

Science Translational Medicine

1 **Title: Hexachromatic bio-inspired camera for image-guided cancer surgery**

2 **Authors**

3 Steven Blair¹, Missael Garcia¹, Tyler Davis¹, Zhongmin Zhu¹, Zuodong Liang¹, Christian
4 Konopka^{2,3}, Kevin Kauffman⁴, Risto Colanceski⁵, Imran Ferati⁵, Borislav Kondov⁵, Sinisa
5 Stojanovski⁶, Magdalena Bogdanovska Todorovska⁷, Natasha Toleska Dimitrovska⁵,
6 Nexhat Jakupi⁵, Daniela Miladinova⁶, Gordana Petrushevska⁷, Goran Kondov⁵, Wawrzyniec
7 Lawrence Dobrucki^{2,3,10}, Shuming Nie^{1,2,8,9}, and Viktor Gruev^{1,3,10†}

8 **Affiliations**

9 ¹ Department of Electrical and Computer Engineering, University of Illinois at Urbana-
10 Champaign, Urbana, IL 61801, USA

11 ² Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL
12 61801, USA

13 ³ Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-
14 Champaign, Urbana, IL 61801, USA

15 ⁴ Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109,
16 USA

17 ⁵ University Clinic Hospital, Department of Thoracic and Vascular Surgery, Ss. Cyril and
18 Methodius University of Skopje, 1000 Skopje, Republic of North Macedonia.

19 ⁶ University Clinic Hospital, Institute of Pathophysiology and Nuclear Medicine, Ss. Cyril
20 and Methodius University of Skopje, 1000 Skopje, Republic of North Macedonia.

21 ⁷ University Clinic Hospital, Department of Pathology, Ss. Cyril and Methodius University
22 of Skopje, 1000 Skopje, Republic of North Macedonia.

23 ⁸ Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
24 USA

25 ⁹ Department of Materials Science and Engineering, University of Illinois at Urbana-
26 Champaign, Urbana, IL 61801, USA

27 ¹⁰ Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana,
28 IL 61820, USA

29 [†]Corresponding Author Email: vgruev@illinois.edu

35 Related resources:

36 10.1126/scitranslmed.aaf3936;
37 10.1126/scitranslmed.aav2169;
38 10.1126/scitranslmed.aaf6169;
39 10.1126/scitranslmed.3010633

40
41
42 **Overline: Cancer Imaging**
43

44 **One Sentence Summary**

45 A color/near-infrared camera inspired by the mantis shrimp visual system enables tumor
46 detection and lymph node mapping during cancer surgery.

47
48 **Editor's summary:**

49 **Through a shrimp eye brightly**

50 A camera for intraoperative imaging of tumors could improve surgical outcomes, but some
51 imaging technologies have been difficult to translate to clinical practice. Blair et al. designed an
52 imaging system based on the eye of the mantis shrimp. This system detected multiple near-
53 infrared fluorescent signals simultaneously and was tested in a mouse model of human prostate
54 cancer. In support of clinical feasibility, the authors showed that fluorescently labeled sentinel
55 lymph nodes could be detected by the sensor in patients with breast cancer undergoing surgical
56 resection. This bio-inspired imaging sensor could offer a flexible tool for image-guided surgical
57 removal of tumors.

58
59 **Abstract**

60 Cancer affects 1 in 3 people worldwide. Surgery remains the primary curative option for
61 localized cancers, but good prognoses require complete removal of primary tumors and
62 timely recognition of metastases. To expand surgical capabilities and enhance patient
63 outcomes, we developed a six-channel color/near-infrared image sensor inspired by the
64 mantis shrimp visual system that enabled near-infrared fluorescence image guidance during
65 surgery. The mantis shrimp's unique anatomy, which maximizes the number of photons
66 contributing to and the amount of information contained in each glimpse of its surroundings,
67 is recapitulated in our single-chip imaging system that integrates arrays of vertically stacked
68 silicon photodetectors and pixelated spectral filters. To provide information about tumor
69 location unavailable from a single instrument, we tuned three color channels to permit an

70 intuitive perspective of the surgical procedure and three near-infrared channels to permit
71 multifunctional imaging of optical probes highlighting cancerous tissue and other features
72 characterizing surrounding tissue. In nude athymic mice carrying human prostate tumors,
73 our image sensor enabled simultaneous detection of two tumor-targeted fluorophores,
74 distinguishing diseased from healthy tissue in an estimated 92% of all cases, and permitted
75 extraction of near-infrared structured illumination, mapping the tumors' and the surgical
76 site's three-dimensional topography to within 1.2 mm error. In the operating room, during
77 surgical resection in eighteen patients with breast cancer, our image sensor further enabled
78 sentinel lymph node mapping using clinically approved near-infrared fluorophores. The
79 flexibility and performance afforded by this simple and compact architecture highlights the
80 benefits of biologically inspired sensors in image-guided surgery.

81 **Introduction**

82 As humans have pursued rapid advancements in digital cameras, we have also found new
83 biomedical applications for those cameras with surgical guidance provided by intraoperative
84 imagers (1-4) and pathological samples identified by lab-on-a-chip devices (5). For diseases
85 like cancer, where removal of primary tumors and confirmation of negative margins are
86 critical to treatment, these aids to surgery and pathology offer great promise; however, there
87 is a notable gap in the translation of many imaging technologies to clinical practice.

88 As an example, near-infrared fluorescence image-guided surgery has shown enormous
89 potential for cancer surgery due to the low autofluorescence and scattering of tissues at near-
90 infrared wavelengths, enabling large signal-to-background ratios and imaging depths while
91 eschewing damaging ionizing radiation (6-10). With spectral sensitivity spanning the visible
92 and near-infrared, digital cameras would seem well-suited to color imaging of surgical sites
93 and near-infrared imaging of fluorescently labeled tumors; however, state-of-the-art near-
94 infrared fluorescence imaging systems suffer from complex architectures and narrow
95 feature sets that have hindered adoption of next generation tumor-targeted fluorophores as
96 well as currently available nonspecific fluorophores. The first fluorescence-guided surgery
97 was performed over 70 years ago (11), yet these issues have prevented near-infrared
98 fluorescence image-guided surgery from being widely accepted as standard of care. Most
99 physicians thus continue to rely on their unaided senses of sight and touch (3, 12, 13) which
100 are, unfortunately, not optimized for the task: incomplete tumor resection occurs in 25% of
101 patients with breast cancer, 35% of patients with colon cancer, and 40% of patients with
102 head and neck cancer (14). It would seem, then, that the solution to near-infrared

103 fluorescence image-guided surgery lies somewhere between the digital cameras that
104 engineering has manufactured and the eyes that biology has conceived.

105 The optimization of both manmade digital cameras and naturally evolved eyes has been
106 driven by selection toward maximum fitness. Digital cameras have developed over several
107 decades to satisfy consumers documenting daily life in real time and at high resolution (15),
108 while eyes have evolved over millions of years to facilitate the complex decisions that
109 permit survival of the species (16). Such divergent evolutionary pathways have created
110 vastly different visual systems. Engineers have achieved frame rates and spatial resolutions
111 that surpass nature (17) while offering quantum efficiencies, dynamic ranges, and signal-
112 to-noise ratios that can be tuned over tremendous ranges. Biology has in turn seized the
113 upper hand with visual systems that detect spectral information with extremely efficient and
114 effective architectures (18, 19); for example, the mantis shrimp visual system, which fits 16
115 types of cone cells onto compact eyestalks, is unmatched by any manmade spectral camera
116 in power consumption and information density. The marriage of the optimized
117 optoelectronics built into digital cameras and the diverse functionality observed in eyes has
118 borne imaging systems with sensory capabilities exceeding those previously provided by
119 engineers and biology alike (10, 20, 21), suggesting a future for near-infrared fluorescence
120 image-guided surgery.

121 **Results**

122 **A bio-inspired image sensor for near-infrared fluorescence image-guided surgery**

123 Two key trends jeopardize potential solutions for near-infrared fluorescence image-guided
124 surgery. The first trend involves architectures: existing instruments rely on two architectures
125 that are poorly matched to the clinical context (table S1). In division-of-time architectures,
126 a filter wheel isolates different spectral channels at different times, permitting all spectral
127 channels to be captured by the same image sensor at distinct time points. This collection of
128 spectral information over time requires reduced exposure times with increasing channel
129 counts, maintaining real-time frame rates but reducing fluorescence signal-to-noise ratios,
130 and introduces co-registration error between spectral channels due to interframe motion. In
131 division-of-optical-path architectures, dichroic beamsplitters or dichroic/trichroic prisms
132 direct different spectral channels along different optical paths, permitting all spectral
133 channels to be captured by distinct image sensors at the same time point. This collection of
134 spectral information across space guarantees increased device sizes with increasing channel

counts, demanding additional relay optics that impact image quality. The second trend involves feature sets: existing instruments typically image a single fluorescent probe (tables S1 and S2), providing insufficient sensitivity and specificity for real physiology. Due to variations in inter- and intratumor biomarkers, a single tumor-targeted probe may fail to detect metastatic tumors or may fail to detect the boundaries of primary tumors. This was confirmed by a recent meta-analysis indicating that up to 40% of metastatic tumors and involved lymph nodes can have biomarkers different from those of the primary tumor (22).

To address these issues, we turned to the mantis shrimp visual system as a blueprint for an artificial image sensor. The mantis shrimp benefits from a simple physical phenomenon that imbues spectral sensitivity: shorter-wavelength photons (i.e., blue light) penetrate shorter distances into their compound eyes than longer-wavelength photons (i.e., red light) due to a wavelength-dependent absorption coefficient (23). As a result, the photosensitive cells at the top of the mantis shrimp's compound eyes preferentially register shorter-wavelength photons, while the photosensitive cells at the bottom preferentially register longer-wavelength photons (Fig. 1A,B). Crystalline cones above the compound eye provide fine-grained spectral filtering, enabling different parts of the eye to see different bands of light (Fig. 1A,B). Ultimately, this unique combination of vertically stacked photodetectors with spectral filters enables 16 spatiotemporally co-registered spectral bands to be constantly probed by microscopic cells, offering increased optical throughput as multiple spectral observations are made without rejecting photons, increased data throughput as multiple spectral observations are made at every point, and increased spatial resolution as spectral observations are distributed vertically as well as laterally.

To mimic the mantis shrimp's multispectral capabilities, we designed and fabricated an image sensor by monolithically integrating an array of vertically stacked silicon photodetectors with an array of pixelated spectral filters (Fig. 1C,D). The absorption length of silicon strongly varies with wavelength, with 99% of blue photons (~400 nm) absorbed within 0.5 μm of penetration and 99% of red photons (~650 nm) absorbed within 16 μm of penetration. Recognizing the high density of photocharge generation by blue photons in a thin sheet near the surface and by red photons in a thick slab farther below the surface, the location and extent of photodiodes in the silicon can be selected to measure the amounts of blue light and red light in a scene: a blue-sensitive photodiode is shallow and of limited extent, whereas a red-sensitive photodiode is deeper and of greater extent. Green photons experience an intermediate absorption coefficient and can be detected with an intermediate

168 photodiode. The spectrum of incident photons can be further shaped with spectral filters,
169 enabling a wide range of distinct responses.

170 An array of vertically stacked photodiodes was fabricated by epitaxial growth of three
171 positively doped (p+) silicon layers with individual thicknesses of 0.8 μm , 2.8 μm , and
172 4.3 μm , followed by ion implantation to generate negatively doped (n+) regions (Fig. 1C,D).
173 The photodiodes were most responsive at \sim 430 nm, \sim 550 nm, and \sim 700 nm but maintained
174 responsiveness at longer wavelengths. An array of pixelated spectral filters was produced
175 by stacking submicron layers of the dielectric materials silicon dioxide, silicon nitride, and
176 hafnium oxide in different quantities and thicknesses on a glass substrate (Fig. 1C-F). The
177 filters were organized in an alternating grid of short-pass filters, with passbands below 700
178 nm, and long-pass filters, with passbands above 700 nm. The monolithically integrated
179 image sensor was finally produced by flip-chip bonding the arrays of vertically stacked
180 photodiodes and pixelated spectral filters (Fig. 1C,D).

181 **Optoelectronic characterization**

182 The spectral response of the complete image sensor was benefitted by the high in-band
183 transmission (\sim 95%) and high out-of-band rejection (optical density \sim 4) of the pixelated
184 spectral filters (Fig. 2A). The three photodiode layers under the short-pass filters maintained
185 distinct spectral responses that peaked under blue light, green light, and red light; the three
186 photodiode layers under the long-pass filters exhibited similar spectral responses that
187 peaked at \sim 700 nm (Fig. 2B), but the differences in the spectral responses across the
188 photodiode layers were substantial enough to enable three different observations of the near-
189 infrared spectrum. Together, the three visible channels under the short-pass filters and the
190 three near-infrared channels under the long-pass filter accounted for a total of six spectral
191 channels—providing hexachromatic vision. As needed, additional notch filters (optical
192 density $>$ 6) were placed over the whole sensor to suppress photons from the excitation light
193 source.

194 The stacked photodiodes' spectral responses compared favorably against scientific cameras
195 optimized for color reproduction, with the centroid wavelengths of our imaging system's
196 color channels (i.e., 507 nm, 563 nm, and 607 nm) (Fig. 2B) falling near those of Teledyne
197 QImaging's MicroPublisher 6's color channels (i.e., 464 nm, 540 nm, and 608 nm) (24).
198 This correspondence was confirmed in color images (like that in fig. S1) where complex
199 natural scenes with diverse color content appeared natural. The optimization toward broadly

shaped quantum efficiencies in the visible spectrum ensured sufficient shaping in the spectral responses at the shorter end of the near-infrared spectrum, allowing the United States Food and Drug Administration-approved fluorescent dyes methylene blue ($\lambda_{\text{em}} \approx 690$ nm) and indocyanine green ($\lambda_{\text{em}} \approx 810$ nm) to induce different signals. Nevertheless, the location and extent of the bottom photodiode offered a benefit farther into the near-infrared spectrum where the spectral response did not degrade until beyond 1000 nm (Fig. 2B), providing a meaningful increase for weak fluorescent signals at the expense of a computationally correctable red hue in color images. Further tuning of the photodiode parameters would enable an application-specific trade-off between color accuracy and near-infrared discrimination when the selected parameters prove insufficient, while maintaining the additional benefits to optical throughput, data throughput, and spatial resolution afforded by the stacked photodiodes.

The image sensor exhibited a read noise of 62 electrons and a linear full well capacity of 101,473 electrons at the middle photodiode, indicating a dynamic range of 64 dB or 10.7 bits at this worst-case photodiode; furthermore, the image sensor exhibited a maximum fixed pattern noise of 0.6% at half linear full-scale range (Fig. 2C). Both the read noise and the fixed pattern noise were affected by difference double sampling within the readout circuit: at the price of an effective doubling of the read noise at each pixel, there was a substantial drop in threshold voltage variation across the image sensor. An additional charge-transfer transistor, a pinning layer, and a floating diffusion for each photodiode would permit correlated double sampling, which would simultaneously reduce read noise and correct offsets, as demonstrated in other complementary metal-oxide-semiconductor (CMOS) fabrication processes using embedded photodiodes (25, 26). The dark current of the image sensor was 4,107 electrons per second in the worst-case at the top photodiode; however, the requirements for image-guided surgery often included a real-time frame rate of ~ 25 frames per second (~ 40 milliseconds per frame), limiting the quantity of dark charge that could be accumulated and the power of dark noise that could be observed after any single exposure. Therefore, common corrections like image sensor cooling would yield a minimal reduction in an already small dark current, producing little improvement in the accumulated dark charge, the observed dark noise, and the resulting signal-to-noise ratio. The quantum efficiencies coupled with this noise performance permitted detection of 201 pM of indocyanine green at 200-ms integration time under 20 mW/cm² of 780 nm laser excitation (Fig. 2D).

Intraoperative imaging of cancers requires simultaneous recording of the plentiful visible photons that outline a patient's anatomical features and the sparse fluorescent photons that highlight the locations of tumors. Visible photons from the surgical lighting undergo a single reflection at the surface of the surgical site before entering the imaging system, whereas near-infrared photons from the fluorescence excitation undergo a complex series of scattering, absorption, excitation, and emission events before collection, ensuring that the fluorescent photons experience far more losses. However, the International Electrotechnical Commission has specified a lower bound on the illuminance of surgical lighting and an upper bound on the irradiance of fluorescence excitation that prevents changes to the light sources sufficient to overcome such losses (27, 28). These asymmetries in optical paths and lighting specifications yield a large dynamic range between the strong visible lighting and the weak fluorescent signal that exceeds ~90 dB in the best case, beyond the 80-dB capability of state-of-the-art sensors. Even if sufficiently large dynamic ranges could be achieved in conventional sensors, for example, by reducing the readout noise and increasing the full well depth, the requirement that the color image remain unsaturated would practically guarantee that the near-infrared image would occupy the lower half of the dynamic range. Due to the Poisson distribution of the shot noise, the signal-to-noise ratio of the near-infrared image would be minimal, increasing the risk that weakly labeled fluorescent targets may not be detected. As a result, our image sensor included programmable readout circuitry that independently controlled the exposure times for the color pixels and near-infrared pixels. This enabled our image sensor to simultaneously acquire high signal-to-noise-ratio images in both the visible and near-infrared spectra.

Simultaneous imaging of multiple near-infrared fluorescent signals

The most important information about the near-infrared spectrum was encoded in the comparative variation across and the overall intensity of the near-infrared channels, not the absolute value of each channel; thus, a transformation was required to map the measured photodiode response to a more intuitive quantity. In practice, the transformation from red-green-blue (RGB) to hue-saturation-value (HSV) used in color image processing proved adept at separating different signals encoded in the near-infrared channels. Under this transformation, hue and saturation represented ratios of differences between the three channels, providing information about the incident spectrum, while value represented the response of the strongest channel, providing information about the incident intensity. Taken together, hue and saturation enabled differentiation of multiple targets (e.g., two fluorescent

266 markers) based on the targets' spectral characteristics (e.g., different emission wavelengths),
267 while value permitted a comparison between the targets' intensities. At the same time, value
268 measured the targets' intensities with maximal signal-to-noise ratio and was preferred when
269 the overall intensity of multiple dyes, not the differences between those dyes, was of interest
270 during decision making. Even without the physical meaning of the total energy across
271 spectral bands, these abstract quantities of hue, saturation, and value permitted application-
272 specific descriptions for image-guided surgery while enabling full use of the near-infrared
273 measurements at each pixel. Images could thus be formed from either the raw quantities or
274 informative transformations of them and presented to the surgical staff on a display.

275 To demonstrate that the image sensor was sensitive to small perturbations of the incident
276 spectrum, we prepared the near-infrared fluorophore indocyanine green in two different
277 solvents, deionized water and fetal bovine serum. When excited with the same light source,
278 the emission peaks from these samples were spectrally separated by 8 nm, but the emission
279 spectra from these samples were clearly distinguished by our image sensor, as evidenced by
280 the separation between the 95% tolerance ellipses for the hues and saturations (Fig. 3A). To
281 illustrate further that the hue-saturation response varied continuously with a smooth change
282 in the incident spectrum, we prepared the near-infrared fluorophores IRDye 680RD and
283 IRDye 800CW in seven volumetric ratios from 10-to-0 to 0-to-10. When excited with two
284 light sources, the single degree of freedom in volumetric ratios dictated that the emitted
285 spectrum from the fluorophore mixture was the volume-weighted average of the emission
286 spectra from the individual fluorophores; indeed, our image sensor returned hues and
287 saturations confined about a one-dimensional manifold with limited overlap between the
288 95% tolerance ellipses associated with different ratios (Fig. 3B), permitting quantification
289 of the relative concentrations of the two dyes. Both of these results were achieved due to
290 the spectral sensitivity, temporal noise performance, and spatial noise performance of the
291 imaging system.

292 The image sensor's ability to distinguish emission spectra has notable applications, but its
293 ability to differentiate emission spectra from excitation spectra is also important. Given that
294 the hue and saturation provide information about the incident spectrum, and that the
295 fluorescent excitation spectrum and the fluorescent emission spectrum are always different,
296 the reflection from an excitation light source and the emission from a fluorophore map to
297 different hue-saturation points, permitting discrimination in the hue-saturation space. This
298 has applications in surgery, where the small number of excitation photons that reflect from

299 the surgical site and pass through the emission filter compete with the potentially small
300 number of emission photons that reach the image sensor. A divergence in response was
301 exhibited in the benchtop experiment shown in Fig. 3C to G, where pixels exposed only to
302 fluorescence excitation or fluorescence emission laid in separate clusters in the hue-
303 saturation space and pixels exposed to a mixture of excitation and emission laid between.
304 This permitted labeling of pixels that were useful (observed mostly emission), useless
305 (observed mostly excitation), and of potential use (observed a mixture of emission and
306 excitation).

307 **Tumor detection in a small-animal model of human prostate cancer**

308 To evaluate the sensitivity to and utility of multiple fluorophores in a surgical context, our
309 imaging system was used to identify fluorescently labeled tumors in a small-animal model
310 of human prostate cancer. Human prostate cancer cells (LNCaP and PC3) were
311 subcutaneously implanted in nude athymic mice, and ~2 weeks later two near-infrared
312 fluorescent optical probes (IRDye 680RD labeled with human recombinant epidermal
313 growth factor [EGF] and IRDye 800CW labeled with 2-deoxy-D-glucose [2-DG]) were
314 intravenously injected into the same mice. After 24 hours, the mice underwent whole body
315 fluorescent imaging with our imaging system before the tumor tissue and healthy tissue
316 were surgically removed and imaged separately. Imaging occurred under 665 nm excitation
317 (targeting IRDye 680RD EGF), 780 nm excitation (targeting IRDye 800CW 2-DG), and
318 mixed 665 nm-780 nm excitation (targeting both IRDye 680RD EGF and IRDye 800CW
319 2-DG).

320 Using the near-infrared information from our imaging system, each tissue sample was
321 scored and classified as either tumor tissue or healthy tissue, and these predictions were
322 compared against ground truth. Receiver operating characteristic (ROC) curves (Fig. 4A)
323 indicated an area under the curve (AUC) of 0.92 under mixed 665 nm-780 nm excitation
324 (IRDye 680RD EGF and IRDye 800CW 2-DG together) compared to 0.77 for 665 nm
325 excitation (IRDye 680RD EGF alone) and 0.75 for 780 nm excitation (IRDye 800CW 2-
326 DG alone). Accounting for the paired design of the imaging study, a dual-tracer strategy
327 using EGF and 2-DG together significantly outperformed single-tracer use of EGF ($p =$
328 0.022) and single-tracer use of 2-DG ($p = 0.016$) when comparing AUCs. Considering the
329 difference between the AUC for the EGF plus 2-DG scenario and the AUCs for the single-
330 tracer scenarios, the 95% confidence interval was (0.03–0.29) for the EGF scenario and

331 (0.04–0.36) for the 2-DG scenario, indicating a statistically significant improvement in
332 tumor scoring.

333 Images composited from color and near-infrared observations of a mouse along with
334 histograms computed from near-infrared observations within its tumors are provided in Fig.
335 4B. Although IRDye 680RD EGF and IRDye 800CW 2-DG were taken up by two tumors,
336 the tracers exhibited substantial heterogeneity between and within those tumors. IRDye
337 680RD EGF produced a consistently stronger fluorescent signal in the tumor on the left
338 flank than the tumor on the right flank, whereas IRDye 800CW 2-DG behaved in the
339 opposite way, producing a stronger signal in the right tumor than the left tumor. Regardless
340 of the overall brightness, the dyes produced a stronger signal in some regions and a weaker
341 signal in others with the intensity generally dropping from the medial region of the tumors
342 to the lateral region. The application of a dual-tracer strategy would counteract the
343 heterogeneity of these single-tracer strategies. In some cases, the two tracers would
344 complement each other, with one tracer accentuating tissues missed by the other tracer; in
345 other cases, the two tracers would supplement each other, with both tracers emphasizing
346 similar cues that should improve confidence in surgical decision making.

347 All three visible channels were required for color imaging of the surgical site, whereas two
348 near-infrared channels were required for near-infrared imaging of the fluorescent dyes
349 (IRDye 680RD EGF with $\lambda_{\text{em}} \approx 693$ nm and IRDye 800CW 2-DG with $\lambda_{\text{em}} \approx 780$ nm),
350 accounting for five of the image sensor's spectral channels. The third near-infrared channel
351 was dedicated to three-dimensional reconstruction using structured illumination from a
352 near-infrared projector (at $\lambda \approx 900$ nm), ensuring full use of all six channels. The projector
353 illuminated the surgical site with a sinusoidal pattern advancing along the wavefront normal,
354 while an algorithm compared the observed phase change to the expected phase change and
355 extracted the phase change induced by the three-dimensional topography; an inverse model
356 then facilitated conversion of these phase changes into a height map. These three-
357 dimensional reconstructions could be generated at a spatial resolution of 1280 by 720 pixels
358 and a frame rate of 30 frames per second while exhibiting an average root-mean-square
359 error of 1.179 mm and an average signal-to-noise ratio of 36.

360 Figure 4C shows representative images of a tumor-bearing mouse before surgery indicating
361 both the fluorescently labeled tumors and the three-dimensional reconstruction; an
362 animation of these images is provided in video S1. Three visible channels worth of
363 information were used to visualize the mouse, while two near-infrared channels worth of

information were used to detect the tumors (Fig. 4D); the remaining near-infrared channel worth of information was used to extract the shape of the mouse and the tumors within the mouse (Fig. 4E). In Figure 4, the tumors were highlighted in either green or blue to emphasize preferential accumulation of either IRDye 680RD EGF or IRDye 800CW 2-DG as measured by normalized fluorescence under 665 nm excitation and 780 nm excitation, emphasizing that different tumors may be more easily detected with different dyes. In the operating room, however, the tumors would normally be identified together under mixed 665 nm-780 nm illumination, permitting the greater diagnostic performance demonstrated by the ROC analysis. This diagnostic information, coupled with inherently co-registered shape information, may improve tumor detection despite intertumoral and intratumoral variations and optimize surgical strategies according to the tumors' size and extent.

375 Clinical feasibility of sentinel lymph node detection in patients with breast cancer

376 To explore translation of a multifluorophore workflow to a clinical environment, our
377 imaging system was used to visualize fluorescently labeled sentinel lymph nodes in patients
378 with early-stage breast cancer. In conventional surgical practice, sentinel lymph node
379 mapping involves the peritumoral administration of radioactive tracers like technetium-
380 99m-labeled human serum albumin colloid (^{99m}Tc -HSA colloid) that can be identified with
381 a gamma probe and dark-colored dyes like indocyanine green and methylene blue that can
382 be observed with the naked eye. Given that indocyanine green and methylene blue are both
383 near-infrared fluorophores, though, it is possible to detect these dyes by their near-infrared
384 fluorescence, enabling identification of sentinel lymph nodes without the radioactivity
385 associated with radiotracers and the limited depth of visualization associated with visible
386 stains. According to the standard of care, ^{99m}Tc -HSA colloid, methylene blue and
387 indocyanine green were administered prior to breast cancer surgery. Based on radioactive
388 signals and visual cues, all suspected lymph nodes were removed from the patient and
389 imaged with our imaging system under 780 nm excitation (for indocyanine green detection),
390 665 nm excitation (for methylene blue detection), and mixed 780 nm-665 nm excitation (for
391 dual indocyanine green and methylene blue detection). Immediately thereafter, the
392 suspected lymph nodes underwent histopathologic analysis to determine whether the
393 resected tissues were lymphatic structures and to evaluate whether they exhibited
394 metastases.

395 A photograph of our imaging system in the operating room is provided in Fig. 5A.
396 Representative images of sentinel lymph nodes in vivo during and ex vivo after surgery are

397 provided in Fig. 5B to F, and a video of a sentinel lymph node resection is provided in video
398 S2. In vivo, indocyanine green and methylene blue collected in different regions of the
399 surgical site at different moments during the operation. From the injection of the dyes
400 through the massage of the tissues to the beginning of resection, the dyes migrated from the
401 injection site to the lymph node as scalpels, retractors, and other tools were introduced
402 throughout the procedure. In such a dynamic environment, where fluorophores were
403 covered and uncovered, modulating the fluorescent emission, and where tools were
404 constantly moving, absorbing and reflecting the fluorescent excitation, it was critical that
405 relevant fluorescent emission be detected and that irrelevant fluorescent excitation be
406 rejected, all while under surgical illumination. Our imaging system, which could detect
407 weak fluorescence emission and differentiate between fluorescence emission and excitation,
408 identified lymph nodes under such demands. Ex vivo, indocyanine green and methylene
409 blue concentrated at different points in different lymph nodes. As the dyes traveled through
410 the lymphatic basin into a lymph node, they exhibited differences in accumulation based on
411 disparities in molecular weight, hydrodynamic radius, and charge; such variation could
412 cause one dye to exhibit a homogeneous response and another dye a highly heterogeneous
413 response even though both dyes were injected at a similar time and place. Again, our
414 imaging system, which could spectrally differentiate the dyes and use that spectral
415 information for application, identified lymph nodes in such a context.

416 Ultimately, our imaging system succeeded at detecting sentinel lymph nodes, providing an
417 AUC of 88% for ex vivo samples with indocyanine green, as well as a true positive rate of
418 84% and a false positive rate of 0% at maximal Youden's index (Table 1).

419

420 **Discussion**

421 When successfully translated to the medical field, new sensing technologies can decrease
422 patients' medical expenses and increase their quality of life. In most hospitals, the primary
423 sensing modalities during surgical procedures are the surgeon's eyesight and touch, leading
424 to subjective discrimination between cancerous and healthy tissues. As a result, there is
425 continued interest in the development of imaging systems that can eliminate the positive
426 tumor margins associated with tumor regrowth and the overly negative tumor margins
427 associated with iatrogenic effects. Unfortunately, the adoption of imaging technologies into
428 the operating room has faced little success. The imaging architectures that have come to

429 dominate within the last 50 years of semiconductor and optical research have produced
430 biomedical imaging systems that are incompatible with the clinical environment and thus
431 lack diagnostic performance under operative conditions (8-10).

432 Here, we have presented a bio-inspired image sensor with hexachromatic vision for image-
433 guided surgical applications. The sensor, which is constructed from arrays of vertically
434 stacked photodetectors and pixelated spectral filters, enables the differentiation of multiple
435 fluorophores across a surgical site without slowing down or otherwise impeding a surgeon's
436 workflow. Near-infrared images are inherently co-registered with visible images in time and
437 space thanks to this architecture, eliminating the ambiguity between anatomical features and
438 fluorescently labeled structures. Tumor detection in a preclinical mouse model of human
439 prostate cancer indicated that this technology could exploit tumor-targeted markers to
440 enhance resection of multifocal, multicentric, and infiltrative cancers. Sentinel lymph node
441 detection for the clinical management of breast cancer in the operating room demonstrated
442 that this technology could detect such markers against a complex background and elucidate
443 their heterogeneous response. With its compact footprint and low weight, which permit
444 seamless integration into the operating room, our bio-inspired imager offers opportunities
445 for quality-based health care as contrast agents continue to evolve.

446 Recent progress in scientific CMOS image sensors has enhanced optoelectronic
447 performance, with some sensors offering sub-electron read noise. Continuous refinement to
448 the CMOS fabrication and post-CMOS integration of these image sensors and their color
449 filter arrays has also facilitated pixels approaching submicron pitches. A previously
450 underexplored technology, stacked photodiode CMOS image sensors have not seen the full
451 benefit of the scientific CMOS image sensor's improvements. Nevertheless, circuit-,
452 system-, and process-level similarities between the two sensors indicate that the largest
453 hurdle to equalizing performance is economic, not scientific (29). Comparing a
454 conventional spectrometer to our imager, there is additional concern that the similarities in
455 the quantum efficiencies for the three near-infrared channels, as well as the limited
456 magnitudes of those quantum efficiencies at longer wavelengths, may negatively impact
457 sensitivity to and discrimination between near-infrared fluorophores. These characteristics
458 have not inhibited our ability to discriminate between common fluorophores, but additional
459 work will be required to identify our sensor's spectral limits as new fluorophores emerge.
460 In its current state, our stacked photodiode imaging system poses solutions to important
461 clinical problems, and with additional improvements, the ability to detect fluorophores at

462 lower concentrations, distinguish fluorophores with closer emission spectra, and capture
463 information in two stacked photodiode pixels that would normally require six conventional
464 pixels should advance patient outcomes. Throughout this transition, our imaging system
465 should further enable lines of inquiry that have previously faced technical obstacles.

466 One such area of exploration is in multifluorophore detection of sentinel lymph nodes,
467 which was investigated as a part of our clinical study. Early instances of sentinel lymph
468 node mapping used either a blue dye or a radiotracer, whereas modern guidance suggests
469 that both agents should be used to improve identification rates and reduce false-negative
470 rates (30, 31). Likewise, early studies into sentinel lymph node staging used a single targeted
471 agent to highlight metastatic lymph nodes, but recent research indicates that paired agents
472 should be used to improve sensitivity and specificity (32-34). However, there have been no
473 clinical studies exploring the complementary use of multiple fluorophores for either sentinel
474 lymph node mapping or sentinel lymph node staging. For example, indocyanine green and
475 methylene blue migrate to lymph nodes via the same mechanisms, namely, drift and
476 diffusion from the injection site through the lymphatic capillaries. However, indocyanine
477 green and methylene blue exhibit notable physiochemical differences, with indocyanine
478 green (775 Da) and human serum albumin (66.5 kDa) forming large complexes and
479 methylene blue (320 Da) experiencing no such interaction with serum proteins. Even though
480 the literature largely treats the two fluorophores as equivalent for sentinel lymph node
481 mapping, these similarities and differences cause them to accumulate in a correlated, but
482 not identical, manner in lymph nodes—a distinction which may carry subtle but meaningful
483 diagnostic information. If fluorescence image-guided sentinel lymph node biopsy is to enter
484 practice, clinicians must understand whether such complementary use can offer sustained
485 improvements and how it can be properly translated, using both nonspecific and tumor-
486 targeted probes. Our study did not fully explore these possibilities, looking only at those
487 nonspecific probes available in the clinic as they are used in the standard of care since
488 tumor-targeted probes have not yet been approved by regulatory bodies. Nevertheless,
489 imaging systems like ours that are equipped for multifluorophore detection can enable both
490 the fundamental studies into probe pharmacokinetics and the practical studies into patient
491 outcomes needed to understand and evaluate these techniques as the field advances.

492 Another area of exploration is in three-dimensional reconstruction of surgical sites, which
493 could not be investigated as a part of our clinical study. In remote surgeries or minimally
494 invasive surgeries where the physician cannot directly view the surgical site, simultaneous

495 three-dimensional profilometry and fluorescence imaging obviates the need for the
496 physician to mentally map the surgical volume from multiple video streams on a flat-screen
497 display, while in ordinary open surgeries, co-registration of the tissue's profile with its
498 fluorescence frees the surgical staff from the need to constantly turn from the patient to a
499 display. It is unclear how dramatically three-dimensional imaging and fluorescence
500 imaging, when combined in this way, would affect surgical outcomes. Surgeons may
501 experience reduced learning curves for some procedures, observe improved standardization
502 in other procedures, and receive new views of surgical sites that enable previously
503 unidentified treatment approaches, but relevant technologies have been rare and
504 underutilized and relevant studies have faced limitations and yielded inconsistent results
505 (35). Our study did not examine whether surgical performance differed based on the
506 presence or absence of a three-dimensional profile, but imaging systems like ours can
507 facilitate this line of inquiry. In open surgeries, our imaging system can be integrated with
508 a near-infrared projector in the surgical lighting system to enable three-dimensional
509 reconstruction of the full surgical field, while in minimally invasive surgeries, our imaging
510 system can be integrated with a near-infrared light channel and a microelectromechanically-
511 actuated grating in an endoscopic lighting system to enable similar reconstruction of the
512 surgical cavity.

513 **Materials and Methods**

514 **Study design**

515 The goal of this study was to develop a camera based on the compound eye of the mantis
516 shrimp and to apply this camera for multi-functional imaging during cancer surgery. The
517 camera's development was verified by optoelectronic characterization, while its application
518 involved two series of experiments. The first series of applied experiments established that
519 the camera could record multiple fluorophores and extract the complementary information
520 encoded in their combined fluorescence. This included benchtop experiments that evaluated
521 whether the emission spectra of various fluorophores could be distinguished and animal
522 experiments that tested whether tumor detection with two tumor-targeted fluorescent probes
523 was superior to that with only one tumor-targeted fluorescent probe. The second series of
524 applied experiments established that the camera could function in the operating room,
525 providing features that were conducive to clinical translation and performance that was
526 equivalent to the current standard of care. This included a benchtop experiment that
527 evaluated whether the excitation spectrum and emission spectrum of a fluorophore could be

528 distinguished and a human study that tested whether sentinel lymph node mapping with
529 near-infrared fluorescent dyes was non-inferior to that with two dark colored dyes and a
530 radiotracer. Additional experiments also explored three-dimensional profilometry with
531 structured illumination and intraoperative imaging during surgical workflows.

532 Surgeons were blinded to our technology during resection. Analysts were not blinded to the
533 tissue's histopathological status during data processing; instead, statistical methods like
534 cross-validation were used to mitigate overfitting and related effects. Randomization was
535 not necessary given that all animals and patients underwent the same procedures.

536 All animal experiments were performed under protocols approved by the University of
537 Illinois Institutional Animal Care and Use Committee. The studies complied with all
538 relevant ethical regulations. All human studies were performed under protocols approved
539 by the Institutional Review Board at the University of Illinois at Urbana-Champaign and
540 the Agency for Drugs and Medical Instruments in Skopje, Republic of North Macedonia;
541 the clinical studies were registered on clinicaltrials.gov (trial ID no. NCT03619967). The
542 studies complied with all relevant ethical regulations and adhered to approved guidelines.
543 All patients gave informed consent before joining this HIPAA-compliant study. Inclusion
544 criteria included: early or progressive stage of breast cancer and ability to understand and
545 willingness to sign written informed consent documents. Exclusion criteria included:
546 presence of inflammatory cancerous tissue, history of allergic reactions to iodide or seafood,
547 failure to detect sentinel lymph nodes with radiocolloid and static gamma camera, history
548 of breast surgery, pregnancy, and unwillingness to enter study.

549 **Animal experiments**

550 Male nude athymic J:NU mice (2-3.5 months old, >30 grams each; Jackson Laboratory)
551 were used for in vivo tumor imaging and ex vivo receiver operating characteristic (ROC)
552 analysis. PC3 and LNCaP cells were incubated, grown to 90% confluence, detached,
553 suspended in Matrigel (Corning), and delivered via subcutaneous injection. The suspension
554 consisted of 2×10^7 cells per 100 μ L of 10% Matrigel, and the injection comprised of 50 μ L
555 of cell-Matrigel solution. For some mice, two subcutaneous injections of LNCaP cells on
556 the left flank and two subcutaneous injections of PC3 cells on the right flank were delivered.
557 For the remaining mice, two subcutaneous injections of PC3 cells, one on each flank, were
558 delivered. The mice were monitored daily for tumors and were imaged when tumors grew
559 to \sim 1 cm diameter.

560 Twenty-four hours before imaging, the animals were anesthetized with 1-2% isoflurane, and
561 their skin was prepared using an alcoholic iodine solution and opened during a jugular vein
562 cut-down procedure. For each mouse, two fluorophores were injected in sequence: 200 μ L
563 of 0.1 nmol/1 μ L IRDye 800CW 2-DG (labeled with 2-deoxy-D-glucose) followed by 100
564 μ L of 2 nmol/100 μ L IRDye 680RD EGF (labeled with human recombinant epidermal
565 growth factor). Using a surgical microscope for direct visualization, each fluorophore was
566 administered using a 30-gauge insulin syringe needle inserted into the jugular vein. After
567 injection, gentle pressure was applied to the injection site with a cotton-tip swab for
568 approximately 30 seconds before the skin was closed with a sterile 6-0 Prolene suture. All
569 procedures were done under aseptic conditions.

570 At imaging time, the mice were anesthetized under 1-2% isoflurane on a heated bed; *in vivo*
571 images were captured; the surgeon euthanized the mice and removed tissue samples,
572 marking each as either cancer-positive tumor or cancer-negative muscle; and *ex vivo* images
573 were captured. To mimic the case where IRDye 800CW 2-DG alone was administered, \sim 20
574 mW/cm² intensity of 780 nm excitation was provided; to mimic the case where IRDye
575 680RD EGF alone was administered, \sim 20 mW/cm² intensity of 665 nm excitation was
576 provided; and to observe both IRDye 800CW 2-DG and IRDye 680RD EGF, both
577 excitations were provided. The imaging system and excitation sources were set up at a \sim 0.5-
578 m working distance. The image sensor was equipped with a Canon EF 50mm f/1.2 lens that
579 was focused on the sample and adjusted to an aperture between \sim f/2.0 and \sim f/4.0. The
580 imaging system was configured to provide a \sim 200-ms to \sim 400-ms exposure for the near-
581 infrared pixels to ensure high signal-to-noise ratio in the fluorescence signal. A total of 7
582 mice were involved, and a total of 48 tissue samples were collected; these tissue samples
583 included 24 tumor tissues (14 PC3 and 10 LNCaP) and 24 healthy tissues.

584 A multistep procedure was required to locate the tissue sample, extract the near-infrared
585 features, and distinguish the tumor tissues from healthy tissues. Raw images were
586 demosaiced and temporally averaged, and regions of interest corresponding to the tissue
587 samples were selected by hand; these regions were spatially averaged. Near-infrared
588 channels were then mapped from red-green-blue representations to hue-saturation-value
589 representations; ultimately, the value (intensity information) was dropped during the
590 classification procedure because the hue and saturation (spectral information) provided
591 sufficient information about the tissue samples. Generation and analysis of ROC curves then
592 followed the procedures described in the Statistical Analysis subsection below.

593 **Human study**

594 Women with breast cancer undergoing concurrent curative surgery and sentinel lymph node
595 dissection were recruited for in vivo imaging and ex vivo imaging. Before the surgical
596 procedure, technetium-99m-labeled human serum albumin colloid (^{99m}Tc -HSA colloid, via
597 Senti-Scint; 834 μCi), indocyanine green (ICG; 2 mL at 0.5 mg ICG per mL saline), and
598 methylene blue (MB; 1 mL at 10 mg MB per mL water) were injected into the patient's
599 tumor area, followed by 5 min of site massage; at 10–15 min postinjection, the surgeon
600 proceeded with the surgery per standard of care. When suspected sentinel lymph nodes were
601 identified using the radioactivity measured with a gamma probe (Europrobe, EuroMedical
602 Instruments) and the visible contrast provided by MB and ICG, the tissues were removed.
603 All resected samples were analyzed using histopathology to confirm or disaffirm sentinel
604 lymph node status.

605 For one set of patients (7 patients; mean \pm standard deviation age: 58 ± 12 years), images
606 of tissues before and during resection were captured. Under operating conditions, bright
607 light from broadband surgical lamps, $\sim 10 \text{ mW/cm}^2$ from a 780 nm laser, and $\sim 10 \text{ mW/cm}^2$
608 from a 665 nm laser were provided. The image sensor was configured to provide a 25-ms
609 exposure for color pixels and a ~ 100 - to ~ 200 -ms exposure for near-infrared pixels and was
610 equipped with a Canon EF 50 mm f/1.2 lens adjusted to an aperture of $\sim \text{f}/2.2$. The imaging
611 system and excitation sources were set up at a ~ 2 -m working distance. These in vivo
612 samples were not incorporated into the ROC analysis. For the remaining patients (11
613 patients; mean \pm standard deviation age: 61 ± 15 years), images of tissues after resection
614 were captured. To mimic the case where ICG alone was administered, $\sim 5 \text{ mW/cm}^2$ intensity
615 of 780 nm excitation was provided; to mimic the case where MB alone was administered,
616 $\sim 5 \text{ mW/cm}^2$ intensity of 665 nm excitation was provided; and to observe both the ICG and
617 MB, both excitations were provided. The image sensor was configured to provide a ~ 200 -
618 ms exposure for near-infrared pixels and was equipped with a Rokinon 50mm f/1.4 lens
619 adjusted to an aperture of $\sim \text{f}/2.0$. The imaging system and excitation sources were set up at
620 a ~ 0.5 -m working distance. These ex vivo samples were incorporated into the ROC analysis:
621 55 tissue samples were collected of which 49 were lymph nodes and 6 were nonlymphatic
622 structures.

623 A multistep procedure was required to locate the tissue sample, extract the near-infrared
624 features, and distinguish the sentinel lymph nodes from nonlymphatic structures. Raw
625 images were demosaiced and temporally averaged, and regions of interests corresponding

626 to the tissue samples were selected by isolating a rectangular window at the image's center
627 and extracting the largest contiguous region with average near-infrared response in the 95th
628 percentile and above; these regions were spatially averaged. Near-infrared channels were
629 then mapped from red-green-blue representations to hue-saturation-value representations.
630 Generation and analysis of ROC curves then followed the procedures described in the
631 Statistical Analysis subsection below.

632 **Statistical analysis**

633 For generation of 95% tolerance ellipses during the fluorescence sensitivity studies, data
634 points were defined as tuples of hues and saturations that laid in a polar coordinate system
635 (i.e., where the hue was the angular coordinate and the saturation was the radial coordinate);
636 however, data points were confined to a sufficiently small region such that the tuples of
637 hues and saturations could be taken to lie in a rectangular coordinate system (i.e., where the
638 hue was the x-coordinate and the saturation was the y-coordinate). All data points were
639 assumed drawn from a binormal distribution. A 95% tolerance ellipse was taken as an
640 ellipse generated by a method that had an approximately 95% probability of covering at
641 least 95% of the population when the empirical mean and covariance were taken as sample
642 estimators of the population statistics. As a result, the 95% tolerance ellipse could be
643 computed using equation (5.9) reported in (36).

644 Generation of ROC curves in both the animal study and human study followed similar
645 procedures. To map the near-infrared signal in the hue-saturation-like/hue-saturation-value-
646 like color space to a classification score appropriate for an ROC analysis without making
647 assumptions on class covariance, quadratic discriminant analysis was used to model
648 probabilities of class membership; to mitigate the risk of overfitting, stratified cross-
649 validation was used in which the data set was broken into folds with equal class distributions
650 and in which the discriminator was trained on out-of-fold samples and tested on in-fold
651 samples. Conventional algorithms for ROC analysis could then be applied to the cross-
652 validated probabilities to evaluate the area under the curve (AUC) for the scorer and to
653 determine the optimal cut-point for a classifier.

654 Statistical analysis of ROC curves was facilitated using a resampling scheme based on the
655 bootstrap method. A family of ROC curves was produced by generating stratified bootstrap
656 samples of the tissue samples and generating ROC curves for each bootstrap sample.
657 Confidence intervals for the AUCs, the true positive rates, and the false positive rates were

658 computed using the bias-corrected and accelerated bootstrap interval: a bias-correction
659 parameter related to statistical bias and an acceleration parameter related to statistical
660 skewness were estimated from the data set and used to correct confidence intervals
661 computed from bootstrapped samples. Confidence intervals were generated at 95%
662 confidence.

663 Comparison of AUCs was facilitated using a bootstrap-based paired difference test. For
664 each scenario of dye administration, stratified bootstrap samples were generated with the
665 same tissue samples, and ROC curves and AUCs were computed for each bootstrap sample.
666 To compare any two dye administration scenarios, the difference between the AUCs
667 observed over all tissue samples was computed, and the probability under the null
668 hypothesis of the observed difference or a more extreme difference was found by finding
669 the corresponding percentile in the distribution of differences between the paired AUCs
670 observed for the bootstrap samples. These tests were run as one-tailed tests of superiority
671 where, for example, the two-dye administration scenario could be presumed better than the
672 one-dye administration scenario. All tests were run at a significance level of $\alpha = 0.05$.

673

674 **Supplementary Materials**

675 Supplementary Materials and Methods

676 Fig. S1. Demonstration of the bio-inspired imaging system's color reproduction for natural
677 scenes.

678 Video S1. Tumor detection in small-animal model of human prostate cancer showing
679 overlaid information from color images of mouse, near-infrared images of fluorescently
680 labeled tumors, and three-dimensional shape of mouse and tumors.

681 Video S2. Sentinel lymph node mapping in patients with breast cancer using near-infrared
682 fluorescence from indocyanine green.

683 Table S1. Optical performance of state-of-the-art near-infrared fluorescence (NIRF)
684 imaging systems compared with our bio-inspired NIRF imager.

685 Table S2. Optical performance of pixelated near-infrared fluorescence (NIRF) imaging
686 systems compared with our bio-inspired NIRF imager.

687 Data S1. Classification scores from the receiver operating characteristic (ROC) analysis of
688 tumor detection in a small-animal model of human prostate cancer.

689 Data S2. Classification scores from the receiver operating characteristic (ROC) analysis of
690 sentinel lymph node detection in patients with breast cancer.

691 **References and Notes**

- 692 1. L. V. Wang, J. Yao, A practical guide to photoacoustic tomography in the life sciences.
693 *Nature Methods* **13**, 627-638 (2016).
- 694 2. H. Tu *et al.*, Stain-free histopathology by programmable supercontinuum pulses. *Nature*
695 *Photonics* **10**, 534-540 (2016).
- 696 3. A. L. Vahrmeijer, M. Huttelman, J. R. van der Vorst, C. J. H. van de Velde, J. V. Frangioni,
697 Image-guided cancer surgery using near-infrared fluorescence. *Nature Reviews Clinical*
698 *Oncology* **10**, 507-518 (2013).
- 699 4. S. H. Yun, S. J. J. Kwok, Light in diagnosis, therapy and surgery. *Nature Biomedical*
700 *Engineering* **1**, (2017).
- 701 5. R. Daw, J. Finkelstein, Lab on a chip. *Nature* **442**, 367 (2006).
- 702 6. G. Hong, A. L. Antaris, H. Dai, Near-infrared fluorophores for biomedical imaging. *Nature*
703 *Biomedical Engineering* **1**, (2017).
- 704 7. G. M. van Dam *et al.*, Intraoperative tumor-specific fluorescence imaging in ovarian cancer
705 by folate receptor- α targeting: first in-human results. *Nature Medicine* **17**, 1315-1319
706 (2011).
- 707 8. A. V. DSouza, H. Lin, E. R. Henderson, K. S. Samkoe, B. W. Pogue, Review of
708 fluorescence guided surgery systems: identification of key performance capabilities beyond
709 indocyanine green imaging. *Journal of Biomedical Optics* **21**, (2016).
- 710 9. R. R. Zhang *et al.*, Beyond the margins: real-time detection of cancer using targeted
711 fluorophores. *Nature Reviews Clinical Oncology* **14**, 347-364 (2017).
- 712 10. M. Garcia *et al.*, Bio-inspired imager improves sensitivity in near-infrared fluorescence
713 image-guided surgery. *Optica* **5**, 413-422 (2018).
- 714 11. G. E. Moore, W. T. Peyton, L. A. French, W. W. Walker, The Clinical Use of Fluorescein
715 in Neurosurgery. *Journal of Neurosurgery* **5**, 392-398 (1948).
- 716 12. M. Koller *et al.*, Implementation and benchmarking of a novel analytical framework to
717 clinically evaluate tumor-specific fluorescent tracers. *Nature Communications* **9**, (2018).

718 13. P. S. Low, S. Singhal, M. Srinivasarao, Fluorescence-guided surgery of cancer:
719 applications, tools and perspectives. *Current Opinion in Chemical Biology* **45**, 64-72
720 (2018).

721 14. R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics, 2017. *CA: A Cancer Journal for*
722 *Clinicians* **67**, 7-30 (2017).

723 15. E. R. Fossum, CMOS image sensors: electronic camera-on-a-chip. *IEEE Transactions on*
724 *Electron Devices* **44**, 1689-1698 (1997).

725 16. C. Darwin, *On the origin of species by means of natural selection, or, The preservation of*
726 *favoured races in the struggle for life*. (John Murray, London, England, 1859).

727 17. Y. M. Song *et al.*, Digital cameras with designs inspired by the arthropod eye. *Nature* **497**,
728 95-99 (2013).

729 18. H. H. Thoen, M. J. How, T.-H. Chiou, J. Marshall, A Different Form of Color Vision in
730 Mantis Shrimp. *Science* **343**, 411-413 (2014).

731 19. T. W. Cronin, S. Johnsen, N. J. Marshall, E. J. Warrant, *Visual Ecology*. (Princeton
732 University Press, Princeton, NJ, 2014).

733 20. J. A. Lenero-Bardallo, D. H. Bryn, P. Hafliger, Bio-Inspired Asynchronous Pixel Event
734 Tricolor Vision Sensor. *IEEE Transactions on Biomedical Circuits and Systems* **8**, 345-357
735 (2014).

736 21. T. York *et al.*, Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal
737 Processing Algorithms and Biomedical Applications. *Proceedings of the IEEE* **102**, 1450-
738 1469 (2014).

739 22. N. Niikura *et al.*, Loss of Human Epidermal Growth Factor Receptor 2 (HER2) Expression
740 in Metastatic Sites of HER2-Overexpressing Primary Breast Tumors. *Journal of Clinical*
741 *Oncology* **30**, 593-599 (2012).

742 23. N. J. Marshall, M. F. Land, C. A. King, T. W. Cronin, The compound eyes of mantis shrimps
743 (Crustacea, Hoplocarida, Stomatopoda). I. Compound eye structure: the detection of
744 polarized light. *Philosophical Transactions of the Royal Society B* **334**, 33-56 (1991).

745 24. Teledyne QImaging, "MicroPublisher 6™ CCD Camera Datasheet," (2019).

746 25. H. E. Rhodes, H. Nozaki, S. Manabe, "US2009/0200580A1 - Image sensor and pixel
747 including a deep photodetector," (Omnivision Technologies, Inc., United States, 2009).

748 26. T. Dai, H.-C. Tai, S. Manabe, H. Nozaki, H. E. Rhodes, "US8228411B2 - Circuit and photo
749 sensor overlap for backside illumination image sensor," (Omnivision Technologies, Inc,
750 United States, 2012).

751 27. International Electrotechnical Commission, "Medical electrical equipment - Part 2-41:
752 Particular requirements for the safety of surgical luminaires and luminaires for diagnosis
753 (IEC 60601-2-41:2000)," (2000).

754 28. International Electrotechnical Commission, "Safety of laser products - Part 1: Equipment
755 classification, requirements and user's guide (IEC 60825-
756 1:1993+AMD1:1997+AMD2:2001 CSV)," (2001).

757 29. R. M. Turner, R. J. Guttosch, in *ICIS '06, International Congress of Imaging Science*.
758 (Society for Imaging Science and Technology, Rochester, NY, 2006), pp. 175-181.

759 30. G. H. Lyman *et al.*, American Society of Clinical Oncology Guideline Recommendations
760 for Sentinel Lymph Node Biopsy in Early-Stage Breast Cancer. *Journal of Clinical*
761 *Oncology* **23**, 7703-7720 (2005).

762 31. H. S. Cody *et al.*, Complementarity of Blue Dye and Isotope in Sentinel Node Localization
763 for Breast Cancer: Univariate and Multivariate Analysis of 966 Procedures. *Annals of*
764 *Surgical Oncology* **8**, 13-19 (2001).

765 32. J. Baeten, J. Haller, H. Shih, V. Ntziachristos, In Vivo Investigation of Breast Cancer
766 Progression by Use of an Internal Control. *Neoplasia* **11**, 220-227 (2009).

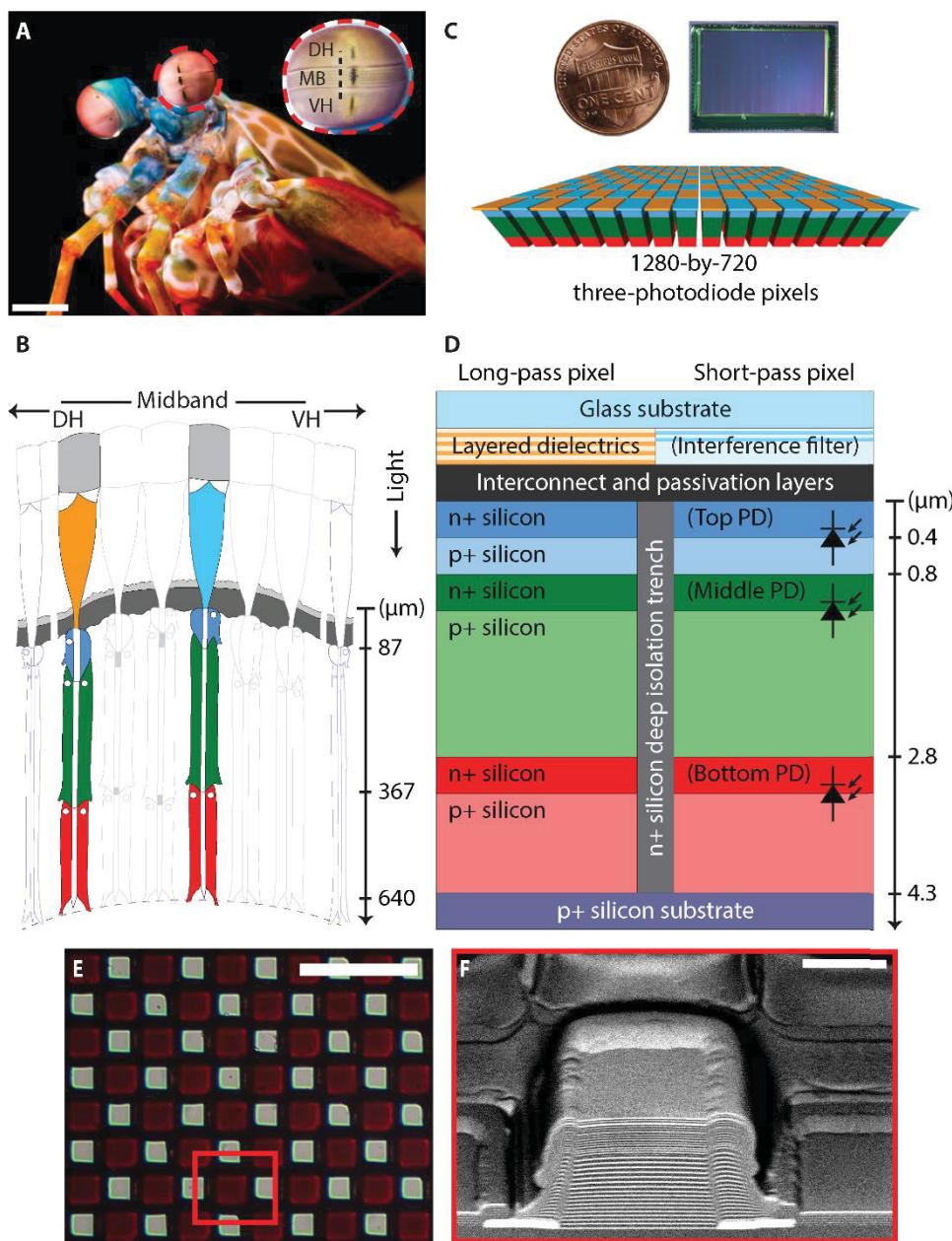
767 33. E. N. Savariar *et al.*, Real-time In Vivo Molecular Detection of Primary Tumors and
768 Metastases with Ratiometric Activatable Cell-Penetrating Peptides. *Cancer Research* **73**,
769 855-864 (2013).

770 34. K. M. Tichauer *et al.*, Microscopic lymph node tumor burden quantified by macroscopic
771 dual-tracer molecular imaging. *Nature Medicine* **20**, 1348-1353 (2014).

772 35. A. Arezzo *et al.*, The use of 3D laparoscopic imaging systems in surgery: EAES consensus
773 development conference 2018. *Surgical Endoscopy* **33**, 3251-3274 (2019).

774 36. V. Chew, Confidence, Prediction, and Tolerance Regions for the Multivariate Normal
775 Distribution. *Journal of the American Statistical Association* **61**, 605-617 (1966).

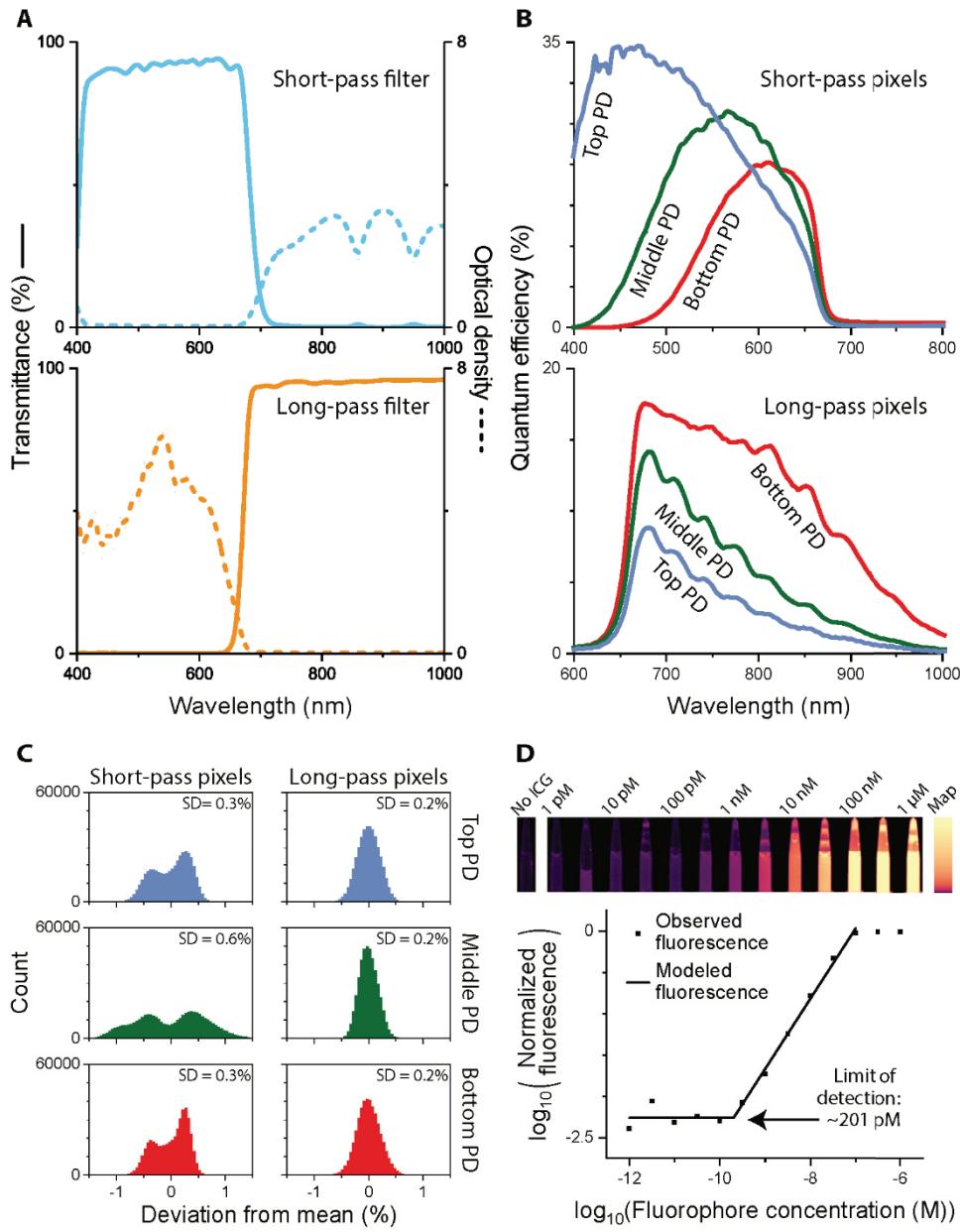
776 37. S. Zhang, S.-T. Yau, Generic nonsinusoidal phase error correction for three-dimensional
777 shape measurement using a digital video projector. *Applied Optics* **46**, 36-43 (2007).


778 38. R. M. Goldstein, H. A. Zebker, C. L. Werner, Satellite radar interferometry: Two-
779 dimensional phase unwrapping. *Radio Science* **23**, 713-720 (1988).

780 39. H. Du, Z. Wang, Three-dimensional shape measurement with an arbitrarily arranged fringe
781 projection profilometry system. *Optics Letters* **32**, 2438-2440 (2007).

782 40. Z. Chen, X. Wang, R. Liang, RGB-NIR multispectral camera. *Optics Express* **22**, 4985-
783 4994 (2014).

784 41. Z. Chen, N. Zhu, S. Pacheco, X. Wang, R. Liang, Single camera imaging system for color
785 and near-infrared fluorescence image guided surgery. *Biomedical Optics Express* **5**, 2791-
786 2797 (2014).


787 **Acknowledgments:** The authors thank James Hutchinson and Patricia J. Watson for
788 manuscript editing. **Funding:** This work was funded by grants from the U.S. Air Force
789 Office of Scientific Research (FA9550-18-1-0278), Congressionally Directed Medical
790 Research Programs (W81XWH-19-1-0299), National Science Foundation (2030421), and
791 Office of Naval Research (N00014-19-1-2400). **Author contributions:** V.G. conceived the
792 idea behind the image sensor and oversaw the entire project. M.G. and V.G. designed the
793 image sensor. Optical evaluation of the image sensor, including optoelectronic
794 characterization and fluorescence sensitivity, was performed by S.B., M.G., T.D., Z.Z.,
795 Z.L., and V.G. Cell cultures were maintained by C.K. and L.W.D. Animal studies were
796 designed, performed, and evaluated by S.B., M.G., T.D., C.K., K.K., L.W.D., S.N., and
797 V.G. The three-dimensional reconstruction algorithm was developed and evaluated by S.B.,
798 M.G., and T.D. Human studies were designed, performed, and evaluated by S.B., M.G.,
799 T.D., R.C., I.F., B.K., S.S., M.B.T., N.T.D., N.J., D.M., G.P., G.K., and V.G. Statistical
800 analysis was provided by S.B. and T.D. The manuscript was written by S.B., M.G., and
801 V.G. All authors proofread the manuscript. **Competing interests:** M.G. and V.G. are listed
802 as inventors on Patent US20200120293A1, “Multispectral imaging sensors and systems.”
803 The authors are not aware of any other competing interests. **Data and materials**
804 **availability:** All data associated with this study are present in the paper or the
805 Supplementary Materials. No materials were used under a material transfer agreement or
806 other license.

811 **Fig. 1. Comparison of the mantis shrimp compound eye and the bio-inspired image sensor.**

812 (A) A photograph of the mantis shrimp *Odontodactylus scyllarus*, and a magnified photograph of
 813 its compound eye (inset) are shown; scale bar indicates 5 mm. (B) A cross-section of the compound
 814 eye of the mantis shrimp *Gonodactylus chiragra* showing the photosensitive cells and spectral
 815 filters; structures without dimensions are not to scale. The photosensitive cells at the bottom,
 816 middle, and top have been colored red, green, and blue to emphasize that longer wavelengths
 817 penetrate farther than shorter wavelengths. (C) A photograph of the bio-inspired imager (top), and
 818 a magnified illustration of the pixel array (bottom) are shown; scale is indicated by the penny. (D)

819 A cross-section of the bio-inspired imager showing the vertically stacked photodiodes, composed
820 from layers of n-doped silicon and p-doped silicon, and the interference filters, composed from
821 layers of different dielectrics; structures without dimensions are not to scale. The photodiodes at
822 the bottom, middle, and top have been colored red, green, and blue to emphasize that longer
823 wavelengths are absorbed deeper than shorter wavelengths. (E) An optical microscope image of the
824 pixelated optical filters showing the long-pass filters as dark colored squares and the short-pass
825 filters as bright colored squares; scale bar indicates 50 μm . (F) A scanning electron microscope
826 image depicting a long-pass filter in the center and short-pass filters on both sides; scale bar
827 indicates 5 μm . Panel A credit, Michael Bok, University of Lund. In panel B, the cross-section is
828 adapted from (23). In panels C and D, the magnified illustration and cross-section present a
829 conceptual view of the device, omitting some details for clarity. DH, dorsal hemisphere; MB,
830 midband; PD, photodiode; VH, ventral hemisphere.

831

832

833

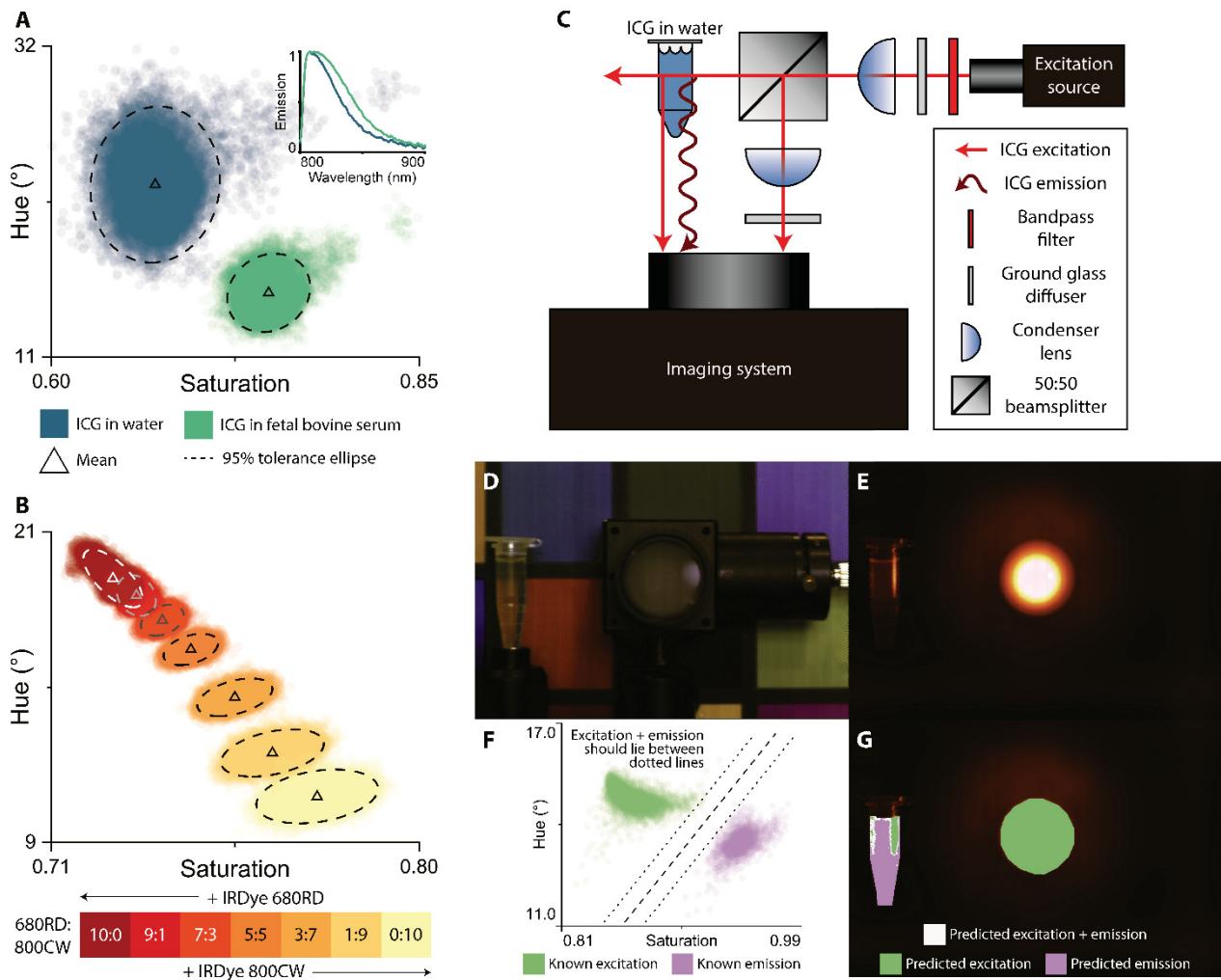
834 **Fig. 2. Optoelectronic characteristics of the bio-inspired imager.** (A) Transmission and optical

835 density curves for the short-pass filters (top) and long-pass filters (bottom) are shown. (B) Quantum

836 efficiency curves for the three photodiode (PD) layers under the short-pass filters (top) and long-

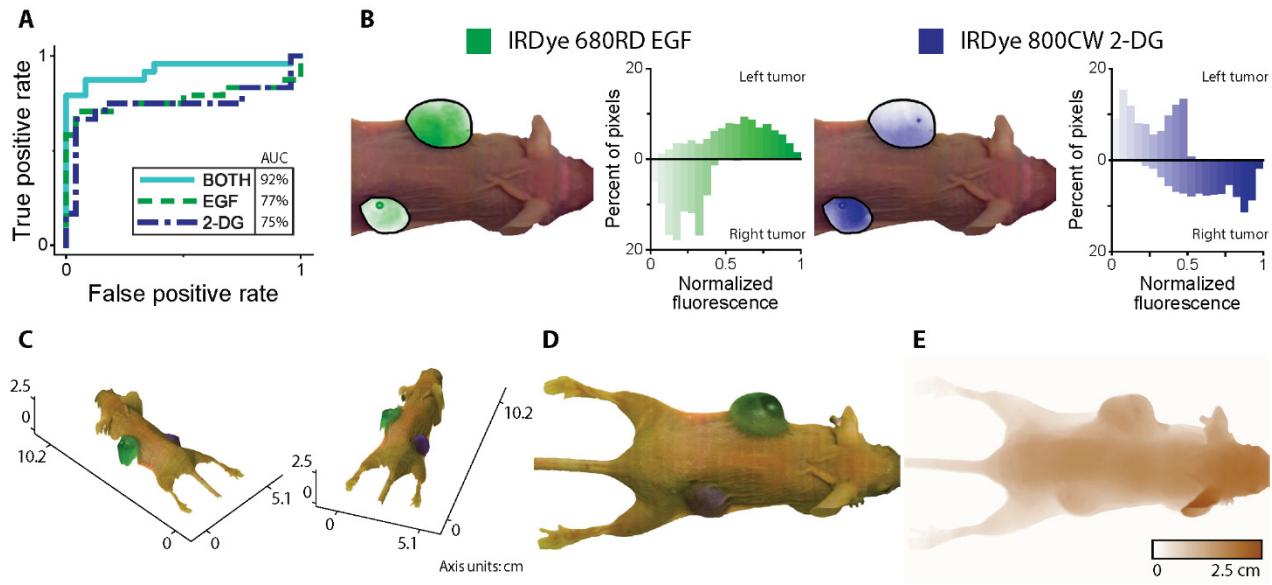
837 pass filters (bottom) are presented. (C) Fixed pattern noise histograms at half linear full-scale range

838 for the three photodiode layers under the short-pass filters (left) and long-pass filters (right) are


839 shown. The fixed pattern noise is the standard deviations of the histograms. (D) Provided is the

840 normalized fluorescence observed and modeled across different concentrations of indocyanine

841 green (ICG); temporally averaged intensity images are displayed against concentration (top), and


842 spatiotemporally averaged intensities are plotted against concentration (bottom). The detection

843 limit (201 pM) is the transition point between the constant region below the noise floor and the
844 linear region above the noise floor. SD, standard deviation.

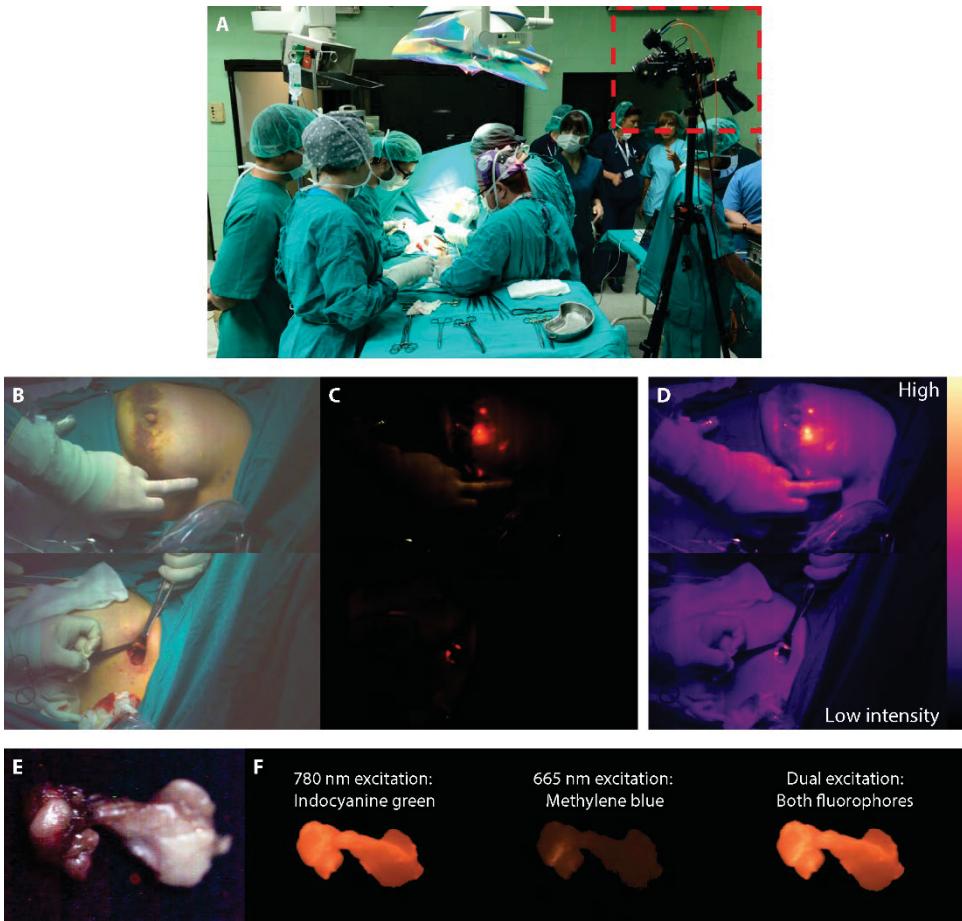


Fig. 3. Imaging capabilities of the bio-inspired imager. (A) Discrimination of indocyanine green (ICG) diluted in two different media (deionized water and fetal bovine serum) showing the uncertainty created by temporal and spatial noise. Observations of different solutions appear in different clusters and are circled by 95% tolerance ellipses ($n_{\text{observations}} = 27,000$ per solution). Emission spectra for the two solutions are displayed in the top-right inset. (B) Discrimination of IRDye 680RD and IRDye 800CW mixed in different volumetric ratios showing the uncertainty created by temporal and spatial noise. Observations of different ratios appear in different clusters and are circled by 95% tolerance ellipses ($n_{\text{observations}} = 27,000$ per solution). Emission spectra for IRDye 680RD and IRDye 800CW are strongest at ~ 694 nm and ~ 794 nm, respectively. (C-G) Discrimination of indocyanine green excitation and emission in the presence of spatial noise. (C, D) Shown is a schematic (C) and a color photograph (D) of the experimental setup. Excitation is projected from the port; emission is generated in and excitation is reflected from the vial. (E) Near-infrared image of the experimental setup. Pure excitation is observed inside the port; pure excitation, pure emission, and mixed excitation-emission are observed inside the vial. (F)

861 Temporally-averaged observations of pure excitation and pure emission cluster differently,
862 permitting classification via a simple margin classifier such as a linear support vector machine
863 ($n_{\text{observations}} = 8,246$ for excitation, 2,665 for emission). Observations of mixed excitation-emission
864 should lie between and are classified accordingly. (G) Labels of pure excitation, pure emission, and
865 mixed excitation-emission can be applied to the near-infrared image using the classifier.

866
867
868 **Fig. 4. Human tumor detection in nude mice using the bio-inspired imaging sensor.** (A)
869 Receiver operating characteristic (ROC) curves for tumor detection in mice using the two dyes
870 IRDye 680RD epidermal growth factor (EGF) and IRDye 800CW 2-deoxy-D-glucose (2-DG)
871 together or each dye alone. Area under the curve (AUC) improves for two dyes compared to one
872 dye ($p < 0.05$; $n_{\text{tumor}} = 24$, $n_{\text{healthy}} = 24$). (B) Shown is the normalized fluorescence from human PC3
873 prostate tumors in a nude athymic mouse overlaid on a color image and plotted in a histogram.
874 IRDye 680RD EGF (left) and IRDye 800CW 2-DG (right) are taken up by the two tumors but the
875 dyes exhibit substantial heterogeneity between and within those tumors. IRDye 680RD EGF
876 dominates in the left tumor, whereas IRDye 800CW 2-DG dominates in the right tumor. (C) Two
877 color images of the same tumor-bearing mouse showing the estimated three-dimensional profile
878 with the tumors highlighted and the dominant targeted probes indicated (see video S1). (D) Color
879 image of the tumor-bearing mouse showing the tumors highlighted along with the dominant
880 targeted probes as indicated by normalized fluorescence. (E) Three-dimensional profile of the
881 tumor-bearing mouse indicating the out-of-plane height as extracted from structured illumination.

882
883

884 **Fig. 5. Clinical feasibility study using the bio-inspired imaging sensor to map sentinel lymph**
 885 **nodes.** (A) Color photograph of the imaging system (red box, top-right) integrated into the
 886 operating room. (B-D) In vivo images before and after the surgical incision to remove lymph nodes
 887 from a patient with breast cancer, with the fluorophores indocyanine green and methylene blue
 888 administered by injection at the surgical site (see video S2). (B, C) Shown is a color photograph
 889 (B) and near-infrared image in trichromatic format (i.e., with spectral discrimination) (C) of the
 890 surgical site; the trichromatic formatting presents the individual responses from the three near-
 891 infrared channels like a color image, preserving the spectral information. Dye injection points and
 892 sentinel lymph nodes exhibit high signal-to-background ratio with no false positives due to specular
 893 reflections. (D) Shown is a near-infrared image in monochromatic format (i.e., without spectral
 894 discrimination) of the surgical site; the monochromatic formatting presents the aggregate response
 895 across the three-near infrared channels like an intensity image, eliminating the spectral information.
 896 Surgical instruments appear as false positives due to the strong signal from specular reflection. (E,
 897 F) An ex vivo resected lymph node presented as a color photograph (E) and as near-infrared images
 898 (F) representing indocyanine green alone (left), methylene blue alone (center), and both dyes
 899 together (right). The two dyes accumulate differently in different tissue sites. In vivo images are

900 representative of 7 patients; ex vivo images are representative of 49 resected lymph nodes collected
901 from eleven patients.

902
903 **Table 1. Clinical feasibility study with the bio-inspired imaging sensor to map sentinel lymph**
904 **nodes.** Receiver operating characteristic analysis for sentinel lymph node mapping using
905 indocyanine green in eleven patients with breast cancer undergoing surgical resection ($n_{lymph} = 49$,
906 $n_{non-lymphatic} = 6$). The optimum true positive rate and optimum false positive rate were evaluated at
907 the threshold with maximal Youden's index.

Estimate	Mean	95% confidence interval
Area under the curve	88%	77.9–96.6%
Optimum true positive rate	84%	73.5–93.9%
Optimum false positive rate	0%	0–0%

912 **SUPPLEMENTARY MATERIALS**

913 Supplementary Materials and Methods

914 Assembly of imaging system

915 Operation of imaging system

916 Optoelectronic characterization

917 Fluorescence sensitivity

918 Cell culture

919 Animal experiments

920 Three-dimensional reconstruction

921 Fig. S1. Demonstration of the bio-inspired imaging system's color reproduction for natural
922 scenes.

923 Video S1. Tumor detection in small-animal model of human prostate cancer showing
924 overlaid information from color images of mouse, near-infrared images of fluorescently
925 labeled tumors, and three-dimensional shape of mouse and tumors.

926 Video S2. Sentinel lymph node mapping in patients with breast cancer using near-infrared
927 fluorescence from indocyanine green.

928 Table S1. Optical performance of state-of-the-art near-infrared fluorescence (NIRF)
929 imaging systems compared with our bio-inspired NIRF imager.

930 Table S2. Optical performance of pixelated near-infrared fluorescence (NIRF) imaging
931 systems compared with our bio-inspired NIRF imager.

932 Data S1. Classification scores from the receiver operating characteristic (ROC) analysis of
933 tumor detection in a small-animal model of human prostate cancer.

934 Data S2. Classification scores from the receiver operating characteristic (ROC) analysis of
935 sentinel lymph node detection in patients with breast cancer.

937 **Supplementary Materials and Methods**938 **Assembly of imaging system**

939 The array of three vertically stacked photodiodes was fabricated using a specialized 180 nm
940 complementary metal-oxide-semiconductor (CMOS) process and packaged in a ceramic
941 housing by Sigma Corporation, and the array of pixelated long-pass filters and short-pass
942 filters was produced using alternating steps of deposition and lift-off on a glass substrate by
943 Salvo Technologies. The imager and filters were aligned using a submicron-resolution, six-
944 degree-of-freedom positioning stage and were flip-chip bonded using ultraviolet-curing
945 optical adhesives at the University of Illinois at Urbana-Champaign. The stacked
946 photodiodes were fabricated with a pitch of 7.8 μm , while the spectral filters were produced
947 with a pitch of 15.6 μm . During the initial alignment, the two arrays were adjusted so that
948 each spectral filter was centered over a stacked photodiode; subsequently, images were
949 formed from those pixels where a spectral filter completely covered a stacked photodiode.
950 Diagrams of and specifications for the imaging system do not include those pixels where
951 multiple spectral filters covered a stacked photodiode.

952 Two microscope images were collected of pixelated filters that were not integrated into the
953 complete imaging system. An optical microscope image was taken without modifications
954 to the pixelated filters, while a scanning electron microscope image was taken after a small
955 area of roughly 50 μm by 20 μm was milled via focused ion beam.

956 **Operation of imaging system**

957 As appropriate, several transformations were applied to images captured with the system
958 according to accepted practice in the imaging community. To account for dark currents and
959 other offsets, dark images were removed from images before additional processing. To
960 mitigate the effects of spatial nonuniformity in the image sensor, an affine transformation
961 (i.e., multiplication by a gain and addition of an offset) was applied across all photodiodes
962 and all channels so that every photodiode in each channel would return an identical value
963 when illuminated by a uniform source. Since observations from the visible spectrum can
964 only be made under the short-pass filters and observations from the near-infrared spectrum
965 can only be made under the long-pass filters, a demosaicing routine was used to extract each
966 set of observations from the corresponding set of pixels and to bilinearly interpolate each
967 set of observations across the entire pixel array. To bring the spectral response provided by
968 the image sensor in line with the spectral response provided by the human eye, an affine
969 transformation (i.e., multiplication by a color correction matrix and addition of an offset
970 vector) was applied to convert the three measurements made at every pixel in the color
971 channel to the color measurements that would be made at every pixel by a CIE 1931
972 standard observer.

973 The transformation from a red-green-blue (RGB) color space to a hue-saturation-value
974 (HSV) color space was used to map the three near-infrared observations under each long-
975 pass filter to two components that described the near-infrared spectrum (hue and saturation)
976 and one component that described the near-infrared intensity (value). The observation from
977 the bottom photodiode was taken as R , the observation from the middle photodiode was
978 taken as G , and the observation from the top photodiode was taken as B ; then, the hue H ,
979 the saturation S , and the value V were defined as:

$$H = \begin{cases} 0 & \text{if } \max(R, G, B) = \min(R, G, B) \\ 60^\circ \times \left(0 + \frac{G - B}{\max(R, G, B) - \min(R, G, B)}\right) & \text{if } \max(R, G, B) \neq \min(R, G, B) \text{ and } \max(R, G, B) = R \\ 60^\circ \times \left(2 + \frac{B - R}{\max(R, G, B) - \min(R, G, B)}\right) & \text{if } \max(R, G, B) \neq \min(R, G, B) \text{ and } \max(R, G, B) = G \\ 60^\circ \times \left(4 + \frac{R - G}{\max(R, G, B) - \min(R, G, B)}\right) & \text{if } \max(R, G, B) \neq \min(R, G, B) \text{ and } \max(R, G, B) = B \end{cases}$$

$$S = \begin{cases} 0 & \text{if } \max(R, G, B) = 0 \\ \frac{\max(R, G, B) - \min(R, G, B)}{\max(R, G, B)} & \text{if } \max(R, G, B) \neq 0 \end{cases}$$

$$V = \max(R, G, B)$$

Optoelectronic characterization

The transmissions and optical densities of the spectral filters were reported by the manufacturer and are reproduced here.

To evaluate the image sensor's quantum efficiencies, an integrating sphere (IS200-4, Thorlabs) was used to couple light from a computer-controlled monochromator (Acton SP2150 w/ TS-428 bulb, Princeton Instruments) to either the image sensor under test or a power meter (PM100D w/ S130VC sensor, Thorlabs). The monochromator was programmed to sweep from 300 nm to 1100 nm in 3-nm steps, and the image sensor and power meter were used to collect a video and measure the irradiance at each step. First, a responsivity curve was produced for each channel. The videos were linearized and spatiotemporally averaged (over 7 frames and 64,516 pixels near the image centroid), providing a per-pixel digital number for each channel, while the irradiances were multiplied by the pixel's fill factor, photosensitive area, and integration time and divided by the appropriate photon energy, providing a per-pixel photon count; the responsivity curve for each channel was then produced by dividing the per-pixel digital numbers for that channel by the per-pixel photon counts. Second, a quantum efficiency curve was produced for each channel. A conversion gain, defined as the digital number induced by a single photoelectron, was computed for each channel using a photon transfer method; the quantum efficiency curve was then computed for each channel by dividing the responsivity curve for that channel by the conversion gain for that channel.

To evaluate the image sensor's linear full well capacity and linear full-scale range, an integrating sphere (819D-SF-4 or 819D-IS-5.3, Newport) was used to couple light from color light emitting diodes (LEDs) to the image sensor under test. The full well capacity and full-scale range for the photodiodes were measured under the short-pass filters and assumed equal under the long-pass filters since identical photodiodes were used under the short-pass filters and the long-pass filters. When evaluating the full well capacity alongside the read noise, a blue LED and a red LED (M470L4 and M625L4, Thorlabs) were simultaneously mixed to produce equal responses across all three photodiode layers, and when evaluating the full-scale range alongside the fixed pattern noise, a blue LED, a green LED, and a red LED (LZ4-00B208, LZ4-00G108, and LZ4-00R108, LED Engin) were independently enabled to probe the top photodiode layer, the middle photodiode layer, and the bottom photodiode layer, respectively; note that these values should have been identical across both experiments but were independently confirmed each time. Current was driven into or switched between the LEDs as the integration time was adjusted on the image sensor, providing videos for each LED configuration at multiple integration times. The videos were spatiotemporally averaged at each integration time (over all pixels and 95–100 frames), and a plot was produced of spatiotemporal average versus integration time; a piecewise function

1020
1021 composed of a linear function (modeling the linearity of the image sensor) and an inverse
1022 exponential function (modeling the saturation of the image sensor) was fitted to the data.
1023 The bottom of the full-scale range was found by extrapolating the piecewise function's
1024 linear portion to shorter integration times and finding the digital value at zero integration
1025 time, while the top of the full-scale range was found by extrapolating the piecewise
1026 function's linear portion to larger integration times and finding the digital value where the
1027 percent residual between the extrapolated line and actual data exceeded $\pm 1\%$ for the last
1028 time. The full-well capacity was defined as the difference between these two digital numbers
1029 divided by a conversion gain representing the digital number induced by a single electron,
1030 while the full-scale range was simply defined as the difference between these two digital
numbers.

1031 To evaluate the image sensor's read noise and dark current, a lens cap was installed over
1032 the image sensor under test. The image sensor was used to collect videos at multiple
1033 integration times. To compute the read noise, the temporal standard deviation was computed
1034 over each video (over 95 frames), the spatial average (via the median) was computed over
1035 the temporal standard deviations (over all pixels), and a plot was produced of spatially
1036 averaged temporal standard deviation versus integration time; a linear function was fitted to
1037 the data, and the read noise was taken as the spatially averaged temporal standard deviation
1038 extrapolated to minimum integration time. To compute the dark current, the spatiotemporal
1039 average was computed over each video (over 95 frames and all pixels), and a plot was
1040 produced of spatiotemporal averages versus integration time; a linear function was fitted to
1041 the data, and the dark current was taken as the slope. The read noise and the dark current
1042 were converted from quantities in digital numbers to quantities in electrons by dividing
1043 through by a conversion gain representing the digital number induced by a single electron.

1044 To evaluate the image sensor's fixed pattern noise, an integrating sphere (819D-SF-4 or
1045 819D-IS-5.3, Newport) was used to couple light from an incandescent lamp (OSL1 w/
1046 OSL1B bulb, Thorlabs) to the image sensor under test. The incandescent lamp generally
1047 induced a larger response under the long-pass filter than under the short-pass filter and in
1048 the deeper photodiodes than in the shallower photodiodes, so smaller currents/shorter
1049 integration times were generally used for those channels that were more responsive than for
1050 those channels that were less responsive. Current was driven into the incandescent lamp as
1051 the integration time was adjusted on the image sensor, providing videos for each current at
1052 multiple integration times. The video was identified where the spatiotemporal average fell
1053 closest to half linear full-scale range; this video was temporally averaged (over 100 frames),
1054 spatially cropped (to 95% of the frame), and both subtracted by the spatial mean (providing
1055 an array of deviations from the mean) and divided by the spatial mean (providing an array
1056 of percent deviations from the mean). A histogram was produced over the array (producing
1057 the fixed pattern noise histogram), and the standard deviation was computed over the
1058 histogram (producing the fixed pattern noise).

1059 **Fluorescence sensitivity**

1060 For the experiments in this section, the image sensor was equipped with a photographic lens
1061 (50mm f/1.4 AS IF UMC, Rokinon, or EF 50 mm f/1.2L USM, Canon), and samples were
1062 kept in 1.5-mL microcentrifuge tubes (022363204, Eppendorf). Unless otherwise noted, a
1063 diode laser (BWF2-780, B&W Tek), a laser-shaping filter (FF01-769/41 Brightline
1064 bandpass filter, Semrock), and a diffusing lens (ACL2520U-DG15, Thorlabs) were used to
1065 produce 780 nm illumination, while another diode laser (BWF2-665, B&W Tek), a laser-
1066 shaping filter (665.85-1 OD6 Ultra Narrow Bandpass Filter, Alluxa), and a diffusing lens
1067 (ACL2520U-DG15, Thorlabs) were used to produce 665 nm illumination.

To determine the detection limit for indocyanine green (ICG) in fetal bovine serum (FBS), solutions of ICG in 90% FBS were produced via half-log dilution from 1 μ M to 1 pM, and samples of ICG in FBS were collected at each concentration (13 total samples). The lens (Rokinon) was adjusted to f/2.0 aperture, the sensor was configured with 200-ms exposure time, the 780 nm illumination was tuned to 20 mW/cm², and the samples were imaged one-by-one. In this work, the limit of detection was taken as the fluorophore concentration where the average fluorescent signal, as a function of fluorophore concentration, changes from a constant function (below the noise floor) to an increasing function (above the noise floor). Videos of each sample were converted from a red-green-blue representation to a hue-saturation-value representation; the intensity information encoded in the value was retained, while the spectral information encoded in the hue and saturation were discarded. The average signal was established at each concentration by taking the temporal mean at each pixel (over 25 frames) and the spatial mean across pixels (over 1769 pixels near the vial centers), and the average signal, normalized to unit maximum, was plotted against concentration on log-log axes. The concentration where the average signal became constant or began decreasing was identified as the quenching concentration, and a piecewise linear function defined by a zero-slope segment below a threshold, a positively sloped segment above a threshold, and continuity at the threshold was fit using non-linear least squares below the quenching concentration; the limit of detection was taken as the piecewise linear function's threshold. (Note that some fluid was lost during transfer of the 3.16 pM sample from the stock flask to the sample vial; however, the region of interest within the vials was selected so that this reduced volume did not affect the results.)

To demonstrate the capability to differentiate ICG dissolved in two different media, solutions of ICG in deionized water and in FBS were produced at a concentration of 3 μ M. One sample of each solution was collected. The lens (Canon) was adjusted to f/2.2 aperture, the sensor was configured with 200-ms exposure time, and the 780 nm illumination was tuned to 25 mW/cm². Videos were captured of each sample and converted from a red-green-blue representation to a hue-saturation-value representation; the spectral information encoded in the hue and saturation was retained, while the intensity information encoded in the value was discarded. For each solvent, a collection of hue-saturation points was produced by this process; a region of interest of 30-by-30 pixels across 30 frames (27,000 total pixels) was selected, and a 95% tolerance ellipse was obtained using the procedures described in the Statistical Analysis subsection below. The hue-saturation points and the tolerance ellipses were plotted to reveal differentiability between the two solutions. To demonstrate the capability to differentiate between different ratios of IRDye 680RD and IRDye 800CW, solutions of IRDye 680RD and IRDye 800CW in phosphate-buffered saline were produced at a concentration of 1 μ M, and mixtures of the stock solutions were made at volumetric ratios of 10:0, 9:1, 7:3, 5:5, 3:7, 1:9, and 0:10. One sample of each mixture was collected. The lens (Canon) was adjusted to f/2.2 aperture, the sensor was configured with 200-ms exposure time, and the 780 nm and 665 nm illumination were each tuned to 20 mW/cm². Videos were captured of each sample and analyzed as previously described.

To demonstrate that excitation and emission spectra could be differentiated, a scene containing a mixture between excitation and emission spectra was assembled. The 780 nm illumination from a diode laser (BWF2-780, B&W Tek) was passed through a laser-shaping filter (FF01-769/41 Brightline bandpass filter, Semrock), a ground glass diffuser (DG05-120, Thorlabs), and a condenser lens (ACL25416U, Thorlabs) before incidence on a 50:50 beamsplitter (CM1-BS1, Thorlabs). One half of the total power was directed toward a condenser lens (ACL25416U, Thorlabs) and a ground glass diffuser (DG05-120, Thorlabs) such that this light could be projected outward; the other half was directed toward ICG in

1117 deionized water stored in a microcentrifuge tube such that the light could generate
1118 fluorescence emission within or reflect off the microcentrifuge tube. The lens (Rokinon)
1119 and sensor were set up such that they viewed the projected excitation from the first optical
1120 path as well as the fluorescence emission and reflected excitation from the second optical
1121 path. A 50-frame color/near-infrared video of the scene was captured, and the temporally
1122 averaged near-infrared frame was transformed from a red-green-blue representation to a
1123 hue-saturation-value representation. Pixels were selected from two regions of interest that
1124 corresponded to pure excitation signal (collected over the projection from the first optical
1125 path) and pure emission signal (collected from the center of the vial in the second optical
1126 path); pixels were discarded if the value was too close to the noise floor or too close to
1127 saturation. The value and its intensity information were trimmed away, while the hue and
1128 saturation and their spectral information were retained; a binary linear support vector
1129 machine capable of predicting pure excitation signal or pure emission signal was then
1130 trained on the hues and saturations. Recognizing that the mixed excitation-emission signal
1131 should lie between pure excitation signal and pure emission signal and that the binary linear
1132 support vector machine's margin should lie between these two classes, a three-class
1133 classifier was derived that predicted mixed excitation-emission within the margin and either
1134 pure excitation or pure emission outside the margin. Pixels were then selected from another
1135 region of interest covering the entirety of the projection from the first optical path and the
1136 entirety of the vial in the second optical path. The value and its intensity information were
1137 trimmed away, while the hue and saturation and their spectral information were retained;
1138 the three-class classifier was then tested on the hues and saturations, labeling each pixel as
1139 mixed excitation-emission, pure excitation, or pure emission. Finally, a scatterplot was
1140 generated over the hue-saturation space using the pixels used to train the classifier, and an
1141 image was produced marking the pixel-wise classification from the pixels used to test the
1142 classifier.

1143 **Cell culture**

1144 For the animal procedures, prostate cancer cell lines PC3 and LNCaP were obtained from
1145 the American Type Culture Collection (ATCC) and used for experiments within 6 months
1146 of their receipt. Cell lines were commercially tested for pathogens, including mycoplasma,
1147 through the University of Illinois Department of Animal Resources and Charles River
1148 Research Animal Diagnostic Services. All cells were cultured under the recommended
1149 conditions in a 37 °C humidified incubator with 5% CO₂ atmosphere.

1150 **Animal experiments**

1151 A separate J:NU mouse with 2 PC3 tumors was used to explore the fluorescent signal's
1152 spatial heterogeneity; that mouse was handled similarly to those mice used for *in vivo* tumor
1153 imaging and *ex vivo* receiver operating characteristic analysis. The fluorescent signal within
1154 the tumors was computed by taking the value from the hue-saturation-value representation,
1155 while the normalized fluorescent signal within the tumors was computed by shifting/scaling
1156 the fluorescent signal such that the 1st and 99th percentile, computed across both tumors,
1157 equaled 0 and 1, respectively. For image display (done for both tumors at the same time),
1158 the normalized fluorescent signal was mapped to false color then composited over a color
1159 image; for histogram display (done for one tumor at a time), the pixels were counted for
1160 which the normalized fluorescent signal laid within a given bin, and the pixel count for each
1161 bin was divided by the total pixel count across all bins.

1162 **Three-dimensional reconstruction**

To permit three-dimensional surface reconstruction, structured illumination was used. A near-infrared projector with a 900 nm lamp (EKB Technologies Ltd., Israel) and our imaging system with 900 nm sensitivity were synchronized such that a sinusoidal pattern could be projected onto an object by the near-infrared projector and captured at a high rate by our imaging system. After each frame, the projected pattern underwent a known phase shift, causing the captured pattern to experience an unknown phase shift associated with the object's topology; after 6 frames, a least-squares algorithm provided wrapped values for the unknown phase shift (37), and Goldstein's branch cut method provided unwrapped values for the unknown phase shift (38). Plugging in the phase shift at every pixel coordinate, a 12-term rational function provided the height at every pixel coordinate (39).

To facilitate calibration of the reconstruction model (i.e., the unknown coefficients in the 12-term rational function) and evaluation of the reconstruction error (i.e., between the predicted height and the actual height) a gauge object with known topology was utilized. The gauge object was designed with six ramps leading to six ledges and was fabricated in plastic via stereolithography (with tolerances of ± 0.140 mm). Three ledges (at heights of 9.525 mm, 28.575 mm, and 41.275 mm) were designated for calibration of the reconstruction model, and three ledges (at heights of 15.875 mm, 22.225 mm, and 34.925 mm) were designated for evaluation of the reconstruction error. Sinusoidal fringes were projected onto the gauge object (with a period of ~ 14.50 mm along the ground plane) and were shifted across the gauge object (in discrete steps of 2.42 mm along the ground plane) as near-infrared images were captured (with ~ 5.78 pixels spanning 1 mm along the ground plane). The observed deformation of the sinusoidal fringes along the ramps and the known heights of the ledges were used to populate the reconstruction model via the Levenberg-Marquardt algorithm and to calculate the reconstruction error using the fitted model. The root-mean-square error and signal-to-noise ratio over multiple measurements were evaluated at each point on each evaluation step and were spatially averaged across each step and across all evaluation steps.

1192
1193
1194
1195
1196 **Fig. S1. Demonstration of the bio-inspired imaging system's color reproduction for natural scenes.**

1197 [Placeholder; See attached files.]
1198
1199
1200
1201
1202

Video S1. Tumor detection in small-animal model of human prostate cancer showing overlaid information from color images of mouse, near-infrared images of fluorescently labeled tumors, and three-dimensional shape of mouse and tumors.

1203 [Placeholder; See attached files.]

1204
1205
1206
1207

Video S2. Sentinel lymph node mapping in patients with breast cancer using near-infrared fluorescence from indocyanine green.

1208
1209
1210
Table S1. Optical performance of state-of-the-art near-infrared fluorescence (NIRF) imaging
systems compared with our bio-inspired NIRF imager.

Device	<i>Fluobeam 800</i>	<i>PDE Neo</i>	<i>SPY Elite</i>	<i>Iridium</i>	<i>Spectrum</i>	<i>Solaris</i>	<i>Bio-inspired</i>	<i>Bio-inspired</i>
Company or university	Fluoptics	Hamamatsu	Novadaq	VisionSense	Quest	PerkinElmer	Illinois & WUSTL	Illinois
Reference	(8)	(8)	(8)	(8)	(8)	(8)	(10)	This article
FDA/EMA approved	Yes	Yes	Yes	Yes	Yes	No	No	No
Instrument architecture	Single sensor w/ swappable filters	Single sensor	One-two sensors w/ dual optical paths	Three sensors w/ trichroic prism	Two sensors w/ beam splitter	Single sensor	Single sensor	
Sensor type	CCD	CCD	CCD	CCD	CCD	sCMOS	CMOS	CMOS
Permitted surgical lighting	Dim	Dim	Dim	Dim	On	On	On	On
Supports RGB imaging	No	Yes	No	Yes	Yes	Yes	Yes	Yes
Supports real-time RGB/NIR overlay	No	No	No	Yes	Yes	Yes	Yes	Yes
Number of NIR channels	1	1	1	1	2	2	1	3
Number of simultaneous NIR channels	1	1	1	1	2	1	1	3
Excitation source	750-nm laser	760-nm LEDs	805-nm laser	805-nm laser	LEDs	Filtered LEDs	780-nm laser	665- and 780-nm lasers
Fluorescence detection limit	~5 nM ^a	~15 nM ^a	~5 nM ^a	~50 pM ^a	~10 nM ^a	~1 nM ^a	100 pM ^b	201 pM ^c
Resolution (px)	720 x 576	640 x 480	1024 x 768	960 x 720	NS	1024 x 1024	1280 x 720	1280 x 720
Bit depth	8	8	8	12	12	16	14	14
Maximum frame rate (FPS)	25	NS	NS	NS	20	100	40	30

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
^a IRDye 800CW fluorescence marker was used for the experiment. Limit of detection was computed by plotting the average signal versus concentration and finding the intersection between lines fit to low concentrations and high concentrations.

^b Indocyanine green fluorescence marker was used for the experiment. Limit of detection was computed by modeling the average pixel's response to each concentration and finding the concentration where the average pixel fails to detect the concentration.

^c Indocyanine green fluorescence marker was used for the experiment. Limit of detection was computed by plotting the average signal versus concentration and finding the intersection between lines fit to low concentrations and high concentrations.

Abbreviations: CCD, charge-coupled device; CMOS, complementary metal-oxide semiconductor; EMA, European Medicines Administration; FDA, U.S. Food and Drug Administration; FPS, frames per second; Illinois, University of Illinois at Urbana-Champaign; NIR, near infrared; NS, not stated; RGB, red, green, blue; sCMOS, scientific complementary metal-oxide semiconductor; WUSTL, Washington University in St. Louis.

1228
1229
1230 **Table S2. Optical performance of pixelated near-infrared fluorescence (NIRF) imaging**
systems compared with our bio-inspired NIRF imager.

Device	<i>Piranha4</i>	<i>OV4682</i>	<i>RGB-NIR</i>	<i>Bio-inspired</i>	<i>Bio-inspired</i>
Company or university	Teledyne DALSA	OmniVision	Univ. of Arizona	Illinois & WUSTL	Illinois
Reference	Company website	Company website	(40), (41)	(10)	This article
Sensor type	Line scan CMOS	Full frame CMOS	Full frame CMOS	Full frame CMOS	Full frame CMOS
Filter material	NS	NS	Polymer	Dielectric interference filters	Dielectric interference filters
Supports multiple integration times	Yes	No	No	Yes	Yes
Supports RGB imaging	Yes	Yes	Yes	Yes	Yes
Number of NIR channels	1	1	1	1	3
Maximum OD of NIR filters in visible spectrum	NS	NS	NS	~2.5	~6.2
Maximum OD of RGB filters in NIR spectrum	NS	NS	NS	~2.1	~3.3
ICG detection limit	NS	NS	130 nM ^a	100 pM ^a	201 pM ^b
Resolution (px)	2048 x 4	2688 x 1520	2304 x 1296	1280 x 720	1280 x 720
Bit depth	12	10	12	14	14
Maximum frame rate (FPS)	NA	90	60	40	30

1231
1232 ^a Limit of detection was computed by modeling the average pixel's response to each concentration
1233 and finding the concentration where the average pixel fails to detect the concentration.
1234

1235 ^b Limit of detection was computed by plotting the average signal versus concentration and finding
1236 the intersection between lines fit to low concentrations and high concentrations.
1237

1238 Abbreviations: CMOS, complementary metal-oxide semiconductor; FPS, frames per second; ICG, indocyanine green;
1239 Illinois, University of Illinois at Urbana-Champaign; NIR, near infrared; NA, not applicable; NS, not stated; OD, optical
1240 density; RGB, red, green, blue; WUSTL, Washington University in St. Louis.

1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256

Data S1. Classification scores from the receiver operating characteristic (ROC) analysis of tumor detection in a small-animal model of human prostate cancer. Tissue-level data is provided for the ROC analysis presented in Fig. 4 and described in the text. This data breaks down the number and type of tissues collected from each mouse as well as the classification scores assigned via quadratic discriminant analysis for the three dye administration strategies (IRDye 680RD EGF and IRDye 800CW 2-DG together, IRDye 680RD EGF alone, and IRDye 800CW 2-DG alone). Quadratic discriminant analysis modeled the conditional probability distribution $P(X|y = k)$ where X was the data (a 2-tuple of the hue and saturation) and y was the class (either healthy tissue or tumor tissue), and Bayes' rule provided the posterior probability distribution $P(y = k|X)$. The classification scores were then taken as the decision function $\log P(y = \text{Tumor}|X) - \log P(y = \text{Healthy}|X)$ such that more positive classification scores corresponded to tumor tissues and more negative classification scores to healthy tissues.

[Placeholder; See attached files.]

1257
1258 **Data S2. Classification scores from the receiver operating characteristic (ROC) analysis of**
1259 **sentinel lymph node detection in patients with breast cancer.** Tissue-level data is provided for
1260 the ROC analysis presented in Table 1 and described in the text. This data breaks down the number
1261 and type of tissues collected from each patient as well as the classification scores assigned via
1262 quadratic discriminant analysis for the administration of indocyanine green alone. Quadratic
1263 discriminant analysis modeled the conditional probability distribution $P(X|y = k)$ where X was
1264 the data (a 3-tuple of the hue, saturation, and value) and y was the class (either lymph node or
1265 nonlymphatic structure), and Bayes' rule provided the posterior probability distribution
1266 $P(y = k|X)$. The classification scores were then taken as the decision function
1267 $\log P(y = \text{Lymph}|X) - \log P(y = \text{Nonlymphatic}|X)$ such that more positive classification scores
1268 corresponded to lymph nodes and more negative classification scores to nonlymphatic structures.
1269
1270
1271

[Placeholder; See attached files.]