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Stress relaxation in F-actin solutions by severingf
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Networks of filamentous actin (F-actin) are important for the mechanics of most animal cells. These

cytoskeletal networks are highly dynamic, with a variety of actin-associated proteins that control cross-
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linking, polymerization and force generation in the cytoskeleton. Inspired by recent rheological
experiments on reconstituted solutions of dynamic actin filaments, we report a theoretical model that
describes stress relaxation behavior of these solutions in the presence of severing proteins. We show

that depending on the kinetic rates of assembly, disassembly, and severing, one can observe both

rsc.li/soft-matter-journal

1 Introduction

Networks of actin filaments (F-actin) constitute a key component
of the cytoskeleton of most animal cells. This cytoskeleton governs
the organization and mechanics of cells, as well as a variety of
transport properties. Actin filaments are double helical chains
of globular actin monomers (G-actin). These filaments exhibit
molecular polarity by their head-tail arrangement. Their two
ends are referred to as barbed and pointed. This polarity is a
key feature of filamentous actin in the cytoskeleton and is
essential for a variety of cellular processes such as cell motility.>
Actin filaments show dynamic association and dissociation
from both their barbed and pointed ends.*> Under physiological
conditions, there is net polymerization of the barbed end and
net depolymerization of the pointed end, resulting in steady-
state filament treadmilling,” which we assume throughout
this paper. The polymerization, cross-linking, branching and
dynamics of the actin cytoskeleton are governed by a variety of
associated proteins. Among these are severing proteins such as
ADF/cofilin, which play an important role in the recycling and
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length-dependent and length-independent relaxation behavior.
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Fig. 1 Sketch of an actin filament and its key molecular reactions. The
notation P and Q are used to track total filament length distribution and
hence finding the stress relaxation behavior. In our model, we assume a
constant net polymerization rate r of P filaments and a constant net
depolymerization rate y of Q fragments. ATP-actin is converted to ADP-
actin at the same rate r, such that only a single ATP-actin subunit is present
per filament and located at the filament barbed end. We assume a uniform
severing rate of « along the length of the filament. Using the tube model of
entangled polymeric systems, we claim that polymerizing new and stress-
free subunits (the green section of tube) have no effect on relaxation
of initial stress. As we will show, severing reaction has a large effect on
changing the initial tube and relaxing the initial stress.

turn-over of actin monomers.>® Fig. 1 shows a simplified
sketch of an actin filament with the key reactions.

These polymerization, depolymerization and severing reac-
tions result in a steady-state described by a time-independent
distribution of filament length or molecular weight. This
steady-state is necessarily dynamic; the length distribution is
set by the steady-state reaction rates, which are themselves
tuned by the concentrations of different components. Interest-
ingly, the steady-state is also driven away from equilibrium.
Conformational differences between actin monomers in filaments
F-actin and actin monomers in solution G-actin result in a more
than 10*-fold increase in the hydrolysis rate of adenosine triphos-
phate (ATP) bound to F-actin vs. G-actin.” ATP hydrolysis on
filaments introduces chemically distinct actin species into the

This journal is © The Royal Society of Chemistry 2019
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system, which participate in the polymerization, depolymerization,
and severing reactions with distinct rate constants. Crucially, the
effectively irreversible nature of ATP hydrolysis breaks detailed
balance, resulting in a net flux of ATP-actin into filaments and
thus non-equilibrium steady-state dynamics. While this non-
equilibrium flux, measured experimentally as the actin turnover
rate, is typically very small for purified actin in the absence of
regulatory proteins, the presence of ADF/cofilin has been shown to
increase the steady-state flux more than 20-fold.*°

Recent experimental studies on reconstituted actin solutions
have shed light on various aspects including the mechanical
behavior of cytoskeletal systems undergoing non-equilibrium
turnover.’ Specifically, rheological measurements of F-actin
networks and solutions in the presence of various actin-
associated proteins have revealed regimes with both elasticity
and stress relaxation. Stress relaxation in solutions of high
molecular-weight polymers typically depends on reptation, in
which polymers diffuse along their contour, subject to the
constraints provided by neighboring polymers.'® Stress relaxa-
tion due to reptation is typically very slow at high molecular
weight or polymer length L, with a characteristic relaxation time
7. ~ L. Polymerization/depolymerization reactions can also
lead to stress relaxation. Since the resulting treadmilling is
directed, the corresponding relaxation time is expected to vary
as 1, ~ L, as previously shown.

By adding cofilin, however, a length-independent relaxation
time is observed.® In order to explain this experimental obser-
vation, we develop a minimal theoretical model of the actin
length distribution depending on severing and (de)polymerization.
We then extend this to determine the time-dependent stress
relaxation from the dynamic filament length distribution.
We find that our simple model predicts three distinct relaxation
regimes, including two regimes in which the relaxation rate is
expected to be independent of average filament length or
molecular weight. These regimes are summarized in Fig. 2. A
natural characteristic length scale in a polymeric network is the
entanglement length L. where polymer chains shorter than this
length move easily through the network without being con-
strained by neighboring chains."® Another characteristic length
scale arises from the competition of the depolymerization
reaction of Q fragments (Fig. 1) and the severing reaction of
filaments: we define this depolymerization length scale

Ly = \ﬁ, where y is the net depolymerization rate (in units of
o

length per time) of Q fragments and o is the rate of severing per
length. This is a length for which the depolymerization time is
comparable to the time between consecutive severing events.
Likewise, a characteristic polymer length can be identified as

r . - . .
\/:, where r is the net polymerization rate (in units of length per
o

time) of P filaments (Fig. 1). For this length, the time between
two consecutive severing events is comparable to the time to
polymerize the filament.

We find that the stress relaxation behavior of actin solutions
depends on the relative magnitudes of three characteristic
length scales: the depolymerization length Lq, the entanglement
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length L., and the initial average filament length (L). In the limit
of instant disassembly of fragments, the stress relaxation is
length-dependent with a characteristic timescale inversely propor-
tional to the initial average length (regime I in Fig. 2). On the other
hand, for very slow rates of fragment disassembly y, the charac-
teristic timescale during stress relaxation is inversely proportional
to L. which is shown as regime III in Fig. 2. Moreover, for inter-
mediate rates of fragment depolymerization where L. < Lg < (L),
the relaxation time behaves as t ~ 1/aLq (regime II in Fig. 2). As
the average filament length becomes comparable to or smaller
than the entanglement length, the actin network behaves as a
viscous fluid. This regime is denoted as a solution in Fig. 2a and
b. Moreover, for large depolymerization length Ly, ie., for very
small severing rate o — 0, and (L) > L, the solution’s behavior
is dominated by reptation.'’ This regime is better understood
by using the severing rate o directly in the phase diagram (see
Fig. 2b). We estimate the boundaries between regimes I & II and
regimes II & III by equating the relaxation time scaling relation-
ships (displayed in Fig. 2a) for each regime pair, and solving
for o as a function of (L). Similarly, we estimate the boundaries
between the reptation regime and each of regimes I, II, and III by
equating the relaxation time scaling relationship for each regime
with the reptation time t, = (L)*/D, where D, = kgT/{(L), kg is the
Boltzmann constant, T is temperature, and { is the drag coeffi-
cient per unit length.

In the following sections, we study both the steady-state
length distribution, as well as the corresponding dynamics of
stress relaxation. In both cases, we consider two limits: (1) very
rapid fragment disassembly, corresponding to the limity — oo
and (2) finite disassembly. The steady-state length distribution
of F-actin with severing has been considered previously in
ref. 12-14. Ref. 12 and 13 introduced a model for severing by
Gelsolin, in which the two fragments (P and Q in Fig. 1) were
equivalent, corresponding to y = 0 in our model below. The
limit of instantaneous disassembly of fragments without an
ATP-cap (fragment Q), corresponding to y — oo in our model,
has recently been examined in ref. 14. In this limit, the average
filament length (L) is proportional to the characteristic length

r . .
\/:. We extend the approach introduced in ref. 12 and 13 to
o

account for finite disassembly rates y of unstable fragments.
The prior models, however, only considered the steady-state
length distribution and not the dynamics of stress relaxation.
A simplified model for stress relaxation was recently introduced
in ref. 9 for the limit of no disassembly (y = 0). In the presence
of disassembly, the two fragment species must be considered:
those with (P) and without (Q) ATP-actin at the barbed ends.

2 Steady state length distribution

Assuming a constant pool of monomers, each of unit length, we
calculate the steady-state length distribution of actin filaments
resulting from the addition and subtraction of monomers by
polymerization, depolymerization, and severing reactions
(see Fig. 1). Two distinct limits of depolymerization rate y are
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Fig. 2 Phase diagram of stress relaxation in actin solutions. (a) Schematic
phase boundaries of stress relaxation behavior in terms of the solution’s
characteristic length scales, ignoring reptation. When the initial average
length (L) is less than the entanglement L, the system is in the solution
state which is understood by hydrodynamic laws. In the case of instant
evaporation of short fragments, the stress relaxation strongly depends on
the initial average length (L) (Region ). Region Il shows a length-
independent relaxation behavior where entanglement length is less than
the initial average length but larger than the depolymerization length
Ly < Le < (L), ie., very slow disassembly rate y of fragments. In this
regime, our model predicts a relaxation time which is inversely propor-
tional to the entanglement length. By increasing the disassembly rate y to a
point where Lo < Lq < (L), we find that the relaxation time is determined
by Lq as sketched in region Il. (b) Same phase diagram as in (a) but
accounting for reptation and now in terms of experimentally-measurable
severing rate o and initial average length (L) in dimensional units. We used
the entanglement length Lo = 0.8 um and net depolymerization rate of
y = 0.1 pm s~%. The regime boundaries in (b) are estimated by equating the
relaxation times for each pair of regimes and using the scaling relationships
from (a) to determine the functional dependence of « on (L) for each
boundary. The reptation timescale is estimated as 7, = {(L)3/kBT with { = 3n x
107° pN nm~2 and kgT = 4.14 pN nm.

studied here. In the case of very large depolymerization rate,
the ADP-rich fragments formed by severing reactions dissolve
rapidly and do not contribute to the filament length distribution.
On the other hand, for finite y we obtain the distributions for both
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P (stable filaments with ATP barbed end) and Q (less stable
fragments with ADP barbed end) as shown in Fig. 1.

In order to remain analytically tractable in the face of the
large number of distinct reactions, our model makes a number
of simplifying approximations. Specifically, actin binding
proteins (e.g. cofilin, profilin and formin) are treated implicitly
via corresponding reaction rates, which are treated in a mean-
field manner. The monomer pool is assumed to be exclusively
ATP-bound G-actin and to be constant in time. Filaments are
assumed to be composed of ADP-bound actin subunits, except
for a single ATP-bound subunit located at the barbed end of
each P filament. The rate of filament severing is assumed to be
uniform along the chain and equal for P and Q filaments.
Filament annealing is neglected and nucleation is assumed to
occur in steady-state at a rate proportional to the monomer
concentration. Many of these approximations are motivated by
the conditions of recent experiments® containing high concen-
trations of the proteins profilin and formin, which regulate
actin assembly at barbed ends.

2.1 Unstable fragments: y — oo

By assuming rapid depolymerization of unstable fragments
after severing, we are able to write the master equation for
filament length distribution P;. One of the key assumption in
our model is a uniform rate of severing reaction along every
fiber, i.e., we assume equal probability of severing event happening
on any site between adjacent monomer units. Hence, the master
equation in presence of severing reaction is as following

00
PL:—OC(L—I)PL-FOCZPLer—I’PL-f—I’PL,], (1)
m=1
where P, represents the number of filaments of length L and o
and r are severing and polymerization rates, respectively. Here,
for L = 1 the final term in eqn (1) is absent. The number P, of
filaments of length L decreases by severing, which can occur at
any of L — 1 sites along these filaments, or by polymerization to
form filaments of length L + 1. This number can also increase
by severing of longer filaments, or by the addition of single
monomers to a filament of length L — 1. This master equation
has been solved for the steady state condition (each P, = 0)
using a recursive method.'* Here, we solve this using a con-
tinuous approach similar to ref. 12. In addition to the steady-
state solution, this method enables us to find the dynamic
solution needed for the relaxation behavior in the subsequent
section. The continuous form of eqn (1) using F(/,t) as the
continuous probability distribution is given by
o0
% = —alF(¢,1) + ocL F(s,t)ds — r% 2)

By defining a new variable, V((,1) = [["F(s,)ds, eqn (2)
becomes

PVt M@V(Z, f)
ool ol

V(1)
‘I‘OCI/(E7 t) +1T (3)

The steady state solution of this equation is obtained using the
normalization condition for the probabilities V(£ = 0, t) = 1 and

This journal is © The Royal Society of Chemistry 2019
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also using the fact that the probability distribution is a
bounded function

ol?
V() = — 4
0 =esp(-5) (@)
Thus, the continuous distribution is
o al?

This is indeed a Rayleigh distribution with the scale para-
r .
meter as \/: Therefore, the average steady-state filament
o

length is calculated as

(L) = rc(’F(é)dé _ ©)
- 0 ’ - 2u

Higher polymerization rates or smaller severing rates results in

a larger average length. This natural length scale is a key

parameter for determining the overall stress relaxation beha-

vior, as shown below.

2.2 Role of fragments: finite y

At finite depolymerization rate, the fragments Q contribute to
the overall length distribution, which affects both steady state
and dynamic length distributions. Although previous models
have ignored these fragments,'>™* we show that including
these fragments can strongly affect both steady state distribu-
tions and stress relaxation. In order to find the total length
distribution of actin filaments, we track filaments P and frag-
ments Q separately. In addition to eqn (1), which is unchanged,
we also consider the master equation for Qy:

QL = —OC(L — I)QL + OCZ(zQL+m + PL+m) - VQL

m=1

+70L+11 )

In contrast to Py, the distribution Q;, is affected by disassembly (y),
rather than assembly (7). Moreover, although stable filaments P
can only come from severing of stable filaments, fragments (Q)
can arise from the severing of either stable filaments or frag-
ments. The factor of 2 in the severing term in eqn (7) is due to the
fact that, unlike stable filaments, there are two sites on a fragment
longer than L which result in a fragment of length L after severing.
The two sets of coupled master equations are needed for a
complete model. By subtracting two consecutive terms of P in
eqn (1) and also Q in eqn (7), we are able to establish the following
recursive relations

r= (G o) () e ®
0pr = (oc(L +y2) + 2‘y) Opi — (oc(L —yl) + y) 0.

e

These recursion relations provide the steady-state length
distribution of filaments. Each recursion relation requires two
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boundary conditions to fully specify the distributions. We gene-
rate the P filament distribution by forward recursion of eqn (8),
and thus require boundary conditions on P, for two sequential
and small values L. Rather than finding conditions on P; and P,,
we take advantage of the fact that P, is not physically meaningful
and use P, = 0 as one boundary condition in eqn (8). The second
boundary condition is on P;, which we specify below. We note
that the steady-state length distribution of P filaments is a
function of P;. To solve the equation for Q, we use backward
recursion since we know that the tail of the Q distribution goes
to zero. As with similar recursion relations arising from second
order linear differential equations, we can expect two solutions.
Since only the growing solution under backward recursion
(i.e., the decaying solution under forward recursion) is physical,
the result should be insensitive to the initial choice apart from
an overall prefactor, provided that the recursion is started
sufficiently far into the tail. In particular, we use the two
boundary conditions Qy = 0 and Qy_; = 0 for large N = 5000.
Since the Q distribution is coupled to the P distribution
through to the presence of the P;,, term in eqn (9), and since
the P distribution is a function of P, as mentioned above, the
steady state length distribution of Q filaments is therefore a
function of P; as well. Finally, P, is obtained by using the fact
that the number of filaments and monomers is constant at

oo
steady-state, ie., > (Pp+ Qr) = constant. We note that the
=1

normalization constant has no effect on the stress relaxation
behavior due to the fact that the stress is measured relative to
its initial value.

The steady state distributions are shown in Fig. 3 for both
infinite and finite values of depolymerization rate y. Fig. 3 a
shows that the fragment distribution Q, decays rapidly with the
length, since long fragments are subjected to both severing and
disassembly. The effect of fragments on the total length distri-
bution (P, + Q) can be clearly seen by comparing both limits of
infinite and finite depolymerization rates (see Fig. 3a). Fig. 3b
illustrates that by increasing y, the total length distribution
converges to the limit of immediate disassembly.

3 Stress relaxation

In order to characterize the relaxation of stress, we use the
well-established model of entangled solutions of semiflexible
polymers,"®™® based on the tube concept of topological entangle-
ments that constrain the lateral motion of a polymer chain.'*"®
This model predicts a linear plateau modulus given by

Go ~ pkT/Le, (10)

where p is the total length of (entangled) polymer per volume
in the solution and L. is the characteristic length between
entanglement points along a polymer that is assumed to be longer
than this length. We consider the time evolution of stress for such
a solution that is subject to a step-strain experiment. In general,
this stress can relax by three mechanisms: (1) reptation or
longitudinal diffusion of chains along their confining tube'°

Soft Matter, 2019, 15, 6300-6307 | 6303
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Fig. 3 Steady state distributions of both filaments P and fragments Q.
(a) Comparing the corresponding distributions for finite depolymerization
rate y = 1.0 monomer per s (thin black curve) and instant depolymerization
limit (thick black curve). The dashed curve corresponds to the fragment
distribution Q; for the same y and decreases rapidly for large lengths.
(b) The total length distribution for different y values are shown.
By increasing the depolymerization rate, we clearly see that the total
distribution shifts to the instant depolymerization limit shown by thick
black curve. We used a polymerization rate of r = 1.0 monomer per s and a
severing rate of o = 10~* event per monomer per s.

(2) treadmilling by combined polymerization at the barbed end
and depolymerization at the pointed end and (3) the combi-
nation of severing and fragment dissolution. The first of these
is known to lead to a relaxation time 7, that grows approxi-
mately with the third power of the molecular weight or fila-
ment length (L)."”"'® Rheology in the presence of motile polar
polymers, e.g., due to motors or active treadmilling, has been
studied before and the resulting relaxation time is expected to
grow linear in (L), as previously shown."" In both of these cases,
the residual stress is determined by the total polymer length, p,
per volume remaining in the original tube, since the polymer in
newly explored regions, either by the diffusing or actively driven
ends, can be expected to be stress-free on average. In particular,
newly added monomer by polymerization will not contribute to
the stress. Thus, for severing (3), we consider the time evolution of
the original polymer at the instant of the applied step strain.
As sketched in Fig. 1, severing and depolymerization reactions
have large effects on changing the original tube and enhancing
relaxation of the initial stress. Therefore, to find the dynamic length
distribution of load-bearing filaments, we remove the assembly
reaction from the dynamic master equation. Using our derived
steady state solutions in the previous section as the initial condi-
tion, we are able to solve the dynamic equations and relate the
remaining initial stress to the amount of load-bearing filaments.
As above, we discuss the dynamics for both infinite and finite .

3.1 Unstable fragments: y » oo

The dynamic master equation of load-bearing filaments in the
case of infinite depolymerization of fragments is given by
eqn (1) for » = 0. We solve this in its continuous form by using
eqn (5) as the initial condition, ie., we assume the actin
network is in its steady state before applying a step strain.
The dynamic length distribution of load-bearing filaments is
given by

Ft,1) = (ocz + aTZ) exp (—m - “2—{2) (11)
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where F(/,t) is the continuous form of the discrete length
distribution P(L,?).

Filaments shorter than L. diffuse easily through the network
and do not contribute to the stress relaxation. Thus, we relate
the residual stress in the system to the portion of the distribu-
tion with L > Lg:

o(t) ~ Y LP(L,1) (12)

or in continuous form

o(f) ~ [

Je=L.

OF (¢, 1) (13)

Thus, we find the following relation for the stress in limit of
infinite y

o(f) = exp (_W)
oo o)

(14)

where erfc(x) is the complementary error function.

Fig. 4 shows the length distributions calculated from eqn (11)
at different times scaled by severing rate (f = of). As time
increases, the length distribution of load-bearing filaments shifts
toward shorter filaments due to severing events, which leads to a
stress relaxation as shown in the inset of Fig. 4. The initial average
filament length (L), which is obtained in eqn (6), is a natural
characteristic length scale relating polymerization to severing rate
and governs the network relaxation behavior in the limit of instant
depolymerization. We find that the initial stress relaxation is

%1073
pat : o : : : :

: (L)

- 627
15t S 1 |

I S 1071y . —1253

1 S N 2507

| N

t
0.57: —0
| —0.001
A | ‘ 0.003 |
0 500 1000 1500 2000 2500 3000

L

Fig. 4 Dynamic length distribution in the limit of instant disassembly of
fragments. Using egn (11) in the text, length distributions of load-bearing
filaments at infinite y and different scaled time are shown. For longer times,
filaments get shorter due to the severing process. The red dashed line
indicates the entanglement length Lo = 100 which is used to calculate

stress. Also we used (L) = ,/gi = 1253. Inset: Showing the residual stress
o

calculated from eqn (14) in the text normalized by the initial stress for three
different values of (L) which are shown in the legend. The superposition of
the curves during the first 90% of the stress decay when time is rescaled by
length indicates that the relaxation time is length-dependent.
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At longer times, however, we find an additional single-exponential

approximately single-exponential with relaxation time 7 ~

relaxation time 7 ~ in this regime. The relaxation times are

OLle

derived in ESL.{ This counter-intuitive, inverse length dependence
of the relaxation time can be understood in terms of severing, the
rate of which increases with length, due to the increased number
of potential severing sites. The rapid dissolution of fragments
means that each severing event results in an order of unity
fractional reduction of stress per polymer. Thus, this instanta-
neous dissolution limit, as considered in ref. 12-14, cannot
account for the observed length-independent stress relaxation.’
With finite depolymerization of fragments, however, we observe
qualitatively different relaxation regimes, as described in the
following section.

3.2 Role of fragments: finite y

By introducing a finite rate of depolymerization, we proceed
solving coupled master equations for initially-stressed filaments.
As we argued before, disassembly of actin filaments changes
the hypothetical tube that constrains the filament’s motion and
affects the relaxation process. Therefore, the dynamic master
equation for P; is again given by eqn (1) with r = 0, since
polymerization results in unstressed filament segments. The
eqn (7) for Q; is unchanged. Using the derived steady state
solution of eqn (8) and (9) as the initial condition, we solve
these coupled systems of linear differential equations numerically.
The remaining initial stress is calculated using the total length
distribution as following

00

o(t)~ > L(P(L,1) + Q(L,1)). (15)

L=L.

As mentioned earlier, we define the depolymerization length
scaleas L4 = \/Z This length scale together with the network’s
o

entanglement length L. provides two different regimes, (L) >
Ly > L. (I) and (L) > L. > Lg (III). If the entanglement length
L. is larger than (L), the system should exhibit simple viscous
behavior. Thus, we focus on the limit (L) > L. It is noted that
the regime where Ly > (L) > L. (I) has been investigated in the
previous section where y — 0.

Fig. 5 illustrates the effect of depolymerization length Lq on
the stress relaxation in the regime (II) where L. < Lg < (L). The
inset of Fig. 5 shows that this regime is characterized by an
approximate single-exponential relaxation, in this case with
relaxation time 7 ~ oc_IIJd' We also find that the stress relaxation
in this regime is independent of the initial average filament
length (L) prior to applying a step strain (see Fig. S1, ESIT).
This striking length-independent relaxation behavior can be
understood by noting that, the time for significant stress
relaxation is determined by the time at which the typical length
of initial load-bearing filaments is reduced by severing to Lq,
since the dissolution becomes very rapid for filaments of
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Fig. 5 Relaxation curves for different depolymerization length. Showing
normalized stress versus time scaled by severing rate (t = at) for different
values of depolymerization length scale Ly which are specified in the
legend. We used entanglement length of L, = 20 and initial average length

of (L) = ,/gZ = 1253. Inset: Showing the collapse of stress curves versus
o

tLy, which indicates that the stress relaxation is determined by Lq4 in
this regime. The approximate straight line in this semi-log plot shows a
single-exponential behavior.

this length and shorter. Increasing depolymerization rate y
(increasing Lq) shifts the length distribution Q, toward mono-
meric units and hence the stress relaxation becomes faster.
As the effects of fragment dissolution become less important,
L. can exceed Ly. Here, we also find that the stress relaxation has
no dependence on the initial average length (L) (see Fig. S2,
ESIT). The preceding arguments concerning Ly apply in this
limit for L.. In the limit of slow or absent dissolution of
fragments (small y), to a first approximation severing simply
reduces the average length of load-bearing filaments, while
conserving the total length of these. Only when a significant
portion of the initial length distribution shifts from longer
filaments to filaments shorter than L. will the stress begin to
relax significantly. This will occur when filaments of length
~L. are severed with significant probability, ie., for times
t ~ (aLe)”" (see inset of Fig. 6). Both of the regimes II and III
are consistent with the recent experiments on reconstituted
actin solutions in the presence of cofilin showing a length-
independent relaxation process. Combining our results in
different regimes of length scales, we are able to construct a
phase diagram for stress relaxation behavior of F-actin networks
(see Fig. 2). These regimes are, in principle, experimentally
accessible by varying reaction rates via actin-binding proteins
such as profilin, cofilin, and formin.>* By increasing concen-
tration of profilin, as a nucleation inhibitor, the initial average
length of actin filaments (L) decreases. On the other hand, adding
formin promotes nucleation and increases (L). Cofilin concen-
tration also controls the rate of severing reaction.’ However, one
important caveat when comparing the model with experiments is
that reaching a true steady state of actin solutions during the
experiments may be slow, particularly if diffusive length fluctua-
tions are relevant,”® making it likely that the experimental fila-
ment length distributions are collected in a quasi-steady state.
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Fig. 6 Relaxation curves for different entanglement length. Normalized
stress versus time scaled by severing rate (f = at) for three different L. as
shown in the legend for depolymerization length Ly = 20 and initial

average length of (L) :,/ggz 1253. The inset shows a collapse of

the relaxation curves versus tL., which implies that L. determines the
relaxation behavior in this regime. Also the approximate straight line in this
semi-log plot shows a single-exponential stress relaxation.

4 Limitations of the model

Due to the multiple molecular reactions occurring in F-actin
solutions, it has been a challenge to model even their (dis)-
assembly, let alone the consequences of this for stress relaxation.
We present above a minimal model of stress relaxation based on
the temporal evolution of the length distribution of load-bearing
filaments. In order to make the model tractable, we make a
number of simplifying assumptions. In particular our model is a
coarse-grained one, appropriate for sufficiently high molecular
weight. The model considers all filaments to be composed of
ADP-bound actin subunits, with the exception of a single ATP-
bound terminal monomer at the barbed end of each P filament.
Thus, we do not resolve the finite size of an ATP-cap. This simple
nucleotide distribution ensures that exactly one P and one Q
filament are formed as a result of severing of P filaments,
consistent with experiments.”***> Similarly, filament nucleation
is not treated in detail in our model, although the final term in
eqn (1) for L = 2, ie., rP; represents the nucleation rate, with P;
being an implicit additional parameter to account for nucleation.
Changing P, has a trivial multiplicative effect on the amplitude of
the length distribution and does not affect the time dependence of
stress relaxation.

Furthermore, we neglect filament annealing,”® as was
deemed appropriate in recent experimental studies of actin
solutions in presence of formin and profilin.’ The presence
of formin at barbed ends is sufficient to suppress annealing
of elongating filaments,** and the binding of profilin to ADP-
bound barbed ends of depolymerizing filaments generates a
steric clash we expect to inhibit annealing at barbed ends
exposed by severing. We note that by including filament
annealing at zero depolymerization rate y = 0, our model
becomes similar to the viscoelastic model for worm-like
micelles.?”
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Rather than an explicit treatment, the activities of actin
binding proteins are implicitly included in the model through
reaction rates. Although the reaction rates depend on the
concentrations of different components in the solution,?®?”
we simplify our model by assuming constant reaction rates. In
particular we assume a uniform and equivalent severing rate
along both filament types P and Q. The possible non-uniform
severing reaction in the vicinity of an ATP-cap (on filament P)
should be characterized by a local interaction on the scale of
monomers, which can be neglected for high molecular weight.
We also note that various reaction rates in actin solutions can
depend on each other, e.g., in the observed synergy effect of
cofilin and Arp2/3 in actin solutions,***° which is not incorpo-
rated in our simplified model. Moreover, we assume that the
monomer pool consists only of ATP-bound G-actin in complex
with profilin and is constant in time. This is indeed the major
species in reconstituted actin solutions in presence of profilin
and cofilin at steady state.””"

5 Conclusion

Considering all of these assumptions and limitations, our
model takes into account polymerization, depolymerization,
and also severing reactions with constant rates and phenom-
enologically relates the magnitude of remaining stress after
applying a step strain to the amount of initially-stressed
large filaments. Depending on the relative values of different
reaction rates, we observe both length-dependent and length-
independent relaxation process.

Assuming instantaneous disassembly of unstable fragments
(Q in Fig. 1) after severing events gives a Rayleigh distribution
for filament length in steady state. This peaked distribution
was indeed investigated in previous works.'>™* Moreover,
using the dynamic length distributions, we find that the stress
relaxation has a strong and surprisingly inverse dependence on
the initial average filament length (L).

By including finite disassembly of fragments in our model,
we find a significant change in both steady state and dynamic
length distributions and hence the resulting relaxation behavior.
For finite fragment disassembly rate 7, there is an enhancement
of short filaments, compared to the limit of instant disassembly
y — oo. This is due to the presence of fragments with ADP barbed
ends (Fig. 1). As we increase 7, this distribution tends to the length
distribution without fragments. In the limit of very slow rate of
disassembly y where Ly < L. < (L) (regime III in Fig. 2), stress
relaxation of F-actin solutions is independent of initial filaments
length. Interestingly, the characteristic timescale in this regime is
inversely proportional to the entanglement length of the network
L. For the intermediate y values in which Ly becomes larger than
L. but still smaller than (L) (regime II in Fig. 2), we also find a
length-independent stress relaxation with a characteristic time-
scale as (aLg) .

Recent rheological experiments on reconstituted actin solu-
tions show a length-independent relaxation behavior,” consistent
with regimes II and III in the present model. Further experiments
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will be needed to determine which, if either of these regimes is
observed. One way to explore this, for instance, would be to vary
the concentration of actin and, thereby the entanglement
length L.
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