Taylor & Francis
Taylor & Francis Group

Journal of the
American
Statistical

Association

&

Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uasa20

Estimation of Optimal Individualized Treatment
Rules Using a Covariate-Specific Treatment Effect
Curve With High-Dimensional Covariates

Wenchuan Guo, Xiao-Hua Zhou & Shujie Ma

To cite this article: Wenchuan Guo, Xiao-Hua Zhou & Shujie Ma (2021) Estimation of Optimal
Individualized Treatment Rules Using a Covariate-Specific Treatment Effect Curve With High-
Dimensional Covariates, Journal of the American Statistical Association, 116:533, 309-321, DOI:
10.1080/01621459.2020.1865167

To link to this article: https://doi.org/10.1080/01621459.2020.1865167

View supplementary material Il

. Published online: 09 Mar 2021.

A Submit your article to this journal Il

- Article views: 962

E View related articles Il

View Crossmark datalilll

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uasa20


https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/loi/uasa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2020.1865167
https://doi.org/10.1080/01621459.2020.1865167
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2020.1865167
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2020.1865167
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2020.1865167
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2020.1865167
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2020.1865167&domain=pdf&date_stamp=2021-03-09
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2020.1865167&domain=pdf&date_stamp=2021-03-09

Taylor & Francis

2021, VOL. 116, NO. 533, 309-321: Theory and Methods Special Issue on Precision Medicine and Individualized Policy Discovery Tavir & Frandis G
aylor &Francis Group

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION e
https://doi.org/10.1080/01621459.2020.1865167

‘ W) Check for updates ‘

Estimation of Optimal Individualized Treatment Rules Using a Covariate-Specific
Treatment Effect Curve With High-Dimensional Covariates
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ABSTRACT ARTICLE HISTORY

With a large number of baseline covariates, we propose a new semiparametric modeling strategy for Received April 2019

heterogeneous treatment effect estimation and individualized treatment selection, which are two major Accepted September 2020

goals in personalized medicine. We achieve the first goal through estimating a covariate-specific treatment

effect (CSTE) curve modeled as an unknown function of a weighted linear combination of all baseline KEYWORDS )

covariates. The weight or the coefficient for each covariate is estimated by fitting a sparse semiparametric ~ High-dimensional covariates;

logistic single-index coefficient model. The CSTE curve is estimated by a spline-backfitted kernel procedure Optimal treatment selection;
9 9 R P ! Personalized medicine;

which enables us to further construct a simultaneous confidence band (SCB) for the CSTE curve under Semiparametric model

a desired confidence level. Based on the SCB, we find the subgroups of patients that benefit from each

treatment, so that we can make individualized treatment selection. The innovations of the proposed

method are 3-fold. First, the proposed method can quantify variability associated with the estimated

optimal individualized treatment rule with high-dimensional covariates. Second, the proposed method is

very flexible to depict both local and global associations between the treatment and baseline covariates in

the presence of high-dimensional covariates, and thus it enjoys flexibility while achieving dimensionality

reduction. Third, the SCB achieves the nominal confidence level asymptotically, and it provides a uniform

inferential tool in making individualized treatment decisions. Supplementary materials for this article are

available online.

1. Introduction and Zhang et al. (2018), among others, but it is generally dif-
ficult to build statistical inference upon the estimated ITRs
(Laber and Qian 2019). To solve this problem, Jiang et al.
(2019) proposed an entropy learning method, and Wager and
Athey (2018) established asymptotic normality of a causal forest
estimator.

The second general approach is to model the difference in
average outcomes between two treatment groups conditional on
predictive biomarkers that provide information about the effect
of a therapeutic intervention. There are hybrids from the two
approaches using mean-modeling (Zhang et al. 2012; Taylor,
Cheng, and Foster 2015; Zhang and Zhang 2018; Luckett et
al. 2020), but the hybrid methods also inherit the difficulty of
developing inferential tools from the first general approach. In
this article, we focus on the idea of the second approach. With
a single predictive biomarker, several authors have proposed to
plot the estimated conditional treatment difference against the
biomarker’s values or its percentiles (e.g., a covariate-specific
treatment effect (CSTE) curve) obtained from nonparamet-
ric smoothing, along with its confidence bands, to derive an
optimal ITR (Zhou and Ma 2012; Janes et al. 2014; Ma and
Zhou 2014; Han, Zhou, and Liu 2017). It provides a direct and
effective visual way of using the predictive biomarker for deriv-
ing an ITR, but the nonparametric smoothing method suffers

Personalized medicine aims to tailor medical treatments accord-
ing to patient characteristics, and it has gained much atten-
tion in modern biomedical research. The success of personal-
ized medicine crucially depends on the development of reli-
able statistical tools for estimating an optimal treatment regime
given the data collected from clinical trials or observational
studies (Kosorok and Laber 2019). In the literature, there are
two general statistical approaches and their hybrids for deriv-
ing an optimal individualized treatment rule (ITR) based on
clinical trial data. The first general approach targets at direct
optimization of the population average outcome under an
ITR. Several independent research groups have proposed a
new framework of deriving the ITR that recasts the problem
of maximizing treatment benefit as a weighted classification
problem (Rubin and van der Laan 2012; Zhang et al. 2012;
Zhao et al. 2012; Chen, Zeng, and Kosorok 2016; Zhou et
al. 2017). Several semiparametric and nonparametric methods
have been further proposed under this framework (Zhao et
al. 2012; Huang and Fong 2014; Huang 2015; Laber and Zhao
2015; Zhu, Huang, and Zhou 2018), and they are more robust
against model misspecification than the parametric approaches.
Under this framework, the convergence rates of the result-
ing estimators were thoroughly studied in Zhao et al. (2012)
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from “curse of dimensionality” With multiple biomarkers, Qian
and Murphy (2011) considered a parametric conditional mean
model that involves higher order terms, and employed a penal-
ized method for estimation. Cai et al. (2011) proposed a two-
step method, and Kang, Janes, and Huang (2014) devised a
boosting iterative algorithm to reduce the bias caused by the
model misspecification of a working model. Moreover, Shi et
al. (2018) proposed a penalized multi-stage A-learning, and
Zhu, Zeng, and Song (2019) developed a high-dimensional
Q-learning method to simultaneously estimate the optimal
dynamic treatment regimes and select important variables. The
existing methods try to either provide a flexible modeling strat-
egy by relaxing the restrictive structural assumption embodied
in parametric models, or handle high-dimensional covariates,
but not both.

In our article, we aim at developing a new method that
estimates the outcome model in a flexible way as well as selecting
important variables simultaneously, when a large number of
baseline characteristics such as genetic variables are present.
Moreover, we would like to provide a uniform inferential pro-
cedure that takes into account uncertainty associated with the
estimated optimal ITR, and graphically explores heterogeneity
of treatment effects based on varying levels of biomarkers. To
achieve these goals, we propose a generalization of the CSTE
curve suitable for high dimensional baseline covariates. The
CSTE curve represents the predictive ability of covariates in
evaluating whether a patient responds better to one treatment
over another. It depicts the heterogeneous treatment effects on
the outcome through an unknown function of covariates, and
thus it can visually represent the magnitude of the predictive
ability of the covariates.

We propose a penalized semiparametric modeling approach
for estimating the CSTE curve and selecting variables simulta-
neously. The proposed semiparametric model enjoys flexibil-
ity while achieving dimensionality reduction. It is motivated
by the logistic varying-coefficient model considered in Han,
Zhou, and Liu (2017) for treatment selection with one covariate,
and it meets the immediate needs from modern biomedical
studies which can have a large number of baseline covariates.
To make use of all covariates, one simple but effective way
is to derive a weighted linear combination of all covariates
as a summary predictor, and model the CSTE curve as an
unknown function of this summary predictor. The weight or
the coefficient for each covariate represents how important the
covariate is for the prediction of the outcome. As a result,
our proposed model involves two sets of high-dimensional
coeflicients fed into additive unknown functions for the two
treatment groups. The development of the estimation procedure
and the associated statistical properties is challenging and it
needs different tools from the high-dimensional single-index
model (Radchenko 2015). Moreover, we establish different con-
vergence rates for the estimators of the high-dimensional coef-
ficients and the estimators for the unknown additive functions,
respectively. This new theoretical result makes it possible to
further construct a simultaneous confidence band (SCB) for
the CSTE curve based on the asymptotic extreme value distri-
bution of a spline-backfitted kernel estimator (Wang and Yang
2007; Liu, Yang, and Hardle 2013; Zheng et al. 2016) for the
unknown function of interest, while Radchenko (2015) and

other related works only provide a nonseparable convergence
rate for the estimators of the coefficients and the unknown
function in single-index models. Based on the SCB, we identify
the subgroups of patients that benefit from each treatment, and
the proposed method is flexible enough to depict both local
and global associations between the treatment and baseline
covariates.

The rest of the article is organized as follows. In Section 2,
we introduce the CSTE curve and the proposed semiparamet-
ric logistic single-index coefficient model. Section 3 presents
the estimation procedure and the asymptotic properties of the
proposed estimators. Section 4 illustrates the application of the
CSTE curves and the SCBs for treatment selection. In Sec-
tion 5, we evaluate the finite sample properties of the pro-
posed method via simulation studies, while Section 6 illustrates
the usefulness of the proposed method through the analysis
of a real data example. A discussion is given in Section 7.
All technical proofs are relegated to the online supplementary
materials.

2. Methodology

We consider a sample of # subjects, a binary treatment, denoted
by Z; = 1ifthe subject iis assigned to treatment and Z; = 0 oth-
erwise, a p-dimensional vector of covariates, denoted by X;, and
binary-valued outcomes, denoted by Y;. Let (Yi,Zi,XiT) =
1,...,n, be independent and identically distributed (iid) copies
of (Y,Z,X). The goal is to estimate the optimal treatment
regime using the observed data. We consider the CSTE curve
given in Han, Zhou, and Liu (2017), which has the following
form:

CSTE(X) = logit(E(Y(1)|X)) — logit(E(Y (0)|X)),

where logit(1) = log(u) —log(1 —u),and Y(1) and Y (0) denote
the potential outcomes if the active treatment and the control
treatment are received, respectively (Rubin 2005). Moreover,
Y = ZY(1) + (1 — Z)Y(0). Under the unconfoundeness
assumption such that (Y(0), Y(1)) LZ|X, the CSTE curve can
be re-expressed as

CSTE(X) = logit(E(Y|X,Z = 1)) — logit(E(Y|X, Z = 0)).

Denoting (X, Z) = E(Y|X, Z), we model the logarithm of
odds ratio as

logit(n(X,2)) = a1 (X B1) - Z + ©(X " Ba), (1)

where g1 () and g () are unknown single-valued functions of p

variables, 81 = (B11,...,B1p) and B2 = (Ba1, ..., Bzp) are two
p-vectors of unknown parameters. We see

CSTE(X) = logit((X, 1)) — logit(u(X, 0)) = g1 (X" B).

The two sets of high-dimensional coefficients and the two
unknown functions in (1) are chosen to simultaneously maxi-
mize the log-likelihood function of the binomial distribution.
The proposed model is a flexible semiparametric model and is
robust against model misspecification. We call it sparse logistic
single index coeflicient model (SLSICM). Our SLSICM contains
the varying coefficient (VC) model considered in Han, Zhou,
and Liu (2017) as a special case. We have the same form when



p = 1. As an extension of the VC model, the varying-index
coefficient model considered in Ma and Song (2015) can be
applied to the cases with several covariates and continuous
responses. Moreover, an important and related work, Song et
al. (2017), proposed a semiparametric model in which g; has
a single-index structure and g, is a pure nonparametric func-
tion of X. This model suffers from the curse of dimensionality
when the number of covariates is large. In our article, we allow
the number of covariates to be much larger than sample size.
As a result, our proposed SLSICM involves two sets of high-
dimensional unknown coefficients built into additive unknown
functions with a nonlinear link function, and it is considered as a
hybrid of the high-dimensional single index model (HSIM) and
the nonparametric additive model. Developing the estimation
procedure and the statistical theories for SLSICM is challenging,
and it needs different tools from HSIM. It is worth noting
that estimation of HSIM has been studied in the past several
years, and most existing works use a sliced inverse regression
approach to estimate the index coefficients in HSIM under a
linearity condition on the covariates; see Jiang and Liu (2014)
and Neykov, Liu, and Cai (2016), among others. This method is
not applicable to our setting, and it does not directly estimate
the unknown function. Radchenko (2015) proposed to estimate
the coeflicients and the unknown function in HSIM jointly, but
they only provide a nonseparable convergence rate for the result-
ing estimators of the coeflicients and the unknown function.
In our proposed SLSICM, we establish different convergence
rates for the estimators of the coefficients 8; and B, and the
estimators of the unknown functions g; and g, respectively.
This new theoretical result makes it possible to further construct
the asymptotic SCB based on the asymptotic extreme value
distribution of a spline-backfitted kernel estimator for the CSTE
curve.

Unlike parametric models, the parameter vectors fi are
not identified without further assumptions. For the purpose of

model identification, we assume that 8y for k = 1,2 belong
to the parameter space ® = B = (ﬁ;r’ﬂ;)T Bl =
LB > 0,8t € R,k = 1,2}, where || - || denotes the I,

norm of a vector. This restriction together with Assumption 2
given in Section 3.2 will make the model (1) identifiable. We
will provide a formal proof of the model identifiability in Section
1.1 of the supplementary materials. Based on the constraint that
| Bk |l = 1, we eliminate the first component in B and obtain the
resulting parameter space: ©_1 = {fx_1 = (Bra>- - - ,ﬂkp)T :
Yi1By < Lk = L2} Let fu = \[1—3 ., B The
derivative with respect to the coefficients (B2, - - - ,ka)T can be
easily obtained using the chain rule under the above parameter
space. For high-dimensional problems (with a large number
of covariates), p can be much larger than #n but only a small
number of covariates are important or relevant for treatment
selection. To this end, we assume that the number of nonzero
elements increases as n increases, but it is much smaller than
n . Without loss of generality, we assume that only the first
Sk = Skn components of By are nonzeros, that is, we can write
the true values as B = (Bkis-.-» ks> 0s - - - ,0)T. For model
identifiability, we require one component in fj to be nonzero.
Without loss of generality, we let the first component S, to be
nonzero.
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3. Estimation and Theory
3.1. Algorithm

In this subsection, we discuss the estimation of model (1).
We minimize the negative log-likelihood function simultane-
ously with respect to the parameters Sy and the functions gi
for (k = 1,2). The SLSICM has the form logit(u(X,Z)) =
g1 XTB)-Z+ o) (X B,). Therefore, we seek the minimizer of
the following negative log-likelihood function given (X;, Y;, Z;),
i=1,...,nm

lilo 1 X' Bz X!
” g{l + exp(@1(X; B1)Zi + £(X; B2))}
i=1

1 n
— - ) Ve X B0Zi+ (X pa)) )

i=1

To overcome the problem of high-dimensional covariates, we
exploit the sparsity through parameter regularization. With the
sparsity constraint of Si’s, we minimize the following penalized
negative log-likelihood

1 n
- Z log{1 + exp(g1(X; BVZi + £2(X] B2))}

i=1

1 n 2 P
=~ D Vi O BOZi+ (5 B+ 3 Y p(Bio ),
i=1 k=1 j=2

©)

where p(-) is a penalty function with a tuning parameter X that
controls the level of sparsity in B, k = 1, 2.

The functions gx(-), k = 1,2, are unspecified and are esti-
mated using B-splines regression. Next, we introduce the B-
splines that will be used to approximate the unknown func-
tions. For k = 1,2, we assume the support of g(-) is
linfx(XT Bp),supx (X" B)] = larbil. Let ax = foo <
hx < < tNk < br = tn11 be an equally spaced
partition of [ag, bk], called interior knots. Then, [ag, bi] is
divided into subintervals Ipx = [toptet1k), 0 < £ <
Ni — 1and Iy, = [tn,, tN,+1], satisfying maxo<¢<n, |te+16 —
tegl/ ming<¢<n, lte+1,6 — texl < M uniformly in n for some
constant 0 < M < oo, where Ny = Ny, increases with the
sample size n . We write the normalized B spline basis of this
space (de Boor 2001) as Bi(ux) = {Bex(ux) : 1 < € < Lyi} 7,
where the number of spline basis functions is L,y = Ly = N +
qk> and g is the spline order. For computational convenience,
we let Ny = N and gx = g so that Ly = L. In practice, cubic
splines with order g = 4 are often used. By the result in de Boor
(2001), the nonparametric function can be approximated well by
a spline function such that g, (X ' B¢) & Bx(X " Bx) " 8k for some
8k € R, k = 1,2. For notational simplicity, we write Bx(X T Bx)
as B(X " By). Therefore, the estimates of the unknown index
parameters Sy and the spline coeflicients 8y are the minimizers
of

1 n
=D logll +exp(B1(X; B1) 81 2i + Ba(X; ) 82))

i=1
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1 n
—= D VilBuX B 81z + Ba(X[ o) o)
i=1

2 P
+3 ) p(Bigs 2. 4)

k=1 j=2

Denote U, = XTﬂk for k = 1,2. For notational simplicity,
we use U to denote Uy by suppressing k. To allow for possibly
unbounded support I/ of U, according to the method given in
Chen and Christensen (2015), we can weigh the B-spline basis
functions by a sequence of nonnegative weighting functions
wp + U — {0,1} given by w,(u) = 1ifu € D, and
wy(u) = 0 otherwise, where D, C U is compact, convex
and has nonempty interior and D, € D,y for all n. For the
choices of D,,, we refer to Chen and Christensen (2015) for the
discussions. When U/ is compact, we simply set w, (1) = 1 for
all u € U. Then we obtain a set of new B-spline basis functions:
B (i) = {Bek(ui)wn(up) 1 1 < € < L, i}, and replace By (k)
by By (uk) in the above minimization problem for obtaining the
estimators ,Bk and (Sk As given in Chen and Christensen (2015),
the asymptotic properties including consistency and asymptotic
distribution for the estimator of the unknown function g; (1)
still hold for u € D,,.

In principle, we would like to obtain the estimates of Sy and
8 by minimizing the penalized negative log-likelihood given
in (4). In practice, this minimization is different to achieve,
and thus an iterative algorithm (Watson and Engle 1983) is
often applied. To this end, we obtain the estimates of Bi and
S through an iterative algorithm described as follows, although
our theoretical properties given in Section 3.2 are established for
the estimators which minimize (4).

Step 1: Given f, the solution of & is easily obtained. Reexpress-
ing the model gives

logit(1u(X, Z)) ~ BX " Br) 612 + BX " Br) '8
= (zpe g0 x0T (3] )

This can be viewed as a logistic regression model using

(ZB(X—r BT, B(XTﬂk)T)T as the regressors without intercept
term.

Step 2: Given dy, it remains to find the solution that minimizes
(3) with respect to S. Let ﬁ°ld and ,3,‘(’)151 be the current estimates

for By and By 1, respectively. Let §k(XT,3k) = Br(XTBr) "8k
We approximate

X B0 ~ GX T BMY+g (X T ADXTTBI) (B —1—B ),

where J(8x) = 8Bk/8Bk,—1 = (—Br—1/\/ 1= 1Bk —1113. Ip-1) " is
the Jacobian matrix of size p by p — 1. To obtain the sparse esti-
mates of i, we carry out a regularized logistic regression with

[(28, (X7 BB TX)T, (g (X T BIT(BI) Tx)T] " as the
regressors with a known intercept term given as

ZH XM + XA — 25 (XTI X T (0 g0,
—SXTBIHXT (B M.

This produces an updated vector B?|. Then we set B =

(1= 1BE 112, (B=) )T, for k =
repeated until convergence.

We obtain the initial value of i through fitting a regularized
logistic regression by assuming that gx (X" 8r) = X . In Step
2, we use the coordinate descent algorithm (Breheny and Huang
2011) to fit the regularized regression. Moreover, we choose to
use the nonconvex penalties such as MCP and SCAD which
induce nearly unbiased estimators. The MCP (Zhang 2010) has
the form p, (£,1) = Afo(l — x/(yA)idx,y > 1 and the
SCAD (Fan and Li 2001) penaltyis p, (£, ) = A fo min{1, (y —
x/A)+/(y — D}dx,y > 2, where y is a parameter that con-
trols the concavity of the penalty functions. In particular, both
penalties converge to the L; penalty as y — oco. We put y in the
subscript to indicate the dependence of these penalty functions
on it. In practice, we treat y as a fixed constant. The B-spline
basis functions and their derivatives are calculated using the
bsplines function in R package £da.

From the above algorithm, we obtain the spline estimators
of the functions g;(-) and g (). However, the spline estimator
only has convergence rates but its asymptotic distribution is not
available in the additive model settings with multiple unknown
functions (Stone 1985), so no measures of confidence can be
assigned to the estimators for conducting statistical inference
(Wang and Yang 2007). The spline-backfitted kernel (SBK) esti-
mator is designed to overcome this issue for generalized addi-
tive models (Liu, Yang, and Hardle 2013), which combines the
strengths of kernel and spline smoothing, is easy to implement
and has asymptotlc distributions. Denote the SBK estimator of
£1(+) as g1 sbk (+). We obtain gy sk (X /31) for a new input vector
X as follow:

Step 3: Given the spline estimate g, (X;I—B\z), the loss criterion for
alocal linear logistic regression can be expressed as the following
negative quasi-likelihood function:

1,2. Steps 1 and 2 are

1 R _~
la,b,X) = —— 3 [VilaZ; + 22X B2)

—log(1 + exp(aZi + &(X; BONIKL (X B — X" B1),

where Kj(+) is a kernel function with bandwidth h. We obtain
the estimate a(Xy) by minimizing the above loss function. Then
the predicted CSTE value at X is

CSTE(Xo) = 1.0k (Xg B1) = a(Xo). (5)

Based on the above SBK estimator of CSTE, we can construct a
SCB which is used for optimal treatment selection. The details
will be discussed in Section 4.

3.2. Asymptotic Analysis

For any positive sequences {a,} and {b,}, let a, < b, denote
lim,,_ o0 anbrjl = Cforaconstant0 < C < oo and a,, < b,
denote lim,,— o0 anb* = 0. For a vector a = (ay,..., ap)T

RP, denote |ja|| = (Zl La)'? and Jlallcc = max; |a|. For a
matrix A = (Aj), denote ||A|| = max); =1 |AS|], [[Allc =
max; Zj |Ajjl, and [|All2,00 = max; ||A;]|, where A; is the ith
row. For a symmetric matrix A, let Apmin(A) and Amax(A) be the
smallest and largest eigenvalues of A, respectively. We assume



that the nonsparsity size s = max(s;,s;) < n and the dimen-
sionality satisfies logp = O(n*) for some o € (0,1). Denote
ﬂkl = (IBkl’ EERE) ﬂkSk)T’ ,Bkl,—l = (ﬂkZ’ s ﬂks )T) ﬂkZ =
(Bi(si+1) - - - » Brp) |- Then we write B(1) = BB T B
BB T Bay—1 = (,311—1)71,,321—1)71)—'—. Denote the Jacobian
matrix as J(Bx1) = 9fk/Bri-1,k = 1,2, and J(B1)) =
3B1y/9Ba),—1 = diag(J(B11),J(B21)), which is a block diagonal
matrix. We use the superscript “0” to represent the true values.

Denote the first sg(1 < k < 2) components of X; as
Xigr = (k1 < j < st) | and the last p — s components as
Xiky = (xijysk < j < p)T. Denote S(x) = (1 4+ e *)~! as the
sigmoid function. Then the true expected value of the response
given (X, Z) is

E(Y|X,Z) = u(X,2) = S (X' B1)Z + (X" B)).

Define the space M as a collection of functions with finite L,
normon % x {0,1} by

M= g2 = g7z + (T B, ElgXT DY < oo},

For a given random variable U, define its projection onto the
space M as

Pra(U) = arg min E[w'{U —¢(X, 2))’],

where w® = 7°(1 — 7% and 7° = (X, Z). For a vector U =

{Ul, RN Ud}, let
Pum(U) =

Moreover, we define

_l “ 0 \T gl(Xlllﬂll)Xlllz )
o = h Z]('B(l)) ( &, 21/321)X112

( gl(X 1,311)le12
gz(X 21,321)X1 12
where )Af,-,kv = Xiky — PMXjpy) for k,v = 1,2, and

- %ZGZ(Xi’Zi)](,BPI))T ( &1, 11/311)le12 )

gz(inﬂzl)Xz 21
gl(in:Bu)thlZ ) 0
< gz(X 1:321)X121 ]('B(l))’
where 02(X, Z) = E[{Y — S(g(X, 2))}*|X, Z] .
To establish asymptotic properties, we need the following
regularity conditions.

{PA(Up)s. ., PAg(Up)

) T(BLy)» (6)

Assumption 1. The penalty function p,, (£, 1) is a nondecreasing
symmetric function and concave on [0, 00). For some constant
a> 0,p@ = A_lpy(t, A) is a constant for all + > a) and
p(0) = 0. p/(t) exists and is continuous except for a finite
number of t and o’ (0+) = 1.

Assumption 2. For k = 1,2, for any given B € 0O, g is a
nonconstant function on {x € X'}, where X is compact, convex
and has nonempty interior, and gx € H, for some r > 1,
where #, is the collection of all functions such that the gth
order derivative satisfies the Holder condition of order y with

= g+ y and q > 1, that is, for any ¢ € H,, there is a
Co € (0,00) such that [p@ (u1) — ¢V ()| < Colur — uz|”
for all u; and u; in the support of g.
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Assumption 3. For1 < j < s, E(X].ZH(”H)) < G, for some

constant x € (0,1). Forsg <j < p — sg, E(|Xj|2+9) < Cy for
some o > (8/3)(1 —a)~' —2and o > 2.

Assumption 4. There exist ¢,d,cx € (0,00) such that

mm(Qn) > 6 Amin(®n) = ¢ almost surely, and
IEXX)llao < ck where Xy = Xgy — Paq(Xpy), for
k,v=1,2.

Assumption 5. Let w, = 271min{|,3,%| 12 <j < sk =
1,2}. Assume that max((s/n)'/2,L1=" + L3/2p*/271/2) «
AL Wy

Assumption 1 is a typical condition on the penalty function,
see Fan and Lv (2011). The concave penalties such as SCAD
and MCP satisfy Assumption 1. Assumption 2 is a typical
smoothness condition on the unknown nonparametric func-
tion, see, for instance, Condition (C3) in Ma and He (2016).
Moreover, we require that the unknown functions be noncon-
stant functions to identify the index parameters Bi. Assump-
tion 3 is required for the covariates, see Condition (A5) in Ma
and Yang (2011). Moreover, the design matrix needs to satisfy
Assumption 4. A similar condition can be found in Fan and
Lv (2011). Assumption 5 assumes that half of the minimum
nonzero signal in ,3,8 is bounded by some thresholding value,
which is allowed to go to zero as n — oo. This assump-
tion is needed for variable selection consistency established in
Theorem 1.

Denote f_; Bl 1Bl Bar—1BH) T Let s =
max(sy,s2). Theorem 1 establishes the consistency for the
parameters in model (1).

Theorem 1. Under Assumptions (A1)-(A5), and o € (0, (2r —
5/2)/@r — 1)), L'77s12 = o1), n* Y IL> +5) = o(1),

n'2L172 = o(1), log(n)(s'/* 4+ LY2)L¥*n=1/2 = o(1), there
exists a strict local minimizer ﬂ 1= (,311 1 ,312, ,321 1 ﬂzz)T
of the loss function given in (3) such that ﬂkz =0 fi forl<k=<?2
with probability approaching 1 as n — 00, and I|ﬂ 1— ﬂ_l I =

Op (/571

Remark. Based on the assumption given in Theorem 1, the
number of spline basis functions needs to satisty nl/2Qr-1))
L < min{n'/*{log(n)} !, n1—®)/3},

The following Theorem presents the convergence rate for the
spline estimator of the unknown functions.

Theorem 2. Under conditions given in Theorem 1, we have

n Y @X B — g X BDY = Op (L7 + L/n + s/n),
fork =1,2.

To estimate the SCB, we need the following assumptions, see
Assumptions (A4) and (A6) in Zheng et al. (2016).

Assumption 6. Let r = 2. The kernel function K is symmet-
ric probability density function supported on [—1,1] and has
bounded derivative. The bandwidth h satisfies h = h, =
o(n1/> (log n)~ Y%y and h~! = O(n!/? (log n)%) for some con-
stant § > 1/5.
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Assumption 7. The joint density of XY and XT8Y is a
bounded and continuous function. The marginal probability
density functions have continuous derivatives and the same
bound as the joint density. When g = 9 = B9, the probability
density function of X' B° is bounded, continuous, and has
continuous derivative.

We borrow some notations in Zheng et al. (2016):
o*(u) = Elu(u, 2)(1 = p(w, 2)1Z = 11, D) = f(u)o ),
vA(w) = |IKII3f (o (w), (7)
where u(u,Z2) = S(@1(WZ + & (XTﬂg)) and f (u) is the density
function of X' BY. Define the quantile function
Qu(@) = aj, + a; '[log(y/Cx /(27)) — log(—log v/T — )]

for any ¢ € (0,1), where a, = ,/—2logh and Cx =
[IK| |§ /1IK| |§. Without loss of generality, assume xT,B? is in the
range [0, 1] and let 4 be a set of x such that € = {x : xT,B? €
[h,1 — h],x € RP}. Theorem 3 is an adaptation from Theorem
1 in Zheng et al. (2016). It provides a method to construct the
SCB for g;.

Theorem 3. Under Assumptions 1-7, and « € (0,2/5),
snV/0logn)™3/> = 0O@1) and n'/° « L <«
min{n1/4{log(n)}_1, n1=9/31 we have

o~ T2 _ T 20
lim P sup 81,5bk (X ,BI)TAgl(x B1) < Q) ) =1-a,
n=00 \xe® on(x' f1)

where 0,(x" 1) = n= " h=%%v(x" B1)/D(x" B1).

Remark 1. Based on the proof for Theorem 3, we can readily
obtain that o, (x" B1) @k (xT B1) — g1(xT Y} — N(0,1)
in distribution, for given x € %. Thus, the 100(1 — )%
pointwise conﬁdence interval for g (xT ﬂl) is g1, br(x T ,31) +
Zi_ a/zan(x ,31) where Z1_q/3 is the (1 — «/2)100% quantile
of the standard normal distribution.

Remark 2. For details of implementations of kernel and spline
estimation for functions in (7), we refer to Zheng et al. (2016).
As suggested in Zheng et al. (2016), we use a data-driven under
smoothing bandwidth & = hopt(log n)~1/4 and hopt is given in
Zheng et al. (2016). We let the number of spline interior knots
be Lnl/s(log n)J 4+ 1. The 100(1 — «)% SCB for gl(xTﬂ?) is
Zusok(xT B1) £ oy (xT 1) Qu(@).

Remark 3. From Theorem 3, we see that the width of the SCB
has the order of \/log(h)n/h. The width of the pointwise confi-
dence interval given in Remark 1 has the order of \/n/h. Based
on the assumption for the bandwidth h, the SCB is wider than
the pointwsie confidence interval asymptotically. In deriving the
asymptotic distribution of the SBK estimator for the unknown
function, it also involves the estimation error from the param-
eter estimation, which is given in Theorem 1. We assume that
s increases with # in a slow rate, so that this estimation error is
negligible in the construction of the asymptotic SCB. Our inter-
est focuses on constructing the SCB for the CSTE curve, based
on which we make treatment recommendations to a group of
new patients. For conducting inference for the parameters, it can
be a future interesting research topic to explore.

The theoretical result in Theorem 3 is obtained from the
asymptotic extreme value distribution of the SBK estimator
for the CSTE curve. This is the key result for obtaining our
asymptotic SCB, which achieves the nominal confidence level
asymptotically. It is worth noting that we provide different
convergence rates for the estimators of the high-dimensional
coefficients and the estimators for the unknown functions in
Theorems 1 and 2, respectively. This theoretical result enables us
to further derive the asymptotic distribution of g sk, when the
number of important covariates satisfies certain order given in
Theorem 3. The SCB provides an important uniform inferential
tool for identifying subgroups of patients that benefit from
each treatment and make treatment recommendations to the
subgroups, while the pointwise confidence interval can only
provide treatment selection for a given patient.

4. Treatment Selection via Confidence Bands

In this section, attention is focused on making individualized
treatment decision rule for patients. We provide an example
to illustrate how to select the optimal treatment based on the
CSTE curve and its SCBs. The goal of treatment selection is to
find which group of patients will benefit from new treatment
based on their covariates. By the definition of CSTE curve, if we
assume that the outcome of interest is death, the CSTE curve is
the odds ratio of the treatment effect in reducing the probability
of death. That is, a positive CSTE(X) value means that the
patients will not benefit from new treatment since they may have
a higher death rate than patients who receive old treatment. We
define the cutoft points as the places where the upper and lower
confidence bands equal to 0. Based on these cutoff points, we are
able to identify the regions with the positive and negative values
of CSTE(X), respectively, so that it will guide us to select the
best treatment for a future patient. To summarize, this treatment
selection method consists of the following steps:

Step 1. Use the existing dataset to obtain the SBK estima-
tor g1 el /31) of the CSTE curve and the corresponding
SCBs g, br(x " ,31) +o,(x" ,31)Qh (o) at a given confidence level
100(1 — )%.

Step 2. Identify the cutoft points for x' Brand the regions of pos-
itive and negative values of the constructed SCBs, as illustrated
in Figure 1.

Step 3. For a new patient, we first calculate %7 B1, where X is
the observed value of the covariates for this new patient. Then
we make treatment recommendation for this patient based on
what region the value of x " B falls into.

We use the following example to illustrate the method of
using the SCBs to select optimal treatment for patients. We
assume that X | ,31 has a range of (—4,2). In Figure 1, the solid
line represents a CSTE curve and dashed lines above and below
the curve are the corresponding 95% SCBs. We assume that
the outcome variable Y is the indicator of death. As shown in
Figure 1, the CSTE is decreasing when the value of X' A is
from —4 to —1.6 and it is increasing when the value of X' 8,
is from —1.6 to 2. In general, when the X' B, value of a patient
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Figure 1. A simulated example, demonstrating CSTE estimation, SCBs, and cutoff points. The solid curve is the estimate of the CSTE function. The dashed curves are the
corresponding SCBs of the CSTE curve. Four vertical lines indicate the locations of the cutoff points.

is within the range of (—4, —1.6), a larger value implies that
the patient more likely benefits from the new treatment than
from the old treatment. On the other hand, if the patient’s
XT;§1 value falls into (—1.6,2), the new treatment is more
beneficial when a smaller value of X T 31 is observed. Moreover,
the results in Figure 1 also imply that we are 95% confident
that a new patient with the X ' 8; value falling into the region
[—4, a] or [d,2] will benefit from the old treatment, since the
lower bands are all above zero in this region. If X/ 1 falls
into region [b, c], then we have 95% confidence that the patient
should receive the new treatment, as the upper bands are all
below zero in this region. For the intervals [a, b] and [c, d], zero
is covered in the confidence band indicating that there is no
significant difference between the effects of the new and old
treatments.

It is worth nothing that the regions of indifference can also
be constructed based on a parametric model using the limiting
distribution of the parametric estimators; see more discussions
in Wu (2016). However, this approach is only directly applicable
to the settings with low-dimensional covariates and to each
given patient instead of a group of patients. Han, Zhou, and
Liu (2017) defined a modified version of the CSTE curve using
the quantile of the covariate to compare covariate’s capacities
for predicting responses to a treatment. Then they use the
“best” covariate as a guidance to select treatment. This may
be time-consuming when there is a large number of covari-
ates. Our method selects relevant covariates automatically in
the estimation procedure and combines information from all
covariates through a weighted combination of those covariates
with the weights estimated from the data. The weight reflects
how important the corresponding covariate is for predicting
the response. As a result, our method is more convenient and
flexible in selecting optimal treatment.

5. Simulation Study

In this section, we investigate the finite-sample performance
of our proposed method via simulated datasets. We run all

simulations in R in a linux cluster. We consider the following
examples:

Example 1. logit(n(X, Z)) = XTB1(1 = XTB)Z+exp(XT o).
Example 2. logit(u(X,Z)) = (X' B1)2Z + sin(nX ' ,/2).
Example 3. logit(u(X, Z)) = —exp(X' B1)Z/1.5 + (X B2)>.

Example 4. logit(n(X,Z)) = X" p1(1—=X " B1)Z+exp(X ' B2)+
c-sin(m X" B3/2).

Example 5. logit(u(X,2)) = XT8(1 — XTB1) + ¢ -
sin(mX " B3/2)1Z + exp(X ' B2).

The simulated data are generated as follows: the outcome
Y is sampled from a binomial distribution with probability of
success equals to p(x, z); the covariates X are generated from
a truncated multivariate normal distribution with mean vector
0, covariance matrix with ¥; = 0.5/, and each covariate
is truncated by (—2,2); the binary scale covariate Z is sam-
pled from Binomial(1,0.5), which means that each subject is
randomly assigned to either control or treatment group. We
set B1 = (1,1,1,0,...,0)'/+/3, B2 = (1,—2,0,...,0)/+/5,
and B3 = (1,1,1,0,...,0)'/+/3. For Examples 1-3, we set
p = 10,50,100, 500, and sample size n = 500, 750, 1000. For
Examples 4 and 5, we consider that g; and g; are misspecified
respectively. We choose p = 50, n = 1000, and ¢ = 0.1,0.2,0.5.
For each pair of n and p, we repeat the simulations ] = 300
times.

To obtain sparse estimates of Sy for high-dimensional cases,
we choose SCAD as the penalty function and let y = 3.7 (Fan
and Li 2001). The optimal tuning parameter A is chosen from
a geometrically increasing sequence of 30 parameters by mini-
mizing the modified Bayesian information criterion (Wang, Li,
and Leng 2009): BIC, = —2-log(Loss)+df -log(n)-C(p), where
Loss is the loss function in (3), df, is the number of nonzero
elements in Bk, C(p) = C(p) = loglog(p).

We evaluate the following metrics for the nonparametric
function g (-) based on 200 equally spaced grid points on the
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Table 1. Simulation results for Examples 1-3.

Model 1 Model 2 Model 3
(n,p) MSE MAE CcP MSE MAE CcP MSE MAE CcP

(500, Oracle) 0.230 0.364 0.880 0.217 0.336 0.861 0.389 0.400 0.840
(750, Oracle) 0.125 0.276 0.925 0.113 0.251 0.905 0.143 0.268 0.905
(1000, Oracle) 0.095 0.23 0.947 0.088 0.230 0.935 0.083 0.220 0.940
(500, 10) 0.280 0.494 0.874 0.325 0.428 0.889 0.405 0.461 0.858
(750, 10) 0.169 0.318 0.897 0.151 0.293 0.924 0.329 0.472 0.885
(1000, 10) 0.112 0.258 0.939 0.095 0.243 0.929 0.099 0.241 0.931
(500, 50) 0.530 0.461 0.871 0.506 0.576 0.870 0.679 0.621 0.863
(750, 50) 0.258 0.371 0.930 0.331 0.426 0.903 0.280 0.393 0.920
(1000, 50) 0.100 0.248 0.957 0.129 0.280 0.955 0.099 0.242 0.959
(500, 100) 0.698 0.594 0.836 0.525 0.566 0.826 0.640 0.660 0.862
(750, 100) 0.153 0.305 0.906 0.452 0.477 0.896 0.141 0.291 0.907
(1000, 100) 0.108 0.230 0.947 0.188 0.338 0.920 0.093 0.237 0.940
(500, 500) 0.718 0.789 0.826 0.642 0.777 0.835 0.683 0.519 0.831
(750, 500) 0.413 0.503 0.857 0.434 0.453 0.860 0.524 0.444 0.854
(1000, 500) 0.123 0.249 0.930 0.174 0.319 0.925 0.143 0.287 0.912

NOTE: Oracle estimator is obtained when true index sets are given. True functions are x(1 — x), x2, — exp(x)/1.5. MSE and MAE represent the mean squared error and the
mean absolute error of the estimator for g1 (), and CP represents the coverage probability of its SCBs.

Table 2. Simulation results for Examples 4 and 5 (misspecified cases) with p = 50
and n = 1000.

Model 4 Model 5
MSE MAE CcP MSE MAE CcP
c=0 0.100 0.248 0.957 0.100 0.248 0.957
c=0.1 0.138 0.212 0.933 0.161 0.293 0.938
c=0.2 0.136 0.235 0.931 0.266 0.338 0.914
c=05 0.208 0.341 0.904 0.290 0.415 0.895

NOTE: MSE and MAE represent the mean squared error and the mean absolute error
of the estimator for g1 (-), and CP represents the coverage probability of its SCBs.

range of 7 = XT By : the mean squared error (MSE) of its
estimator; the mean absolute error (MAE) of its estimator; the
average coverage probability (CP) of its SCBs. Since the models
in Example 1-3 are correctly specified, we compute the aver-
age number of parameters that are incorrectly estimated to be
nonzero, the average number of parameters that are incorrectly
estimated as zero; the proportions that all relevant covariates
are correctly selected and the proportions that some relevant
covariates are not selected.

We define that the oracle estimator of g; (-) is obtained when
the true indexes of nonzero components in 8 and B, are given
in Examples 1-3. The results are summarized in Tables 1 and
2. In Table 1, we see that the coverage probabilities are slightly
less than 95% but close to 90% when the sample size is 750.
When the sample is 1000, the empirical coverage is close to the
nominal 95% confidence level. The mean square error and mean
absolute error also decrease as sample size n increases. This
indicates that the estimates of confidence bands become more
accurate as the sample size increases. Table 1 shows that the
proposed asymptotic SCB performs well when the sample size
is relatively large. However, with small sample size, a bootstrap
procedure is recommended to construct the SCB. This can be a
future research topic to explore. In Table 2, when c is small (i.e.,
the degree of misspecification is small), the numerical results
are comparable to those for ¢ = 0 with no misspecification.
However, the performance deteriorates when ¢ becomes large.
Moreover, the method is more robust to the misspecification of
£ than that of g;. The model selection results are summarized in
Table 3. The false positive and false negative are decreasing when

n increases. It is worth noting that in practice we often need to
make a reliable treatment recommendation strategy to a group
of patients instead of a specific given patient, and the SCBs can
serve the former purpose well. In Table 4, we also compare the
performance of the pointwise confidence interval (CI) with that
of the SCB for a group of randomly generated new patients with
group size 1, 10, 100, 200, 500, respectively. The CI and SCB are
constructed based on the data with sample n = 1000, p = 10.
We see that the pointwise CI has low empirical coverage rates
when the group size is greater than 1. The pointwise CI can work
well when we only have one patient. However, when we have a
group of patients with different covariate values, we can make
an incorrect treatment decision based on the pointwise CI for
these patients.

6. A Real Data Example

In this section, we present and discuss the results of applying
the procedure described in previous sections to a real dataset.
We illustrate the applications of the CSTE curve in a real-world
example and provide some insight into the interpretation of the
results. The goal is to analyze the effect of Zhengtianwan in
the treatment of migraines. This is a multicenter, randomized,
double-blind, placebo-controlled trial on the effectiveness of
Zhengtian pill on treating patients with migraines. A migraine
is a common neurological disorder characterized by recurrent
headache attacks. Migraine treatment involves acute and pro-
phylactic therapy. The objective of this study is to evaluate the
efficacy and safety of Zhengtian Pill for migraine prophylaxis.
Zhengtian Pill, a Chinese Patented Medicine approved by the
State Food and Drug Administration of China in 1987, has been
used in clinical practice for more than 20 years in China to
stimulate blood circulation, dredge collaterals, alleviate pains,
and nourish the liver. To evaluate the effectiveness of Zhengtian
Pill in preventing the onset of migraine attacks, a large-scale,
randomized and prospective clinical study was conducted. Eli-
gible patients were monitored during a baseline period of four
weeks, during which the headache characteristics were recorded
as baseline data. In this period, any use of migraine preven-
tive medications was prohibited. After the baseline period, a
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Model 1 Model 2 Model 3
(n,p) FPR FNR C IC FPR FNR C IC FPR FNR C IC
(500, 10) 0.282 0.025 0.885 0.115 0.274 0.019 0.904 0.095 0.381 0.015 0.909 0.090
(750, 10) 0.206 0.008 0.956 0.043 0.170 0.007 0.960 0.039 0.280 0.018 0.941 0.058
(1000, 10) 0.162 0.000 1.000 0.000 0.110 0.005 0.994 0.005 0.217 0.002 0.989 0.010
(500, 50) 0.271 0.042 0.785 0.214 0.172 0.181 0.564 0.435 0.165 0.236 0.535 0.465
(750, 50) 0.108 0.041 0.823 0.176 0.178 0.025 0.892 0.107 0.094 0.125 0.563 0.436
(1000, 50) 0.070 0.009 0.952 0.047 0.111 0.005 0.975 0.025 0.082 0.065 0.788 0.211
(500, 100) 0.063 0.093 0.625 0.375 0.107 0.084 0.605 0.395 0.093 0.087 0.670 0.330
(750, 100) 0.055 0.065 0.703 0.296 0.098 0.044 0.688 0.311 0.040 0.106 0.681 0.318
(1000, 100) 0.031 0.032 0.845 0.154 0.053 0.037 0.830 0.170 0.021 0.061 0.803 0.196
(500, 500) 0.114 0.138 0.471 0.519 0.119 0.164 0.223 0.777 0.104 0.166 0.243 0.757
(750, 500) 0.974 0.096 0.540 0.460 0.069 0.138 0.294 0.706 0.059 0.132 0.302 0.698
(1000, 500) 0.030 0.062 0.609 0.391 0.039 0.102 0.413 0.587 0.049 0.094 0.449 0.551

NOTE: FP (false positive): zero is estimated as nonzero; FN (false negative): nonzero is estimated as zero; C (correctly selected): all relevant covariates are selected; IC

(incorrectly selected): some relevant covariates are not selected.

Table 4. Comparisons between the pointwise confidence interval and the SCBs for
the empirical coverage rate of a group of randomly generated new patients with
group size 1, 10, 100, 200, and 500, respectively.

Group size 1 10 100 200 500
Model 1 cl 0.962 0.806 0.621 0.561 0.554
SCBs 1.000 0.991 0.952 0.948 0.935
Model 2 cl 0.959 0.911 0.835 0.771 0.773
SCBs 1.000 1.000 0.963 0.951 0.954
Model 3 cl 0.961 0.853 0.694 0.661 0.668
SCBs 1.000 0.981 0.952 0.934 0.937

12-week treatment period and four-week follow-up period were
carried out. Patients were requested to keep a headache diary
throughout the whole study period, from which investigators
were able to extract detailed information of migraine attacks
including migraine days, frequency, duration, and intensity as
well as the use of acute medication during the study period. The
outcome measures were evaluated at 4, 8, and 12 weeks, and
during the follow-up period. The patients who met the inclusion
criteria were randomly assigned into the experimental group
and control group in a 1:1 ratio using a computer-generated
stochastic system.

In our analysis, the response variable Y is a binary outcome
indicating if the number of days that headaches occur has
decreased 8 weeks after patients were treated. Z is another indi-
cator: Z = 1 means the subject is assigned in the experimental
group; Z = 0 means in the control group. The covariates x; to
x3 are gender (0 for male, 1 for female), height and body weight,
X4 to x12 are overall scores of Traditional Chinese Medicine Syn-
dromes (Huozheng, Fengzheng, Xueyu, Tanshi, Qixu, Yuzheng,
Xuexu, Yinxu, and Yangxu) for migraine. Those scores, with
a range of 0-20, are commonly used to describe the severity
of migraine symptoms in Traditional Chinese Medicine. The
higher of the score means that the syndrome is more severe. All
covariates are centered and standardized as input. We have 204
observations where 99 are in the experimental group and 105
are in the control group. The purpose of this exercise is to model
the odds ratio as a function of those covariates. The number of
covariates p = 12 might be regarded as small, so we estimate
the CSTE curve using the algorithm in Section 3.1 with and
without model selection. We use SCAD as our penalty function
and the optimal tuning parameter is selected via the modified
BIC criterion. The corresponding SCBs for the CSTE curve are

calculated. The results are not intended as definitive analyses of
these data.

Table 5 summarizes the point estimates of 8; and the corre-
sponding standard errors. Figure 2 shows two estimated CSTE
curve and their SCBs: (a) using all 12 variables; (b) using all
variables except x7 and xg (not selected). To aid in interpretation
for each covariate, we depict each covariate versus g; where
other covariates are projected onto their mean values in Figure 3.
As we can see, Huozheng has a monotonic dependence on the
CSTE, but the corresponding relationships for other overall
scores are highly nonlinear; most of them have a quadratic
appearance. On the basis of these figures, we can conclude that
the odds ratio does depend on the linear combination of the
covariates in a nonlinear manner.

When all variables are used to estimate the curve, the two
cutoff points are ¢; = —0.502, ¢c; = 2.182. The estimates of the
overall rating of biomarker values are x ' 8; where the majority
of the points (>95%) fall into the interval (—1.2,5). Two cutoff
points divide this interval into three parts. Since the response
variable y = 1 represents headache improvements after 8
weeks treatment, higher CSTE value means that the patient
more likely benefits from the treatment. Suppose a new patient
with biomarker value xo. When x " ,31 falls into [—1.2,¢1] and
[c2,5], the treatment does not have a significant effect. When it
falls into (ci, ¢3), then this treatment can improve the migraine
of this patient. In the Zhengtianwan data, there are 37.7% of
patients fall into the interval. On the other hand, when x7, xg
are removed from the model, we obtain a new estimate /§1,ms of
B1. As we can see from Figure 2(b), the positive region of the
CSTE curve becomes wider than that in (a), and the two cutoff
points become —0.811 and 2.366. The majority of x| A1 s falls
into —(2.5,5). When xT/§1,m5 is in the range of [—0.811, 2.366],
the patient should receive Zhengtianwan treatment and 50.98%
of all subjects in the training dataset fall into this interval.

The number of covariates is not very large in this dataset, so
it is possible to fit a sparse linear model with high order terms
and make treatment recommendation based on the parametric
estimate of the CSTE curve. To this end, we model gx for k = 1,2
as a multivariate polynomial function of the covariates X with
degree of two, thatis, gk (X) = atok+)_; ke Xj+> i ik Xj Xy
We obtain the estimates (& k.&; ;7 k) of the unknown coeffi-
cients (et k,0j k-0 k) by fitting regularized L logistic regression
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Table 5. Estimates of 81 and the corresponding standard errors (in parentheses).

Variable Gender Height Weight Huozheng Fengzheng Xueyu Tanshi Qixu Yuzheng Xuexu Yinxu Yangxu
B 0.88 0.10 —0.04 —0.06 0.08 —0.09 —0.08 0.04 0.18 —0.24 0.30 —0.03
(0.23) (0.01) (0.01) (0.03) (0.02) 0.01) (0.03) 0.11) (0.04) (0.05) (0.07) (0.02)
Penalized 81 0.70 0.11 —0.05 —0.04 0.14 —0.15 0.00 0.00 0.21 —0.38 0.49 —0.14
(0.31) (0.02) (0.01) (0.02) (0.03) 0.01) (0.00) (0.00) (0.05) (0.07) (0.09) (0.06)
NOTE: First row: Using the unpenalized model; second row: using the penalized model.
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Figure 2. Real data example. Red curve is the CSTE curve; blue dashed curves are the SCBs. (a) Two cutoff points are —0.502 and 2.182; (b) two cutoff points are —0.811

and 2.366.

with the tuning parameter selected by 3-fold cross-validation.
For a new patient with the observed covariates X, we obtain the
predicted value for the CSTE curve as g1 (X) = &o,1 + Zj @, 1%+
>_j<j &j7,1%%;. For this parametric modeling method, we can
only use the predicted value for g; to make treatment recom-
mendation. Thus, based on the rule that a subject would benefit
from the treatment if g is positive, 67.64% of the subjects should
receive the treatment. We see that this percentage is higher
than that obtained by our proposed method, as the parametric
method only uses the point estimate for treatment selection. The
construction of confidence intervals for g; by the parametric
method is very challenging, as it involves finding the joint
asymptotic distribution of (& x.@;.&jj k) after model selection,
which is a difficult problem. Moreover, SCBs are not available
based on the parametric modeling method. As discussed and
shown in the simulation studies given in Section 5, SCBs are
more reliable than the pointwise Cls for treatment recommen-
dation for a group of patients.

7. Discussion

Both the simulation and real-world studies in Sections 5 and
6 suggest that the modeling procedure for CSTE curve can
successfully detect and model complicated nonlinear relation-
ships between binary response and high-dimensional covari-
ates. In practice, the nonlinear dependencies we suggest are not
characteristic of all situations. We adapt the spline-backfitted
kernel smoothing to construct the SCBs for the nonlinear

functions to choose the optimal treatment. Moreover, the SCBs
can be used to verify the presence of nonlinear relationships
as well.

Our model is motivated by the desire to provide an individ-
ualized decision rule for patients along with the ability to deal
with high-dimensional covariates when the outcome is binary.
The semiparametric modeling approach can be viewed as a
generalization of the CSTE curve with one covariate proposed
in Han, Zhou, and Liu (2017) in the sense that the odds ratio
depends on a weighted linear combination of all covariates.
Although we consider a single decision with two treatment
options, our model can be readily generalized to multiple treat-
ment arms.

To identify model (1), we require that the unknown functions
g1 () and g (-) be nonconstant functions on their supports.
Otherwise, the index parameters 8; and S, are not identified.
That is, if g (8, x) = ax for all x € X, then B can take
an arbitrary value. Our treatment recommendation method
is proposed based on the prior information that at least one
baseline covariate is useful, and the treatment effect is not zero
for some values of the covariates. Based on this prior informa-
tion, our goal is to estimate the optimal treatment regimes and
provide recommendations for individual patients based on their
observed baseline covariates. For example, Figures 1 and 2 show
that the estimated values of g; (-) are nonzero in some regions,
so that one can apply our method to identify those regions and
then make treatment recommendations to patients. In practice,
if we conjecture that all covariates are irrelevant, then for an
arbitrarily given value of B, gk (,3,;r x) = arforallx € X. We
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Figure 3. Plot one covariate against CSTE curve with other covariates fixed on their mean values.

can conduct a test for this conjecture by choosing a value for next we can fit our model to more precisely find the optimal
Bk estimating the unknown function gi (ﬁ,;r x) and then testing ~ value of f. Since this article focuses on making individualized
whether the function is a constant or not. Likewise, we can use  treatment recommendations to patients based on their available
this approach to testing whether g (,3;'— x) = Oforallx € X,that covariates, we leave this interesting topic as a future work to
is, whether the treatment has effect at all. If they are rejected, explore.
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Supplementary Materials

Supplementary materials include the technical proofs for all the theoretical
results.
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