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Recent experimental data on Bose-Einstein Condensation (BEC) of magnons in the spin-gap
compound Yb2Si2O7 revealed an asymmetric BEC dome [1]. We examine modifications to the
Heisenberg model on a breathing honeycomb lattice, showing that this physics can be explained by
competing anisotropic perturbations. We employ a gamut of analytical and numerical techniques
to show that the anisotropy yields a field driven phase transition from a state with broken Ising
symmetry to a phase which breaks no symmetries and crosses over to the polarized limit.

In recent decades, models of localized spins have been
shown to contain a wealth of familiar and exotic phases of
matter. Interesting orders can be achieved by consider-
ing models with competing interactions, which naively
require the satisfaction of incompatible constraints to
achieve a ground state. Nature’s creative mechanisms
for resolving these tensions within quantum mechanics is
responsible for much of the diversity of phenomena ob-
served within many-body theory [2–8].

A clear example of such physics is found in dimer mag-
netism, where antiferromagnetic behavior is brought into
tension with polarizing magnetic fields [1, 9–13]. In these
systems, spins tend to pair into singlets in the low-field
ground state. A simple example of this phenomenon is
realized in the antiferromagnetic Heisenberg model on
the breathing honeycomb lattice. As illustrated in Fig.
1(a), each spin has a preferred neighbor due to lattice
distortion which picks out pairs of spins which dimerize
in the ground state.

Applying a magnetic field to the singlet state generi-
cally leads to a BEC transition where a triplet band be-
comes degenerate with the S = 0 ground state, creating a
planar antiferromagnet. In typical experiments [9], it has
been found that strengthening this field eventually polar-
izes the system; no other phase transitions are observed.
Recently, experiments on the compound Yb2Si2O7 have
challenged this paradigm by suggesting the presence of an
intermediate magnetic phase with an unknown underly-
ing order [1]. This Letter proposes a modification to the
Heisenberg model whose ground state order is consistent
with all available thermodynamic data and allows for the
possibility of such a phase diagram.

On the breathing honeycomb lattice, the Heisenberg
model in a magnetic field only realizes the previously
mentioned singlet, XY antiferromagnet, and polarized
phases. In order to model the additional phase observed
experimentally, we generalize the Heisenberg model by
introducing two forms of anisotropy:

H =
∑
〈ij〉,α

JαijS
α
i S

α
j − h

∑
i∈A,α

gAzαS
α
i − h

∑
j∈B,α

gBzαS
α
j (1)

FIG. 1. (a) A section of the honeycomb lattice. Each spin
(blue dots) has a preferred neighbor (red bonds) which it in-
teracts with more strongly than others: J1 > J2. For h = 0,
the ground state is a product of singlets along the red bonds.
(b) Schematic T = 0 phase diagram obtained from DMRG
and mean-field theory. From left to right, the phases are a
global spin singlet, Z2 symmetry breaking antiferromagnet,
canted antiferromagnet, and the polarized phase. The crit-
ical points Hc1 and Hcm are in the Ising universality class
while Hc2 is a crossover.

Here i, j index lattice sites, A,B are sublattices, and
α = x, y, z. The x, y, z directions correspond, respec-
tively, to the a∗, b = b∗, and c axes of the C2/m lattice
structure. The sublattice-dependence of the g-tensor al-
lows for a staggered component gAzx = −gBzx, which is
essential to the universal physics we will describe. The
“minimal model” for the physics of interest is signifi-
cantly simpler: it is sufficient to take Jyij > Jxij = Jzij
(for all i, j) and gzy = 0, as y is a principal axis. More
precise constraints discussed below are imposed by con-
sistency with experiments.

As we will see, there is a regime of parameters which
yields the phase diagram in Fig. 1(b). This phase
diagram matches thermodynamic data by providing a
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mechanism for both breaking and restoring an Ising
symmetry as an external magnetic field is tuned. For
Hc1 < H < Hm, the ground state breaks a Z2 symmetry
in spin-space associated with the global transformation
Syi → −S

y
i , while for H > Hm the system exhibits no

symmetry breaking. Importantly, these effects are ob-
servable with weak anisotropy: we believe this can ex-
plain the coexistence of familiar and unfamiliar features
observed in Yb2Si2O7 [1].

We will use a variety of complementary techniques to
develop a theory which accounts for the observations of
Yb2Si2O7. In order to motivate our model (1), we begin
with a review of salient experimental facts. We then use
a linked cluster expansion to compute the triplon spec-
trum and critical fields of the pure Heisenberg model, Hc1

and Hc2 . Our results are consistent with experimental
findings and confirm that the Heisenberg model captures
important aspects of the physics of Yb2Si2O7. Spin-
wave theory is then applied to the full Hamiltonian (1)
to show that the perturbations we have introduced pro-
duce dispersion relations consistent with neutron scatter-
ing data. We then develop a qualitative understanding
of the new order induced by these perturbations through
a self-consistent mean field theory, which reveals the pre-
viously undetermined ground state order to be a canted
antiferromagnet. This physical picture is then quantita-
tively verified via a density matrix renormalization group
(DMRG) analysis, and our concluding remarks suggest
experimental tests of our proposals.

Experimental Considerations.—Plausible modifica-
tions to the Heisenberg model are strongly constrained
by the available experimental data. To establish con-
straints on the parameters introduced in (1), we review
the salient experimental results [1].

1. Critical fields and zero-field specific heat are mod-
eled well by the pure Heisenberg model. In Ref. 1,
it was demonstrated that the Heisenberg model fits
zero-field specific heat data. We will also show that
the Heisenberg model is consistent with the empir-
ical values of Hc1 and Hc2 .

2. The XY antiferromagnet hosts an approximate
Goldstone mode. Within the energy resolution of
available data, there is a gapless mode in the band
structure of the planar antiferromagnet.

3. Singularities in the specific heat present in weak
fields vanish with increasing field. In weak fields,
an Ising-like singularity is observed as a function
of temperature. Increasing the field to Hm ≈ 1.2
Tesla removes the singularity and leads to smooth
behavior as a function of temperature. Ultrasound
velocity and neutron scattering measurements of-
fer additional evidence for the presence of a phase
transition at Hm.

Together, these points suggest that the Heisen-
berg model provides a strong basis for an analysis of
Yb2Si2O7. However, it is clear that the ground state
breaks different symmetries as a function of magnetic
field, which is not a feature of the pure Heisenberg model.
Moreover, the ground state for H > Hm smoothly crosses
over to the polarized limit when H = Hc2 .

Phenomenology of the Model.—The perturbations to
the Heisenberg model which we have introduced are de-
signed to respect these experimental constraints while
providing a mechanism for both breaking and restor-
ing an Ising symmetry as a magnetic field is applied.
The key changes are to the XY Heisenberg couplings,
Jyij = (1 + λ) Jxij , and a staggered g-tensor component

gzx � gzz, g
A
zx = −gBzx. By choosing λ � 1, the first

two experimental points are addressed: many qualita-
tive features of the Heisenberg model are preserved and
the Goldstone mode is only weakly gapped. The stag-
gered g-tensor creates a field-dependent competition be-
tween antiferromagnetic orders in the X-Y plane. In weak
magnetic fields (Hc1 < H < Hm), the YY coupling domi-
nates, and the ground state breaks the Z2 spin symmetry
of the Hamiltonian. In larger magnetic fields (H > Hm),
no symmetry is broken because the staggered g-tensor
selects a unique antiferromagnetic order. Since it breaks
no symmetries, this state can cross over smoothly to the
polarized limit (H > Hc2).

We note that a staggered g-tensor is forbidden by the
inversion symmetry of the C2/m crystal structure. How-
ever, weak deviations from this structure due to lattice
distortions are not ruled out by available data. Such a
distortion has clear experimental signatures (see the con-
cluding section). The required weakness of our staggered
g-tensor (see Fig. 5 and surrounding discussions) is con-
sistent with a distortion-based explanation.

Further, we have explored similar models with uniform
g-tensors and found that they do not reproduce the phase
diagram of Fig. 1. Essentially, a uniform g-tensor does
not lead to a field-dependent competition between anti-
ferromagnetic orders: instead, spins simply have a polar-
ization in the x − z plane proportional to the effective
field in each direction. While we have not completely
ruled out the possibility that a model with inversion sym-
metry could produce the correct universal physics, we
believe that no such model is consistent with the afore-
mentioned experimental constraints.

The parameters we will choose throughout the paper,
unless otherwise noted, are λ = 0.03 and gzx = gzz/100.
We take the x-component of the Heisenberg coupling to
be the value obtained experimentally for the isotropic
Heisenberg model, Jx1 = 0.2173 meV, Jx2 = 0.0891 meV.
Conversions to physical magnetic fields are done with g-
factors measured in [1]. We have found that our results
do not qualitatively depend on these choices except in
our DMRG analysis, where this issue is discussed.

Linked-Cluster Expansion.—Here we simplify to the
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FIG. 2. Band gap as a function of field in linear spin-wave
theory. Other than the phase transition between spin wave
solutions at H = Hm (see text), the system is gapped with an
energy scale near the energy resolution of available neutron
scattering data. For H > Hc2 the band gap scales linearly
with H.

isotropic Heisenberg model (λ = 0) and assume the z-
axis is a principal axis of g (gzα ∝ δzα). We will pertur-
batively compute the critical fields of the BEC transition
and show that the result is consistent with experiments.
In the limit J2 = h = 0, the ground state of (1) is a
collection of independent spin singlets. For finite J2 with
J2/J1 � 1, the ground state remains in the S = 0 sector
with a gap to mobile triplet excitations. We compute the
spectrum of these “single-particle” states with the linked
cluster formalism. This yields a perturbative expression
in J2/J1 which accurately describes the thermodynamic
limit [14–16].

The resulting spectrum has a minimum at k = 0, and
we find that (defining J2/J1 = α)

ω (k = 0) = J1

(
1− α− α2 +

5

16
α3 +O

(
α4
))

(2)

For h 6= 0, the Sz = 1 triplet band decreases linearly
in energy leading to a gap closing. The resulting BEC
transition has been studied extensively [9, 17–22]. Choos-
ing the couplings and gyromagnetic factors reported in
Ref. 1, we find the critical field Hc1 ≈ 0.434 Tesla, in
rough agreement with the experimental data. The upper
critical field, Hc2 , of the Heisenberg model can be calcu-
lated exactly by considering the energetic cost of a spin
flip in the polarized phase. We find Hc2 = J1+2J2 ≈ 1.42
Tesla, also in agreement with experiment.

The singlet ansatz for the ground state is not correct
in the presence of anisotropy when h 6= 0. However both
mean-field and DMRG analyses indicate that the system
becomes effectively non-magnetic below Hc1 in the pres-
ence of weak anisotropy (see Fig. 4). The agreement
between these critical fields and the experimental results
provides an a-posteriori justification for our focus on per-
turbative adjustments to the Heisenberg model.

Spin-Wave Theory.—By introducing anisotropy to the
Heisenberg couplings, we have broken the XY symmetry

of the model. We therefore anticipate that the spectrum
is gapped, and the Goldstone mode observed experimen-
tally is in fact massive. Here we will use linear spin-
wave theory to compute the spectrum and show that the
anisotropy-induced gap is consistent with the energy res-
olution of available experimental data.

Our ansatz for the classical spin orientations on sub-
lattices A,B is for a canted antiferromagnet:

SA = S (sin θ cosφ, sin θ sinφ, cos θ)

SB = S (− sin θ cosφ,− sin θ sinφ, cos θ)
(3)

Minimizing the Hamiltonian as a function of θ, φ yields
two solutions. In weak fields,

cos θ =
hz

S
(
J̄z + J̄y

)
cosφ =

hx
(
J̄x + J̄y

)
(
J̄y − J̄x

)√
S2
(
J̄x + J̄y

)2 − h2z
(4)

Here J̄α = Jα1 + 2Jα2 , hz = gzzh, hx = gzxh. The criti-
cal field Hm ≈ 1.2 Tesla is given by cosφ = 1, and agrees
with experimental data. For H > Hm the system transi-
tions to the solution

φ = 0

sin θ =
hz tan θ − hx
S
(
J̄z + J̄x

) (5)

Using the Holstein-Primakoff mapping to bosons, we
obtain a quadratic Hamiltonian which can be diagonal-
ized using standard techniques [23–25]. From the result-
ing dispersion, we extract the band gap as a function
of magnetic field (Fig. 2). The bands are gapped ev-
erywhere except at Hm, which separates the spin-wave
solutions. The value of the gap is consistent with experi-
mental results, which have an energy resolution of ∼0.037
meV.

Cluster Mean Field Theory.—In order to describe the
novel phase observed in Yb2Si2O7, we move on to de-
velop a qualitative understanding of the ground states
of (1). We begin by formulating a mean-field theory us-
ing the bipartite structure of the honeycomb lattice. Let
MA,MB denote the average magnetic moments on sub-
lattices A,B. The enhanced coupling J1 between neigh-
bors along y = b suggests that the fundamental degree of
freedom is a dimer containing spins SA,SB embedded in
an effective field. The Hamiltonian is

H = Jα1 S
α
AS

α
B + 2Jα2 (SαAM

α
B + SαBM

α
A)

−h
∑
α

(
gAzαS

α
A + gBzαS

α
B

) (6)
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FIG. 3. Spin expectation values as a function of magnetic field
obtained from mean field theory (λ = 0.03, gzx = gzz/100).
Note X and Y moments are staggered while Z is uniform.
The presence of a nonzero My for Hc1 < H < Hm indicates
Z2 symmetry breaking and corresponds to the standard mag-
netic phase observed on the high-field side of the BEC phase
transition without anisotropy. The range Hm < H < Hc2 cor-
responds to a canted antiferromagnet which breaks no sym-
metries crosses over to the saturated regime at Hc2 .

We assume gzx � gzz. The Hamiltonian (6) is an-
alyzed with self-consistent methods, starting with an
ansatz for MA,MB and calculating new values Mi ≡
〈ψ|Si|ψ〉, where |ψ〉 is the instantaneous ground state.
These values are updated until convergence is achieved.

For sufficiently small gzx, we find that the solution
in Fig. 3 is energetically favored. For small fields
(H < Hc1), the solution is weakly magnetic due to the
staggered field induced by gzx. Between the critical fields
Hc1 < H < Hc2 , two phases appear, distinguished by
the staggered moment My. The first (H < Hm) exhibits
Z2 symmetry breaking and accounts for the singularity
observed in the specific heat; the latter breaks no sym-
metries and crosses over smoothly to the polarize limit,
as required by the absence of thermodynamic singulari-
ties. This previously unidentified phase is a canted XZ
antiferromagnet.

We note the existence of another mean-field solution in
which My = 0 everywhere. This case does not support
the experimental data as it has no symmetry breaking.
The energetic favorability of one solution over another
depends on the precise anisotropy parameters chosen; it
is unclear how quantum fluctuations will impact that se-
lection. Further, it is not obvious that the inter-dimer
coupling J2 is sufficiently small to justify a mean-field de-
scription. To address these concerns, we employ DMRG
to investigate the stability of our results. There we find
that both mean field solutions survive quantum fluctu-
ations and remain energetically competitive. Further,
there is a regime of parameters in which the solution in
Fig. 3 is favored.

DMRG Analysis.—To verify the mean-field solution,
we use DMRG to compute ground state expectation val-
ues [26]. This tensor network method efficiently simulates

FIG. 4. Spin expectation values as a function of magnetic
field from DMRG (λ = 0.03, gzx = gzz/100). The qualitative
agreement with Fig. 3 confirms that the universal physics
obtained via mean-field theory is accurate. The data again
indicates a field-driven phase transition from a broken sym-
metry state (Hc1 < H < Hm) to a state which breaks no
symmetries (Hm < H < Hc2).

systems which are well-described by the matrix product
state (MPS) ansatz [27–31]. Our system is studied on a
cylinder with a width of four dimers and 128 total spins.

We use a single-site representation of the renormal-
ized tensor network to update each step [32] with the
Hamiltonian (1). To guarantee that the proper symme-
try sector is obtained, we apply pinning fields on the
open boundaries of the system to break the Z2 symme-
try of the Hamiltonian. The pinning field is removed
after two DMRG sweeps, and we find that in the sym-
metry breaking region this produces a lower-energy state
than unbiased DMRG.

From the resulting ground-state wavefunction, local

measurements of quantities Mα =
√∑Ns

i=1〈Ŝαi 〉2/Ns are

performed. The results are shown in Fig. 4 and qualita-
tively match those from mean-field theory. The nonzero
value of My for Hc1 < H < Hm requires Z2 symmetry
breaking. This symmetry is restored for H > Hm, al-
lowing for a smooth crossover to the polarized limit at
Hc2 . The regime Hm < H < Hc2 is distinguished from
the polarized limit both by the large staggered suscep-
tibility of X-moments and the continued growth of the
Z-magnetization.

The results in Fig. 4 are found with gxz = gzz/500.
This value is arbitrary and can affect which mean field
solution is obtained; to account for this, Fig. 5 shows
the dependence of the symmetry-breaking order param-
eter My on gzx in a fixed magnetic field. The solutions
were found by first tuning to H = 0.9T with pinning
fields. The pinning fields are then removed and gzx is
increased. The ground state changes from a Y-ordered
antiferromagnet to a state where My = 0 as gzx in-
creases. The instability of the symmetry-breaking so-
lution to anisotropy in the g-tensor reveals that gzx is
necessarily small. This is consistent with the fact that
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FIG. 5. Dependence of My on the magnitude of the staggered
field Hx = gzxH (H = 0.9T for each point). The value of My

drops off rapidly with gzx, indicating an instability of the
symmetry-breaking mean-field solution to anisotropy in the
g-tensor. Weakness of the anisotropy is therefore critical to
the physics.

a nonzero gzx requires deviations from the C2/m crystal
structure currently proposed experimentally. The quali-
tative features of the phase diagram should be robust to
other perturbations.

Conclusions.—With a variety of theoretical tech-
niques, we have constructed an explanation for the exper-
imentally proposed phase diagram of Yb2Si2O7. These
techniques complement each other; each of them sup-
ports the physical picture presented in this Letter. We
emphasize again that weak perturbations to the Heisen-
berg model can explain the observed thermodynamic re-
sponses of the material, with an associated reduction of
crystallographic symmetry.

Experimental verification of these details remains cru-
cial, and our theory suggests natural tests of itself. The
structure of local magnetic moments in the material can
be probed with nuclear magnetic resonance (NMR) tech-
niques. In particular, we anticipate planar antiferromag-
netic order which collapses onto the a∗ axis with increas-
ing field. In particular, observation of a staggered mag-
netization along a∗ in the regime Hm < H < Hc2 would
confirm that a C2/m forbidden, staggered g-tensor is cru-
cial to describing Yb2Si2O7. Further, more precise neu-
tron scattering measurements may reveal a spin gap for
Hc1 < H < Hm, the magnitude of which will constrain
the XY anisotropy of our model.
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[22] T. Giamarchi, C. Rüegg, and O. Tchernyshyov, Nature
Physics 4, 198–204 (2008).

[23] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098
(1940).

[24] M. Mourigal, W. T. Fuhrman, A. L. Chernyshev,
and M. E. Zhitomirsky, Physical Review B 88 (2013),
10.1103/physrevb.88.094407.

[25] M. E. Zhitomirsky and A. L. Chernyshev, Reviews of
Modern Physics 85, 219–242 (2013).

[26] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[27] T. E. Baker, S. Desrosiers, M. Tremblay, and M. P.

Thompson, arXiv preprint arXiv:1911.11566 (2019).
[28] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys.

Rev. Lett. 59, 799 (1987).
[29] F. Verstraete and J. I. Cirac, Phys. Rev. B 73, 094423

(2006).
[30] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
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