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Abstract. A non-degenerate differential 2-form on an even dimensional
manifold M2n is called an almost-symplectic structure. A necessary con-
dition for the existence of an almost-symplectic structure is that all
odd-dimensional Stiefel-Whitney classes of M should vanish. In this
paper, we prove that all odd-dimensional Stiefel-Whitney classes of a
smooth, closed, connected, orientable 8-manifold with spin structure
vanish. We also study the almost-symplectic structures on certain classes
of Spin(7)-manifolds.
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1. Introduction

In this paper we study geometric structures on Spin(7) manifolds. A Spin(7)-
manifold is an 8-dimensional Riemannian manifold with the holonomy group
inside the exceptional Lie group Spin(7). Manifolds with special holonomy
are spaces whose infinitesimal symmetries allow them to play a crucial role
in M-theory compactifications. They represent the tiny curled up dimensions
hiding at every point of spacetime. Examples of manifolds with special holo-
nomy are 6-dimensional Calabi-Yau manifolds, 7-dimensional G2 manifolds
and 8-dimensional Spin(7) manifolds. Despite extensive research on Calabi-
Yau manifolds, the geometric properties of G2 and Spin(7) manifolds are
not well understood. In this paper we initiate a program to study almost
symplectic structures on Riemannian 8-manifolds with spin structure.

In particular we prove

Theorem: All the odd-dimensional Stiefel-Whitney classes of a smooth, closed,
connected, orientable 8-manifold with spin structure vanish.
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Note that a manifold M with Spin(7)-structure is orientable and spin.
The theorem above implies that the obstructions for the existence of almost
symplectic (and hence almost complex) structures on a manifold with full
Spin(7) holonomy vanish as well. There are inclusions between the groups

SU(2) −→ SU(3) −→ G2 −→ Spin(7),

and

SU(2)× SU(2) −→ Sp(2) −→ SU(4) −→ Spin(7).

These are the only connected Lie subgroups of Spin(7) which can be
holonomy groups of Riemannian metrics on 8-manifolds. Hence the theorem
above also holds for 8-manifolds with reduced holonomy groups.

2. Spin(7)-structures

In this section we review the basics of Spin(7) geometry. More on the subject
can be found in [4], [8], [6] and [12].

Let (x1, ..., x8) be coordinates on R8. The standard Cayley 4-form on
R8 can be written as

Φ0 = dx1234 + dx1256 + dx1278 + dx1357 − dx1368 − dx1458 − dx1467

− dx2358 − dx2367 − dx2457 + dx2468 + dx3456 + dx3478 + dx5678

where dxijkl = dxi ∧ dxj ∧ dxk ∧ dxl.

The subgroup of GL(8,R) that preserves Φ0 is the group Spin(7). It is
a 21-dimensional compact, connected and simply-connected Lie group which
preserves the orientation on R8 and the Euclidean metric g0.

Definition 2.1. A differential 4-form Φ on an oriented 8-manifold M is called
admissible if it can be identified with Φ0 through an oriented isomorphism
between TpM and R8 for each point p ∈M .

Definition 2.2. Let A(M) denotes the space of admissible 4-forms on M . A
Spin(7)-structure on an 8-dimensional manifold M is an admissible 4-form
Φ ∈ A(M). If M admits such structure, (M,Φ) is called a manifold with
Spin(7)-structure.

Each 8-manifold with a Spin(7)-structure Φ is canonically equipped
with a metric g. Hence, we can think of a Spin(7)-structure on M as a pair
(Φ, g) such that for all p ∈M there is an isomorphism between TpM and R8

which identifies (Φp, gp) with (Φ0, g0).
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Existence of a Spin(7)-structure on an 8-dimensional manifold M is
equivalent to a reduction of the structure group of the tangent bundle of M
from SO(8) to its subgroup Spin(7). The following result gives the necessary
and sufficient conditions so that the 8-manifold admits Spin(7) structure.

Theorem 2.3. ([6], [4]) Let M be a differentiable 8-manifold. M admits a
Spin(7)-structure if and only if w1(M) = w2(M) = 0 and for appropriate
choice of orientation on M we have that

p1(M)2 − 4p2(M)± 8χ(M) = 0.

Furthermore, if ∇Φ = 0, where ∇ is the Riemannian connection of g,
then Hol(M) ⊆ Spin(7), and M is called a Spin(7)-manifold. All Spin(7)
manifolds are Ricci flat.

Let (M, g,Φ) be a Spin(7) manifold. The action of Spin(7) on the tan-
gent space gives an action of Spin(7) on the spaces of differential forms,
Λk(M), and so the exterior algebra splits orthogonally into components,
where Λk

l corresponds to an irreducible representation of Spin(7) of dimen-
sion l:

Λ1(M) = Λ1
8, Λ2(M) = Λ2

7 ⊕ Λ2
21, Λ3(M) = Λ3

8 ⊕ Λ3
48,

Λ4(M) = Λ4
+(M)⊕ Λ4

−(M), Λ4
+(M) = Λ4

1 ⊕ Λ4
7 ⊕ Λ4

27, Λ4
− = Λ4

35

Λ5(M) = Λ5
8 ⊕ Λ5

48 Λ6(M) = Λ6
7 ⊕ Λ6

21, Λ7(M) = Λ7
8;

where Λ4
±(M) are the ±-eigenspaces of ∗ on Λ4(M) and

Λ2
7 = {α ∈ Λ2(M)| ∗ (α ∧ Φ) = 3α}, Λ2

21 = {α ∈ Λ2(M)| ∗ (α ∧ Φ) = −α},
Λ3
8 = {∗(β ∧ Φ)|β ∈ Λ1(M)}, Λ3

48 = {γ ∈ Λ3(M)|γ ∧ Φ = 0},
Λ4
1 = {fΦ|f ∈ F(M)}

The Hodge star ∗ gives an isometry between Λk
l and Λ8−k

l .

3. Almost symplectic structures and Spin(7)-structures

In this section we show that all the odd-dimensional Stiefel-Whitney classes
on a closed, connected orientable 8-manifold with spin structure vanish.

An almost symplectic manifold M is a n-dimensional manifold (n = 2m)
with a non degenerate 2-form ω. If in addition, ω is closed then M is called
a symplectic manifold. An almost-symplectic structure defines an Sp(m,R)
structure. A necessary and sufficient condition for the existence of an almost-
symplectic structure on M is the reduction of the structure group of the
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tangent bundle to the unitary group U(m). It is therefore necessary that all
odd-dimensional Stiefel-Whitney classes of M to vanish [9].

For any manifold M and integer k ≥ 0, one can construct a graded
linear map Sqk : H∗(M,Z2)→ H∗(M,Z2) of degree k. This is called the kth

Steenrod square. One can define Stiefel-Whitney classes using both Steenrod
squares and the Thom isomorphism.

There is also a unique class νk ∈ Hk(M,Z2) such that for any x ∈
Hn−k(M,Z2), Sqk(x) = νk ∪ x. We call this class νk, the kth Wu class.

Now suppose M is a smooth, closed, connected n-dimensional manifold.
Wu’s theorem states that the total Stiefel-Whitney class of the tangent bundle
of M , denoted by w, Steenrod squares and Wu classes are all related by the
equation w = Sq(ν), for more on the subject see [11]. This gives the following
formula:

wk =
∑

i+j=k

Sqi(νj)

One can also compute the action of the Steenrod squares on the Stiefel-
Whitney classes. This is called the Wu formula:

Sqi(wj) =

i∑
t=0

(
j + t− i− 1

t

)
wi−twj+t

for 0 ≤ i ≤ j. Thus we obtain

w1 = Sq0(ν1) = ν1,

w2 = Sq0(ν2) + Sq1(ν1) = ν2 + ν1 ∪ ν1,

w3 = Sq0(ν3)+Sq1(ν2) = ν3+Sq1(ν2) = ν3+Sq1(w2)+Sq1(w1∪w1),

w4 = Sq0(ν4) + Sq1(ν3) + Sq2(ν2) = ν4 + Sq1(ν3) + ν2 ∪ ν2

w5 = Sq0(ν5) + Sq1(ν4) + Sq2(ν3) = ν5 + Sq1(ν4) + Sq2(w1 ∪ w2)

And one can write the corresponding Wu classes as polynomials in the
Stiefel-Whitney classes as follows: For simplicity, we replace the cup product
symbol by multiplication sign.

ν1 = w1,
ν2 = w2 + w2

1,
ν3 = w1w2,
ν4 = w4 + w3w1 + w2

2 + w4
1,

ν5 = w4w1 + w3w
2
1 + w2

2w1 + w2w
3
1,

In a spin manifold, w1 = w2 = 0 which imply v1 = v2 = 0 which then
gives w3 = v3. One can also see that w3 = 0 as follows: Note that by definition
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of Wu classes, v3 ∪ x = Sq3(x) for all x ∈ H(n−3)(M,Z2). Then one can see
that Sq3 is a linear combination of Sq1◦Sq2 and Sq2◦Sq1 and Sq1◦Sq1◦Sq1
so that we get

v3 ∪ x = (aSq1Sq2 + bSq2Sq1 + cSq1Sq1Sq1)(x) = Sq1(y) + Sq2(z)

for some y, z. This term is equal to v1 ∪ y + v2 ∪ z = 0. As v3 ∪ x = 0 for all
x, Poincare duality then gives v3 = 0 and hence w3 = 0.

The Wu relations also imply that w4 = ν4. Since w1 = 0 (as M is
orientable) this gives us w5 = Sq1(w4). Equivalently, w5 is the image of w4

under the Bockstein map induced by

0 −→ Z2 −→ Z4 −→ Z2 −→ 0

This implies that w5 is the mod-2 reduction of the integral Stiefel-
Whitney class W5, which is the element of H5(M,Z), that is the image of w4

under the Bockstein map induced by

0 −→ Z −→ Z −→ Z2 −→ 0

Note also that v4 is by definition the Poincare dual to the Z2 linear map

Sq4 : H4(M,Z2)→ H8(M,Z2) = Z2

which implies

w4.x = v4.x = x.x

for any element x of H4(M,Z2). In other words, w4 just represents the mod-2
intersection form.

One can then use the Hirzebruch-Hopf theorem [7] to show that w4 has
an integer lift and therefore w4 is in the image of H4(M,Z) −→ H4(M,Z2)
and so W5 = 0.

The commutative diagram of short exact sequences

0 // Z

��

// Z

��

// Z2

��

// 0

0 // Z2
// Z4

// Z2
// 0

induces a commutative diagram of the corresponding long exact sequences
and hence implies that w5 = 0.
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And finally, in order to show that w7 = 0 we use a result of W. Massey.
In ([10], Thm II) it was shown that if M2m is orientable (where 2m ≡ 0 (mod
4)), then w2m−1 = 0. Hence for an 8-manifold we obtain w7 = 0. One can
read more about the proof in ([10], Section 5).

This completes the proof of the main theorem:

Theorem 3.1. All the odd-dimensional Stiefel-Whitney classes of a smooth,
closed, connected, orientable 8-manifold with spin structure vanish.

4. A Motivating Example

Next, we discuss a special class of Spin(7) manifolds that admits an almost
complex structure and show how it is related to the Spin(7)-structure.

Let (M,Φ) be a Spin(7) manifold (or more generally manifold with
Spin(7)-structure) admitting a non-vanishing 2-plane field Λ = {u, v} ∈ TM .
In [13], E. Thomas shows that the Euler characteristic χ(M) = 0 and the
signature σ(M) ≡ 0 (mod 4) provides the necessary and sufficient conditions
for the existence of a 2-plane field on an 8-manifold. Now define, [u, v]⊥ =
{w ∈ TM |< u,w >=< v,w >= 0}. One can show that [u, v]⊥ carries a
non-degenerate 2-form ωu,v which is compatible with the almost complex
structure Ju,v : [u, v]⊥ → [u, v]⊥ and given by

ωu,v(w, z) = Φ(w, u, v, z) and Ju,v(z) = u× v × z.

Definition 4.1. Let (M,Φ) be a Spin(7) manifold. Then Ju,v(z) = u× v × z
is the triple cross product defined by the identity:

< Ju,v(z), w >= Φ(u, v, z, w). (4.1)

Theorem 4.2. Let (M,Φ) be a Spin(7) manifold with a non-vanishing oriented
2-plane field. Then, Ju,v(z) = u× v × z defines an almost complex structure
on M compatible with the Spin(7) structure.

Proof. Let {u, v} ∈ TM be two vectors generating the non-vanishing ori-
ented 2-plane field. J(z) is well defined since by Equation (1), < J(z), w >=
Φ(u, v, z, w).

Next, we show J2(z) = −id. This can be done using the properties of
the Spin(7)-structure on M. Let zi, zj ∈ TM ,

Then

< u× v × (u× v × zi), zj > = Φ(u, v, (u× v × zi), zj)
= −Φ(u, v, zj , (u× v × zi))
= − < u× v × zj , u× v × zi >
= −δij
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The last equality holds since the map J is orthogonal. Note that the
map J only depends on the oriented 2-plane Λ = {u, v}.

�

5. Interesting Questions

One major problem in the field of manifolds with special holonomy is a lack
of an existence theorem that gives necessary and sufficient conditions for a
7-dimensional manifold to admit a G2 metric. In an earlier paper, [3], Arikan,
Cho and Salur proposed a program to study the relations between (almost)
contact structures and G2 structures. The main goal is to understand the
topological obstructions for the existence of a G2 metric on a Riemannian
7-manifold with spin structure. In that paper, they proved the following the-
orem:

Theorem 5.1. Every 7-manifold with a spin structure admits an almost con-
tact structure.

Since every 7-manifold with spin structure admits a G2 structure this
implies:

Corollary 5.2. Every manifold with G2-structure admits an almost contact
structure.

As one might expect, a promising direction for future investigation is to
obtain similar results for almost complex (and hence almost symplectic) 8-
manifolds with Spin(7) structures. Understanding almost complex structures
on a Spin(7) manifold might help us to understand the properties of the
Spin(7) metric. We plan to investigate these relations in a future paper.

Also in the papers, [1], [2] and [5], it is shown that the rich geomet-
ric structures of a G2 manifold N with 2-plane fields provide complex and
symplectic structures to certain 6-dimensional subbundles of T (N). Using
the 2-plane fields, one can introduce a mathematical definition of “mirror
symmetry” for Calabi-Yau and G2 manifolds. More specifically, one can as-
sign a G2 manifold (N,ϕ,Λ), with the calibration 3-form ϕ and an oriented
2-plane field Λ, a pair of parametrized tangent bundle valued 2 and 3-forms
of N . These forms can then be used to define different complex and sym-
plectic structures on certain 6-dimensional subbundles of T (N). When these
bundles are integrated they give mirror CY manifolds. This is one way of
explaining duality between the symplectic and complex structures on the CY
3-folds inside of a G2 manifold. Similarly, one can construct these structures
and define mirror dual Calabi Yau manifolds inside a Spin(7) manifold which
admits an almost complex structure. These topics will be also studied in a
future paper.
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