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Abstract: This paper presents a density-based topology optimization framework for designing energy-dissipating plastic structures. In order
to mitigate the material damage during the plastic energy dissipation process, the total material volume in a design is minimized while
subjected to a minimum plastic work constraint and a maximum damage constraint. The Gurson–Tvergaard–Needleman (GTN) model with
shear damage modifications is adopted to simulate the physics of ductile-damage mechanisms under various stress states. Path-dependent
design sensitivities are analytically derived using the adjoint method within the framework of nonlinear finite element analysis. The effective-
ness of the proposed framework is demonstrated by a series of numerical examples that shows the proposed framework can successfully limit
damage in optimized plastic designs under the prescribed threshold by reconfiguring structural topologies. More notably, compared to
the designs obtained with the von Mises plasticity model, damage constrained plastic designs with the GTN model have overall better
ductility, higher load carrying capacity, and higher plastic work dissipation before failure initiation. DOI: 10.1061/(ASCE)ST.1943-
541X.0002790. © 2020 American Society of Civil Engineers.
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Introduction

Advancements in additive manufacturing (AM) technologies are
fundamentally changing how products and components are designed
and manufactured (Gibson et al. 2014). Unlike the traditional for-
mative and subtractive manufacturing, AM builds structures by
material deposition layer upon layer, reducing or eliminating the re-
strictions on geometrical complexity in the design. As a result, more
emphasis can be placed into the design phase to further optimize the
structural performance by making use of the expanded design free-
dom enabled by AM. As an advanced design method, topology
optimization is ideally suited for structural topology designs in con-
junction with AM due to its free-form formulation as compared
to traditional sizing and shape optimizations, which can only work
with the predefined structural configurations (Bendsøe and Sigmund
2003). Due to this natural synergy between AM and topology opti-
mization (Liu et al. 2018), there is an increasing interest in devel-
oping topology optimization methods that can be used for the design
of advanced structural systems (Sigmund and Maute 2013).

Topology optimization has experienced many developments
since its initiation (Bendsøe and Kikuchi 1988), and various
topology optimization methods have been proposed and used in

a variety of civil, aerospace, automobile, energy, and medical
engineering applications (Deaton and Grandhi 2014). Indeed,
topology optimization methods are now well established for de-
signing linear structural systems, and these methods have been
applied to many applications in structural engineering, see for in-
stance (Beghini et al. 2015; Changizi and Jalalpour 2017; Galjaard
et al. 2015; Jewett and Carstensen 2019; Lee and Tovar 2014;
Liang et al. 2002; Mijar et al. 1998; Nabaki et al. 2019; Rahmatalla
and Swan 2003; Zhang et al. 2016b; Zuo et al. 2011). As compared
to the linear elastic designs, topology optimization methods are not
yet well established for inelastic (nonlinear) systems design. In
many applications, however, structural systems are designed in
the inelastic range where the goal is to dissipate energy via inelastic
material behavior, and the objective is to maximize the inelastic
energy dissipation while constraining the material damage during
the energy dissipation process. An important application is the de-
sign of metallic systems where the inelastic material behavior is
governed by plasticity in conjunction with damage that is associ-
ated with nucleation, growth, and coalescence of microvoids that
finally leads to ductile fracture (Anderson 2017; Garrison and
Moody 1987). In this case, the objective is to design systems that
can dissipate as much energy as possible via plastic work while
obviating material failures due to ductile fractures. At present,
the design of such systems is mostly based on experience, intuition,
and trial-and-error based experiments. However, topology optimi-
zation provides an alternative paradigm for designing energy-
dissipating structures while controlling the damage due to ductile
fracture mechanisms, which is the focus of this paper.

To design energy-dissipating plastic structural systems while
constraining the overall damage, high-fidelity models should be
used to capture the physics of material damage during the topology
optimization process. In metals, material damage under applied
loads is due to themultistep processes at microscales associated with
the nucleation, growth, and coalescence of microvoids (Benzerga
and Leblond 2010; Tvergaard 1989). The damage process starts

1Postdoctoral Scholar, Dept. of Structural Engineering, Univ. of
California, San Diego, 9500 Gilman Dr., SME-443A, La Jolla, CA 92093.
ORCID: https://orcid.org/0000-0002-2688-1243. Email: lel008@eng.ucsd
.edu

2Associate Professor, Dept. of Civil and Environmental Engineering
and Earth Sciences, Univ. of Notre Dame, 156 Fitzpatrick Hall, Notre
Dame, IN 46556 (corresponding author). ORCID: https://orcid.org/0000
-0002-5748-6019. Email: kapil.khandelwal@nd.edu

Note. This manuscript was submitted on July 26, 2019; approved on
May 5, 2020; published online on August 19, 2020. Discussion period
open until January 19, 2021; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Structural Engi-
neering, © ASCE, ISSN 0733-9445.

© ASCE 04020229-1 J. Struct. Eng.

https://doi.org/10.1061/(ASCE)ST.1943-541X.0002790
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002790
https://orcid.org/0000-0002-2688-1243
mailto:lel008@eng.ucsd.edu
mailto:lel008@eng.ucsd.edu
https://orcid.org/0000-0002-5748-6019
https://orcid.org/0000-0002-5748-6019
mailto:kapil.khandelwal@nd.edu
http://crossmark.crossref.org/dialog/?doi=10.1061%2F%28ASCE%29ST.1943-541X.0002790&domain=pdf&date_stamp=2020-08-19


when microvoids nucleate in the metal matrix. These microvoids
then grow in a plastically deforming matrix under evolving stress
states, and in the final stage, the microvoids coalesce, leading to duc-
tile fracture initiation. Due to its high technological and engineering
significance, many models have been proposed in the literature to
simulate the physics of inelastic damage that leads to ductile fracture
in metals (Benzerga and Leblond 2010; Benzerga et al. 2016).
Among other models, the micromechanically motivated plasticity
model proposed by Gurson (1977) is perhaps the most widely used
model to simulate damage in metals due to ductile fracture mech-
anisms (El-Tawil et al. 2014; Khandelwal and El-Tawil 2007; Kiran
and Khandelwal 2014; Qian et al. 2005). Using an upper bound ap-
proach, Gurson (1977) proposed a yield criterion and flow rules for
rigid plastic materials with microvoids. As compared to the von
Mises (J2) yield criterion, the Gurson yield criterion is pressure de-
pendent, and an internal variable termed void volume fraction was
introduced to represent the proportion of microvoids. The Gurson
yield criterion was subsequently modified by Tvergaard (1982)
and Tvergaard and Needleman (1984) to account for the microvoid
interactions and the rapid loss of load carrying capacity at the onset
of microvoid coalescence. With these modifications, the Gurson
model is then renamed the Gurson–Tvergaard–Needleman (GTN)
model and is now commonly used to model failures due to ductile
fracture. In more recent enhancements, the GTN model was further
extended by Nahshon and Hutchinson (2008) based on the Lode
parameter to account for shear failures under low-stress triaxialities.
Later on, Nielsen and Tvergaard (2010) introduced an additional
stress state dependent factor on the shear damage term to eliminate
the influence of the Lode parameter at high-stress triaxialities.
With these latest enhancements, the GTN model represents the
state-of-the-art model to simulate damage to due ductile fracture
mechanisms in metals and is therefore adopted for the topology op-
timization study in this work.

Designing structural systems to achieve required plastic energy
dissipation while simultaneously constraining the material damage
is a challenging topic in topology optimization. In recent studies,
the authors and coworkers have made some progress in this direc-
tion (Alberdi and Khandelwal 2017; Li et al. 2017; Li et al. 2018;
Zhang et al. 2016a), where the emphasis was on the incorporation
of plasticity models in topology optimization, which in itself is
a nontrivial task (Alberdi et al. 2018), while the consideration
of inelastic damage was secondary. As a result, only simple and
approximate damage models were considered in these studies.
To achieve a more realistic design framework for plastic energy
dissipation, however, the simulation of energy dissipation together
with an accurate description of inelastic material damage is re-
quired. To this end, this study makes the first effort to incorporate
the micromechanically informed GTN model in a density-based
topology optimization framework for the design of inelastic struc-
tures, wherein the physics of ductile fracture mechanisms can be
appropriately controlled during the topology optimization process.
To capture the accurate physics of material failure under high- and
low-stress triaxialities, the GTN model with shear failure modifi-
cations proposed by Nahshon and Hutchinson (2008) and Nielsen
and Tvergaard (2010) is used. A maximum damage constrained
topology optimization formulation is considered to limit the dam-
age under the prescribed values. An adjoint method is used to ob-
tain consistent analytical design sensitivities for the path-dependent
inelastic GTN model, whose accuracy is further verified by the cen-
tral difference method. The developed framework is utilized to de-
sign systems with prescribed plastic dissipation capacities while
constraining the overall damage due to the ductile fracture mech-
anisms. A number of examples are considered to show the efficacy

of the proposed topology optimization framework for obtaining
failure resistant plastic energy-dissipating systems.

GTN Model with Shear Failure Modifications

GTN Constitutive Model

In the context of small strain plasticity theory, the strain tensor
ε is additively decomposed into elastic (εe) and plastic (εp) com-
ponents as

ε ¼ εe þ εp ð1Þ

and the Cauchy stress σ is obtained by assuming the isotropic
material behavior as

σ ¼ Ce∶εe ð2Þ

where Ce ¼ 3κPvol þ 2μPs
dev is the 4th order isotropic elasticity

tensor; κ and μ = bulk and shear moduli, respectively; Pvol
and Ps

dev = fourth-order volumetric and symmetric deviatoric
projectors, respectively. The yield function of GTN model is
expressed as

ϕðσ; f; ζÞ ¼ σ2v
ζ2
þ 2q1f� cosh

�
3q2
2

p
ζ

�
− ð1þ q3f�2Þ ¼ 0 ð3Þ

where σv = effective Mises stress; p ¼ 1
3
σ∶I = mean stress

(i.e., pressure); ζðαÞ ¼ σy þ αKh is the linear hardening function
expressed in terms of the effective plastic strain α and hardening
modulus Kh; q1, q2, and q3 = three void interaction parameters;
f = void volume fraction; and f� = effective void volume fraction
defined as

f� ¼

8>>>>>>><
>>>>>>>:

fv0 virgin material

f f ≤ fc

fc þ
f̄u − fc
ff − fc

ðf − fcÞ fc < f < ff

f̄u f ≥ ffðmaterial failureÞ

ð4Þ

where fv0 = initial void volume fraction of the virgin material; fc =
void volume fraction at coalescence; ff = void volume fraction at
fracture initiation; and f̄u = ultimate void volume fraction at failure
where the material loses the load carrying capacity and is given by

f̄u ¼
q1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 − q3

p
q3

ð5Þ

The main purpose of introducing f� in Eq. (4) is to simulate
the rapid loss of load carrying capacity that accompanies the
void coalescence stage of ductile fracture. When f ≤ fc, f� is
governed by the void growth and nucleation and when f > fc,
f� increases rapidly due to void coalescence. Finally, a complete
failure at a material point occurs when f� reaches f̄u. Therefore,
f� can be considered as the effective damage parameter in the
GTN model.

With s ¼ σ − pI, denoting the deviatoric stress tensor, the yield
surface in Eq. (3) can be expressed as

ϕðσ; f; ζÞ ¼ 1

2
s∶s − 1

3

�
1þ q3f�2 − 2q1f� cosh

�
3q2
2

p
ζ

��
ζ2 ¼ 0

ð6Þ
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According to the hypothesis of generalized normality, the plastic
strain flow is assumed to be normal to the yield surface in Eq. (6)
and is given by

ε̇p ¼ γ
∂ϕ
∂σ ¼ γ

�
sþ 1

3
q1q2f�ζ sinh

�
3q2
2

p
ζ

�
I

�
ð7Þ

where γ = plastic multiplier. The macroscopic equivalent plastic
strain flow α̇ is related to the microscopic values by the following
relationship

α̇ ¼ σ∶ε̇p
ð1 − fÞζ ¼

γ
1 − f

�
1

ζ
s∶sþ q1q2pf� sinh

�
3q2
2

p
ζ

��
ð8Þ

In the original GTN model, the void volume fraction evolution
was assumed to only consist of void nucleation and growth. Later,
to account for damage due to void shearing effects at low-stress
triaxialities, based on the studies by Bao and Wierzbicki (2004)
and Barsoum and Faleskog (2007), Nahshon and Hutchinson
(2008) modified the GTN model to incorporate the effect of Lode
parameter that accounts for the damage due to void shearing at low-
stress triaxiality. Thus, the void volume fraction in the GTN model
was modified by adding an additional term to the void growth rate
that depends on the Lode parameter. Finally, the evolution of the
void volume fraction is characterized by existing voids growth ḟg,
new void nucleation ḟn, and void shear ḟs as

ḟ ¼ ḟg þ ḟn þ ḟs ð9Þ

The growth of the existing voids ḟg is based on the law of con-
servation of mass that is expressed in terms of the void volume
fraction as

ḟg ¼ ð1 − fÞε̇p∶I ¼ γð1 − fÞq1q2ζf� sinh
�
3q2
2

p
ζ

�
ð10Þ

It is more challenging to characterize the voids nucleation
rate ḟn because of the physically complex microstructures and
inclusions. An effective and widely used statistical form for the
nucleation rate was proposed by Chu and Needleman (1980)
and is given by

ḟn ¼ AðαÞα̇ ð11Þ

where

AðαÞ ¼ fN
sN

ffiffiffiffiffiffi
2π

p exp

�
− 1

2

�
α − εN
sN

�
2
�

ð12Þ

in which fN = volume fraction of the nucleated voids, the nucle-
ation function A=fN is assumed to have a normal distribution,
with a mean value εN and standard deviation sN . Note that the
void nucleation is only considered under hydrostatic tension,
i.e., when p > 0.

The modified flow term ḟs to capture the void shearing effects in
the low-stress triaxiality regime is expressed in terms of Lode
parameter (L ¼ − 27J3

2σ3v
) as

ḟs ¼ kωω0f
s∶ε̇p
σv

¼
ffiffiffi
2

3

r
γkωω0fksk ð13Þ

with

ω0 ¼ ωðσÞΓðηÞ ð14Þ
where

ωðσÞ ¼ 1 −
�
27J3
2σ3v

�
2

and J3 ¼ detðsÞ ð15Þ

The threshold function ΓðηÞ in Eq. (14) was introduced by
Nielsen and Tvergaard (2010) to remove the void shearing effects
at moderate- and high-stress triaxialities, which reads

ΓðηÞ ¼

8>><
>>:

1 η < η1
η − η2
η1 − η2

η1 ≤ η ≤ η2

0 η > η2

ð16Þ

where η ¼ p=σv = stress triaxiality; and η1 and η2 = two stress
triaxialities thresholds from where the shear modification effect
starts to decay and completely becomes zero.

Finally, the constitutive model is completed by introducing
the Karush–Kuhn–Tucker (KKT) and consistency conditions to
describe the plastic loading and unloading as

γ ≥ 0;ϕ ≤ 0; γϕ ¼ 0 ðKKT conditionsÞ
γϕ̇ ¼ 0 ðConsistency conditionÞ ð17Þ

The presented GTN model is implemented in the strain-driven
finite element analysis (FEA) framework, and the implicit back-
ward Euler scheme is adopted to discretize the evolution equations.
A standard elastic predictor/return-mapping algorithm is used to
solve the local nonlinear problem (de Souza Neto et al. 2011).
Model implementation details in the context of FEA and the asso-
ciated consistent algorithmic tangent modulus are provided in the
Supplemental Materials.

Damage Constrained Topology Optimization

Design Parameterization

A density-based topology optimization is considered, and a density
variable ρe is assigned to each finite element e to denote the pres-
ence (ρe ¼ 1) or absence (ρe ¼ 0) of material in an element. The
density variables are relaxed to ρe ∈ ½0; 1� such that the gradient-
based optimizers can be used. The constitutive material properties
for an element are then expressed in terms of element density ρe. In
particular, based on the solid isotropic material with penalization
(SIMP) method (Bendsøe and Sigmund 1999), the Young’s modu-
lus Ee, yield stress σye and hardening modulus Kh

e for eth element
with density ρe are interpolated as

Ee ¼ Emin þ ðE0 − EminÞρp1
e

σye ¼ σymin
þ ðσy0 − σymin

Þρp2
e

Kh
e ¼ Kh

min þ ðKh
0 − Kh

minÞρp3
e ð18Þ

where the parameters with subscript “min” and “0” = values for
void and solid elements, respectively; and p1, p2, and p3 = corre-
sponding penalty factors. The material interpolation scheme given
in Eq. (18) penalizes the plastic work in intermediate-density
elements, making the intermediate-density or grey elements less
efficient in dissipating plastic work, which can be then removed
by the optimizer. However, large inelastic strains and damage
can still occur in these intermediate-density elements and may
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cause convergence issues in the global Newton-Raphson (NR)
solver, especially in the early stages of optimization. To address this
issue, different void element material properties, i.e., Emin ¼
10−8E0, σymin

¼ 10−3σy0 , Kh
min ¼ 10−3Kh

0 , and penalty factors,
i.e., p1 ¼ 5, p2 ¼ p3 ¼ 4.5, are used to delay the development
of high plastic strains and damage in low-density elements. In addi-
tion, the following scaling scheme is considered to suppress the de-
velopment of damage in the early stages of the optimization process

ḟer ¼ ρp4
e ðḟger þ ḟner þ ḟser Þ ð19Þ

where the subscript er ¼ rth integration point in the eth element; p4

= penalty factor that is set as 3 at the beginning of optimization iter-
ations and is decreased by 0.1 every 10 iterations until it reaches the
final value of 0 at the 300th iteration. By using this scaling and con-
tinuation scheme, the convergence issues in the global NR solver in
the early stages of the optimization can be addressed. Moreover,
there are no scaling effects on the actual damage in the final opti-
mized topologies.

Optimization Problem Formulation

The optimization problem is formulated to seek minimum volume
(or weight) structural designs that can dissipate the prescribed
amount of plastic work with appropriate constraints on the damage.
The optimization problem is formulated as

min
0≤x≤1 f0ðxÞ ¼

1

V0

�Xnele
e¼1

ρeðxÞVe

�

s:t: f1ðxÞ ¼ 1 −WpðxÞ
W̄p ≤ 0

f2ðxÞ ¼
DmaxðxÞ

D̄
− 1 ≤ 0

Rkðuk; uk−1; vk; vk−1; ρÞ ¼ 0

Hkðuk; uk−1; vk; vk−1; ρÞ ¼ 0 ð20Þ

where nele = total number of elements in the design domain; V0 =
total design domain volume; V0 = element volume; W̄p = pre-
scribed plastic work to be dissipated; and D̄ = prescribed allowable
damage. In this density-based formulation, the design variables x
are related to the density variables ρ by a density filter that is used
for regularizing the problem to remedy the checkerboarding and
mesh-dependency issues (Bourdin 2001; Bruns and Tortorelli
2001). The density filter can be expressed in a matrix form as

ρ ¼ Wx ð21Þ
where ρ and x = vectors collecting all the density and design
variables, respectively; W = filtering matrix with the following
components

Wej ¼
wejVjPnele
j¼1 wejVj

ð22Þ

where Vj = volume of element j; and wej = distance weighting
coefficient defined as

wej ¼ maxfrmin − kXe − Xjk2; 0g ð23Þ

in which Xe = centroid coordinate of element e; and rmin =
prescribed density filter radius. The matrix W only needs to be
calculated once and stored prior to the optimization process, and
this stored information can be reused within each optimization
iteration.

The plastic work dissipated in the design, WpðxÞ, is computed
using the trapezoidal rule as

WpðxÞ ¼
Xn
k¼1

(Xnele
e¼1

"Xnipt
r¼1

1

2
ðσker þ σk−1er Þ∶ðεp

k

er − εp
k−1

er Þωer

#)
ð24Þ

in which nipt = total number of integration point in an element; and
k ¼ 1; 2; : : : n = analysis steps during the application of load.
Instead of enforcing local damage constraints at each integration
point, which are computationally intractable, a single constraint on
the aggregated maximum damage measure,DmaxðxÞ, within the en-
tire domain is employed based on the p-norm approximation,
which can be expressed as

DmaxðxÞ ¼
�Xnele

e¼1

�Xnipt
r¼1
ðρqefnerÞpn

��1=pn

ð25Þ

where ρqe = damage relaxation factor in terms of the density var-
iable that is used to remove the spurious high damage in the
intermediate-density elements (Li et al. 2017), enabling the conver-
gence to discrete topologies; pn ¼ p-norm parameter; and fner =
total effective damage, i.e. the effective void volume fraction at
the integration point at the final step (step n). In this study, q ¼
0 is used for the first 500 iterations to allow the topology evolution
driven by the actual damage, and q ¼ 3 is used for the last 200
iterations to relax the damage in the intermediate-density elements
in order to get the final discrete topologies.

To represent the physics of the underlying system, two sets
of constraints Rk ¼ 0 and Hk ¼ 0, related to global system equi-
librium and the GTN constitutive model, respectively, are needed
to be satisfied at each analysis step k. A nested formulation is
considered, and these constraints are handled outside the opti-
mizer within FEA, as is customarily done in large-scale topology
optimization (Christensen and Klarbring 2008). As shown in the
Supplemental Materials, the global equilibrium constraints Rk ¼
0 at step k are assembled using the elemental residuals Rk

e as

Rk ¼ A
e¼1

nele
Rk
e with Rk

e ¼ Fek
int − Fek

ext ð26Þ

where Fek
ext = external force that is equal to 0 in the displacement

controlled strategy used in this study; and Fek
int = internal force that

is expressed as

Fek
int ¼

Xnipt
r¼1

BT
erσ

k
erωer ð27Þ

in which Ber = shape function derivative matrix evaluated at the rth
integration point of element e; and ωer = corresponding weight.
Using the framework for path-dependent topology optimization
presented by (Alberdi et al. 2018), an auxiliary variable vector
(vk) is introduced that consists of Cauchy stress tensor (σker ), plastic
strain tensor (εp

k

er ), effective plastic strain (αk
er ), void volume frac-

tion (fker ), and plastic multiplier (Δγker ) at a Gauss point as

vk ¼

2
6666666664

vk1

..

.

vke

..

.

vknele

3
7777777775

with vke ¼

2
66664
vke1
vke2
vke3
vke4

3
77775 and vker ¼

2
66666664

σker

εp
k

er

αk
er

fker
Δγker

3
77777775

ð28Þ
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Accordingly, the local constraints Hk to be satisfied at each
Gauss point are defined as

Hk¼

2
6666666666664

Hk
1

..

.

Hk
e

..

.

Hk
nele

3
7777777777775

with Hk
e¼

2
6666664

Hk
e1

Hk
e2

Hk
e3

Hk
e4

3
7777775

and Hk
er ¼

2
6666666666664

hke1

hke2

hke3

hke4

hke5

3
7777777777775

ð29Þ

Based on the discrete material constitutive formulation given in
the Supplemental Materials, for an elastic step, Hk

er is expressed as

Hk
er ¼

8>>>>>>>><
>>>>>>>>:

hker1 ¼ σker − Ce∶ðεker − εp
k

er Þ ¼ 0

hker2 ¼ εp
k

er − εp
k−1

er ¼ 0

hker3 ¼ αk
er − αk−1

er ¼ 0

hker4 ¼ fker − fk−1er ¼ 0

hker5 ¼ Δγker ¼ 0

ð30Þ

while for a plastic step, Hk
er is expressed as

Hk
er ¼

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

hker1 ¼ σker − Ce∶ðεker − εp
k

er Þ ¼ 0

hker2 ¼ εp
k

er − εp
k−1

er − Δγker

�
sker þ

1

3
q1q2f�

k

er ζ
k
erSINH

k
erI

�
¼ 0

hker3 ¼ αk
er − αk−1

er − Δγker
1 − fker

�
1

ζker
sker ∶sker þ q1q2pk

erf
�k
erSINH

k
er

�
¼ 0

hker4 ¼ fker − fk−1er − ΔγkerðBk
er þ Ck

er þ Dk
erÞ ¼ 0

hker5 ¼
1

2
sker ∶sker −

1

3
ð1 þ q3f�

k2

er − 2q1f�
k

erCOSH
k
erÞζk

2

er ¼ 0

ð31Þ

where SINH ¼ sinh ð3q2
2

p
ζÞ and COSH ¼ cosh ð3q2

2
p
ζÞ. Here, hke1 =

stress-strain relationship; while hke2 , h
k
e3 , and hke4 = updates for

plastic strain, effective plastic strain, and void volume fraction, re-
spectively; hke5 = yield function of the GTN model. The explicit
expressions of variables B, C, and D are given in the Supplemental
Materials.

Sensitivity Analysis

As the number of design variables in topology optimization is much
greater than the number of objective and constraint functions, the
adjoint sensitivity analysis framework proposed by Alberdi et al.
(2018) for transient nonlinear coupled systems is adopted in this
work for deriving the analytical design sensitivities for the consid-
ered GTN model. Consider a general objective or constraint func-
tion Fðuk; : : : ;u1; vk; : : : ; v1; ρÞ in terms of the solution field
variable uk, auxiliary variable vk, and density variable ρ. An aug-
mented function F̂ is first constructed as follows

F̂ ¼ F þ
Xn
k¼1

λk
T
Rkðuk; uk−1; vk; vk−1; ρÞ

þ
Xn
k¼1

μk
T
Hkðuk; uk−1; vk; vk−1; ρÞ ð32Þ

where λk and μk = adjoint multipliers associated with constraints
Rk ¼ 0 and Hk ¼ 0, respectively. Taking the derivative of F̂ with
respect to ρ and eliminating all the coefficients that contain the
implicit derivative terms, duk=dρ and dvk=dρ, yields

dF̂
dρ
¼ dF

dρ
¼ ∂F

∂ρ þ
Xn
k¼1

�
λk

T ∂Rk

∂ρ þ μk
T ∂Hk

∂ρ
�

ð33Þ

where the unknowns λk and μk are obtained by solving the adjoint
systems in a backward manner (from k ¼ n to k ¼ 1) as

step n∶

8>><
>>:
∂F
∂unþ λn

T ∂Rn

∂un þμn
T ∂Hn

∂un ¼ 0

∂F
∂vnþλn

T ∂Rn

∂vn þμn
T ∂Hn

∂vn ¼ 0

step k∶

8>><
>>:
∂F
∂ukþλkþ1T

∂Rkþ1

∂uk þμkþ1T
∂Hkþ1

∂uk þλk
T ∂Rk

∂uk þμk
T ∂Hk

∂uk ¼ 0

∂F
∂vkþ λkþ1T

∂Rkþ1

∂vk þμkþ1T
∂Hkþ1

∂vk þ λk
T ∂Rk

∂vk þμk
T ∂Hk

∂vk ¼ 0

ð34Þ

By inspecting Eqs. (33) and (34), the following explicit deriv-
atives are needed to complete the adjoint sensitivity analysis

For F∶ ∂F∂ρ ;
∂F
∂uk ;

∂F
∂vk

For Rk∶ ∂R
k

∂ρ ;
∂Rk

∂uk ;
∂Rk

∂uk−1 ;
∂Rk

∂vk ;
∂Rk

∂vk−1

For Hk∶ ∂H
k

∂ρ ;
∂Hk

∂uk ;
∂Hk

∂uk−1 ;
∂Hk

∂vk ;
∂Hk

∂vk−1 ð35Þ

Detailed expressions for the presented explicit derivatives are
provided in the Supplemental Materials.

Numerical Examples

Numerical examples are presented in this section to demonstrate
the proposed method. All the examples are discretized by 8-node
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quadrilateral elements of 10-mm thickness with four Gauss integra-
tion points. Thematrix material parameters are set as Young’s modu-
lus E ¼ 210 GPa, Poisson’s ratio ν ¼ 0.3, initial yield strength
σy ¼ 370 MPa, and linear hardening modulus Kh ¼ 4.2 GPa. For
GTN model parameters, the initial void volume is chosen as fv0 ¼
0.001, together with the void interaction parameters q1 ¼ 1.5,
q2 ¼ 1.0, and q3 ¼ 2.25. The shear modification factors are as-
sumed to be kω ¼ 3, η1 ¼ 0 and η2 ¼ 0.5. The void volume fraction
is set to fc ¼ 0.05 at coalescence and ff ¼ 0.3 at fracture initiation.
The voids are nucleated with fN ¼ 0.04with a standard deviation of
sN ¼ 0.1 and a mean nucleation strain of εN ¼ 0.35. According to
Eqs. (4) and (5), the ultimate void volume fraction at material failure
is f� ¼ f̄u ¼ 0.6667. The choice of the GTN model parameters is
based on the calibration results of various metals, as summarized in
(Kiran and Khandelwal 2014; Nielsen and Tvergaard 2010). The
p-norm parameter is set to pn ¼ 20 based on numerical testing as
it yields best designs for the considered problems and parameter
settings. In practice, different values of pn should be considered to
determine the appropriate p-norm parameter for the problem under
consideration.

All the optimizations initiate with a fully solid design, i.e., ρe ¼
1. The method of moving asymptotes (MMA) (Svanberg 1987) is
used as an optimizer with default settings, and all the optimiza-
tions are terminated after 700 iterations. The optimized designs
are obtained with different prescribed plastic work W̄p and dam-
age constraint values such that D̄ ≤ fc ¼ 0.05 in Eq. (20), as the
failure occurs quickly after the void coalescence condition is met.
The performance of damage constrained topologies are also com-
pared with the von Mises (J2 plasticity) designs, which are ob-
tained by setting fv0 ¼ q1 ¼ q3 ¼ fN ¼ kω ¼ 0 in the GTN
model, as the von Mises model is a special case of the GTN
model. All the presented plastic work distributions are with unit
J=mm2, while stress triaxiality and damage plots are dimension-
less [-]. Since the goal of optimization is to constrain the damage
below the void coalescence threshold (fc), the void coalescence
term [Eq. (4)] in the GTN model is turned off for topology opti-
mization by enforcing f� ¼ f. Accordingly, f� is replaced by f
in all FEA and optimization processes. This helps to prevent
failure related convergence issues in the global NR solver in the

intermediate optimization iterations. However, all the ultimate
performance analyses for the evaluation of optimized designs con-
sider this void coalescence effect. The implemented adjoint path-
dependent sensitivity analysis is verified by the central difference
method before being used for topology optimization, see the
Supplemental Materials for more details. All the FEAs and opti-
mizations are carried out using an in-house Matlab based finite
element library CPSSL-FEA developed at the University of Notre
Dame.

Short Cantilever Beam—Triaxiality Dominated Design

The performance of the proposed method is first tested on the de-
sign of a cantilever beam, as shown in Fig. 1(a). A downward dis-
placement u ¼ 25 mm is applied along 6 mm at the center of the
right edge. The design domain is discretized by a 100 × 50 mesh.
The minimum plastic work to be dissipated is W̄p ¼ 980 J, and the
density filter radius is set to rmin ¼ 2 mm.

As a reference design, the optimized topology with the von
Mises model is first generated. In this case, the minimum volume
structure is sought to dissipate the target amount of plastic work,
and there are no damage constraints as the damage is not consid-
ered in the von Mises plasticity. The optimized design is shown in
Fig. 1(b), and this figure shows that a symmetric design about the
central horizontal axis is obtained with an optimized volume frac-
tion of f0 ¼ 0.6345. This is as expected as the von Mises yield
criterion is pressure independent, resulting in symmetric displace-
ment and plastic strain fields, further leading to symmetric sensi-
tivities and eventually a symmetric design. However, when this
optimized design is reanalyzed with the GTN model, it cannot sus-
tain the design displacement of u ¼ 25 mm, as the material failure
(f� ¼ f̄u ¼ 0.6667) occurs before the design displacement is
reached. As indicated in Table 1, the ductility, i.e., displacement
at the failure point, of the von Mises design is only 16.23 mm with
45.00 kN load carrying capacity, resulting in only 551.56 J of plas-
tic energy dissipation, which is far below the prescribed value
of 980 J. The corresponding field distributions of the reanalyzed
results with the GTN model at the failure point are shown in
Figs. 1(c–e). Fig. 1(c) shows that the plastic work is mostly

(a)

(d) (e)

(b) (c)

u

Fig. 1. Optimized cantilever beam design using the von Mises model and the corresponding field distributions reanalyzed by the GTN model up
to the failure point: (a) design domain; (b) von Mises design, f0 ¼ 0.6345; (c) plastic work,Wult

p ¼ 551.56 J; (d) stress triaxiality; and (e) effective
damage, f�max ¼ 0.6667.
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concentrated at the top and bottom left corners, and the material
failure is initiated at the top left corner [Fig. 1(e)] where the stress
triaxiality is positive [Fig. 1(d)].

To further understand the governing failure mechanisms in
the von Mises design, the distributions of each contributor to the
maximum damage f ¼ 0.3024, leading to the effective damage
f� ¼ f̄u ¼ 0.6667, are plotted in Fig. 2. This figure shows that
the void growth at the top left corner is the dominating failure
mechanism with the damage value fg1 ¼ 0.2508. This is because
of high inelastic strains and positive stress triaxiality at this loca-
tion, as indicated in Figs. 1(c and d). Moreover, due to the neg-
ative triaxiality, the void growth is suppressed fg2 ¼ −0.0013 at
the bottom left corner, and void closure occurs at this location,
compensating for the other damage mechanism, i.e., shear
damage [fs2 ¼ 0.0014 in Fig. 2(c)], at this location. Void nucle-
ation fn1 ¼ 0.0516 also contributes to the damage at the top left
corner, but the void nucleation is absent at the bottom left corner,
which is mostly under compression. In contrast, the shear damage
at the top left corner is zero due to the high-stress triaxiality at this
location.

To mitigate the damage under the design displacement while
still dissipating the prescribed amount of plastic work, the opti-
mized design with the GTN model with D̄ ¼ 0.01 is obtained
and shown in Fig. 3(a). The figure shows that more material is
needed, i.e., f0 ¼ 0.6502, to satisfy the damage constraint in this
case, and the resulting topology is no longer symmetric. This is
because this asymmetric design results in a better distribution of
plastic work [Fig. 3(b)] and stress triaxiality [Fig. 3(c)], ending
up being feasible (f�max ¼ 0.0094< D̄ ¼ 0.01 < fc ¼ 0.05), with
more evenly distributed damage [Fig. 3(d)].

The convergence histories of the objective and constraints, as
well as several intermediate topologies, are shown in Fig. 4. Several
oscillations can be seen in the first 30 iterations. This is primarily
due to the appearance of large grey areas in the early iterations,
resulting in constraint violations. Nevertheless, due to the scaling
and continuation schemes used in this study, no FEA convergence
issues were encountered in this stage. Once the overall structural
topology is determined after the first 50 iterations, the convergence
becomes smoother except for the spikes when the scaling parameter
p4 is updated. Fig. 4(b) shows that all the constraints are satisfied

0.2508

-

0.0047

0.0014

0 0.00070.0516

0

0.0030

0.0013

(a) (b) (c)

Fig. 2. Contributions of each damage mechanism for the von Mises cantilever beam design at the failure point (scales are adjusted for a better
visualization): (a) Void growth fg; (b) Void nucleation fn; and (c) Void shear fs.

(a) (b)

(c) (d)

Fig. 3. Optimized cantilever beam design using the GTN model with D̄ ¼ 0.01 and the corresponding field distributions: (a) GTN design,
f0 ¼ 0.6502; (b) plastic Work Wp ¼ 980 J; (c) stress triaxiality of GTN design; and (d) effective damage f�max ¼ 0.0094.

Table 1. Performance comparison of the optimized cantilever beam designs

Figure No. Model D̄ Volume fraction Ductility (mm) Load carrying capacity (kN) Wp
ult (J)

Fig. 1(b) von Mises N/A 0.6345 16.23 45.00 551.56
Fig. 3(a) GTN 0.01 0.6502 47.97 75.62 2,445.90
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when the optimization is terminated after 700 iterations, and the
final optimized design is feasible.

Fig. 5 shows the results corresponding to the ultimate behaviors
of the topology obtained from the GTN model at the failure point.
The figure shows that compared to the vonMises design [Fig. 1(c)],
the plastic work dissipation in this topology [Fig. 5(a)] is more
evenly distributed in the design domain, indicating a better utiliza-
tion of material. Moreover, the final failure occurs in the region
close to the application of loads instead of the support region in
the von Mises design, as shown in Fig. 5(c). Fig. 6 shows that void
growth is still the governing damage mechanism in this case with
fg3 ¼ 0.3433 [Fig. 6(a)] at the failure initiation location. More
importantly, the ductility of the GTN design is 47.97 mm with
the ultimate energy dissipation capacity of 2445.90 J (Table 1),
which is far better than the von Mises design with the ductility of
16.23 mm and ultimate energy dissipation capacity of 551.56 J.
Better performance of the GTN design over the von Mises design
can also be seen from the ultimate load-displacement curves of each
design in Fig. 7. All the ultimate load-displacement curves are

(a) (b)

Fig. 4. Convergence histories of the cantilever beam design with the GTNmodel and D̄ ¼ 0.01: (a) objective function and intermediate solutions; and
(b) constraint functions.

(a) (b) (c)

Fig. 5. Ultimate behavior of the optimized cantilever beam design with the GTN model at the failure point: (a) plastic work Wult
p ¼ 2445.90 J;

(b) stress triaxiality of GTN design; and (c) effective damage, f�max ¼ 0.6667.

0.0689

-0.0022

0.3433 0.0583

0

0.0563

= 0.1001

0 0.1001

(a) (b) (c)

Fig. 6. Contributions of each damage mechanism for the GTN cantilever beam design at the failure point (scales are adjusted for a better visualiza-
tion): (a) Void growth fg; (b) Void nucleation fn; and (c) Void shear fs.

Fig. 7. Load-displacement curves for the optimized cantilever beam
designs up to the failure points.
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plotted up to the failure points, which are defined as the complete
failure at any integration point. The ductility, load carrying capac-
ity, and ultimate energy-dissipating capacity are evaluated at the
failure point as the structural strength deteriorates rapidly after this
point and the system is not able to safely dissipate energy.

Simply Supported Beam—Shear Dominated Design

In the second example, the design of a simply supported beam
shown in Fig. 8 is considered. The design domain is subjected
to a downward displacement of u ¼ 25 mm applied along 4 mm

in the middle of the top surface. Due to symmetry, only the left-
half design domain with 100 × 50 finite element mesh and symmet-
ric boundary conditions is optimized. The required minimum
plastic work dissipation is W̄p ¼ 1000 J, and the density filter ra-
dius is set to rmin ¼ 2 mm.

Figs. 9(a and b) show the optimized topologies with the von
Mises model and GTN model subjected to prescribed allowable
damage D̄ ¼ 0.01, respectively. The figure shows that different
designs are obtained in these cases, where the top left and right
members in the von Mises design tend to be more vertical com-
pared to the ones in the GTN design, i.e., 37.0° in Fig. 9(a) versus
24.0° in Fig. 9(b). However, more material is needed for GTN de-
sign (i.e., f0 ¼ 0.7069) to satisfy the prescribed damage constraint,
as compared to the von Mises design with f0 = 0.6579.

To further understand the topological changes brought by using
the GTN model with damage constraint, the plastic work, stress
triaxiality, and damage distributions of the optimized designs in
Figs. 9(a and b) are shown in Fig. 10. In Fig. 10, the von Mises
design is reanalyzed using the GTN model with the consideration
of void coalescence. Fig. 10 shows that less amount of plastic en-
ergy (997.58 J < 1000 J) is dissipated, and the plastic work is
mostly concentrated near the support regions in the von Mises de-
sign. The stress triaxiality plot shows that this region is mostly
under negative stress triaxiality, indicating that the void shearing
is the dominating failure mechanism in this case, which is different
from the cantilever example where the void growth under positive
stress triaxiality was the dominating mechanism. The damage plot
reveals that the maximum effective damage f�max ¼ 0.049 is close
to the coalescence threshold of fc ¼ 0.05, and therefore, the system
is close to failure. The ultimate damage plots shown in Fig. 11 con-
firm that the shear damage (fs ¼ 0.3095) is the dominating failure
mechanism in this design.

In contrast, the design obtained by the GTN model with maxi-
mum allowable damage of D̄ ¼ 0.01 dissipates plastic energy more
evenly through the entire structure by distributing the material in a
more efficient way. The peak plastic energy in the support region is
reduced from 5.35 J=mm2 in the von Mises design to 2.70 J=mm2

in the GTN design. Moreover, by placing the top end chord in a
vertical manner, the magnitude of the maximum negative stress
triaxiality is also reduced from −0.96 to −0.85 at the supports, as
shown in the second column of Fig. 10. These topological changes

u

Fig. 8. Simply supported beam design domain.

(a)

(b)

Fig. 9. Optimized designs with the von Mises and GTN models with
D̄ ¼ 0.01: (a) von Mises design, f0 ¼ 0.6579; and (b) GTN design,
D̄ ¼ 0.01, f0 ¼ 0.7069.

Plastic work Effective damage

von Mises Design

Stress triaxiality

0.049 

0.0098

997.58 J

1000.03 J

GTN Design, 0.01

-0.9618

-0.8454

Fig. 10. Field distributions of the optimized simply supported beam designs at the design displacement.
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result in a smaller effective damage, satisfying the prescribed dam-
age constraint, i.e., f�max ¼ 0.0098 < D̄ ¼ 0.01.

Finally, the two optimized designs are evaluated for their
ultimate failure responses, and the results are summarized in
Table 2. Various field distributions for the von Mises design
and GTN design with D̄ ¼ 0.01 are shown in Fig. 12. The results
show that although more material is needed in the damage

constrained designs with the GTN model, they have more uni-
formly distributed plastic work, better ductility (45.4% higher),
higher load carrying capacity (29.0% higher), and higher plastic
work dissipation (81.0% higher) before the failure occurs when
compared to the von Mises design. The contributions of each
damage mechanism in the GTN design are shown in Fig. 13,
showing that the shear damage (fs ¼ 0.3012) is the dominating

0.30950.06130.1064
(a) (b) (c)

Fig. 11. Contributions of each damage mechanism for the vonMises simply supported beam design at the failure point (scales are adjusted for a better
visualization): (a) void growth fg; (b) void nucleation fn; and (c) void shear fs.

Table 2. Performance comparison of the optimized simply supported beam designs

Figure No. Model D̄ Volume fraction Ductility (mm) Load carrying capacity (kN) Wp
ult (J)

Fig. 9(a) von Mises N/A 0.6579 66.78 95.71 4,076.49
Fig. 9(b) GTN 0.01 0.7069 97.12 123.42 7,376.36

Plastic work Effective damage

von Mises Design

Stress triaxiality

GTN Design, 0.01

0.66674076.49 J

7376.36 J 0.6667

-0.7566

-0.6739

Fig. 12. Ultimate behaviors of the optimized simply supported beam designs at the failure points.

0.1261 0.30120.0598

(a) (b) (c)

Fig. 13. Contributions of each damage mechanism for the GTN simply supported beam design at the failure point (scales are adjusted for a better
visualization): (a) void growth fg ¼ 0.1261; (b) void nucleation fn; and (c) void shear fs.
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failure mechanism in this design. The load-displacement curves
for both the von Mises and GTN designs up to their failure points
are shown in Fig. 14, again revealing the better performance of the
GTN design.

Portal Frame—Mixed Stress Conditions

The third example concerns the design of a portal-frame type struc-
ture with a reentrant corner, as shown in Fig. 15. A downward dis-
placement of u ¼ 10 mm is applied along 5 mm in the middle of
the top surface. Due to symmetry, only the left half of the domain
discretized by 96 × 96 non-uniformly sized finite elements is opti-
mized. The minimum plastic work to be dissipated is W̄p ¼ 205 J,
and the density filter radius is chosen as rmin ¼ 1.5 mm.

Again, the von Mises design with the optimized material vol-
ume fraction of f0 ¼ 0.4973 is first obtained as the reference de-
sign and is shown in Fig. 16(a). The plastic work, stress triaxiality,
and effective damage distributions of this topology, when reana-
lyzed using the GTN model, are shown in Figs. 16(b–d), respec-
tively. As shown in Fig. 16(b), the plastic work in this von Mises
design is concentrated at two locations: support region and re-
entrant corner. Fig. 16(c) shows that the reentrant corner has high
positive stress triaxiality, while in the support region there is neg-
ative stress triaxiality. The combination of high plastic strains and
favorable stress states eventually leads to high damage at these lo-
cations, as shown in Fig. 16(d). The ultimate damage contribution
plots shown in Fig. 17 reveal that the damage at the reentrant corner
is dominated by the void growth (fg), whereas damage in support
regions is dominated by the void nucleation (fN). The damage
value of f1 ¼ 0.2813 at the reentrant corner and f2 ¼ 0.0043 at
the support regions indicates that the void coalescence threshold
(fc ¼ 0.05) has been exceeded at the reentrant corner in this
von Mises design.

To mitigate the failure potential while still dissipating energy,
the optimized design is obtained by considering the GTN model
with D̄ ¼ 0.005. The optimized design is shown in Fig. 18(a).
In this design, more material (f0 ¼ 0.5139) is again required in
order to satisfy the additional damage constraint. However, topo-
logical changes in this design enable a more uniformly distrib-
uted plastic work with decreased peak plastic work density, as
shown in Fig. 18(b). Moreover, the high stresses in both positive
triaxiality (reentrant corner) and negative triaxiality (support) loca-
tions have been relieved (from −1.10 to −0.91), as depicted in
Fig. 18(c). Consequently, the maximum effective damage has been
successfully constrained below D̄ ¼ 0.005, i.e., f�max ¼ 0.0047.

u

Fig. 15. Portal-frame design domain and finite element mesh
(unit: mm).

Fig. 14. Load-displacement curves for the optimized simply supported
beam designs up to the failure points.

0.2813

0.0043

High positive 
stress triaxiality 

Low negative stress 
triaxiality 

(a) (b)

(c) (d)

Fig. 16. Optimized portal-frame design using the von Mises model and the corresponding field distributions reanalyzed by the GTN model:
(a) design, f0 ¼ 0.4973; (b) plastic work, Wp ¼ 204.47 J; (c) stress triaxiality; and (d) effective damage, f�max ¼ 0.6205.
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0.0599

0.0025

0.0114

0.0008

0.2999

0.0011

(a) (b) (c)

Fig. 17. Contributions of each damage mechanism for the von Mises portal-frame design at the failure point (scales are adjusted for a better
visualization): (a) void growth fg; (b) void nucleation fn; and (c) void shear fs.

(a) (b)

(c) (d)

Fig. 18. Optimized portal-frame design using the GTN model with D̄ ¼ 0.005 and the corresponding field distributions: (a) design, f0 ¼ 0.5139;
(b) plastic work, Wp ¼ 205.00 J.; (c) Stress triaxiality; and (d) effective damage, f�max ¼ 0.0047.

Plastic work Effective damage

von Mises Design

Stress triaxiality

GTN Design, 0.005

0.6667

212.58 J 0.6667

1233.35 J

Fig. 19. Ultimate behaviors of the optimized portal-frame design with the GTN model at the failure point.
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Fig. 19 shows the field distributions of the von Mises and GTN
designs at their failure points. It can again be observed that the
plastic work is more evenly distributed in the GTN design (second
row of Fig. 19) when compared to the von Mises design (first
row of Fig. 19). The final failure initiates at the reentrant corner
in both cases and is finally dominated by void growth under pos-
itive stress triaxiality. The damage mechanism plots for GTN de-
sign at its failure point shown in Fig. 20 reveal that the void growth
(fg1 ¼ 0.2350) at the reentrant corner again governs the failure in
this design. The ultimate performance comparison shown in Table 3
and the load-displacement curves depicted in Fig. 21 show that
compared to the von Mises design, the GTN designs with damage
constraints have much better performance in terms of ductility, load
carrying capacity, and ultimate energy dissipation capacity. More
importantly, this improvement in performance comes at the cost of
only a small increase in the required material volume.

Conclusions

This study presents a design framework for failure resistant
energy-dissipating plastic structures using density-based topology
optimization. The micromechanically motivated Gurson–Tvergaard–
Needleman (GTN) model with shear damage modifications is
adopted to model the ductile damage mechanisms in metals. Ap-
propriate design parametrization, scaling, and relaxation schemes
are proposed to interpolate the corresponding material properties
for intermediate-density elements to ensure numerical stability
during the optimization process. Consistent and accurate path-
dependent design sensitivities are obtained using the adjoint
method for design variables update with a gradient-based opti-
mizer. The effectiveness of the proposed design approach is dem-
onstrated through selected numerical examples dominated by
different failure mechanisms. The results show that the proposed
optimization framework can limit the maximum damage in the
optimized designs within the prescribed thresholds while simulta-
neously considering the physics of various damage mechanisms in
a coupled manner. The results show that compared to the designs
generated by the von Mises model, the failure resistant designs
with the GTN model have overall better ductility, higher load
carrying, and higher plastic energy dissipation capacities at the
onset of failure. The tradeoff is a little more material usage in
the GTN designs. This study represents the first effort to consis-
tently incorporate the physics of ductile-damage mechanisms in
topology optimization toward the design of energy-dissipating
plastic structures. A natural extension of this work is to extend
this framework to consider plasticity and damage under finite
deformations and cyclic loading scenarios. However, this will re-
quire novel techniques to handle challenges associated with finite
deformations (Zhang et al. 2018), and this will be addressed in our
future work.

Data Availability Statement
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appear in the published article.

0.0587

0.06230.2350

0.0326

0.0538

0.0517

(a) (b) (c)

Fig. 20. Contributions of each damage mechanism for the GTN design at the failure point (scales are adjusted for a better visualization): (a) void
growth fg; (b) void nucleation fn; and (c) void shear fs.

Table 3. Performance comparison of the optimized portal-frame designs

Figure No. Model D̄ Volume fraction Ductility (mm) Load carrying capacity (kN) Wp
ult (J)

Fig. 16(a) von Mises N/A 0.4973 10.14 26.86 212.58
Fig. 18(a) GTN 0.005 0.5139 36.81 51.14 1,233.35

Fig. 21. Load-displacement curves for the optimized portal-frame
designs up to the failure points.
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