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Abstract—A modern power system is characterized by a
stochastic variation of the loads and an increasing penetration of
renewable energy generation, which results in large uncertainties
in its states. These uncertainties bring formidable challenges to
the power system planning and operation process. To address
these challenges, we propose a cost-effective, iterative response-
surface-based approach for the chance-constrained AC optimal
power-flow problem that aims to ensure the secure operation of
the power systems considering dependent uncertainties. Starting
from a stochastic-sampling-based framework, we first utilize the
copula theory to simulate the dependence among multivariate
uncertain inputs. Then, to reduce the prohibitive computational
time required in the traditional Monte-Carlo method, we pro-
pose, instead of using the original complicated power-system
model, to rely on a polynomial-chaos-based response surface.
This response surface allows us to efficiently evaluate the time-
consuming power-system model at arbitrary distributed sampled
values with a negligible computational cost. This further enables
us to efficiently conduct an online stochastic testing for the system
states that not only screens out the statistical active constraints,
but also assists in a better design of the tightened bounds without
using any Gaussian or symmetric assumption. Finally, an iterative
procedure is executed to fine-tune the optimal solution that bet-
ter satisfies a predefined probability. The simulations conducted
in multiple test systems demonstrate the excellent performance
of the proposed method.

Index Terms—AC optimal power flow, response surface, uncer-
tainty, chance constraints, dependence.
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I. INTRODUCTION

THE MODERN power system is inherently stochastic in
nature. This is mainly due to the stochastic load variations

over time and the intermittency of renewable energy resources.
These uncertainties can bring formidable challenges to power
system planning and operation. Ignoring them will produce
inappropriate planning strategies or control actions, which,
in turn, may result in system failures [1]. Therefore, recent
research activities have focused on addressing the uncertainties
in power system planning, monitoring, and control [1].

Since the traditional deterministic optimal power flow
(OPF) faces the difficulties in handling the randomness of
the input variables, the chance-constrained (CC)-AC-OPF has
recently been advocated by many researchers as a viable
method to tackle this optimization problem of decision making
under uncertainty. Compared with the traditional deterministic
approach, the CC approach restricts the feasible region with
a predefined small probability to increase the confidence level
of the solution [2], [3] and, therefore, is a relatively robust
approach [4]. Compared with a fully robust approach, the CC
approach provides a less conservative solution [5] to achieve
a higher economic benefit. Therefore, the CC-AC-OPF pro-
vides a good balance between the economy and security in
the power system operation [6].

In general, the CC-AC-OPF is a statistical problem consid-
ered to be difficult to solve. Some researchers prefer to use
a sampling-based approach such as the Monte-Carlo (MC)
method [7]. However, tens of thousands of MC simulations
are typically required to achieve sufficiently accurate results,
which is too time-consuming in practice. Some works in lit-
erature further adopt the scenario approach to reduce the
computational burden of the MC method [8], [9], but sac-
rifice some level of accuracy [4]. Although its robust version
based on a predefined robust sample set serves as a good
candidate [6], [10], it may produce overconservative solution.
Facing these difficulties in the sampling-based approach, many
researchers advocate the analytic approaches for the capability
of providing a closed-form solution that enables the CC-
OPF problem applicable for the online application [10], [11].
However, due to the nonlinearity of the system model and the
non-Gaussian distribution of the uncertainty, it is extremely
difficult to derive an accurate closed-form solution. Most
researchers simplified this problem by using a DC power-flow
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model [10], [11] while other researchers further improve this
approach by incorporating a first-order linearization of the
AC power-flow model [6], [12], [13]. Although this improved
version shows excellent performance under the assumption
that the forecast errors are very small [6], it provides inac-
curate results when that assumption is violated in practice.
Furthermore, to propagate the uncertainty in an analytical way,
the uncertain inputs and outputs can be roughly modeled as a
Gaussian distribution [6], [11].

Recently, some novel methods (e.g., generalized-
polynomial-chaos (gPC) methods [14]) have been proposed
for solving the CC-OPF problem. Using the gPC coefficients
to obtain the first and the second statistical moments for
the uncertain system states, this method has been applied in
a DC-OPF model [15], and further extended to a AC-OPF
model [16]. While this method does not have a linear
assumption for the model and a Gaussian assumption for
the uncertain inputs, its reformulation relies directly on the
statistical moment provided by the gPC coefficients, under
the assumption that all the uncertain inputs are independent
and identically distributed (i.i.d.). A recent attempt has
been made by Métivier et al. [17] to develop an iterative
procedure in the polynomial chaos expansion (PCE) to avoid
the statistical-moment-based reformulation and to enhance
its scalability. However, the paper does not address the
multidimensional dependence from uncertainties, nor does
it consider any integration of renewable energy generation.
We should emphasize that the independent assumption is
typically violated in practice as it has been clearly demon-
strated in various papers [18], [19]. This is mainly true for a
power system with a high penetration of renewable energy
resources [20]–[24]. Furthermore, only using the mean and
variance to describe the statistical output implies a symmetric
assumption for the uncertain system states. This assumption
oversimplifies the statistical feature of the system states and
is especially not true for the tail regions of the probability
density functions (PDFs) [25]. Note that the statistical
feature of the tail events should not be neglected since the
CC-AC-OPF is oftentimes focused on the tail region of the
density function with a small probability, e.g., 1%, 3%, 5%,
and so on [6], [11], [13].

To overcome the aforementioned issues, this article pro-
poses a novel iterative response-surface-based method for the
CC-AC-OPF problem considering the dependent non-Gaussian
uncertainties, resulting in the following contributions:

• To improve the computing efficiency of the uncertainty-
propagation procedure within an MC framework, the
response surfaces of the nonlinear AC power-flow model
employ a PCE-based reduced-order representation.

• This response surface is merged into the copula theory
to account for the dependence among high-dimensional
uncertain inputs.

• The response-surface approach is used to efficiently
conduct an online stochastic testing for detecting the
statistical active constraints, which assists us in better
designing the tightened bounds without the use of any
Gaussian or symmetric assumption for the system states
and the tail events.

• An iterative procedure is finally conducted to fine-tune
the optimal solution for a better accuracy. Its amenability
to parallel computation is also briefly discussed.

The performance of our proposed method has been ana-
lyzed through simulations that are carried out on the IEEE
standard test system and a synthetic Illinois power system.
These simulations reveal the excellent performance of the
proposed method considering the simulation accuracy and the
computing efficiency.

This article is organized as follows: in Section II, problem
formulation is presented. In Section III, the background on
response surface is provided. Section IV presents the proposed
method. Case studies are presented in Section V while the
conclusions and future work are provided in Section VI.

II. PROBLEM FORMULATION

This section will first briefly summarize the determinis-
tic AC-OPF model, and then extends it to the CC-AC-OPF
model associated with the implementation challenges using
the sampling-based approach.

A. Model Description of AC-OPF

Following Zhang and Li [2], we formulate the AC-OPF in
power systems as

min
u

f (x, u) (1a)

s.t. g(x, u) = 0 (1b)

hmin ≤ h(x, u) ≤ hmax (1c)

where x ∈ R
N are vectors of dependent state variables, e.g.,

the voltage magnitude and angle at a PQ bus, the voltage
angle and reactive power at a PV bus, the active and reac-
tive power at the swing bus, and the power flow along the
transmission lines; u ∈ R

D are the vectors of the control vari-
ables, such as the generator power output and its voltage; f
is a scalar objective function; and g and h are the vector-
valued functions of equality and inequality constraints, respec-
tively [2]. Typically, f is modeled as a quadratic cost function
expressed as

f (x, u) =
∑

i∈G

(
c2,iP

2
g,i + c1,iPg,i + c0,i

)
(2)

where c2, c1, and c0 denote the cost coefficients; and Pg,i

denotes the power output of the ith conventional generator,
which belongs to a set of G. The equality constraints are
described by a set of nonlinear power-flow equations for an
Nb-bus system, which are given by

Pi = Vi

Nb∑

j=1

Vj
(
Gij cos θij + Bij sin θij

)
(3a)

Qi = Vi

Nb∑

j=1

Vj
(
Gij sin θij − Bij cos θij

)
(3b)

where the net active and reactive power injection at Bus i are
denoted by Pi and Qi, respectively; the network conductance
and susceptance matrix are denoted by G and B, respectively;
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the voltage magnitude is denoted by Vi and the voltage angle
difference between Buses i and j is given by θij. The inequality
constraints, h, need to satisfy the vector-valued lower bound,
hmin, and the vector-valued upper bound, hmax. Typically, they
include some hard constraints due to the physical limits, such
as the generator active power, Pg,i, and reactive power, Qg,i, as
well as some soft constraints, such as the current magnitudes
of the transmission lines, which are denoted by Iij [6]. They
are described as

Pg,imin ≤ Pg,i ≤ Pg,imax (4a)

Qg,imin ≤ Pg,i ≤ Qg,imax (4b)

Vimin ≤ Vi ≤ Vimax (4c)

Iij ≤ Iijmax. (4d)

Till now, we have formulated the AC-OPF model.

B. Model Enhancement via CC-AC-OPF

To account for the randomness of the loads and the renew-
able energy generation, it is easy to infer that we should
reformulate the abovementioned AC-OPF functions into a
stochastic form, such as g(x, u, ξ ) and h(x, u, ξ ), where
ξ ∈ R

S denotes a vector of random variables. However, it is
very difficult to implement an optimization problem with ran-
dom variables involved. To solve this problem, a traditional
way is to reformulate this stochastic problem as a deter-
ministic one by only considering the mean of the forecast
random variables, E(ξ) [3], [6], where E is an expectation
operator. Then, (1) can still be solved in a deterministic
way via

min
u

∑

i∈G

(
c2,iP

2
g,i + c1,iPg,i + c0,i

)
(5a)

s.t. g(x, u, E(ξ)) = 0 (5b)

hmin ≤ h(x, u, E(ξ)) ≤ hmax. (5c)

Albeit a simple strategy, the optimized solution is only a
rough approximation that may lead to severe violations in the
inequality constraints while its probability of the violation is
not managed properly.

To precisely manage the violation rate for the optimized
solution, the CC-AC-OPF model provides a much better alter-
native. By assigning a predefined probability to control the
violation rate of the inequality constraints, h, we formulate a
CC-AC-OPF model as

min
u

∑

i∈G

(
c2,iP

2
g,i + c1,iPg,i + c0,i

)
(6a)

s.t. g(x, u, ξ ) = 0 (6b)

P(h(x, u, ξ ) ∈ H) ≥ 1 − ε (6c)

where H denotes a prescribed operational set determined
by hmin and hmax; and ε denotes a vector of acceptable
violation probability, which is typically set to be a small
number (e.g., 1%, 5%, and 10%), to ensure a secure oper-
ation of the power systems. Note that the focus of this article
is the individual chance-constrained problem, instead of a

joint chance-constrained problem [13]. Therefore, for every
individual set Hi, (6c) can be decomposed as

P(hi(x, u, ξ ) ∈ Hi) ≥ 1 − εi. (7)

At this point, we have completed the formulation of the
CC-AC-OPF.

C. Sampling-Based Approach and the Challenges Thereof

The most straightforward way to obtain the violation proba-
bility at its operation solution, u, is the MC-based method [7],
where a set of Nξ samples are drawn from the multivariate

probability distribution of ξ , yielding {ξ (j)}Nξ

j=1. Then, for each

ξ (j), j = 1, . . . , Nξ , the equality constraint, g, is evaluated at
the sampled values, ξ (j), to obtain the corresponding system
states x(j). Then, for every individual inequality constraint, we
get

P(hi(x, u, ξ ) ∈ Hi) =
Nξ∑

j=1

1

Nξ

χ{Hi}
(

hi

(
x(j), u, ξ (j)

))
(8)

where χ is the characteristic function satisfying

χ{Hi}(hi(x, u, ξ )) =
{

1 if hi(x, u, ξ ) ∈ Hi

0 if hi(x, u, ξ ) �∈ Hi.
(9)

Obviously, the computational burden of this MC method will
be prohibitively heavy for a complicated power-system model.
Notwithstanding that the violation probability can be obtained
with the MC method, it is very difficult to guarantee that
the obtained operation solution, u, is a proper candidate to
balance the security and economy in the OPF problem. If u
is overconservative, then the violation probability evaluated
through MC samples may be less than the predefined viola-
tion rate and therefore lose some economic benefits. Contrary
to this, if the operation point, u, is not conservative enough,
then the MC-evaluated violation probability can be larger than
the predefined ε. Here, the goal is to find a u that not only
satisfies the chance constraints for the security objective, but
also to provide a good economic performance.

III. RESPONSE-SURFACE-BASED SAMPLING APPROACH

A. Motivation

To solve the abovementioned computational burden in the
MC-based method for the CC-AC-OPF problem, we propose
to use the response-surface method. For simplicity, let us first
define a vector-valued nonlinear function y that combines the
functions of g and h. Then, we can use y to build a mapping
between the uncertain random variables, ξ , with the power
system dependent variables, x, at the fixed control variable, u,
expressed as

x = y(ξ , u). (10)

Here, if we replace this complicated function y : R
S × R

D −→
R

N with a simple functional form ỹ(·) that captures the
behavior of the complicated, high-fidelity simulation model
of a power system while being computationally inexpen-
sive to evaluate, then we call ỹ(·) the response surface of
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TABLE I
UNIVARIATE GPC POLYNOMIAL BASES

the y(·) [14], [19], [25]. It holds a relationship as ỹ(ξ , u) ≈
y(ξ , u). This response surface enables us to accurately prop-
agate a large amount of samples at negligible computing
time and, therefore, can greatly enhance the computing effi-
ciency of the sampling-based approach. Here, we choose
the polynomial-chaos-expansion (PCE)-based response sur-
face to mimic the power-system response under dependent
uncertainty.

B. Review of the Generalized Polynomial Chaos Expansion

Introduced by Wiener and further developed by Xiu and
Karniadakis [14], the generalized polynomial chaos expan-
sion has been shown to be a cost-effective tool in modeling
power-system response surfaces [19], [26], [27]. In the gPC
method, the stochastic outputs are represented by a weighted
sum of a given set of orthogonal polynomial chaos basis func-
tions constructed from the probability distribution of the input
random variables. For the vector of i.i.d. random variables,
ξ = [ξ1, ξ2, . . . , ξS], following a standard probability distri-
bution (e.g., a Gaussian or the Beta distribution), to which,
as shown in Table I [14], a unique orthogonal polynomial is
associated. Let �i(ξ1, ξ2, . . . , ξS) denote this procedure’s cor-
responding polynomial chaos basis and let ai denote the ith
polynomial chaos coefficient. For a stochastic system state, x,
we have x = ∑∞

i=0 ai�i(ξ). In practice, a truncated expansion
is used such that

x =
SP∑

i=0

ai�i(ξ) (11)

where SP = (S + P)!/(S!P!) − 1; S is the total number of the
random variables involved in the gPC; and P is the maximum
order of the polynomial chaos basis functions. It is found that a
relatively low maximum polynomial chaos order (typically 2)
provides output results with enough accuracy [19], [26]–[28].
From the polynomial chaos coefficients, the mean, μ, and the
variance, σ 2, of the output x can be determined as

μ = a0 (12)

σ 2 =
SP∑

i=1

a2
i E

[
�2

i

]
. (13)

Remark 1: It is worth mentioning that although (12)
and (13) build a straightforward connection between the poly-
nomial chaos coefficients and the statistical moments, they
are only valid under the i.i.d. assumption [5], [14], [29].
For the sake of completeness, a detailed proof and discus-
sion of this property are provided in Appendix A. For some
i.i.d.-assumption-based work, this property has successfully
enabled a reformulation of the optimization problem [15], [16].

However, since we consider the dependence among multivari-
ate uncertain inputs, for which i.i.d. is violated, (12) and (13)
cannot be adopted in our approach. Here, we only use the
response-surface feature of the gPC as described by (11).

1) The Orthogonal Polynomial Chaos Basis: A set of one-
dimensional polynomial chaos basis functions {�i(ξ), i =
0, 1, 2, 3, . . . } with respect to some real positive measure
satisfy

∫
�i(ξ)�j(ξ)dλ

{= 0 if i �= j
> 0 if i = j

(14)

where λ denotes a probability measure defined as the cumula-
tive probability distribution function (CPDF) of ξ . For every
CPDF, the associated orthogonal polynomials are unique.

2) Construction of the Polynomial Chaos Basis: A set of
multidimensional polynomial chaos basis functions can be
constructed as the tensor product of the one-dimensional poly-
nomial chaos basis associated with each input random variable.
Formally, we have

�(ξ) = �(ξ1) ⊗ �(ξ2) ⊗ · · · ⊗ �(ξS) (15)

where �(ξi) denotes the one-dimensional polynomial chaos
basis for the ith random variable.

3) Collocation Points: To approximate the PCE
coefficients, we evaluate the solver at a finite number
of samples, typically in a small size. These finite samples
are called the collocation points (CPs). The elements of the
CPs are generated by using the union of the zeros and the
roots of one higher-order, one-dimensional polynomial for
every random variable [19], [30]. For example, starting from
on-dimensional cases, for a 2nd-order Hermite polynomial,
its one higher-order polynomial is φ3(ξ) = ξ3 − 3ξ . The
elements of the collocation points are

√
3,−√

3, and 0.
That means we need to evaluate the solver at the three
sample points above to approximate the coefficients. In the
multidimensional cases, the CPs are obtained by the tensor
product of one-dimensional CPs. For examples, for the above
2nd-order Hermite polynomial with a dimension of 2, using
tensor product, we get 9 combinations of the two-dimensional
samples, i.e., {√3,

√
3}, {√3, 0}, {√3,−√

3}, {0,
√

3}, {0, 0},
{0,−√

3}, {−√
3,

√
3}, {−√

3, 0}, and {−√
3,−√

3}. More
generally, if there are S random variables, the number of
possible combinations is 3S by using the tensor product.
Therefore, the SP + 1 unknown coefficients can be estimated
at the selected CPs.

An improved version is the sparse-grid method [30]. Unlike
the tensor-product rule that needs (P + 1)S samples to simu-
late the forward solver, the sparse-grid method requires much
fewer samples by using a sparse-tensor-product rule and,
therefore, is considered in our approach.

IV. THE PROPOSED METHOD

In this section, we present the proposed iterative response-
surface method to solve the CC-AC-OPF problem.

A. Dependence Modeling

The prerequisite of an uncertainty quantification relies on an
precise uncertainty modeling. Here, we propose to model the
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dependence using copula technique since it can be perfectly
merged into the framework of the response-surface method.
According to Sklar’s theorem, any joint multivariate cumu-
lative distribution function Fξ of an S-dimensional random
vector can be expressed in terms of its marginal distributions
and a copula to represent their dependence. Formally, we have

Fξ (ξ) = C
(
Fξ1(ξ1), Fξ2(ξ2), . . . , FξS(ξS)

)
(16)

where Fξi(ξi) is the ith input marginal and C(·) is a copula that
describes the dependence structure between the S-dimensional
input variables [31]. Accordingly, its joint multivariate density
function, fξ (ξ), can be obtained via

fξ (ξ) = c
(
Fξ1(ξ1), . . . , FξS(ξS)

) S∏

i=1

fi(ξi) (17)

where c is the S-variate copula density and fi(ξi) is the
marginal density for the ith variable. Since there exist dif-
ferent copula families, such as the Archimedean copulae,
the Gaussian copula and the vine copula, the choice of the
copula function will influence the accuracy and computing
efficiency of the dependence modeling. Here, we advocate the
Gaussian copula for its simplicity and ability to generate high-
dimensional dependent samples [32] while the Archimedean
copulae (e.g., the Gumbel copula and the Frank copula) are
not scalable because they are limited to the bivariate case [32],
and the vine copula is very complicated and time-consuming
for an online application [33].

B. Stochastic Testing via PCE and Copula

Here, the uncertainty parameters m for load and renewable
power generation in the power-system model are viewed as
random variables. By mapping the parameters m into ξ , we can
build a PCE as the response surface of power-flow solutions.
The steps of the PCE procedure are detailed below:

(1) We construct the polynomial chaos basis with the
Hermite polynomials. Then, we express the output x in
the gPC expansion form of (11).

(2) We construct Mc combinations of collocation points,
{ξ (j)}Mc

j=1, and put them into an Mc×(SP + 1) polynomial
chaos basis matrix Hpc. Formally, we have

Hpc =

⎡

⎢⎢⎢⎣

�0
(
ξ1
)

�1
(
ξ1
)

. . . �SP

(
ξ1
)

�0
(
ξ2
)

�1
(
ξ2
)

. . . �SP

(
ξ2
)

...
...

. . .
...

�0
(
ξMc

)
�1
(
ξMc

)
. . . �SP

(
ξMc

)

⎤

⎥⎥⎥⎦. (18)

(3) We map collocation points, {ξ (j)}Mc
j=1 back to sam-

ples within actual physical space, i.e., {m(j)}Mc
j=1.

Following [19], for the jth collocation point at the ith
random variable, this can be obtained via

m(j)
i = F−1

i

(
Ti

(
ξ

(j)
i

))
(19)

where F−1
i is the inverse cumulative probability distribu-

tion function of mi, and Ti is the cumulative probability
distribution function of ξi. We would like to emphasize

that this function is a well-known tool to provide map-
ping between different random variables, yet does not
serve as a tool for decorrelation. For the readers’ conve-
nience, the statistical background of this transformation
is provided in Appendix B, which is titled “Probability
Integral Transform”.

(4) By evaluating the aforementioned N-dimensional depen-
dent variables, x, through original power-system model
y(·) at the transformed collocation points {m(j)}Mc

j=1, we
obtain an Mc × N output matrix, X.

(5) Estimate the unknown polynomial chaos coefficients
matrix A based on the collocation points that are selected
and the model output given by

X = HpcA (20)

where A denotes an (SP + 1) × N coefficient matrix
expressed as

A =
⎡

⎢⎣
a0,1 a0,2 . . . a0,N
...

...
. . .

...

aSP,1 aSP,2 . . . aSP,N

⎤

⎥⎦ (21)

where ai,j denotes the ith PCE coefficient of the jth
system state.

(6) Now, let Â be the coefficient matrix estimated using
the weighted least-squares estimator [26], [29]. It is
expressed as

Â =
(

Hᵀ
pcHpc

)−1
Hᵀ

pcX. (22)

With the coefficients matrix Â, we obtain the response-
surface form, ỹ(ξ , u), for all the system states.

(7) Now, we can draw a large number of samples {ξ (j)}Nξ

j=1
from the Gaussian copula and evaluate them through
ỹ(ξ , u) to obtain the system random output, {x(j)}Nξ

j=1,
at negligible computing time. For the readers’ conve-
nience, the step-by-step details of using the Gaussian
copula to generate dependent samples are provided in
Appendix C.

(8) Using the stochastic testing result, {x(j)}Nξ

j=1, we directly
compute the violation probability for each constraint
via (7) and (8).

Remark 2: Note that since we use the Hermite polynomi-
als, every ξ follows a Gaussian distribution. Even its associated
“m” may follow other distributions, e.g., the Weibull distribu-
tion and the Beta distribution, we can conveniently use (19)
to conduct an inverse CPDF transformation. This makes the
response-surface-based method applicable to any probability
distribution having a CPDF (or its PDF, of which we can take
integral to obtain the corresponding CPDF as required in (19)).

To provide another way to interpret this conclusion, let us
define a mapping between ξ and m as T to simplify (19) into

ξ = T (m), m = T −1(ξ). (23)

Then, (11) can be rewritten as

x =
SP∑

i=0

ai�i(ξ) =
SP∑

i=0

ai�i(T (m)) (24)
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This transform enables us to use any type of input marginals,
at the cost of an additional inverse CPDF transformation. We
would also like to mention that if the nonlinearity in this
transformation is very high (e.g., in the case of a multiple-
peak distribution), the added nonlinearity may impact the
accuracy of the PCE. Here, only single-peak distributions are
considered in this article. We would also like to emphasize
that by using the same inverse CPDF mapping strategy, good
performances of the response-surface method in handling non-
Gaussian distributions for the correlated renewables have been
demonstrated in [19], [34], [35]. Therefore, we adopt this
strategy here.

C. Reformulation of the Chance Constraints

Now, with the above stochastic testing results, we are able
to reformulate the chance constraints given by (6c) as

hmin + 
hmin ≤ h(x, u) (25a)

h(x, u) ≤ hmax − 
hmax (25b)

which can be implemented as deterministic constraints using
the optimization solver. In general, this reformulation involves
an updating step to tighten the bounds. Here, 
hmin and

hmax denote the non-negative, adjusted lower and upper mar-
gins, respectively. These tightened bounds will lead to a more
conservative operation solution u at the expenses of a higher
operating cost expressed in (2).

To design the updated margins that can not only ensure a
predefined violation rate, εi, but also avoid an overconservative
solution, let us first detect the active constraints. As addressed
by Baker and Bernstein [13], in the optimization problem, the
inactive constraints are those constraints, when removed, the
optimal solution will not change while the active constraints
are essential in determining the optimal solution. Besides,
we further propose to incorporate the violation probability in
classifying the active constraints. We define these statistical
active constraints as constraints whose violation probabilities
exceed the predefined violation rate. Let us consider the bus
voltage magnitude Vi, bounded by [0.9, 1.1] pu. Suppose an
ε = 5% is predefined for its individual constraint, if the
P(Vi ≤ 1.1) ≤ 95%, then we call it a “statistical active con-
straint,” and vice versa. We only need to update these statistical
active constraints and keep the statistical inactive constraint
unchanged. For those classified as statistical active constraint,
we calculate its updated margins through the quantile of its
distributions via


himin = Q(hi, P(hi ∈ Hi)) − Q(hi, (1 − εi)) (26a)


himax = Q(hi, (1 − εi)) − Q(hi, P(hi ∈ Hi)) (26b)

where Q(hi, P) denotes the quantile value for the distribution
of hi at a probability value of P. Obviously, for the inactive
constraint, we have its 
himin = 0 and 
himax = 0. This
quantile-based updating rule is chosen since it is based on
an actual stochastic testing within the MC simulation frame-
work [6] that can avoid the Gaussian or symmetric assumption
of the system responses [11], [13], [16].

Here, we would like to emphasize that the Gaussian or
symmetric assumptions may lead to an inaccurate margin

Fig. 1. Margin adjustment with the Gaussian assumption (red) and without
the Gaussian assumption (blue).

adjustment. To illustrate this, we provide an example shown
in Fig. 1. Let us take the power in a transmission line as an
example. Suppose that its true nonparametric PDF is depicted
in blue while its approximated Gaussian distribution with the
same mean and variance is depicted in red. Assume that we
have an upper bound set for this line as 31 MVA and a viola-
tion rate as 5%. As shown in Fig. 1, the PDF of the blue one is
quite asymmetric and its 95% quantile goes beyond the limit of
31 MVA, which leads to a margin adjustment of 
hmax. When
it comes to the Gaussian-approximated red one, although it
has some violations for the upper margin of 31 MVA, its 95%
quantile is still located in the left side of the hmax with a
violation probability smaller than 5%, which further implies
this is not a statistical active constraint. Therefore, 
hmax is
considered to be 0 for the red one. This example makes it obvi-
ous that a more general nonparametric PDF obtained from the
sampling-based method provides a better choice than a simple
Gaussian approximation.

D. The Iterative Procedure

Using the updated bounds, we can conduct a deterministic
AC-OPF calculation using (5) to obtain an updated optimal
solution u. However, this is not the end of the algorithm
since the updated operating solution, u, may lead to some
new statistical active constraints that necessitate further updat-
ing. Motivated by Roald and Anderson [6], who describe
an iterative procedure that can improve the accuracy of the
derivative-based method than a one-shot algorithm, we develop
an iterative procedure to fine-tune our optimal solution. Now,
let us define u(k) as the optimal solution at the kth iteration.
Then, for every updated u(k), we further conduct a stochastic
testing to check and update the statistical active constraints via

h(k)

min and 
h(k)
max until the violation rate for each individual

constraint can be satisfied. It should be emphasized that an
iterative procedure is very rare in the sampling-based method
because even one iteration is time-consuming; nonetheless,
we can still complete the iterative procedure quite efficiently
thanks to the PCE-based response surface. Also, note that, as
Roald and Anderson have claimed in [6], while the iterative
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Algorithm 1 The Iterative Response-Surface-Based Approach
for the CC-AC-OPF

1: Prepare the power-system model and its AC-OPF solver;
2: Prepare dependent sample set, {x(j)}Nξ

j=1, via the Gaussian
copula;

3: Generate collocation points, {ξ (j)}Mc
j=1, and its transformed

ones, {m(j)}Mc
j=1;

4: Construct Hpc using polynomial chaos bases;
5: Set k = 0 and solve the deterministic AC-OPF via (5) to

obtain an initial operating solution, u(0);
6: while k ≤ kmax do
7: At operating solution u(k), evaluate the power-system

response at collocation points to estimate the polynomial-
chaos coefficients given by (20) via (22);

8: Conduct stochastic testing for system states via the
response surface given by (11);

9: Detect the number of statistical active constraints, Nac;
10: if Nac > 0 then
11: Update k = k + 1;
12: Update the constraint margin using 
h(k)

min and

h(k)

max via (25) and (26);
13: Solve the deterministic AC-OPF via (5) with

updated bounds to obtain the operating solution, u(k);
14: else
15: break Jump to Step 18;
16: end if
17: end while
18: Read the CC-AC-OPF final solution, u(k), and calculate

the objective function.

procedure does not have a convergence guarantee, it can still
preform well in practice. In this article, the algorithm con-
verges in just a few iterations. Besides, we can also set a
threshold, kmax, as the maximum iteration number, e.g., 8
and 10. Now, we have concluded the presentation of the
proposed iterative response-surface-based approach for the
CC-AC-OPF problem. The summarized procedure is provided
in Algorithm 1. It is also worth mentioning that most of the
computing time of the response-surface method is spent on
the training period, i.e., Step 7. Fortunately, this step can be
executed in parallel.

V. SIMULATION RESULTS

Using the proposed method, various case studies are con-
ducted on the modified IEEE 30-bus test system [36] and
a synthetic Illinois power system (i.e., the ACTIVSg200
case) [37]. The algorithms are tested with the MATLAB
R2018a version on a laptop with 2.60-GHz Intel Core i7-
6600U processors and a 16 GB of main memory.

A. Demo Cases on the IEEE Standard Test System

In this part, we present some simple demo case studies con-
ducted on the IEEE 30-bus system. Here, it is assumed that the
loads follow a Gaussian distribution with mean values equal
to the original bus loads and standard deviations equal to 5%

TABLE II
VALIDATION ON THE MODIFIED IEEE 30-BUS SYSTEM

TABLE III
VALIDATION ON THE MODIFIED IEEE 30-BUS SYSTEM

of their means [19]. No renewable generation units are con-
sidered. We increase line capacities by 30%. Note that since
we do not consider unit commitment in this article, the lower
generation limits are set to zero as suggested by [6]. Besides,
parallel computing is not utilized for this test system.

1) Validation of the Proposed Method: First, we test the
performance of the proposed method under different accept-
able violation probabilities, ε, using 10, 000 as the sample size.
The simulation results of the proposed method are validated
with the MC method with 10, 000 samples of power-flow cases
to measure its maximum violation probability, εmax, for each
individual constraint. The simulation results are provided in
Table II. It can be seen that the proposed method can provide
an optimal solution with quite an accurate maximum viola-
tion probability, εmax, under different predefined settings for ε.
Moreover, the operation cost becomes slightly cheaper as the
security level, indicated by ε, decreases. Finally, we can find
that even with a sample size as large as 10, 000, without using
parallel computing, the proposed method can finish simulation
in less than 3 s. This demonstrates the accuracy and computing
efficiency of the response-surface-based method.

2) Capability in Handling Different Levels of Nonlinearity:
Now, we test the performance of the proposed method in han-
dling different levels of nonlinearity. Here, we set the standard
deviations of the load, δ, from 5% to 10% and 15% to increase
the nonlinearity in the system as suggested in [6]. ε is chosen
as 5%. The other settings remain unchanged with the previous
case. The simulation results are shown in Table III. It can be
seen that even when the nonlinearity of the system increases,
the proposed method can still provide accurate estimation
results and the computing efficiency remains quite high. This
is one of the advantages of the response-surface-based method
since it has no linear assumption. Furthermore, as δ goes to
15%, the operating cost increases significantly to handle this
randomness. Therefore, an accurate load forecast with a small
level of uncertainty will greatly benefit the CC-AC-OPF solver
in managing its operating cost.

B. Case Studies on an Illinois Power System

This case study is conducted on a synthetic 200-bus test
case, fictitiously situated in the central part of the U.S. state of
Illinois. In this test case with 200 buses, there are 49 generators
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TABLE IV
CORRELATION MATRIX OF THE INPUTS

TABLE V
VALIDATION OF THE PROPOSED METHOD WITH DIFFERENT SAMPLE

SIZES UNDER DIFFERENT ACCEPTABLE VIOLATION PROBABILITIES

in total. For the associated PV buses, their voltage magnitudes
and generated power outputs are considered as control vari-
ables. Here, it is assumed that the loads follow a Gaussian
distribution with mean values equal to the original bus loads
and standard deviations equal to 5% of their means. 4 wind
farms, each with a rated power of 50 MW, are added at Buses
5, 15, 100, and 140, respectively, to introduce the randomness
in the OPF model. Their shape and scale parameters are set
to {7.41, 2.06} [19]. Their correlation matrix of these depen-
dent inputs is provided in Table IV. The Gaussian copula is
used to model the dependent samples. The generation limits
are increased by a factor of 1.3 and unit commitment is not
considered. Besides, we further merge the parallel computing
into the proposed method as described in Section IV-D.

1) Validation of the Proposed Method: First, we test the
performance of the proposed method under different sample
sizes and different acceptable violation probabilities, ε. The
simulation results of the proposed method are validated with
the MC method with 10, 000 samples of power-flow cases
to measure its maximum violation probability, εmax, for all
the individual constraints. We also compare the solution of
the proposed iterated method, fite, with that of the one-shot
method, fos, which does not have an iterative procedure. The
simulation results are demonstrated in Table V.

From Table V, the following conclusions can be drawn:

• The operating cost, fite[$], will increase with a smaller ε.
This is the tradeoff between the security and the econ-
omy. Furthermore, compared to the solution of $30, 547
obtained via a deterministic method formulated in (5), the
proposed method can always provide a more conservative
result.

• Considering the validated maximum violation probability,
εmax[%], under the MC method, we have found that with
5, 000 samples, the proposed method can ensure quite an
accurate simulation result in the presence of dependent
uncertain inputs.

• In spite of using an iterative-sampling-based procedure,
the proposed method can still complete the simulation in
just a few seconds on a personal laptop with the execution
of parallel computing. The number of iterations is, in gen-
eral, just a few. Considering that the redispatch interval in
a power system may include 5, 10, or 15 min, etc., [8], the
computing efficiency of the proposed method has already
been excellent enough for an online application.

• The performance of the proposed method depends on the
choice of a proper sample size. A small sample size, such
as 1, 000, may lead to relatively inaccurate violation prob-
abilities of the sampling-based method. This is especially
true for some small probability, such as 3% and 5%. In
general, 5, 000 is required to ensure an accurate violation
probability. Fortunately, thanks to the response surface,
we have found that the computing time is still very small
even under 10, 000 sample size.

• For a relatively large value of εmax, such as 10% and 15%,
there is no obvious difference between the solutions of
the iterative method and the one-shot method. However,
when it comes to the tail events associated with a small
probability, such as 3% and 5%, the iterative method pro-
vides a more conservative result in the objective function
and ensures an accurate violation probability.

2) Approximation Accuracy of the PCE-Based Response
Surface: Here, we would like to emphasize that the accuracy
of the proposed method highly depends on the accuracy of the
approximation of the PCE-based response surface since it is
the foundation of the proposed method. As we have briefly
mentioned in Section III-B, a PCE of order 2 is a popular
choice; therefore, we choose this setting for all the experi-
ments in the article. As examples, let us choose the voltage
magnitude on the Bus 20 and the power on Line 240 as the
quantities of interest (QoIs). Using the operation solutions
obtained through the experiment settings defined in Groups
1, 2, 3, and 4 as shown in Table V, we validate the accuracy
of the PCE-based response surface through its obtained PDFs
for these QoIs, which are further compared to the simulation
results obtained by the MC method, with 10, 000 samples as
a reasonable benchmark. The simulation results are shown in
Fig. 2. It can be seen that, for all the above test conditions,
the PCE-based response surface of order 2 can provide quite
accurate simulation results under dependent random inputs.
This validates the accuracy of the PCE-based surrogate of
order 2 and accords with the conclusion reached in other sim-
ilar bodies of work in [5], [16], [19], [25], [27]–[29]. We
do not suggest a higher order of the PCE due to the “curse
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Fig. 2. PDFs of (a) voltage magnitude at Bus 20 under Group 1 setting; (b) voltage magnitude at Bus 20 under Group 2 setting; (c) voltage magnitude at
Bus 20 under Group 3 setting; (d) voltage magnitude at Bus 20 under Group 4 setting; (e) power on Line 240 under Group 1 setting; (f) power on Line 240
at Bus 20 under Group 2 setting; (g) power on Line 240 at Bus 20 under Group 3 setting; (h) power on Line 240 at Bus 20 under Group 4 setting.

Fig. 3. PDFs of P232 using different sample size.

of dimensionality” [30] while providing little improvement in
accuracy [27], [38]. Besides, a lower order (i.e., 1) is also
not suggested since it has been shown to be not sufficiently
accurate for power system applications in [17], [39].

3) Discussion on the Symmetry: Here, let us discuss the
symmetric assumption for the system states that are widely
adopted in the literature. Let us choose the power on Line
232, P232, as an example. Here, we plot its PDFs obtained
with 1, 000, 5, 000, and 10, 000 samples in Fig. 3. It can be
seen that the PDFs are quite asymmetric with a long tail on
the potential violation region. Using a symmetric assumption
or simply using a Gaussian distribution with the same mean
and variance to approximate it may lead to quite inaccurate
estimation results. This is the advantage of the sampling-based

TABLE VI
ACCURACY OF THE TAILS

method which only needs to use the quantile function, Q, to
give it a general estimation.

4) Accuracy of the Tails: From Fig. 3, we can also see that
although the PDF obtained by 1, 000 samples is not as accu-
rate as those obtained by a larger number of samples, such as
5, 000, its entire approximation of the PDF is still reasonable.
However, if we further go to the tail events, this becomes a
more complicated case [25]. Let us compare the quantile val-
ues obtained with 1, 000 samples, Q1k, and 5, 000 samples,
Q5k to the benchmark results obtained by 10, 000 samples,
Q10k, as shown in Table VI. It can be seen that using samples
of size 1, 000, the errors in the quantile increase significantly
as ε becomes smaller while errors in the quantile obtained by
samples of size 5, 000 can provide a more accurate and sta-
ble estimation for a relatively smaller ε. This means that the
sample size for the sampling-based method should be well-
designed for different acceptable violation probabilities. For
tail events located in the small-probability region, the sample
size should be increased to maintain accuracy. Fortunately,
the response-surface method can efficiently propagate a large
number of samples as demonstrated by the experiments above.

VI. CONCLUSION AND FUTURE WORK

In this article, we propose an iterative response-surface-
based approach to solve the CC-AC-OPF problem. Using the
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PCE-based response surface, we can efficiently evaluate a
large amount of dependent samples to estimate the violation
probability for each individual constraint. This allows us to
properly reformulate the optimization problem with a more
conservative solution. The simulation results have demon-
strated the excellent performances of the proposed method
from the standpoint of accuracy and efficiency.

In the future, we will further improve the scalability of the
proposed method since the polynomial chaos expansion suffers
from the “curse of dimensionality” when the number of the
random variables goes very high. To this end, we will inves-
tigate some emerging techniques, e.g., the sparse polynomial
chaos [29] and the polynomial-chaos ANOVA [39], to further
ameliorate the performance of the proposed method in solving
very-large-dimensional problems.

APPENDIX A
STATISTICS FOR POLYNOMIAL CHAOS EXPANSIONS

Here, let us prove (12) and (13) under the i.i.d. assumption.
First, following the definition, to calculate the mean value for
the PCE, x = ∑SP

i=0 ai�i(ξ), we get

μ = E [x] =
∫ SP∑

i=0

ai�i(ξ)fξ (ξ) dξ (A.1)

Based on (15), we have �0(ξ) = 1. Then, (11) is rewritten as

x = a0 +
SP∑

i=1

ai�i(ξ). (A.2)

This transform (A.1) as

μ = a0

∫
fξ (ξ) dξ +

SP∑

i=1

∫
ai�i(ξ)fξ (ξ) dξ

= a0 +
SP∑

i=1

ai

∫
�i(ξ)fξ (ξ) dξ . (A.3)

Here, for the second term in (A.3), we have

�i(ξ) =
S∏

k=1

�k,ik(ξk) (A.4)

where �k,ik(ξk) is a univariate degree-ik orthogonal polyno-
mial of a random variable ξk [40]. Consequently, if and only
if {ξ1, ξ2, . . . , ξS} are mutually independent, we have

fξ =
S∏

i=1

fi(ξi) (A.5)

Till now, due to the orthogonality property between the terms
in (A.4) and (A.5),

∑SP
i=1 ai

∫
�i(ξ)fξ (ξ) dξ = 0. We have

μ = a0, as (12) shows.
Based on this, using the definition of the variance, we have

σ 2 = E

⎡

⎣
(

SP∑

i=0

ai�i(ξ) − μ

)2⎤

⎦. (A.6)

Using (A.2) and (12), (A.6) is rewritten as

σ 2= E

⎡

⎣
(

��a0+
SP∑

i=1

ai�i(ξ)−��a0

)2⎤

⎦=
SP∑

i=1

a2
i E

[
�2

i

]
. (A.7)

Now, the proof is completed for (12) and (13) under i.i.d.
assumptions.

Remark 3: Obviously, for the dependent random
variable cases, (A.5) no longer holds. To decom-
pose the joint density function into the marginal
ones, we have to incorporate the copula functions via
fξ (ξ) = c(Fξ1(ξ1), . . . , FξS(ξS))

∏S
i=1 fi(ξi) as shown in (17).

Then, each term in the second part of (A.3) can be represented
by ai

∫
�i(ξ)c(Fξ1(ξ1), . . . , FξS(ξS))

∏S
i=1 fi(ξi) dξ . Due to

the incorporation of nonlinear copula functions, orthogonality
no longer holds. Consequently, (12) does not hold for this
dependent random input case. Subsequently, (13) cannot hold
either.

APPENDIX B
PROBABILITY INTEGRAL TRANSFORM

Let us provide some basic background of the probability
theory used in (19). It is well-known that for any random
variable ξ with a continuous CPDF Fξ , the random variable

U = Fξ (ξ) (B.1)

follows a uniform distribution as U ∼ U[0, 1]. This is also
called the probability integral transform of ξ [41]. Its inverse
mapping can be obtained via

ξ = F−1
ξ (U) (B.2)

to map the U ∼ U[0, 1] into ξ ∼ Fξ . This probability integral
transform and its inverse mapping are the foundation of the
inverse CPDF mapping used in (19), which maps a random
variable from the physical space to a standard Gaussian space,
and vice versa.

APPENDIX C
GAUSSIAN COPULA

Let us present how to simulate dependent samples with
the Gaussian copula. All the details here follow Mai and
Scherer of [32, Ch. 4]. To simulate a random vector from the
Gaussian copula, CGauss

P , where P ∈ R
S×S is a positive-definite

correlation matrix, we conduct the following steps:
1) Compute the Cholesky decomposition of P with LLᵀ =

P, where L ∈ R
S×S is a lower triangular matrix.

2) Simulate a vector of independent standard normal ran-
dom variables with Z ∈ NS(0, I).

3) Compute Xr = LZ ∈ NS(L0, LILᵀ
) = NS(0, P).

4) Return the vector of [F(Xr
1), . . . , F(Xr

S)]
ᵀ, where F is

the distribution function of a univariate standard normal
distribution.

Once we obtain the Gaussian copula, we can easily use the
abovementioned inverse CPDF function to conduct a map-
ping between different types of random variables. This is also
known as the Nataf transformation as illustrated in [42], [43].
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