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Stochastic Economic Dispatch Considering Wind
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Abstract—The increasing penetration of renewable energy re-
sources in power systems, represented as random processes, con-
verts the traditional deterministic economic dispatch problem into
a stochastic one. To estimate the uncertainty in the stochastic
economic dispatch (SED) problem for the purpose of forecasting,
the conventional Monte-Carlo (MC) method is prohibitively time-
consuming for practical applications. To overcome this problem,
we propose a novel Gaussian-process-emulator (GPE)-based ap-
proach to quantify the uncertainty in SED considering wind power
penetration. Facing high-dimensional real-world data representing
the correlated uncertainties from wind generation, a manifold-
learning-based Isomap algorithm is proposed to efficiently rep-
resent the low-dimensional hidden probabilistic structure of the
data. In this low-dimensional latent space, with Latin hypercube
sampling (LHS) as the computer experimental design, a GPE is
used, for the first time, to serve as a nonparametric, surrogate
model for the original complicated SED model. This reduced-order
representative allows us to evaluate the economic dispatch solver
at sampled values with a negligible computational cost while main-
taining a desirable accuracy. Simulation results conducted on the
IEEE 118-bus test system reveal the impressive performance of the
proposed method.

Index Terms—Stochastic economic dispatch, reduced-order
modeling, manifold learning, uncertainty estimation, renewable
energy.
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1. INTRODUCTION

OWER systems are inherently stochastic. Sources of
P stochasticity include time-varying loads, renewable energy
intermittencies, and random outages of generating units, lines,
and transformers, to cite a few. These stochasticities translate
into uncertainties in the power system models. To address
this problem, research activities have focused on estimating
uncertainty in power system planning, monitoring, and control
[1]-[7]. Among them, the topic of stochastic economic dispatch
(SED) has recently attracted considerable academic attention
due to the increasing penetration of renewable energy resources,
which brings randomness in the economic dispatch model that
are, therefore, threatening the flexibility in the next-day opera-
tions [8]-[12].

To account for these uncertainties and provide a more reli-
able day-ahead forecast, some researchers propose to adopt a
scenario-based optimization approach. However, this approach
only considers a finite set of sampling realizations, which is obvi-
ously an oversimplification of the numerous cases that may occur
in reality [10], [11]. By contrast, other researchers propose to
make use of uncertainty-quantification (UQ) techniques to better
describe the inherent stochastic properties of the system re-
sponse. However, the traditional Monte-Carlo (MC)-sampling-
based methods are prohibitively time-consuming when accurate
estimation of uncertain model outputs is needed [13]. This prob-
lem calls for the development of new computationally efficient
and accurate uncertainty modeling techniques for power system
applications [8], [12].

To address this need, some researchers propose to adopt
the surrogate-based approaches to reduce the computation time
required by the MC method. Safta et al. [8] were the first
to apply polynomial chaos expansions as an SED surrogate
model. Thereafter, Li et al. [12] further improved this method
by using the compressed samples to reform polynomial chaos
expansion. However, polynomial chaos is a typical parametric
method that suffers from “the curse of dimensionality” [14], and
therefore calls for some dimensionality-reduction techniques
such as the Karhunen-Lo¢ve expansion (KLE). However, this
linear-transformation-based method is inadequate to preserve
information in data in a nonlinear space. Its normality assump-
tion for the latent variables cannot be guaranteed in practice
either [8], [12].
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To overcome the aforementioned weakness, this paper pro-
poses a new framework of UQ in the SED problem based on the
Gaussian process emulator (GPE) and Isomap that demonstrate
significant improvements of the existing method. The contribu-
tions of the paper consist of the following:

e To reduce the computational burden in the MC method and
avoid using a parametric surrogate, this paper proposes to
utilize a nonparametric surrogate, i.e., the GPE [15], to
conduct UQ in the SED problem for the first time. Note
that unlike some other applications, such as wind power
forecast, that mainly utilizes GPE as a statistical regression
tool [16], our SED mainly utilizes the advantages of the
GPE method as a reduced-order modeling tool for the
purpose of computational efficiency.

® To reduce the dimension for the GPE-based surrogate, this
paper proposes, for the first time, to adopt a manifold-
learning-based Isomap method [17], [18]. This nonlinear
dimensionality-reduction technique allows us to better pre-
serve the low-dimensional embedding of the data com-
pared with the linear-transformation-based KLE method.
Furthermore, to abandon the normality assumption for the
latent variables that are adopted in the KLE, a kernel den-
sity estimator (KDE) is utilized to obtain the closed-form
probability of the density functions.

® Since Isomap is unable to conduct a nonlinear dimension
recovery after the dimension reduction while the latent
variables cannot be evaluated in SED-based physical model
directly, we further merge extra GPEs into the nonlin-
ear dimension-recovery procedure. This finally enables
the closed-loop combination of these advanced machine-
learning tools applicable to this important practical appli-
cation.

® One advantage of the proposed dimension-reduction
and dimension-recovery framework is that it enables
the nonlinear-transformation-based dimension-reduction
technique to be compatible with a general surrogate-based
UQ problem.

All the above contributions enable us to finally obtain an
excellent performance the proposed method over the traditional
method on the IEEE 118-bus test system using the real-world
wind farm data. The remainder of this paper is structured as
follows: in Section II, the problem formulation is presented.
In Section III, the mathematical background for the proposed
framework is presented. Section IV describes the proposed
method. Section V presents the case study. Conclusions and
future work are provided in Section VI.

II. PROBLEM FORMULATION

Traditionally, under some physical and economic constraints,
power system economic dispatch is known as a deterministic
optimization problem. It aims to identify an optimal set of power
outputs of a fixed set of online thermal generating units that
yield a minimum cost, denoted by Q(g). The latter is generally
thought to be nonrandom since the traditional thermal generating
units u can be optimized and set equal to some deterministic op-
timal values. However, in the face of an increasing penetration of
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renewable energy resources, the abovementioned statement can-
not hold true. Due to the intrinsic randomness of the renewable
generation, represented (using random fields) as functions of a
vector of random variables, w, denoted by p(w), the determinis-
tic economic problem for finding Q(g) = arg ming{ fsep(g) }
is extended to an SED problem described by

Qg p(w)) = arggmin{fsm(& pP(w))}. €))

Here, fsgp represents the objective function. For this problem,
the randomness brought by p(w) will lead to different optimized
values of g, which will inevitably change the deterministic
cost, Q(g), into a random cost, Q(g, p(w)). In this paper,
we consider the randomness brought by the wind farms as a
spatiotemporal random field, which is denoted by p;(w, t) for
the power generation of the ith wind farm. Here, the time ¢ € T
and T is a finite integer set representing hours in a day, namely,
T ={1,2,...,24}. Suppose that we conduct a day-ahead SED
problem over 24 hours of a power system with three farms. Then,
we have an input of three random fields, {p;(w, t), {p2(w,t),
{p3(w,t)}, consisting of 72 random variables in total. Our UQ
goal is to quantify the statistical moments of Q(g, p(w)), such
as the mean and variance for a day-ahead forecast.

Remark 1: Note that since we focus on the quantification
of uncertainties in the SED problem instead of their modeling,
the detailed description of “fsgp” as well as all the equality
and inequality constraints of the SED directly follow from [8].
Also, note that the proposed UQ framework is general in that
it is not limited to this SED problem. The day-ahead SED
forecast problem addressed here does need this framework since
their dimension is very high due to the incorporation of a
time-series-based SED model with T = {1,2,...,24}. If we
deal with a hour-ahead forecast problem (i.e., T = {1}), then
the total dimension is only 3, instead of 72 as mentioned above.
Then, the uncertainty in this hour-ahead SED problem can be
quantified directly without any need to use of the proposed
dimension-reduction-based UQ framework.

III. THEORETICAL BACKGROUND
A. Gaussian Process Emulator

1) Fundamentals: Let us first assume a nonlinear model
denoted as f(-). Its corresponding vector-valued random in-
put of p dimensions is denoted by x. Due to the randomness
of x, we may observe n samples as a finite collection of
the model inputs, which are described by {xi,x2,...,x,}.
Accordingly, its model output, f(x), also becomes ran-
dom, and has its corresponding n realizations, denoted by
{f(x1), f(x2),..., f(xn)}. Let us assume that the model out-
put is a realization of a Gaussian process; then the finite collec-
tion, { f(x1), f(X2), ..., f(x,)}, of the random variables, f(x),
will follow a joint multivariate normal probability distribution
given by

f(x1) m(x1) k(x1,x1) ** k(x1,%n)

~N @)

f(xn) m(xp) E(xn,x1) *** k(Xn,Xn)
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Here, let us denote the mean function by m(+) and a kernel
function that represents the covariance function by k(-, -). Then,
(2) can be simplified as

F X)X~ N(m(X),k(X,X)), 3)

where X isann x pmatrix, denoted by [x1, X2, ..., X,]T; f(X)
stands for [f(x1), f(x2),..., f(x,)]T; and m(X) represents
[m(x1), m(xa), ..., m(x,)]T.

Now, if an independent, identically and normally distributed
(ii.d.) noise & ~ N(0,0°L,) (where I,, and o2 are an n-
dimensional identity matrix and the variance, respectively) is
considered on the system output, f(X), the observations Y will
be expressed as

Y X ~N(m(X),k(X,X)+0%L,). 4)

Note that € is also called a “nugget”. If 02 = 0, then f(x)
is observed without noise. However, in practice, the nugget is
always added for the sake of numerical stability.

Next, we present the way to use the abovementioned finite
collection of n samples, (Y, X), to infer the unknown system
output, y(x), on the sample space of x € R? in a Bayesian-
inference framework.

2) Bayesian Inference: Itis well-known that a Bayesian pos-
terior distribution of the unknown system output can be inferred
from a Bayesian prior distribution of y(x) and the likelihoods
obtained from the observations. Let us first assume a Bayesian
prior distribution of y(x)|x given by

y(x)|x ~ N (m(x),k(x,x) +0°L,,) . (5)

Combined with the observations provided by the finite collection
of samples {Y, X}, we can express the joint distribution of Y
and y(x)|x as

Y m (X) K11 K12
[y<x>|x} ’“qux)} | [K KD ©
where Ki; = k(X,X) +02L,; Kio = k(X,x);
k(x,X); and Koz = k(x,x) + 0%1,,,.

Now, using the rules of the conditional Gaussian distribution
(a.k.a. Gaussian conditioning or statistical linearization) [19],
we express the Bayesian posterior distribution of the sys-
tem output y(x)|x,Y,X conditioned upon the observations
(Y, X) as a Gaussian distribution given by y(x)|x,Y,X ~
N (p(x), X(x)). Here, we have

K21 =

1 (x) = m(x) + K Kij (Y — m(X)), (7)
3 (x) = Koy — Kot K[} K. 8)

To this point, the form of the GPE has been derived. On the
one hand, (7) can be used as a surrogate model (a.k.a. the re-
sponse surface or reduced-order model) to very closely capture
the behavior of the nonlinear SED model while keeping the
computational cost low. On the other hand, (8) can be used to
quantify the uncertainty of the surrogate itself. In this paper, we
only need to use (7) as a surrogate model to conduct efficient

UQ.

3) Mean and Covariance Functions: To further define the
GPE, we need to select the forms of the mean function m(-)
and the covariance function represented via the kernel k(-, ).

The mean function models the prior belief about the existence
of a systematic trend expressed as

m(x, 8) = H(x)B. ©)

Here, H(x) can be any set of basis functions. For example, let
X; = [@i1,. .., T;p| indicate the ith sample, s = 1,2,...,n and
x; represents its kth element, k = 1,2,...,p. For instance,
H(x;) =1 is a constant basis; H(x;) = [1,2i1,..., 2] is a
linear basis; H(x;) = [1, @1, ..., Tip, &3, ..., 27| is a pure
quadratic basis; and 3 is a vector of hyperparameters.

Since the covariance function is represented by a kernel func-

tion, choosing the latter is a must. A popular choice is the square
exponential kernel, expressed as ksg = 72 exp(— > h_, %),
where ry = |z;; — x| Other popular choices include expo-
nential, rational quadratic, and Martin kernels [15].

As for the parameters of a kernel function, they are defined as
follows: 7 and ¢}, are the hyperparameters defined in the positive
real line; 02 and ¢}, correspond to the order of magnitude and
the speed of variation in the kth input dimension, respectively.
Let @ = [7,(1,...,¢,] contains the hyperparameters of the co-
variance function, i.e.,

k(x;,x,|0) = Cov(x;,x;|0). (10)

Until now, the model structure of the GPE has been fully
defined. For simplicity, we write n = (02, 3, 6) to represent all
the hyperparameters in the GPE model.

4) Training Samples Generation: In order to obtain the GPE-
based surrogate described in (7), we need to obtain the observa-
tion sets contained in (Y, X). To obtain the system realization
Y, we must generate n samples, X, that will be evaluated
through the original power system model. To avoid long training
time of the GPE, n should be small. Therefore, Latin hypercube
sampling (LHS) serves as a popular choice to generate these
small number of samples. Unlike the MC sampling that gener-
ates totally random samples, LHS generates near-random sam-
ples that follow a standard uniform distribution 2/ (0, 1) based on
an equal-interval segmentation. For a nonuniform distribution,
the inverse transformation of the cumulative distribution func-
tion (cdf) is applied to map the uniformly distributed samples
into the targeted distribution [20]. Note that in this paper, we only
use LHS to generate mutually independent samples. When the
dependence is considered, the copula theory can be adopted [21].

5) GPE Construction: Using (Y, X), we estimate the hy-
perparameters 77 in the GPE. Following Gelman et al. [22], we
choose to adopt the Gaussian maximum likelihood estimator
(MLE) since it is the most efficient estimator under the Gaussian
distribution which is followed by the residuals and it is easy to
compute. First, to indicate the hyperparameters, let us rewrite
(4) as

YX,n~N(m(X),k(X,X)+0L,). (1)
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Then, using MLE, we obtain

n= (3,5,32) = arg max log P (Y|X,,8,0,02) .

B.,0,02

12)

Using (9)—(11) and simplifying H(x) into H, the marginal log-
likelihood can be expressed as

log P (Y|X,8,6,0°) = —=(Y —HB)T

1
2
x [k(X,X|0) +0°1,] ' (Y — HP)

1
- glogQW— ilog‘k(X7X|9)+021n‘ ) (13)

which implies that the MLE of 3 conditioned upon 6 and o2 is
a weighted least-squares estimate given by

B(e,ﬂ):[HT [k(X,X|9)+UQIn]71H]71HT[k:(X,X\0)+021n]71Y.
R R (14)
Since 3 is a function of (6,5?), let us insert (14) into (13)
to reduce the number of hyperparameters. Then, (12) is also
simplified as

(®7)

Now, we only need to estimate the hyperparameters (5,82)
instead of ( B , 5, 52). Then, we utilize a gradient-based optimizer
to achieve this optimization as described in [15]. Once 7 is
obtained, the GPE model is fully constructed. More details can
be found in [22].

= arg max log P
0,02

<Y|X,,f3’ (6,0?) ,9,02) . (15)

B. Isomap-Based Dimensionality Reduction

In practice, the dimension for the random fields representing
wind-farm generation may be so high (as mentioned in Section II
) that the GPE cannot be constructed efficiently. Therefore,
an efficient dimensionality reduction becomes a prerequisite.
Here, we conduct the dimensionality reduction based on Isomap,
which stands for isometric mapping. Similar to the KLE method,
Isomap is a spectral method that utilizes an eigendecomposi-
tion to learn the low-dimensional representation of the original
data. However, unlike the linear-transformation-based KLE,
Isomap is a nonlinear dimensionality-reduction technique that
tries to preserve the low-dimensional embedding of the data
set through the geodesic distances, instead of the Euclidean
distances adopted in the KLE. Let us describe this approach
in the sequel.

First, let us denote the raw data before dimensionality reduc-
tion as an n X prw matrix expressed as W, where Dry > p.
Our final goal is to use Isomap to transform this W into the
aforementioned n x p matrix X that can be effectively adopted
to construct the GPE. Now, we elaborate on the three major steps,
including creating neighborhood graph, obtaining geodistance
and eigendecomposition, of Isomap, respectively.

1) Neighborhood Graph: A weighted graph, G, is, in general,
expressed as G(V, &, L). Here, v; € V is the set of vertices,
which are connected with edges e(v;, v;) € € and characterized
by the corresponding lengths (weights) {(v;,v;) € L.
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Fig. 1. Neighborhood graphs of 800 samples from a 3-dimensional Swiss roll
manifold (left) with £ = 5 (middle) and k& = 50 (right). Vertices are distin-
guished by color. A small k captures neighborhood relationships that should be
preserved, while a large k assumes strong global connections.

To construct the graph G from the raw data W, let us first use
the n observations {w;}!_, to represent n vertices. Between
any two of them, w; and w, their pairwise Euclidean distance
is denoted by 6; ; = |w; — w;||. Using 6; 5, Vi, =1,...,n,
we can form an n x n matrix, A, to represent the Euclidean
distance information between all vertices. Now, we can assign
edges between vertices based on A. For any vertex, w;, we
only assign an edge between w; and w; if w; is the k-nearest
neighbor of w;. Using these vertices and edges, the topology of a
graph is roughly represented by W and E. Figure 1 shows how
the neighborhood graphs look like in the Swiss roll example.
In general, a properly small k is quite helpful in classifying
different groups of samples. A large k, on the other hand,
provides more concentrated embedding. To be conservative in
our case, we suggest using a relatively large k (e.g., ~ 30) to
ensure concentration.

2) Geodistance Calculation: Now, with the aforementioned
graphs and the Euclidean distances d; ;, we seek to find the
geodesic distance (shortest path) between ith and jth vertices
denoted by d; ;. Similarly, these pairwise geodesic distance
elements d; ; will provide the n x n geodesic distance matrix
D that preserves the nonlinear manifold information of the data
sets. Here, we use the Dijkstra’s algorithm to obtain d; ; since it
is a popular method for solving the shortest-path problem [23].
Based on G(W, E, A),' Algorithm 1 describes the details of
how we can use Dijkstra’s algorithm to find the shortest path
between w;, the source vertex, and all the other vertices, w;,
where j = 1,...,n.

Till now, the graph is characterized by G(W, E, D), which
can better preserve the manifold information using geodistances,
D.

3) Eigendecomposition: Similar to the KLE method that ap-
plies eigendecomposition to extract the low-dimensional rep-
resentation of the raw data, X, the proposed Isomap method
can also directly apply eigendecomposition on the geodistance-
based matrix, D, to extract X.

Let us first define the Isomap objective function, U, as

U(X) = min||7 (D) = 7 (Dx)|| - (17

Here, 7(D) stands for the shortest-path inner product ma-
trix; Dx is a symmetric, hollow matrix of the Euclidean
distance, whose element, dx (z;, ;) holds for {dx (z;,z;) =

"Here, we convert the set notation G(V, £, £) into a matrix form.
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Algorithm 1: Dijkstra’s Shortest-Path Algorithm.

1:  For the source vertex, w;, initialize its geodistance
with respect to the other vertex w; by setting

¢J{0 =,

oo ifi #j.

2: Initially, choose the source vertex, w;, as the current

vertex, w., whose current geodistance, d., is,

therefore, 0.

Mark the source vertex, w;, as a visited vertex;

while there is a non-visited neighborhood vertex; do

5: Starting from the current vertex, w,, visit its
non-visited adjacent vertices;

6: For the adjacent vertex, w,, s € j, update its current
geodistance as d; s = min{d; 5, d; + 0c s };

7:  Pick the adjacent vertex with the smallest geodistance

as the new current vertex, w,., whose current

geodistance value is assigned to d.;

Mark the new current vertex, w, as a visited vertex.

9: end while

(16)

Rl

®

Fig.2. Isomap-learned, 2-dimensional embedding of the Swiss roll when & =
5 (left frame) and k = 50 (right frame).

|lz; — ]| }; 7(Dx) denotes the Euclidean inner product matrix;
and || - || p is the Frobenius matrix norm.

From [24], we know that the global minimum of (17) can
be obtained by the largest p eigenvectors of 7(D). Then, let
us reform 7(D) as 7(D) = —3JD®J. Here, D& = {d? ;}
and J =1-— %llT, where I is an identity matrix and 1 is
a vector of all ones. Now, the embedding, X, is obtained as
X = (k}mvl,...,k;,mvp), where {A}Y_, denotes the first
p eigenvalues of 7(D) and {v4}._; are the corresponding
eigenfunctions. More details on mathematical explanation are
included in [24]. Figure 2 presents the calculated embedding
from graphs in Fig. 1 using Isomap.

Remark 2: Note that although the Isomap method takes more
computing time to explore the data structure than the tradi-
tional KLE method, it does not influence the computational
efficiency of this UQ application. This is because this data-
processing step can be conducted offline. This makes sense
since the manifold of the historical wind data can be viewed
as unchanged for a certain time period, and therefore does not
need to be updated repeatedly. For an online UQ of the SED
application, once the current system topology as well as the
control and operating states are updated, we can directly apply

the offline-trained, low-dimensional data structure on the online
application.

IV. PROPOSED METHOD

In this section, we summarize the proposed method to solve
the SED problem using the aforementioned theories. In general,
the proposed method includes five steps that are elaborated
below:

4) Dimensionality Reduction: Starting from the high-
dimensional raw data, included in a p;,-dimensional matrix,
‘W, which represents the random process of the wind power pen-
etration, we need to project W matrix into the low-dimensional
latent space, represented in a p-dimensional matrix, X, with the
aforementioned Isomap method.

5) Closed-Form Probability Density Function (pdf) Estima-
tion: Although some dimensionality-reduction methods, such as
KLE, assume that every latent variable in the low-dimensional
space simply follows a Gaussian distribution; however, this
assumption cannot be guaranteed in practice. Furthermore, an
accurate pdf description for the input samples is a key factor for
the success of the UQ task. Therefore, to avoid the weakness in
Gaussian assumption, we adopt a well-known kernel-based pdf
estimation method (presented in Appendix A in detail) to obtain
the closed-form expressions for the pdf of every latent variable.
With these pdf expressions, using an inverse cdf mapping in the
aforementioned LHS [20], we can generate the input samples
following any type of pdfs.

6) Nonlinear Dimension Recovery: Although we have ob-
tained the low-dimensional embedding for the raw data, we are
unable to directly inject the samples of these latent variables into
our physics-based economic dispatch model, which requires an
exact dimension for the input as py,,. Therefore, the samples
generated for the latent variables should be mapped back to
the prw-dimensional space to calculate the realizations of the
SED model. Since Isomap is unable to provide the inverse
transformation from x to W, we propose to use the GPE to
achieve this nonlinear inverse mapping.

First, let us formulate this problem. To obtain the closed-form
expression between x and w, we can take x as the inputs of the
unknown model and w as the corresponding output. Based on the
raw data W and the data for latent variables X obtained through
Isomap, we get an observation set { X, W }. This observation set
will serve as the aforementioned finite collection of samples that
enable us to construct the GPE-based surrogate model between
model input x and the model output w.

Let us further elaborate on this problem by taking a
hourly-based raw data matrix W, which, therefore, has 24
dimensions, as an example. First, for the observed raw
data W = [WSP ... W], let us assume that given X,
Wi, ..., Wy, are conditionally independent. Then, the con-
ditioned pdf of W is given by fwix() = [Tiey fiv,x()s
where fyy, x denotes the conditioned pdf of W at time ¢. The
marginal density of W can be further obtained as fw(:) =

le f% Jwix () fx(-) dxy - - -dxy, where fy(-) denotes the
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jointdensity of x1, ..., x,.If 71, ..., z, are believed to be inde-
pendent, fx(-) = [1%_; fz.(-). Now, we are able to estimate the
Jw,x(+) for t =1,...,24. Following the Bayesian-inference
procedure, described in (5)—(8), to construct a GPE for fyy, x(-),
let us first assume the prior distribution as

(18)

Given observations {X°°, W¢}, the consequent posterior dis-
tribution is obtained as

Wi(x)|x ~ N (my(x), k (x,x) + 071, ) .

Wi (x)|x, X, W~ N (pa(x), Ze(x)) . (19)

Now, we have trained 24 GPEs that provide closed-form rela-
tionships between the latent variable x and w. Note that the 24
GPE:s can be trained in parallel.

7) Training a GPE-Based SED Model: Till now, we should
further construct a GPE-based surrogate model to replace
the original SED model. Since the aforementioned nonlinear
dimension-recovery procedure can map the latent variable x
back to w, we can obtain n samples of W as the SED model
inputs. By evaluating these samples in fsgp, we can get a finite
collection of the model output, {Q;}" , accordingly. After
choosing the proper Bayesian prior mean function (e.g., pure
quadratic and kernel functions), we can easily construct the
GPE-based surrogate model based on the observations provided
from the model input, X, and the model output, {Q; }1_,.

8) Uncertainty Quantification (UQ) for SED: Since we have
obtained the reduced-order model of the SED model represented
as the GPE, we are now able to conduct UQ for the SED problem
efficiently. By generating a large number of the samples for the
latent variables using LHS, the GPE-based surrogate model can
be evaluated repeatedly at almost no time cost. Then, the statis-
tical moment, such as the mean and variance, of our quantity of
interest, i.e., the cost, (), can be obtained in a cost-effective way.

9) Summarization: Now, we can summarize the above steps
in a flowchart as depicted in Fig. 3. In this flowchart, we
have separated the computing steps into two parts: an offline
preparation and an online UQ. In the former, all the computing
steps are based on the historical data that can be assumed to be
unchanged for a certain time period; hence, that part does not
need to be updated repeatedly as done in the steps of the online
application part. We also need to emphasize that the GPE training
procedure based on the evaluations of the actual SED model is
the most time-consuming step for the online computing stages.
Luckily, we only need a small number, n, to train an accurate
GPE model. This finally enables the GPE-based SED model to
be cost-effective for the online applications. More details about
the performance of the proposed method considering computing
accuracy and efficiency are presented in the next section.

Remark 3: Note that our proposed method has both a dimen-
sion reduction and a dimension-recovery procedure as shown
in Fig. 3. The purpose of dimension reduction is to have a
low-dimensional input for the SED surrogate model that can
be trained in a more computationally efficient manner while the
purpose of dimension recovery is to evaluate the SED actual
model since the samples in the latent space cannot be evaluated
in an actual physical model, e.g., the SED model.
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Fig. 3.

V. CASE STUDIES

In this section, we test our method on the IEEE 118-bus
system [25] using NREL’s Western Wind Data Set [26].

A. Prediction on Wind Power

1) Experimental Settings: The NREL’s Western Wind Data
Set provides wind speed and power data at 10-min inter-
vals from the years 2004 through 2006 for all numbered
wind turbines in the Western United States. For practical
reasons, instead of focusing on single wind turbines, we
are interested in the overall power generated from a wind
farm, which is a group of wind turbines in the same lo-
cation. In the experiment, we pick one farm in Livermore,
CA (#LV) and two farms in Seattle, WA (#SE1, #SE2).
For each farm, three turbines are extracted from the data set:
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TABLE I
TEST OF ISOMAP UNDER DIFFERENT p- VALUES

P 1 2 3 4 5 6
#LV 0.863 0.962 0.973 0.980 0.983 0.984
#SE1 0.972 0.997 0.998 0.999 0.999 0.999
#SE2 0.937 0.987 0.994 0.996 0.996 0.996
1.6 0.6
1.55 0.55
15 _ 05
X145 X045
= = 04
& 1.4 2
= E 0.35
1.35 03
1.3 =Data 0.25| =Data
- Prediction - Prediction
V85— % 12 16 2 24 % 4 8 12 16 20 24
Time [h] Time [h]
Fig.4. The mean (left panel) and variance (right panel) of log W (x) varying

by hour at #: LV in January. Blue curves denote empirical trajectories. Red curves
are predictions computed from GP-Isomap samples.

#9247, #9248, #9249 for #LV; #28914, #28928, #28959
for #SE1; and #29138, #29153, #29154 for #SE2. These
three wind farms are added at Buses 16, 58, and 78, respectively,
to introduce the randomness in the SED model.

Assuming that the turbines in the same farm have the same
wind speed and wind power all the time, we calculate (at each
time stamp) the averaged wind speed and wind power over three
selected wind turbines and treat it as the prevailing wind speed
and wind power of that farm. For each farm, we take hourly
averages on the common wind speed and wind power to obtain
the daily 24-dimensional wind speed, W, and wind power, P,
for each day in January between 2004 and 2006, which leads to
a total of 93 data points. Similarly, observations for any other
months can also be collected.

2) Dimension Reduction via Isomap: For each farm, we ap-
ply the GPE-Isomap method on learning log W (x), where x
is the p-dimensional latent variables of log W. Here, the log
transformation is to ensure the positivity of W.

To make the Isomap algorithm more adaptive, we propose to
use the information explaining factor (IEF) to indicate a proper
selection of the tunable parameter p based on the aforementioned
first p largest eigenvalues of 7(D), i.e., {As}._;. This IEF is
PORETE
within (0,1). The larger the IEF is, the more information the
p-dimensional embedding retains.

Using the data for the three selected wind sites: #LV, #SE1
and #SE2, let us provide the IEF values under different p-values
inthe Table I. Itis clear we can adaptively obtain a proper p-value
by setting a threshold value for the IEF. For example, for a 95%
threshold, p = 2 will be selected. Similarly, for a 97% threshold,
p = 3 will be selected.

In our experiments, to obtain a good approximation accuracy,
we set the threshold to 97%. Consequently, we find that p = 3 is
enough for representing the 24-dimensional W. Figure 4 repre-
sents the mean and variance trajectories of log W} (x) throughout

expressed as IEF = . Obviously, this factor ranges

0 “5 10 i5 20
W [m/s]

Fig. 5. Wind power (P) versus wind speed (W) at Farm #LV in January.
Blue points denote real data points. Red curve represents predictions by decision
tree regression.

the day in #LV. It turns out that using much-lower-dimensional
latent space, our method is able to generate high-dimensional
samples that successfully capture the trends of the data. It is
also worth pointing out that the computing time of the Isomap
algorithm is typically less than 5 s, which is fast enough for
practical applications.

3) Wind Data Processing: To test the spatial dependency of
W among the three farms, we calculate distance correlation
factors [27] between x on different farms. The results are shown
in Appendix B, where a way to deal with the dependency
between #SE1 and #SE2 is also provided.

The relationship between wind speed and wind power is
modeled by a decision tree regression model [28]. The result
of wind power fitting in #LV is shown in Fig. 5. It shows that
the predicted wind power samples have quite a good match with
the real-world data. In the end, samples of P are proposed by
taking GPE-Isomap samples of W (x) into a trained regression
tree model.

Remark 4: Here, we do not directly apply Isomap on wind
power for the reason that: for wind speed smaller than ap-
proximately 3 m/s or greater than approximately 28 m/s, the
rated wind power is zero. Estimation of high-dimensional zero-
inflated densities is difficult. The same strategy has been adopted
in [8]. In practice, this is because that for the safety reasons
considered in the current turbine technology, when the wind
speed is larger than 25 m/s, also known as the cut-off wind
speed, the wind power is set to zero.

B. Predictive Inferences on Minimum Production Cost

So far, in Section IV -A, we have prepared constructions of the
input, the power generation P, for the SED model in the IEEE
118-bus test system with |T| = 24 time periods. The three wind
farms (#LV, #SE1, and #SE2) are used as three augmented
renewable power generation buses in the system. In total, P is a
72-dimensional random vector (24 for each farm) represented by
9-dimensional latent variables (3 for each farm). In this section,
the GPE surrogate with a pure quadratic mean function and
a squared exponential kernel is constructed for the SED test
system.

1) Performance Test: To test the performance of the GPE
surrogate model, we compare the predictive inferences of ()
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Fig. 6. Relative difference between E[Qgp| and E[Qwmc]| changing by GPE

training size. The GPE surrogate presents very powerful fitting on the test system.

TABLE 11
BREAKDOWN OF CPU TIMES OF THE PROPOSED METHOD UNDER DIFFERENT
TRAINING SAMPLES

CPU Time Step 1 Step 2 Step 3 Step 4 Total
GPE (n =100) ~7s ~45s ~1s ~4s 2 58s
GPE (n =200) ~7s ~90s ~2s ~4s ~105s

MC — — — — ~1lh

calculated from our GPE surrogate with those gained by the
direct MC sampling from the original complicated SED model.
Let Qgp denote the estimation of () from our GPE surrogate.
Qwic is calculated by direct MC realizations from the test system.
For a fair performance comparison, 8,000 realizations are used
to ensure the convergence of Qumc. One of the most important
results for the SED is the expected (mean) minimum cost E[Q)].
Here, we define the relative difference between E[Qgp] and
E[Qwc] to quantify the relative error of the proposed method
IE[Q]%p[] 1113

C[]QMC” , where E[Qyc] is treated as a baseline.

E[Qgp] varies with GPE training size n. The smaller the d,. is, the
better the GPE surrogate fits its target system. Figure 6 depicts
the trace plot of d,. over n. Notice that the approach achieves less
than 10~3d,- when n = 100. This means the GPE-based surro-
gate, trained with 100 LHS realizations, successfully models the
response surface of the tested SED system under 8,000 scenarios.
It can also be seen from d,. that the performance of modeling
fitting is possible to fluctuate slightly. This is the inevitable
randomness caused by the nature of the random-sampling-based
method and this is typically true when training size, n, is not
large. However, the overall accuracy of the GPE method is high
enough for this practical application when n becomes larger than
100. Further increasing n brings negligible benefits but, in turn,
sacrificing the computing efficiency as shown in Table II.

Also, as shown in the flowchart in Fig. 3, the online calculation
process largely involves four steps that require spending time on

1) the dimension recovery,

2) the evaluations of actual model for training,

3) the construction of the GPE-based surrogate, and

4) the realizations of the MC samples through GPE.

Here, the computing times of all the above steps are listed in
Table II.

It can be seen from Table II that using a CPE method with only
100 training samples, we can complete all the computing steps

asd, =
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TABLE III
MEAN, 95% CONFIDENCE INTERVAL (CI), AND STANDARD DEVIATION (STD.
DEV.) OF THE MINIMUM PRODUCTION COST PREDICTIVE INFERENCES ($)

Mean (x10%)  95% CI (x10%)  Std. Dev. (x10%)
Qar 2.954 (2.863,3.021) 1.029
Qwmc 2.955 (2.870, 3.018) 4.010
Qcrk 2.956 (2.869, 3.020) 4.078
Qwmcx 2.955 (2.874, 3.018) 3.908

in less than 1 min. Considering that in practice, even the power
system operators may have some small operation intervals, such
as 5 or 10 min of operation, the proposed method is fast enough
for online applications.

Here, we would like to mention that the offline preparation
procedure in this algorithm is also computational efficient. As
shown in Fig. 3, it consists of multiple steps, i.e., the sample gen-
eration, the regression training between the wind speed and the
wind power, [Isomap-based dimension reduction, and the training
of the GPE; models between the low- and high-dimensional
data. However, the offline preparation can be performed in less
than half a minute. Thus, the proposed method will not only
greatly accelerate the online UQ procedure, but enable a fast
offline preparation as well.

2) Comparison Studies: To justify the reliability of the GPE-
Isomap method on constructing P, we also employ KLE with
17-dimensional latent variables selected by 95% variance expla-
nation criterion as suggested in [8] to compare the results with
our approach. Correspondingly, QQgp.x denotes the estimation
of @ from our GPE surrogate, yet with the KLE-constructed
P. Similarly, Qmc.k is calculated by direct MC sampling, yet
by using KLE-constructed P. Both GPE surrogates are trained
with 100 realizations. Comparison among the estimation results
obtained with the four methods is provided in Table III.

It can be seen that GPE surrogates with both the KLE
method and Isomap offer quite comparable results. Both of
them well approximate the test system. However, KLE requires
a 17-dimensional latent space while our GPE-Isomap method
embeds P into only 9 latent variables. With the ability to
explore much-lower-dimensional representations, our method
has a great potential to handle larger-scale systems.

Here, let us further conduct comparison studies with another
technique, i.e., LHS, which is a stratified sampling technique
that can be used to reduce the number of runs necessary for
an MC simulation to achieve a reasonably accurate random
distribution [29]. This has been further verified and applied
in some power system applications such as probabilistic load
margin and probabilistic power flow analyses [30]-[32]. Re-
searchers advocate this method for its capability to provide a
good statistical approximation of the power system states by
using a small number of “near-random” samples, e.g., 200 and
500. Here, we choose different sample sizes, Ny gs, for LHS to
make comparison studies with the proposed method, consider-
ing the computing accuracy and the computational efficiency.
The simulation results are shown in Table IV. It can be seen
that although LHS with 200 and 500 samples can provide a
reasonably accurate approximation for the mean, it loses some
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TABLE IV
COMPARISON STUDIES WITH THE LHS METHOD

Mean (x10%)  Std. Dev. (x10%) CPU Time
Qwmc 2.955 4.010 ~1h
Qacp 2.954 4.029 ~ 1 min
QLHS(NLHS = 200) 2.960 4.517 ~~ 1.5 min
QLHS(NLHS = 500) 2.957 4.501 ~~ 3.5 min
TABLE V
TESTS UNDER DIFFERENT MEAN FUNCTIONS
MC Quadratic Linear  Constant
E[Q](x10°) 2.955 2.954 2.709 2.334
TABLE VI

RESULTS OF REPLICATING OBSERVED MINIMUM PRODUCTION COST ($)

Mean (x10%)  95% CI (x10%)  Std. Dev. (x10%)

Qobs 2.943 (2.849, 3.017) 4.996
Qe 2.949 (2.844,3.024) 5.203
Qépx 2.949 (2.858, 3.025) 5.108

accuracy for the standard deviation. The proposed Isomap-GPE
method with only 100 training samples outperforms LHS in both
the computing accuracy and the computational efficiency based
on the benchmark results of the MC method. Also note that
the computing time of the Isomap-GPE method has included
every step of the online calculations illustrated in Fig. 3. This
comparison study further demonstrates the good performance
of the proposed method.

3) Prior Trend Matters: It is well-known that a good
Bayesian prior facilitates the success of Bayesian inference.
With a good Bayesian prior, the Bayesian posterior can con-
verge fast; thus, it can be inferred more effectively. For the
Bayesian-framework-based GPE method, the mean function,
m(-), serves as a prior trend for the surrogate model. Here, we
test the performance of the GPE-based method under different
trends, e.g., constant, linear, and quadratic trends, under the same
training sample, n = 100. The test results are shown in Table V.
Compared to the benchmark result of the MC method, it is clear
that a quadratic trend serves as an excellent Bayesian prior for
this application.

4) Cross-Validation: Furthermore, in principle, a well-
performing surrogate should also reasonably replicate true ob-
servations QQops, Which are calculated by taking 93 true wind
power generation samples into the test system. Correspondingly,
we have its replications ()¢p from the GPE-Isomap surrogate
and Qgp.x from the GPE-KLE surrogate. Results in Table VI
indicate that our GPE surrogate is able to reproduce similar
observational scenarios of minimum production costs generated
by the test system. The Q-Q plot shown in Fig. 7 also validates
the rationality of the proposed method using the MLE discussed
in Section III.

5) Validation in a Different Season: Itis well-known that the
wind power generation might vary across months. Up to now,
we have validated our method using the wind data collected in
January, which is in winter. To further test the performance of
the proposed method, we select another month in the summer
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Fig. 7. The Q-Q plot of the residuals between SED realizations using the true
wind generations and the estimated results using the proposed method.

TABLE VII
MEAN, 95% CONFIDENCE INTERVAL (CI), AND STANDARD DEVIATION (STD.
DEV.) OF THE MINIMUM PRODUCTION COST PREDICTIVE INFERENCES ($) IN
JuLy

Mean (x10%)  95% CI (x10%)  Std. Dev. (x10%)

Qap 3.001 (2.977,3.024) 1.279

Qumc 3.000 (2.976,3.017) 1.207
TABLE VIII

RESULTS OF REPLICATING OBSERVED MINIMUM PRODUCTION COST
($) IN JuLy
Mean (x10%)  95% CI (x10%)  Std. Dev. (x10%)
Qobs 2.998 (2.980, 3.021) 1.311
Qap 3.003 (2.971, 3.025) 1.363

(i.e., July) to validate our proposed method under the same
experimental settings. The simulation results are displayed in
Table VII. They reveal that the proposed method can still provide
highly accurate UQ results in the summer.

Again, we further conduct an abovementioned replication test
to cross-validate our method. The simulation results are shown
in Table VIII. These results indicate that our proposed method
is able to reproduce similar observational scenarios of the min-
imum production costs generated by the test system during the
month of July as well. This further verifies the reliability of the
proposed method.

VI. CONCLUSION

In this paper, we propose a GPE-based framework in quantify-
ing uncertainty for the SED problem. The proposed framework
utilizes the manifold-learning-based Isomap method to conduct
an effective dimensionality reduction, which further accelerates
the nonparametric GPE in the propagation of uncertainties. The
simulation results on the modified IEEE 118-bus system show
that the proposed method is significantly more computationally
efficient than the traditional MC method while achieving the
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TABLE IX
DISTANCE CORRELATIONS FOR X WITHIN FARMS

xr1 — T2 Tr1 — I3 To — I3
#LV 0.175 0.249 0.168
#SE1 0.295 0.259 0.200
#SE2 0.279 0.215 0.233
TABLE X

DISTANCE CORRELATIONS FOR x BETWEEN FARMS

#LV - #SE1  #LV - #SE2  #SE1 - #SE2
T 0.141 0.119 0.596
P 0.223 0.170 0.302
T3 0.149 0.245 0.253

desired simulation accuracy. Future work will include the fol-
lowing:
e We will improve of the performance of the proposed
method on larger-scale test systems.
o We will make the proposed method more adaptive. More
specifically, a more concrete way to select the parameter &
for the neighborhood graph will be studied.

APPENDIX A
KERNEL DENSITY ESTIMATION (KDE)

Given n finite samples, x1, o, . . ., Ty, observed from a uni-
variate random variable X with an unknown pdf fx (x), a KDE
is suggested in [33] to obtain the closed-form expression for the

pdf, fx(z), as

A 1 & Tr— T
fxlo) = — E_;K< - ) : (20)
Here, K (+) is the kernel smoothing function, h > 0 is the band-
width. It is worth pointing out that the choice of bandwidth and
kernel K (-) will influence the estimation results of the KDE.
In general, choosing a proper bandwidth is the key point. It is
suggested to adopt a rule-of-thumb bandwidth estimator defined
ash = (46°/3n)'/® ~ 1.066m /%, where 6 is sample standard
deviation. As for the choice of K(-), popular choices include:
Epanechnikov (optimal in mean square error sense), normal,
triangular, etc. [33].

APPENDIX B
MODELING CORRELATIONS OF WIND SPEED BETWEEN WIND
FARMS

The value of distance correlation is 0 if there is no dependency
and 1 if the dependency is extremely strong. Table IX implies
that x on the same farm can be treated independently. Table X
shows that 1 between #SE1 and #SE2 have a relatively high
distance correlation. One can still treat them independently since
the value is not too close to one. In addition, we provide the
following ways to handle the dependency:

Considering that the Pearson correlation of 21 between #SE1
and #SE2 is calculated to be 0.618, it is proper to assume that
they are linearly dependent, which can be modeled using linear
regression. If we use x1; and x12 to distinguish x;; in #SE1

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 12, NO. 1, JANUARY 2021

and #SE2, the joint samples of 11, 12 can be gained by two
steps:

1) Sample x1; from its KDE estimated density function

2) Sample z15 ~ N (Bo 4 21181, 62), where Sy, 51,62 are

estimated intercept, slope, and mean squared error from
the results of linear regression between x1o and zi1,
respectively.

A yet another way to deal with correlations between #SE1
and #SE2 is to simply concatenate two 24-dimensional wind
data together and use our GPE-Isomap method on the 48-
dimensional concatenated data.
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