST). According to the latest TOP500 list

published in November 2019 [29], ABCI is the most powerful

supercomputer in Japan and the 8th in the world. ABCI has

1,088 compute nodes, each equipped with two 20-core Intel

Xeon Gold 6148 CPUs, four NVIDIA Tesla V100 SXM2

(16GB) GPUs, 384GB of RAM and 1.6TB of local NVMe

SSD. The parallel file system is based on GPFS with a total

capacity of 22PB.

B. Performance Evaluation

We compared mpEDM with cppEDM from the following

three aspects: total runtime, parallel scalability and impact of

dataset size on the runtime. We used three real-world datasets

recorded from larval zebrafish under different conditions.

Table I shows the list of datasets used in the evaluation.

TABLE I: Datasets used in the evaluation

Dataset # of Time Steps # of Time Series Size

Fish1 Normo 1,450 53,053 0.7 GB
Subject6 3,780 92,538 3.0 GB
Subject11 8,528 101,729 9.5 GB

1) Total Runtime: mpEDM shows significantly higher per-

formance compared to cppEDM. Table II shows the perfor-

mance comparison between cppEDM and mpEDM. cppEDM

took 8.5 hours to analyze the Fish1 Normo dataset using

512 ABCI nodes [4], whereas mpEDM took only 20 seconds

to analyze the same dataset using 512 ABCI nodes with

GPU architecture. The result shows that mpEDM is 1,530×
faster than cppEDM. Moreover, mpEDM finished the causal

inference of two larger datasets: Subject6 in 101 seconds and

Subject11 [6] in 199 seconds.

TABLE II: Performance comparison between cppEDM and

mpEDM

cppEDM mpEDM

Dataset 512 Nodes 1 Node 512 Nodes

Fish1 Normo 8.5h 1,973s 20s
Subject6 N/A 13,953s 101s
Subject11 N/A 39,572s 199s
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Fig. 2: Strong scaling performance (absolute runtime)

2) Parallel Scalability: We measured the parallel scalability

of mpEDM by varying the number of workers and measuring

the runtime of mpEDM with and without GPU. We used the

largest Subject11 dataset in this evaluation.

Figure 2 shows the strong scaling performance of mpEDM.

In the Single Node setup, mpEDM is executed on a single node

without MPI. In the X Workers setup, mpEDM is executed

with MPI using the specified number of workers. We measured

up to 511 workers since ABCI allows a maximum of 512

nodes per job (except for jobs running under the ABCI grand

challenge program, which can use the full 1,088 nodes). The

result shows that the GPU version runs as twice as fast as

the CPU version in every case. We noticed that the CPU

version ran in the single worker setup 10% slower than the

single node setup. We believe this slowdown is caused from

the interference between the background tasks performed by

the BeeOND daemon and the computation in mpEDM. This

does not happen with the GPU version because the average

CPU utilization is lower than the CPU version.

Figure 3 shows the relative speedup of the multi-node

setup in relation to the single node setup. It reveals that the

speedup is nearly linear with both GPU and CPU. However,

the speedup of the GPU version drops when the number of

nodes is 64 or more.

We measured the breakdown of each phase to investigate the

cause behind the scalability decline. We compared 32 workers

and 128 workers since the GPU version declines beyond 64

nodes. Figures 4 and 5 show the breakdown of average runtime

for processing a single time series in simplex projection and

CCM. The two figures clearly indicate that memory copy,

MPI communication and I/O are not bottlenecks and do not

significantly increase with the number of workers. However,

the kNN function becomes slower when the number of workers

increases. We found out that the kNN search for the first time

series processed on a worker is significantly slower (ranging

from 3.3 seconds to 16.4 seconds) than the subsequent ones.

We believe this is caused by the initialization process of the

GPUs.
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To verify this, we created a simple program that initializes

the GPUs and allocates some GPU memory on a single

node. We submitted a job that run this program 100 times

and measured the initialization time. The result revealed that

the initialization time follows a long-tailed distribution: the

median was 4.6 seconds while the maximum was 22.9 seconds.

This suggests that a few stragglers impact the total runtime and

degrade the scalability as the number of workers increases.

3) Impact of Dataset Size: We evaluated how the size of the

dataset impacts the runtime of mpEDM using dummy datasets

with different sizes. Furthermore, we measured the time spent

in each function. We also measured the speedup of the GPU

version over the CPU version with varying number of time

steps.

Figures 6 and 7 show the runtime of mpEDM when increas-

ing the number of time series and time steps, respectively.

We confirmed that the increase of runtime is not bigger

than the increase predicted from the time complexity. We

also confirmed that CCM consumed the majority of the total

runtime and other tasks including I/O and MPI communication
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are ignorable.

Figures 8a and 8b show the runtime breakdown of each

function in CCM when increasing the number of time series

and time steps, respectively. Figure 8a shows that the runtime

of the lookup function becomes dominant when increasing

the number of time series. On the other hand, Fig. 8b shows

that the runtime of the kNN function becomes dominant when

increasing the number of time steps. These trends can be

explained from the time complexity analysis of each algorithm

described in section III-B.

Figure 9 shows the speedup of the GPU version over

the CPU version when varying number of time steps. We

compared the performance between a single CPU socket and

one or more GPUs to evaluate the GPU speedup. Evidently,

the GPU speedup increases with the number of time steps.

Single GPU is slower than the CPU if the number of time

steps is 2,000 or less. This is because of the overhead inherent

to offloading computation to the GPU. However, single GPU

consistently surpasses the CPU if the number of time steps
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Fig. 10: Scientific results. (A) Zebrafish larvae were imaged to study their response to low oxygen (B) The day larvae were

imaged using a SPIM lightsheet microscope and whole brain calcium activity was recorded at single cell resolution (C) Our

calculation of the dimensionality of the neuronal populations show a decrease under low oxygen (hypoxia) as seen in the

distribution. (D) Measured transitions between normal oxygen concentrations (normoxia) to hypoxia show a bias below to

the right of the diagonal line showing that dimensionality decreases as oxygen decreases. (E, F) Whole brain CCM all vs

all causal inference matrix of an all vs all neurons. Results show a more homogeneous map in hypoxia (F) than normoxia

(E) indicating a simplification of behavior consistent with the above dimensionality drop. (G) An identified signal integration

manifold capable of predicting turns of the fish at least 0.5 seconds (a single time step) ahead of time. Whenever the neural

activity trajectory enters one of the loops of the manifold, the fish will turn.

if 5,000 or more. If the number of time steps is 40,000, the

speedup of a single GPU is 3.5 times compared to CPU. When

four GPUs are used, the speed up is 13.4 times.

C. Scientific Outcomes

Figure 10 shows the scientific outcomes obtained using

mpEDM. Our results showed that we could determine the

causal connectivity across the entire brain across two be-

haviors. This shows that depending on task, the network of

relationships between individual neurons change and become

more connected, homogeneous and simplified with a goal di-

rected task. In the resulting network connectivity increased and

became simpler. Furthermore, we were able identify individual

neurons that integrate signals from multiple other neurons that

contain decision making information. These neurons allow the

prediction of fish turn behaviors while swimming and generate

low dimensional manifold models based on data geometry that

are able to predict the fish’s behavior at least 0.5 seconds (a

single time step) ahead. A three dimensional projection of one

of these manifolds is shown in Fig. 10 (G), where entering the

loop predicts turn behavior. Based on the combined activity

of two neurons and information on prior states we are able to

predict when the fish will turn. Beyond this, this is the first

map of causal connectivity of any vertebrate animal at single

neuron resolution.

V. CONCLUSION & FUTURE WORK

EDM is a nonlinear time series analysis framework proven

its applicability in various fields. However, EDM has only

been applied to small datasets due to its computational cost.

In this paper, we designed and implemented mpEDM, a

parallel distributed implementation of EDM optimized for

execution on modern GPU-centric supercomputers. mpEDM

improves the EDM algorithm to reduce redundant computation

and optimizes the implementation to fully utilize hardware

resources such as GPUs and SIMD units. mpEDM took only
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20 seconds to finish the causal inference of a dataset containing

the activity of 53,053 zebrafish neurons on 512 ABCI nodes.

This is 1,530× faster than cppEDM, the current standard

implementation of EDM. Moreover, mpEDM could analyze

a 13× larger dataset in 199 seconds. This is the largest EDM

causal inference achieved to date.

We will continue to optimize the performance of mpEDM.

As discussed in section IV-B, we need to improve the perfor-

mance of the lookup as it becomes the primary bottleneck

when we scale up the number of time series further. We

will also explore other efficient implementations of nearest

neighbor search on GPUs. Currently, mpEDM uses the exact

kNN search implementation provided by ArrayFire. There

exist many studies on efficient Approximate Nearest Neighbor

(ANN) search [30], [31]. However, it is unclear how ANN

affects the accuracy of EDM predictions. Another well-known

approach is to use spatial indices such as KD-trees and Ball-

trees to accelerate kNN search [32], [33].

Additionally, EDM algorithms other than simplex projection

and CCM will be implemented in mpEDM to expand mpEDM

to a standard implementation of EDM on HPC systems. We

will make this EDM library widely available to the community

with a hope to assist scientists in need to analyze large-scale

time series datasets of nonlinear dynamical systems.
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