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ABSTRACT

Hydrogen mass repartitioning (HMR) that permits time steps of all-atom molecular dynamics
simulation up to 4 fs by increasing the mass of hydrogen atoms has been used in protein and
phospholipid bilayers simulations to improve conformational sampling. Molecular simulation input
generation via CHARMM-GUI now supports HMR for diverse simulation programs. In addition,
considering ambiguous pH at the bacterial outer membrane surface, different protonation states,
either -2e or -1e, of phosphate groups in lipopolysaccharides (LPS) are also supported in
CHARMM-GUI LPS Modeler. To examine the robustness of HMR and the influence of protonation
states of phosphate groups on LPS bilayer properties, eight different LPS-type all-atom systems
with two phosphate protonation states are modeled and simulated utilizing both OpenMM 2-fs
(standard) and 4-fs (HMR) schemes. Consistence in the conformational space sampled by
standard and HMR simulations shows the reliability of HMR even in LPS, one of the most complex
biomolecules. For systems with different protonation states, similar conformations are sampled
with a PO4' or PO4* group, but different phosphate protonation states make slight impacts on
lipid packing and conformational properties of LPS acyl chains. Systems with PO4" have slightly
smaller area per lipid and thus slightly more ordered lipid A acyl chains compared to those with
PO4?, due to more electrostatic repulsion between POs* even with neutralizing Ca?* ions. HMR
and different protonation states of phosphates of LPS available in CHARMM-GUI are expected
to be useful for further investigations of biological systems of diverse origin.



INTRODUCTION

Conventional all-atom molecular dynamics (MD) simulations suffer from slow and incomplete
coverage of phase space, which can limit their applicability to slowly evolving systems. Thus,
there is a great need to identify and implement methods to improve conformational sampling.'
A major contributing factor to the slow coverage of phase space is the small integration time-steps
(1 or 2 fs) that are required to conserve the total energy.® Hydrogen mass repartitioning (HMR) is
a simulation technique that enables all-atom MD to employ a 4-fs time-step by distributing a heavy
atom mass to hydrogen atom(s) attached to the heavy atom. It was originally proposed by
Feenstra et al. in 1999° and was shown to be practically useful for protein simulations by Hopkins
etal. in 2015.6 Among different HMR schemes, the most popular one is to increase each hydrogen
atom mass by a factor of 3 and subtract the total increased mass from the heavy atom bearing
hydrogen atom(s). HMR has become popular in the MD simulation community with its recent
application to phospholipid bilayers.”® CHARMM-GUI (http://www.charmm-gui.org)'®"" now
supports this HMR scheme for NAMD'2, GROMACS", AMBER", GENESIS", LAMMPS'S,
Desmond'’, and OpenMM'®. In this work, we have tested the HMR scheme by performing MD
simulations of various lipopolysaccharide (LPS) bilayer systems using OpenMM.

LPS molecules, which are found in the outer leaflet of the outer membranes (OM) of Gram-
negative bacteria, are composed of lipid A, core oligosaccharide, and O-antigen polysaccharide,
representing one of the most complex biological molecules.'®? In LPS, phosphate groups are
often attached to the glucosamine dimer of lipid A and L-glycero-D-manno-heptose (Hep) of a core
oligosaccharide. At 25 °C, two pKa, values of glucose-1-phosphate and glucose-4-phosphate are
1.10/6.13 and 0.84/5.67, respectively.?"?2 Under physiological conditions, however, the
protonation states, either -2e or -1e, of phosphate groups in LPS are difficult to be determined
unambiguously due to unknown pH at the bacterial OM surface. Therefore, LPS Modeler?>?* and
Membrane Builder’*?” in CHARMM-GUI now supports different protonation states of LPS
phosphate groups. In this work, the influences of different protonation states on LPS bilayer
properties have been extensively tested by performing MD simulations of various LPS bilayer
systems. Note that this work was partially motivated by a recent simulation study by Amy et al.
that explored the influence of the protonation states of lipid A glucosamine phosphate groups on
the properties of bilayers composed of Salmonella enterica lipid A and Rc core (two Kdo (2-keto-
3-deoxyoctulosonate), three Hep, and one Glc (D-glucose)).?® Among many recent progresses in
MD simulations of various LPS systems?' their study is the first work (to the best of our
knowledge) to investigate the different phosphate protonation states and LPS-ion interactions.

In this work, as shown in Table 1, eight different LPS-type systems were modeled and simulated:
three from Pseudomonas aeruginosa (P. aeruginosa or Pa), two from Escherichia coli (E. coli or
Ec), and three from Burkholderia cepacia (B. cepacia or Bc). These LPS types differ by lipid A,
core, and O-antigen regions, such that extensive simulations of these complex LPS bilayers are
valuable in order to examine the usage of HMR, as well as the influences of phosphate protonation
states on LPS bilayer properties.

Table 1. LPS system information in this study.’

System name LPS type
Pa-Kdo P. aeruginosa lipid A + 2 Kdo sugars
Pa-G2 P. aeruginosa lipid A + core 2
Pa-010 P. aeruginosa lipid A + core 2 + 2 repeating units of O10 O-antigen
Ec-Kdo E. coli lipid A + 2 Kdo sugars

Ec-K12 E. colilipid A + K12 core




Bc-T1 B. cepacia lipid A (Type 1) + core A
Bc-T2 B. cepacia lipid A (Type 2) + core A
Bc-T3 B. cepacia lipid A (Type 3) + core A

TUnless specified explicitly, lipid A is type 1 defined in CHARMM-GUI LPS Modeler. LPS
structures are shown in Figure S1.

METHODS
System details

To investigate the effects of LPS phosphate protonation states on the outer leaflet of bacterial
OMs, symmetric bilayers with different LPS types (Table 1) were modeled and simulated. For P.
aeruginosa systems, three different systems were built: Pa-Kdo with P. aeruginosa lipid A and
two Kdo residues, Pa-G2 with lipid A and G2 core oligosaccharides, and Pa-O10 with lipid A, G2
core, and two repeating units of O-10 O-antigen (hereinafter, O10-antigen). All symmetric bilayers
with 49 LPS molecules in each leaflet were constructed using Membrane Builder in CHARMM-
GUI. Ca* ions were added to the LPS lipid A and core regions to neutralize each system and 150
mM KCI was added to the bulk region to mimic the bulk ionic solution. An initial area per lipid
(APL) of 180 A% was used in the modeling of Pa-Kdo and Pa-G2 systems, while both 180 A? and
200 A? APL were used for the Pa-O10 system (Pa-010" and Pa-010%%) to check the simulation
convergence depending on the initial membrane area (Figure 1). For each Pa system, both
protonation states, either -2e or -1e, of phosphate groups in the glucosamine dimer of lipid A
(Figure S2) were considered.

Pa-010

Figure 1. Molecular graphics snapshots of systems Pa-Kdo, Pa-G2, and Pa-O10. Lipid A in each
LPS is colored by atom: cyan for carbon, red for oxygen, blue for nitrogen, and tan for phosphorus.
Kdo residues are colored yellow. The G2 core is colored yellow and orange, and two O10
polysaccharide repeating units are colored red.

E. coli and B. cepacia systems were prepared with the same procedure used for P. aeruginosa
systems. A total of 49 LPS molecules were added in each leaflet to model symmetric systems.
For the E. coli systems, two different systems were built: Ec-Kdo with E. coli lipid A and two Kdo
residues and Ec-K12 with lipid A and K-12 core oligosaccharides. Like in the Pa system, two



protonation states (-2e or -1e) of phosphate groups in the glucosamine dimer of lipid A were
considered. For Ec-K12 systems, in addition to lipid A, different phosphate protonation states
were also considered for Hep residues in the K12 core (Ec-K122 and Ec-K12° for Hep with -2e or
-1e phosphate group, respectively). For B. cepacia systems, the same core oligosaccharide
sequence was used with a variation in lipid A structures (Figure S3). Type 1 lipid A includes
penta-acylated tails and two phosphate groups on each end of the glucosamine dimer. Both
phosphate groups were assigned to two different protonation states, -2e or -1e, in different
simulations. Type 2 lipid A has an additional 4-amino-4-deoxy-L-arabinose (L-Ara4N) connected
to the first phosphate group. The second phosphate group was assigned to -2e or -1e. Type 3
lipid A has an additional L-Ara4N at both phosphate groups, making the net charge neutral. An
initial APL of 200 A was used for both E. coli and B. cepacia systems.

Simulation details

During simulations, together with a TIP3P water model,**** the CHARMM36 force field for LPS?*
3 lipids*®, and carbohydrates®“° was used to describe the system energetics. For each system,
following the CHARMM-GUI standard membrane equilibration protocol, equilibrations were first
conducted in NVT (constant particle number, volume, and temperature) ensemble with gradually
decreasing restraints applied to the lipids and water molecules to ensure the gradual equilibration
of the assembled system. After equilibration, 2-ys (Pa systems), 1.5-us (Ec systems), or 2.5-us
(Bc systems) NPT (constant particle number, pressure, and temperature) production simulation
with a time-step of 2 fs was conducted for each system. During simulations, all bonds containing
hydrogen atoms were fixed using SHAKE.*' The van der Waals interactions were smoothly
switched off over 10-12 A by a force-switching function*? and the long-range electrostatic
interactions were calculated using the particle-mesh Ewald method.** For OpenMM simulations,
Langevin dynamics was used for the temperature coupling with a collision frequency of 1 ps™. A
semi-isotropic Monte Carlo barostat method with a pressure coupling frequency of 100 steps was
used to maintain the pressure.***° Unless specified explicitly, for all simulations, the temperature
was maintained at 310.15 K and the pressure was set to 1 bar. For HMR simulations, all simulation
details were the same as the standard ones except for 4-fs time-step used in production runs.
Three independent replicas with different random seed numbers were simulated to improve
sampling and to check the simulation convergence.

RESULTS AND DISCUSSION

The simulation results are presented in the following order: (1) results of Pa, Ec, and Bc systems
with different phosphate protonation states using OpenMM 2-fs time-step; (2) results of Pa
systems using OpenMM 4-fs time-step with HMR.

Influences of different phosphate protonation states on conformational preference

For each Pa system, comparisons of pairwise root-mean-square deviation (RMSD of the entire
LPS including the acyl chain after superposition) calculated between 1.0 — 1.5 ys and 1.5 - 2.0
ps are shown in Figure S4. The RMSD distributions are almost identical between the two time
periods, indicating simulations reach convergence and similar conformational ensembles are
sampled during last 1-us simulations with either PO4'~ or PO4* groups. As expected, the Pa-010
systems are more dynamic and flexible with broader RMSD distributions compared to Pa-G2 and
Pa-Kdo systems due to its large size. In the following, unless specified explicitly, the last 500-ns
trajectories are used for analyses.



To investigate the influence of phosphate protonation states on the conformational variations,
pairwise RMSD distributions with PO,' and PO.* groups are shown in Figure 2A. The well
overlapped distributions for each system indicate that similar conformational ensembles are
sampled and no significant structural variations are observed between the two protonation states.
The averaged Z-lengths between phosphate groups of lipid A and the first residue of each O10-
antigen repeating unit are shown in Figure 2C; there are two O10 repeating units in Pa-O10
systems. In both protonation states, conformations with similar Z-lengths (about 26 + 2 A and 34
+4 A, respectively) are sampled during simulations, which is consistent with the result of pairwise
RMSD distributions. Thus, although different protonation states are used for lipid A, each Pa
system adopts similar conformation with PO4'- or PO,4?. For Ec and Bc systems, similar pairwise
RMSD distributions are also observed between two protonation states (Figure S5), consistent
with the conclusion for Pa systems that similar conformations are sampled with PO4" or POs*
groups.

Pa Kdo o (BI) I Pl°4 _l
0.6 . POI‘Z
0.4
0.2 -
Pa.G2 . S
06 | L
0.4 | /\ | A
0.2 -
>
S — —
s Pa-0101%
© 06}
a
04 } -
| /\_—;—4/\
Pa-010200
06 | 1
04 | {
- ;—/\ | ~/\
2 10 2 4 6 8 10

RMSD (A) RMSD (A)

Figure 2. Comparisons of pairwise RMSD distributions between two phosphate protonation states
in (A) standard and (B) HMR simulations for each Pa system. Pa-010'®° and Pa-010°® denote
the systems with the initial areas per lipid of 180 A2 and 200 A?, respectively. (C) Averaged Z-
lengths between the centers of mass of phosphate groups of lipid A and the first residue of each
O10-antigen repeating unit. The structure is a snapshot from Pa-010 with PO,"".



Different protonation states of lipid A phosphate groups could also alter the distributions of
divalent cations that maintain the stability and integrity of LPS membrane systems. Figure S6A
and Figure S7 show the density distributions of Ca®" ions along the Z axis (i.e., the membrane
normal with the bilayer center at Z = 0) for Pa, Ec, and Bc systems. Ca?* ions are dominantly
occupied in the lipid headgroup and core regions. For Pa-O10 systems, some Ca?* ions moved
slightly toward the O10-antigen region indicated by the small peak at Z = 46 A. As expected, when
phosphate group charges are -2e, more Ca®* ions are bound to the lipid A phosphate regions
(around Z = 17 A) for each Pa system simply because there are more neutralizing Ca?* ions.
Comparison between Ec-K122 and Ec-K12° systems also indicates more Ca?* ions bound in the
core region due to the -2e phosphate charge for HEP residues in Ec-K122.

Influences of different phosphate protonation states on bilayer properties

Although similar conformations are sampled with PO, and PO4* groups for each system,
different phosphate protonation states could make impacts on lipid packing and conformational
properties of LPS acyl chains. Figure S8 shows the time series of averaged area per lipid (APL)
every 100 ns and its corresponding standard errors for each Pa system in both protonation states.
Both averaged APL and its standard errors (Table S1) generally reach a plateau after about 1-us
simulation. It is noticeable that systems with PO," have slightly smaller APL compared to those
with PO,?, indicating the lipid A acyl chains are slightly more ordered and straight with PO4™. In
addition, for systems Pa-010'®° and Pa-010%% started with two different initial APL values, there
still exists slight differences for the averaged APL (even after 2-us simulation), which results from
the slow lateral relaxation of LPS. The hydrophobic thicknesses calculated using carbons in the
purple circles in Figure S2 are shown in Figure 3A and Table S1. Expected from the APL results,
the hydrophobic thickness of each Pa system with PO,? is slightly thinner than the corresponding
Pa system with PO,
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Figure 3. Averaged hydrophobic thickness and area per lipid for each Pa system with two
phosphate protonation states: (A and C) standard and (B and D) HMR simulations.

For Ec systems, averaged APL along with simulation time generally reach convergence after 1-
us as shown in Figure S9. However, there still exists significant differences for simulations of Bc
systems among the three replicas, which clearly manifests the slow lateral relaxation of these
LPS types. In this work, for Bc systems, temperature was increased to 400 K at 500 ns and then
cooled down to 310 K at 1.5 ps to obtain better convergence as shown in Figure S9. The last
500-ns trajectories at 310 K were used for analyzes. Averaged APL and its standard error are
shown in Table S2. Except for Bc-T2 systems, averaged APL with PO4'" groups are all smaller
than those with PO4*, and hydrophobic thickness is correspondingly larger, which is consistent
with the Pa results. For Bc-T2 systems, there is only one phosphate group having -2e or -1e
(Figure S3), and the APL difference is within the errors. For Ec-K12 systems, it is also found that
the APL becomes larger when the phosphate group of Hep is -2e, regardless of the lipid A
protonation state. Results from analysis of APL and hydrophobic thickness indicate that the
protonation state of phosphate groups in lipid A could affect the lipid packing and conformations
of acyl chains of lipid A.
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Figure 4. Calculated chain order parameters for acyl chain 3 of lipid A for each Pa system with
two phosphate protonation states: (A) standard and (B) HMR simulations.

The order parameters (Scp) of lipid acyl chains are also used to provide information regarding the
overall order of the membrane. Scp= |< 3 X cos?(0cy) — 1 >/2|, where 8¢y is the angle between
a C-H bond vector and the Z axis, and the bracket represents the time and ensemble average.
Figure 4A shows the calculated Scp of lipid A acyl chain 3 (in Figure S2) in each Pa system.
Overall, the acyl chain is more ordered with PO4" compared to that with PO,4?, indicated by larger
Scp values. The lipid A analysis again agrees well with the hydrophobic thickness and APL results,
indicating that LPS bilayers with PO+ in lipid A are slightly more dynamic and flexible. Scp of acyl



chain 2 for Ec and Bc systems are also calculated and plotted in Figure $10. The more ordered
acyl chains with PO," groups are detected for Ec and Bc systems, which is consistent with the
conclusion from the Pa systems.

The protonation state of lipid A phosphate groups also affects the electrostatic interactions among
LPS as well as between LPS and divalent cations. Figure 5A shows the sum of the per-LPS
average number of inter-lipid A hydrogen bonds and the per-LPS average salt bridges between
Ca®" and phosphate groups for Pa systems (see Figure S11 for Ec and Bc systems). For Pa
systems with PO4'", more inter-lipid A hydrogen bonds are detected than those with PO4* due to
more hydrogen bond donors in PO4'- (Figure S12A). However, the overall stabilization of the
leaflet integrity is maintained by the electrostatic interactions formed by salt bridges between Ca?*
ions and phosphate groups of lipid A, indicated by much larger number of salt bridges than that
of inter-lipid A hydrogen bonds (Figure S12C). While there are more salt bridges for the PO4*
cases due to more neutralizing Ca®* ions, stronger electrostatic repulsion between PO4* groups
appears to make the APL of LPS with PO4* larger than that with PO4"".
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Figure 5. Sum of the per-LPS average number of inter-lipid A hydrogen bonds and the per-LPS
average salt bridges between Ca?* and phosphate groups for two phosphate protonation states:
(A) standard and (B) HMR simulations. A hydrogen bond is counted when the distance between
the donor and acceptor is less than 3 A and the angle is larger than 120°. A salt bridge is counted
when the distance between Ca®* and any atom on phosphate groups of lipid A is less than 4 A.

Axial relaxation time constants, which are related to both lipid structure and the membrane
environment, are measured by the second-rank reorientational correlation function, Cx(t), for
specific atoms.

C,(t) =< P[a(0) - g()] >

where P. is the second Legendre polynomial and fi is a heavy atom vector. In this work, the
vectors between the last carbons of each acyl chain were selected to estimate the slow relaxation
time: C1.12 (12" carbon from the carbonyl carbon in chain 1 in Figure $2) — C2.9, C3.10-C4.10,
C4.12—- C5.9, and C1.10-C6.10. Three exponential fits were used to determine time constants for
each cross-acyl chain:

3
C,(t) =ay + 2 a; e /%
i=1

The time constants represent the fast and slow relaxation times associated with the lipid’s fast
isomerization and slow wobbling motions, respectively.***® As shown in Table 2, for LPS



membrane systems, the relaxation time is much longer than bilayers comprised of
dipalmitoylphosphatidylcholine (DPPC) lipids, for which the slow relaxation time is ~10 ns and the
full rotational motion is an order of magnitude longer.*® In this study, the slow relaxation time of
adjacent chains is ~300 ns, and for the long-range vector (C1.10—-C6.10), which represents the
overall lipid rotational-like motion, the correlation is still very high during last 1-us simulations
(Figure $13), i.e., longer relaxation time than adjacent chain vectors.

Table 2. Average of three-exponential fitted relaxation time (in ns) of the cross-chain correlation
function in standard and HMR simulations.

OpenMM 2-fs OpenMM HMR
T, T, T3 T, T, T3
C1.12-C29 0.36+0.04 11.60%2.23 328.7+£116.3 0.37+0.02 11.23+1.28 322.9 +50.36
C3.10-C4.10 0.38+0.03 13.43+1.01 294.0 £ 36.0 0.39+0.03 14.15+1.75 362.5+36.78
C4.12-C59 0.38+0.06 11.41+2.38 335.2+123.9 0.37+0.06 10.56+2.43  271.5+64.92
C1.10-C6.10 0.59+0.05 15.69+1.54 398.0 £ 127.0 0.65+0.07 18.07+3.32 479.5+194.2

cross chain

Comparison between standard and HMR simulations for Pa systems

The HMR technique permits all-atom MD simulation time steps of up to 4 fs and thus improves
simulation efficiency with reasonable stability. Since HMR is now available in CHARMM-GUI and
can be used for various systems, the methodology was herein employed to perform simulations
and examine its robustness by investigating the conformational properties for Pa systems.
Pairwise RMSD distributions for two protonation states are shown in Figure 2B. Compared to
standard 2-fs simulations, similar RMSD distributions with comparable probabilities are observed
for each system. The averaged Z-lengths between phosphate groups in lipid A and the first
residue of each O10-antigen repeating unit are also close to that in the standard simulations (~26
+2 A and 34 + 4 A, respectively) for both protonation states, indicating that similar conformations
are sampled under HMR and standard OpenMM simulations. In addition, consistent with standard
simulations, the well overlapped pairwise-RMSD distributions with PO4'- or PO4? indicate similar
conformational space of LPS sampled under two protonation states. Density distributions of Ca?*
ions are shown in Figure S6B. Similar pairwise RMSD and Ca?* ions distributions between HMR
and standard simulations prove the usefulness of HMR.

Averaged APL and its corresponding standard errors under two protonation states from HMR
simulations are summarized in Table S1. The APL under HMR is very close to those under
standard simulations, and the difference between two simulations falls within its standard errors,
indicating that a similar conformational ensemble is sampled under both HMR and standard
simulations. For systems Pa-010"® and Pa-O10%® there also exists slight differences for the
averaged APL. Hydrophobic thickness, number of hydrogen bonds and salt bridges (Figure 3B
and Figure 5B) are also consistent with those from the standard simulations. Relaxation times
were also determined for HMR simulations to examine if the HMR method changes the lipid
dynamics compared to standard simulations. Table 2 indicates that HMR results are comparable
with standard ones, indicating the reliability of HMR simulations.

CONCLUSIONS

The HMR and different protonation states of phosphates in LPS are now supported in CHARMM-
GUI for various biomolecular MD simulations. In this work, eight different LPS-type systems were
modeled and simulated utilizing standard OpenMM 2-fs and HMR 4-fs schemes to examine the



usage of HMR, as well as the influences of phosphate protonation states on LPS bilayer properties.
Comparisons of pairwise RMSD distributions, area per lipid, hydrophobic thickness, chain order
parameters, and number of inter-lipid hydrogen bonds between standard and HMR simulations
reveal the robustness of HMR, supporting that HMR can be used for complex biomolecular
simulations including LPS. For systems with two phosphate protonation states, similar
conformations are sampled with either a PO4" or PO4* group, indicated by pairwise RMSD
distributions. However, slight impacts on lipid packing and conformational properties of LPS acyl
chains are also observed with Ca?* neutralizing ions. Systems with PO, group(s) have slightly
smaller area per lipid and thus slightly more ordered lipid A acyl chains compared to those with
PO.%. More hydrogen bonds between Lipid A molecules are detected in the PO4" case than the
PO.? case due to more hydrogen bond donors in PO4'~ groups. However, the stabilization of the
leaflet integrity is dominated by the electrostatic interactions between Ca?* ions and phosphate
groups of lipid A, supported by the much larger number of salt bridges than of inter-lipid A
hydrogen bonds. Axial relaxation time constants were determined by fitting the second-rank
reorientational correlation functions of cross acyl chains; for LPS systems, the slow relaxation
time (~300 ns) is much longer than bilayers comprised of phospholipids (~10 ns), indicating the
slow lateral relaxation of LPS systems that is also manifested by slight APL differences even after
2-us simulations of the systems with two different initial APL values. The availability of HMR and
different protonation states of phosphates of LPS in CHARMM-GUI are expected to be useful for
MD studies of different biomolecular systems.
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Figure S1: Schematic structures of Pa-O10, Ec-K12, and Bc-T1/T2/T3 LPS. Figure S2-S3:
Chemical structures of P. aeruginosa lipid A and three types of B. cepacia lipid A. Figure S4:
Comparisons of pairwise RMSD distributions (of the entire LPS) with two phosphate protonation
states between 1.0 — 1.5 ys and 1.5 — 2.0 ys standard simulations for each Pa system. Figure S5:
Comparisons of pairwise RMSD distributions (of the entire LPS) between two phosphate
protonation states for each Ec and Bc systems. Figure S6-7: Comparisons of distributions of Ca*
ions along the Z-axis (i.e., the membrane normal) between two phosphate protonation states for
each Pa systems (in standard and HMR simulations) and for each Ec and Bc systems. Figure S8-
9: Time series of averaged APL every 100 ns for each Pa, Ec, and Bc systems in both protonation
states and its corresponding standard errors. Figure S10: Calculated chain order parameters for
acyl chain 2 of lipid A for each Ec and Bc system with two phosphate protonation states. Figure
S11: Sum of the per-LPS average number of inter-lipid A hydrogen bonds and the per-LPS
average salt bridges between Ca®* and phosphate groups for each Ec and Bc system with two
phosphate protonation states. Figure S12: Per-LPS average number of inter-lipid A hydrogen
bonds and salt bridges between Ca®* and any atom on phosphate groups of lipid A for each Pa
system (standard and HMR simulations). Figure S13: Correlation function C,(t) for the cross acyl
chains in Pa-O10 system. Table S1: Averaged area per lipid and hydrophobic thickness with
standard errors for each Pa system in standard and HMR simulations with two phosphate



protonation states. Table S2: Averaged area per lipid and hydrophobic thickness with standard
errors for each Ec/Bc system with two phosphate protonation states.
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