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ABSTRACT
We consider a measurement constrained supervised learning problem, that is, (i) full sample of the pre-
dictors are given; (ii) the response observations are unavailable and expensive to measure. Thus, it is ideal
to select a subsample of predictor observations, measure the corresponding responses, and then fit the
supervised learning model on the subsample of the predictors and responses. However, model fitting is a
trial and error process, and a postulated model for the data could be misspecified. Our empirical studies
demonstrate that most of the existing subsampling methods have unsatisfactory performances when the
models are misspecified. In this paper, we develop a novel subsampling method, called “LowCon,” which
outperforms the competing methods when the working linear model is misspecified. Our method uses
orthogonal Latin hypercube designs to achieve a robust estimation. We show that the proposed design-
based estimator approximately minimizes the so-called worst-case bias with respect to many possible
misspecification terms. Both the simulated and real-data analyses demonstrate the proposed estimator
is more robust than several subsample least-squares estimators obtained by state-of-the-art subsampling
methods. Supplementary materials for this article are available online.

ARTICLE HISTORY
Received January 2020
Revised September 2020

KEYWORDS
Condition number;
Experimental design;
Least-squares estimation;
Worst-case MSE

1. Introduction

Measurement constrained supervised learning is an emerging
problem in machine learning (Settles 2012; Wang, Yu, and Singh
2017; Derezinski, Warmuth, and Hsu 2018). In this problem,
the predictor observations (also called unlabeled data points
in machine learning literature) are collected, but the response
observations are unavailable and difficult or expensive to obtain.
Considering speech recognition as an example, one may easily
get plenty of unlabeled audio data, but the accurate labeling
of speech utterances is extremely time-consuming and requires
trained linguists. For an unlabeled speech of one minute, it can
take up to ten minutes for the word-level annotation and nearly
seven hours for the phoneme-level annotation (Zhu, Lafferty,
and Rosenfeld 2005). A more concrete example is the task of
predicting the soil functional property, that is, the property
related to a soil’s capacity to support essential ecosystem service
(Hengl et al. 2015). Suppose one wants to model the relation-
ship between the soil functional property and some predictors
that can be easily derived from remote sensing data. To get
the response, the accurate measurement of the soil property, a
sample of soil from the target area, is needed. The response thus
can be extremely time-consuming or even impractical to obtain,
especially when the target area is off the beaten path. Thus, it is
ideal to select a subsample of predictor observations, measure
the corresponding responses, and then fit a supervised learning
model on the subsample of the predictors and responses.

In this article, we study the subsampling method and pos-
tulate a general linear model for linking the response and
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predictors. One of the natural subsampling methods is the
uniform subsampling method (also called the simple random
subsampling method), that is, selecting a subsample with the
uniform sampling probability. For many problems, uniform
subsampling method performs poorly (Cochran 2007; Thomp-
son 2012). Motivated by the poor performance of uniform
sampling, there has been a large number of work dedicated
to developing nonuniform random subsampling methods that
select a subsample with a data-dependent nonuniform sam-
pling probability (Mahoney et al. 2011). One popular choice of
the sampling probability is the normalized statistical leverage
scores, leading to the algorithmic leveraging approach (Ma and
Sun 2015; Meng et al. 2017; Zhang, Xie, and Ma 2018; Ma
et al. 2020). Such an approach has already yielded impressive
algorithmic and theoretical benefits in linear regression models
(Mahoney et al. 2011; Drineas et al. 2012; Ma, Mahoney, and Yu
2015). Besides linear models, the idea of algorithmic leveraging is
also widely applied in generalized linear regression (Wang, Zhu,
and Ma 2018; Ai et al. 2019; Yu et al. 2020), quantile regression
(Ai et al. 2020; Wang and Ma 2020), streaming time series (Xie
et al. 2019), and the Nyström method (Alaoui and Mahoney
2015).

Different from random subsampling methods, there also
exist some deterministic subsampling methods which select the
subsample based on certain rules, especially optimality criteria
developed in the design of experiments (Pukelsheim 2006), for
example, A-, D-, and E-optimality. Wang, Yu, and Singh (2017)
proposed a computationally tractable subsampling approach
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Figure 1. The data (gray dots) are generated from a partial-linear model (gray curve). When the non-linear term is omitted, the fitted line (dashed line) based on a leveraging
subsample (black dots) deviates severely from the full-sample least-squares regression line (solid line).

based on the A-optimality criterion. D-optimality criterion was
considered in Wang, Yang, and Stufken (2018).

While the existing subsampling methods have already shown
extraordinary performance on coefficient estimation and model
prediction, their performance highly relies on the model spec-
ification. However, the model specification is a trial and error
process, during which a postulated model could be misspecified.
When the model is misspecified, most subsampling methods
may lead to unacceptable results. We now demonstrate the issue
of model misspecification using a toy example. In this example,
data are generated from the model yi = xi + sin(x2

i )/2 + εi, i =
1, 2, . . . , n, where {εi}n

i=1 are the iid standard normal errors. In
Figure 1, the data points (gray points) and the true function (the
gray curve) are shown in the left panel. The right panel shows
the full-sample linear regression line (the solid line) based on xi
only, without the nonlinear term. We postulate a linear model
without the nonlinear term and randomly select a subsample
of size ten (black dots) using the leverage subsampling method
(Ma, Mahoney, and Yu 2015). The subsample linear regression
line (the dashed line) deviates severely from the solid line. Such
an observation suggests that the performance of a subsample
least-squares estimator may deteriorate significantly when the
model is misspecified. The poor performance under model mis-
specifications is not unique to random subsampling methods.
The success of different deterministic subsampling methods
depends on the optimality criteria being used. The optimality
criteria, however, differ from model to model. An optimality
criterion derived from a postulated model does not necessarily
lead to a decent subsampling method for the true model. We
provide more discussion of this example in the Supplementary
Material.

In practice, the true underlying model is almost always
unknown to practitioners. The subsampling hence is highly
desirable to be robust to possible model misspecification. To
achieve the goal, Tsao and Ling (2012) proposed to construct a
robust estimator using bootstrap. One limitation of this method
is that it can not be applied to the measurement-constrained
setting since the response value for every predictor is needed in
this method to compute the estimator. Another related approach
is Pena and Yohai (1999), which aims to carefully select some
observations to generate starting points to compute a robust

estimator. The literature on subsampling methods that yield
robust estimations in the measurement-constrained setting is
still meager.

In this paper, we bridge the gap by proposing a statistical
analysis of the subsampling method in a linear model containing
unknown misspecification. We do so in the context of coef-
ficient estimation via the least squares on a subsample taken
from the full sample. Our major theoretical contribution is to
provide an analytic framework for evaluating the mean squared
error (MSE) of the subsample least-squares (SLS) estimator in
a misspecified linear model. Within this framework, we show
that it is very easy to construct a “worst-case” sample and a
misspecification term for which an SLS estimator will have an
arbitrarily large mean squared error. We also show that an SLS
estimator is robust if the information matrix of the subsample
has a relatively low condition number, a traditional concept in
numerical linear algebra (Trefethen and Bau 1997).

Based on these theoretical results, we propose and analyze
a novel subsampling algorithm, called “LowCon.” LowCon is
designed to select a subsample, which balances the trade-off
between bias and variance, to yield a robust estimation of coef-
ficients. This algorithm involves selecting the subsample, which
approximates a set of orthogonal Latin hypercube design points
(Ye 1998). We show the proposed SLS estimator has a finite
upper bound of the mean squared error, and it approximately
minimizes the “worst-case” bias, with respect to all the possi-
ble misspecification terms. Our main empirical contribution is
to provide a detailed evaluation of the robustness of the SLS
estimators on both synthetic and real datasets. The empirical
results indicate the proposed estimator is the only one, among
all cutting-edge subsampling methods, that is robust to various
types of misspecification terms.

The remainder of the paper is organized as follows. We
start in Section 2 by introducing the misspecified linear model
and deriving the so-called “worst-case” MSE. In Section 3,
we present the proposed LowCon subsampling algorithm and
its theoretical properties. We examine the performance of the
proposed SLS estimator through extensive simulation and two
real-world examples in Sections 4 and 5, respectively. Section 6
concludes the article, and the technical proofs are relegated to
the Supplementary Material.
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2. Model Setup

In this section, we first introduce the linear model that contains
unknown misspecification. We then consider the subsample
least-squares estimator and derive the mean squared error of
these estimators under this model. We show that an SLS estima-
tor is robust if the information matrix of the selected subsample
has a relatively low condition number.

Throughout this article, || · || represents the Euclidean norm.
Let λmin(·) and λmax(·) be the smallest and the largest eigenvalue
of a matrix, and μmin(·) and μmax(·) be the corresponding
eigenvectors, respectively. We use s1(·) and sp(·) to denote the
largest and the smallest nonzero singular value of a matrix with
p columns, respectively.

2.1. Misspecified Linear Model

Suppose the underlying true model has the form

yi = xᵀ
i β0 + ui, i = 1, 2, . . . , n, (1)

where yi’s are the responses, xi’s are the predictors, β0 ∈ R
p

(p � n) is the vector of unknown coefficients, the random
errors {ui}n

i=1 are independently distributed, and ui follows a
non-centered normal distribution N(h(xi), σ 2), i = 1, . . . , n.
Let X be the design space. In this article, we assume that the
unknown multivariate function h satisfies

max
x∈X

|h(x)|
||x|| = α, (2)

where α is a finite positive constant. When xi = (xi1, . . . , xip)ᵀ
has finite values, some examples of h include h(xi) = sin(xi1)
and h(xi) = xi1xi2. Let y = (y1, . . . , yn)ᵀ be the response
vector, X = (x1, . . . , xn)ᵀ be the predictor matrix, and hX =
(h(x1), . . . , h(xn))ᵀ be the misspecification term. For model
identifiability, we assume the matrix [X; hX] has a full column
rank. Under this assumption, we exclude the case that h(x) is a
linear function of x, that is, h(xi) cannot be a linear combination
of xi1, . . . , xip.

We consider the scenario that practitioners have no prior
information on the true model (1) and postulate a classical linear
model,

yi = xᵀ
i β0 + εi, i = 1, 2, . . . , n, (3)

where the random errors {εi}n
i=1 are iid and follow a normal

distribution with mean zero and constant variance σ 2, that is,
N(0, σ 2). Model (3) is thus a misspecified linear model of the
true model (1). Fitting model (3) without taking into account the
model misspecification may result in the degenerated perfor-
mance of the coefficient estimation and model prediction. For
example, the full-sample ordinary least-squares (OLS) estimate,
known as the best linear unbiased estimate, is a biased estimate
of the true coefficient when the model is misspecified (Box and
Draper 1959). More discussion on misspecified linear models
can be found in Kiefer (1975) and Sacks and Ylvisaker (1978).

In our measurement-constrained setting, practitioners are
given the full sample of predictors {xi}n

i=1. The responses {yi}n
i=1

in model (1), however, are hidden unless explicitly requested.
Practitioners are then allowed to reveal a subset of {yi}n

i=1,
denoted by y∗ = (y∗

1, . . . , y∗
r )

ᵀ, where p < r � n. The

goal is to estimate the true coefficient β0 using (x∗
i , y∗

i ), where
i = 1, . . . , r, and x∗

i is the corresponding predictor for y∗
i . A

natural estimator for the coefficient β0 is the subsample least-
squares estimator (Wang, Yu, and Singh 2017),

β̃X∗ = (X∗ᵀX∗)−1X∗ᵀy∗,

where X∗ = (x∗
1, . . . , x∗

r )
ᵀ. We derive the mean squared error

(MSE) and the worst-case MSE of this estimator, in the next
subsection.

2.2. Worst-Case MSE

Let Q = (X∗ᵀX∗)−1X∗ᵀ and h = (h(x∗
1), . . . , h(x∗

r ))
ᵀ ∈ R

r .
The MSE of the estimator β̃X∗ (conditional on X) thus can be
decomposed as

MSE(β̃X∗) = tr(var(β̃X∗)) + [bias(β̃X∗)]ᵀ[bias(β̃X∗)]
= σ 2tr[(X∗ᵀX∗)−1] + [(X∗ᵀX∗)−1X∗ᵀh]ᵀ

× [(X∗ᵀX∗)−1X∗ᵀh]
= σ 2tr[(X∗ᵀX∗)−1] + hᵀQᵀQh, (4)

where the bias term hᵀQᵀQh is associated with the model
misspecification. Note that when the bias term vanishes, hX = 0,
that is, when the model is correctly specified, minimizing MSE
is equivalent to minimizing the variance term σ 2tr[(X∗ᵀX∗)−1].
Further discussion following this line of thinking can be found
in Wang, Yu, and Singh (2017) and Wang, Yang, and Stufken
(2018), in which the authors focused on selecting the subsample
that minimizes the variance term. In our setting, where the
model is misspecified, however, minimizing the variance term
does not necessarily lead to a small MSE.

Recall that our goal is to select a subsample such that the
corresponding SLS estimator is robust to various model mis-
specification. Since the misspecification term hX is unknown
to practitioners, a natural and intuitive approach is to find the
“minimax” subsample that minimizes the so-called worst-case
MSE, that is, the maximum value of MSE(β̃X∗) with respect
to all the possible choices of the misspecification term hX . The
following lemma gives an explicit form of the worst-case MSE;
the proof can be found in the Supplementary Material.

Lemma 2.1 (Worst-case MSE). Under the regularity condition
(2), the following inequality holds:

MSE(β̃X∗) ≤ σ 2tr[(X∗ᵀX∗)−1] + α2 tr(X∗ᵀX∗)
λmin(X∗ᵀX∗)

. (5)

The right-hand side of (5) is called the worst-case MSE.

Two conclusions can be made from Lemma 2.1. First, the
worst-case MSE of an SLS estimator can be inflated to arbitrarily
large values by a very small value of λmin(X∗ᵀX∗). It is thus
very easy to construct a “worst-case” sample and a misspecifi-
cation term for which an SLS estimator will have unacceptable
performance. Second, β̃X∗ is the most robust SLS estimator if
the selected subsample minimizes the worst-case MSE. Such
a subsample, however, is impossible to obtain in real practice,
since both values of σ 2 and α2 are unknown to practitioners.

In this article, we are more interested in the setting where the
misspecified term h(x) is large enough. In particular, the value



4 C. MENG ET AL.

of α2 is large enough such that, on the right-hand side of the
Inequality (5), the second term dominates the first term. Under
this setting, the desired subsample X∗ should yield a relatively
small value of tr(X∗ᵀX∗)/λmin(X∗ᵀX∗). Notice that

tr(X∗ᵀX∗)/λmin(X∗ᵀX∗) ≥ p, (6)

where the equality holds when the condition number of
the subsample information matrix, that is, κ(X∗ᵀX∗) def=
λmax(X∗ᵀX∗)/λmin(X∗ᵀX∗), takes the minimum value 1.
Inequality (6) thus suggests the desired subsample X∗ is the one
with a relatively small value of κ(X∗ᵀX∗).

We now give another intuition about how κ(X∗ᵀX∗) is
related to the robustness of the SLS estimator. Casella (1985)
showed that

||δβ̂ols||
||̂βols||

= ||δ(XᵀX)−1Xᵀy||
||(XᵀX)−1Xᵀy|| ≤ κ(XᵀX)

||δXᵀy||
||Xᵀy|| ,

where δβ̂ols and δXᵀy are perturbations of β̂ols and Xᵀy respec-
tively. Analogously, one can also show that

||δβ̃X∗ ||
||̃βX∗ || ≤ κ(X∗ᵀX∗) ||δX∗ᵀy∗||

||X∗ᵀy∗|| . (7)

Inequality (7) thus suggests that a smaller value of κ(X∗ᵀX∗)
associates with a more robust estimator β̃X∗ .

It is worth noting that, if the subsample matrix X∗ minimizes
the worst-case MSE, it does not necessarily minimize κ(X∗ᵀX∗)
simultaneously since both the value of σ 2 and α2 are not avail-
able in practice. A robust subsample X∗ should at least yield
a relatively small value of κ(X∗ᵀX∗) and balance the trade-off
between the bias and the variance in the Equation (4). Following
this line of thinking, we propose a novel subsampling algorithm,
the details of which are presented in the next section.

3. LowCon Algorithm

In this section, we present our main algorithm, called “Low
condition number pursuit” or “LowCon.” In Section 3.1, we
introduce the notion of orthogonal Latin hypercube designs
(OLHD) and how these can be used to generate a design matrix

L such that κ(LᵀL) has a relatively small value. In Section 3.2, we
present the detail of the proposed algorithm, which incorporates
the idea of OLHD. In Section 3.3, we present the theoretical
property of the proposed SLS estimator, which is obtained by
the LowCon algorithm. We show that the proposed estimator
has a relatively small upper bound of the MSE.

3.1. Orthogonal Latin Hypercube Design

Taking a subsample with some specific characteristics has many
similarities to the design of experiments, which aims to place
design points in a continuous design space, so that result-
ing design points have certain properties (Wu and Hamada
2011). The theory and methods in the design of experiments
are potentially useful for solving subsampling problems. The
fundamental difference between the design of experiments and
the subsampling is that, in subsampling, the selected points
cannot be freely designed in a continuous space as the design
of experiments but must be taken from the given finite sample
{xi}n

i=1. To borrow the strength of the design of experiments, we
focus on space-filling designs, which aims to place the design
points that cover a continuous design space as uniformly as
possible (Fang, Li, and Sudjianto 2005; Kleijnen 2015; Joseph
2016; Meng et al. 2020; Wang, Xiao, and Mandal 2020b). In other
words, for any point in the experimental region, space-filling
designs have a design point close to it. We thus propose to round
the design point to its nearest neighbor in the sample. Details are
provided in Section 3.2.

We now introduce a specific space-filling design that is of
interest, the Latin hypercube design (LHD) (Stein 1987; McKay,
Beckman, and Conover 2000; Wang, Xiao, and Mandal 2020a).

Definition 3.1 (Latin hypercube design). Given the design space
X = [−1, 1]p, L ∈ R

r×p is called a Latin hypercube
design matrix if each column of L is a random permutation of
{ 1−r

r , 3−r
r , . . . , r−1

r } (Steinberg and Lin 2006).

Intuitively, if one divides the design space [−1, 1]p into r
equallysized slices in the jth (j = 1, . . . , p) dimension, a Latin
hypercube design ensures that there is exactly one design point
in each slice. The left panel of Figure 2 shows an example of a

Figure 2. Example of LHD (left panel) and OLHD (right panel) with nine design points in [−1, 1]2. The design points are marked as black dots. As a special case of LHD,
OLHD has relatively low pairwise correlation.
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Figure 3. Illustration for Algorithm 1. The data points (gray dots) are first scaled to [−1, 1]p , shown in the left panel. A set of OLHD points (black triangles) are generated
from Xθ = [−0.8, 0.8]2, shown in the middle panel. In the left panel, the nearest neighbor for each design point is selected (black dots).

set of Latin hypercube design points (black dots). Although uni-
formly distributed on the marginal, the Latin hypercube design
points do not necessarily spread out in the whole design space.
That is to say, a set of LHD points may not be “space-filling”
enough. To improve the “space-filling” property of LHD, various
methods have been developed (Tang 1993; Park 1994; Fang, Ma,
and Winker 2002; Joseph and Hung 2008). Of particular interest
in this paper is the orthogonal Latin hypercube design (OLHD),
which achieves the goal by reducing the pairwise correlations of
LHD (Ye 1998); see the right panel of Figure 2 for an example.

Consider the information matrix LᵀL, where L is an OLHD
matrix. Intuitively, the matrix LᵀL has a relatively small condi-
tion number, since all of the diagonal elements of LᵀL are the
same and all of the off-diagonal elements of LᵀL have relatively
small absolute value. Although there is a lack of theoretical
guarantee, empirically, it is known that κ(LᵀL) is in general no
greater than 1.13 (Cioppa and Lucas 2007). Such a fact motivates
us to select the subsample that approximates a set of orthogonal
Latin hypercube design points.

3.2. LowCon Subsampling Algorithm

Without loss of generality, we assume the data points {xi}n
i=1

are first scaled to [−1, 1]p. The proposed algorithm works as
follows. We first generate a set of orthogonal Latin hypercube
design points from a design spaceX ⊆ [−1, 1]p. We then search
and select the nearest neighbor from the sample for every design
point.

The key to success is that the selected subsample can well-
represent the set of design points, that is, each selected subsam-
ple point is close-enough to its nearest design point, respectively.
We provide more discussion in Section 3.3 about when such a
requirement is met in practice. Empirically, we find [−1, 1]p may
not be a good choice for the design space X . This is because,
in such a scenario, the design points, which are close to the
boundary of [−1, 1]p, may be too far away from their nearest
neighbors, especially when the population density function has
a heavy tail. As a result, a design space that is slightly smaller

than [−1, 1]p would be a safer choice. We opt to set the design
space as Xθ = [θj1, θj2]p, where θj1 and θj2 are the θ-percentile
and (100 − θ)-percentile of the jth column of the scaled data
points, respectively. The algorithm is summarized below.

Algorithm 1 “Low Condition Number Pursuit (LowCon)” sub-
sampling algorithm

1. Data normalization: The data points {xi}n
i=1 are first

scaled to [−1, 1]p.
2. Generate OLHD points: Given the parameter θ and the

design space Xθ ⊆ [−1, 1]p, generate a set of orthogonal
Latin hypercube design points {li}r

i=1.
3. Nearest neighbor search: Select the nearest neighbor for

each design point li from {xi}n
i=1, denoted by l∗i . The

selected subsample is thus given by {l∗i }r
i=1.

Figure 3 illustrates LowCon algorithm. The synthetic data
points in the left panel were generated from a bivariate normal
distribution and are scaled to [−1, 1]2. A set of orthogonal Latin
hypercube design points are then generated, labeled as black
triangles in the middle panel. For each design point, the nearest
data point is selected, marked as black dots in the right panel.
The selected points can well-approximate the design points.

Note that the set of design points generated by the orthogonal
Latin hypercube design technique is not unique; different sets
of design points may result in different subsamples. Algorithm 1
thus is a random subsampling method instead of a deterministic
subsampling method. In practice, the set of design points {li}r

i=1
in Algorithm 1 can be randomly generated.

3.3. Theoretical Results

We now present the theoretical property of the proposed sub-
sample least-squares estimator, obtained by the LowCon algo-
rithm. Some notations are needed before we show our main
theorem. Recall that L represents an orthogonal Latin hypercube
design matrix. Let X∗

L be the subsample matrix obtained by the
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proposed algorithm. One thus can decompose X∗
L into a sum of

the design matrix L and a matrix D = (d1, · · · , dr)ᵀ, that is,
X∗

L = L + D.
Following the notations in Algorithm 1, one can write L =

(l1, . . . , lr)ᵀ and X∗
L = (l∗1, . . . , l∗r )ᵀ, where li and l∗i represent

the ith design point and its corresponding nearest neighbor
from the sample, respectively. One thus has di = l∗i − li, for
i = 1, . . . , r. Intuitively, D is a random perturbation matrix,
and the selected data points can well-approximate the design
points if D is “negligible”. In such a case, MSE(β̃X∗

L
), which is

a function of X∗
L, can be expanded around MSE(β̃L) through

Taylor expansion. From this, we can establish our main theorem
below; the proof is relegated to the appendix.

Theorem 3.1. Suppose the data follow the model (1) and the
regularity condition (2) is satisfied. Assume sp(L) > s1(D),
where s1(·) and sp(·) represent the largest and the smallest
singular value of a matrix of p columns, respectively. A Taylor
expansion of MSE(β̃X∗

L
) around the point X∗

L = L yields the
following upper bound,

MSE(β̃X∗
L
) ≤ σ 2p2 κ(LᵀL)

tr(LᵀL)
+ α2pκ(LᵀL) + W. (8)

Here, W = O(s1(D)) is the Taylor expansion remainder.

When the Taylor expansion in Theorem 3.1 is valid, three
significant conclusions can be made. First, the theorem indicates
that the MSE of the proposed estimator is finite. Specifically,
following the Definition 3.1, we have

tr(LᵀL) =
(

(
1 − r

r
)2 + (

3 − r
r

)2 + . . . + (
r − 1

r
)2

)
× p.

Moreover, the value of κ(LᵀL) is in general no greater than 1.13,
as discussed in Section 3.1. Combining these two facts yields an
informal but finite upper bound for MSE(β̃X∗

L
), that is,

MSE(β̃X∗
L
) ≤ σ 2p2 1.13

tr(LᵀL)
+ 1.13α2p + W.

Recall that Lemma 2.1 shows that the worst-case MSE of an
SLS estimator can be inflated to an arbitrarily large value by a
very small value of λmin(X∗ᵀX∗). The fact that the proposed
estimator has a finite MSE thus indicates the proposed estimator
is robust.

Second, the upper bound of the squared bias of the proposed
estimator, which equals α2pκ(LᵀL), is very close to the mini-
mum value of the worst-case squared bias. This is because the
worst-case squared bias has the minimum value of α2p, and the
value of κ(LᵀL) is close to 1. Consider the common situation
when the value of α2 is large enough such that, in Inequal-
ity (5), the bias term dominates the variance term. Under such
a situation, the second conclusion thus indicates the proposed
estimator is very close to the “most robust” estimator, which
minimizes the worst-case squared bias.

Third, the proposed estimator has a finite variance. Recall
that in Algorithm 1, sometimes we may choose a design space
Xθ ⊂ [−1, 1]p. The value of tr(LᵀL) will decrease in such cases,
compared to the case when the design space equals [−1, 1]p.
The variance of the proposed estimator thus will increase in

such cases. Nevertheless, the variance term will not be inflated
to be arbitrarily large, as long as the design space is not too
small. More discussion on the impact of the design space to the
Inequality (8) is relegated to the Supplementary Material.

There are two essential assumptions in Theorem 3.1. One is
that sp(L) > s1(D), and the other is that the Taylor expansion is
valid, that is, when s1(D) is “small.” Although we will evaluate
the quality of the proposed estimator empirically in the next
section, a precise theoretical characterization of when these two
assumptions are valid is currently not available. Here, we simply
give an example such that s1(D) converges to zero as n goes to
infinity, in which case the desired Taylor expansion is apparently
valid. The assumption sp(L) > s1(D) is also satisfied in such
a case, as n goes to infinity, since the value of sp(L) is not
relevant to n. Consider the case when the nonzero support of the
population distribution is [−1, 1]p, that is, the sample and the
design points have the same domain. In such a case, the distance
between each design point and its nearest neighbor converges to
zero, as n goes to infinity. As a result, each entry of the matrix D
converges to zero, and thus s1(D) converges to zero as well, as
n goes to infinity. Consequently, the desired Taylor expansion is
valid in such a case.

4. Simulation Results

To show the effectiveness of the proposed LowCon algorithm
in misspecified linear models, we compare it with the existing
subsampling methods in terms of MSE. The subsampling meth-
ods considered here are uniform subsampling (UNIF), basic
leverage subsampling (BLEV), shrinkage leverage subsampling
(SLEV), unweighted-leverage subsampling (LEVUNW) (Ma,
Mahoney, and Yu 2015; Ma and Sun 2015), and information-
based optimal subset selection (IBOSS) (Wang, Yang, and
Stufken 2018). The shrinkage parameter for SLEV is set as 0.9,
as suggested in Ma, Mahoney, and Yu (2015). Through all the
experiments in this article, we set θ = 1. More simulation
results with other values of θ can be found in the Supplementary
Material.

We simulate the data from the model (1) with n = 104, p =
{10, 20} and r = {2p, 4p, . . . , 10p}. Three different distributions
are used to generate the X matrix,

D1. N(1, �);
D2. 0.5N(0, 2�) + 0.5N(1, �);
D3. t10(1, �),

where the (i, j)th element of � is set to be 10 × 0.6|i−j| for i, j =
1, . . . , p. For the coefficient β0, the first 20% and the last 20%
entries are set to be 1, and the rest of them are set to be 0.1. To
show the robustness of the proposed estimator under various
misspecification terms, we consider five different h’s,

H1. h(xi) = 0;
H2. h(xi) = 10 sin(xi3);
H3. h(xi) = c1 · xi3xi8;
H4. h(xi) = c2 · xi3 sin(xi8);
H5. h(xi) = c3 · x2

i3,
where the constants c1, c2 and c3 are selected so that
maxx∈{xi}n

i=1
({|h(x)|}n

i=1) = 10, that is, the response is not
dominated by the misspecification term. Note that H1 does not
have any misspecified terms. Figure 4 shows the heatmap of the
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Figure 4. The heatmap of ten thousand data points generated from distribution D1 with ten predictors. Only the 3rd and 8th predictors are shown. The color demonstrates
the values of different model misspecification terms, from H2 to H5.

Figure 5. An illustration of five subsamples identified by different subsampling methods. The samples are marked in gray and the selected subsamples are marked in black.

misspecified terms from H2 to H5, where X matrix is generated
from D1. Only the third and eighth predictors are shown.

We illustrate the subsamples selected by different subsam-
pling methods in Figure 5. The LEVUNW method is omitted
here since the subsample identified by LEVUNW is the same
as the subsample identified by BLEV. The data points (gray
dots) are generated from distribution D3 with n = 104 and
p = 10, where only the third and the eighth predictors are
shown. In each panel, a subsample of size 40 is selected (black
dots). Figure 5 reveals some interesting facts. We first observe
the subsamples selected by BLEV and SLEV are more dispersed
than the subsample selected by UNIF. Such an observation can
be attributed to the fact that BLEV and SLEV give more weight to
the high-leverage-score data points. For the IBOSS method, the
selected subsample includes all the “extreme” data points from
all predictors. Such a subsample is most informative when the
linear model assumption is valid. Finally, we observe that the
subsample chosen by the proposed LowCon algorithm is most
“uniformly distributed” among all. Intuitively, such a pattern
indicates the selected subsample yields an information matrix
that has a relatively small condition number.

To compare the performance for different SLS estimators, we
calculate the MSE for each of the SLS estimators based on 100
replicates, MSE = ∑100

i=1 ||̂β(i)−β0||2/100, wherêβ
(i)

represents
the SLS estimator in the ith replication. Figures 6 and 7 show
the log(MSE) versus different subsample size under various
settings, when p = 10 and 20, respectively. In both figures, each
row represents a particular data distribution D1−D3 and each
column represents a particular misspecification term H1−H5.

In Figures 6 and 7, we first observe that UNIF, as expected,
does not perform well. As two random subsampling meth-
ods, BLEV and SLEV perform similarly, and both perform
better than UNIF in most of the cases. Such a phenomenon

is attributed to the fact that both methods tend to select the
data points with high leverage-scores, and these points are
more informative for estimating the coefficient, compared to
randomly selected points.

Next, we find both LEVUNW and IBOSS have decent perfor-
mance when the misspecification term equals zero (the leftmost
column). Their performance, however, is inconsistent when the
non-zero misspecification term exists, that is, they perform
well in some cases and perform poorly on others. Note that
these two methods, occasionally, are even inferior to the UNIF
method. Such an observation indicates that these two methods
are effective when the linear model assumption is correct, but
are not robust when the model is misspecified. We attribute this
observation to the fact that the most informative data points
derived under the postulated model do not necessarily lead
to a decent estimator when the postulated model is incorrect.
In fact, the selected subsample can even be misleading and
may dramatically deteriorate the performance of the subsample
estimator.

Finally, we observe that the proposed LowCon method is
consistently better than the UNIF method. Furthermore, Low-
Con has a decent performance in most of the cases, especially
when the model is misspecified. This observation indicates Low-
Con is able to give a robust estimator under various misspecified
linear models. Such success can be attributed to the fact that the
proposed estimator has a relatively small upper bound for the
worst-case MSE.

5. Real Data Analysis

We now evaluate the performance of different SLS estimators
on two real-world datasets. One problem in real data analy-
sis is that one does not know the true coefficient. It is thus



8 C. MENG ET AL.

Figure 6. Comparison of different estimators when p = 10. Each row represents a different data distribution (D1−3) and each column represents a different
misspecification term (H1–5).

impossible to calculate the mean squared error of a coefficient
estimate. To overcome this problem, we consider the full-sample
OLS estimator β̂OLS and the following three estimators as the
surrogates for the true coefficient β0. One of them is the M-
estimator β̂M, which is a well-known estimator in robust linear
regression (Meer et al. 1991). M-estimators can be calculated
by using iterated re-weighted least squares, and it is known
that such an estimator is more robust to the potential outliers
in the data, compared to the OLS estimator (Andersen 2008).
We compute the M-estimator using the R package MASS with
default parameters. We also consider the estimator yielded by
the cellwise robust M regression method (CRM), denoted by
β̂CRM (Filzmoser et al. 2020). Such a method improves the ordi-
nary M-estimator by automatically identifying and replacing the
outliers, resulting in a more robust estimator. We implement
the CRM method using the R package crmReg. The results for
the CRM method, however, are omitted in the second dataset,
since the code did not stop within a reasonable amount of time.
The last estimator we considered is the cubic smoothing spline
estimator for the “null space” (Wahba 1990; Gu 2013; Zhang
et al. 2018), denoted by β̂SS. We now briefly introduce the cubic
smoothing spline estimator in the following.

Suppose the response yi and the vector of predictors xi =
(xi1, . . . , xip)ᵀ are related through the unknown functions η

such that yi = η(xi) + εi, where εi
iid∼ N(0, σ 2). A widely

used approach for estimating η is via minimizing the penalized
likelihood function,

1
n

n∑
i=1

(
yi − η(xi)

)2 + λJ(η), (9)

where λ is the tuning parameter and J(η) is a penalty term. We
refer to Wahba (1990); Gu (2013); Sun, Zhong, and Ma (2020)
for how to select the tuning parameter and how to construct
the penalty term. The standard formulation of cubic smooth-
ing splines performs the minimization of (9) in a reproducing
kernel Hilbert space H. In this case, the well-known representer
theorem (Wahba 1990) states that there exist vectors β =
(β1, . . . , βp)ᵀ and c = (c1, . . . , cn)ᵀ such that the minimizer
of (9) is given by η(x) = ∑p

j=1 βjxij + ∑n
i=1 ciH(xi, x). Here,

the bivariate function H(·, ·) is related to the reproducing kernel
of H, and we refer to Gu (2013) for technical details. Let H be
an n × n matrix where the (i, j)th element equals H(xi, xj). By
construction of H, one has J(η) = cᵀHc (Gu 2013). Solving the
minimization problem in (9) thus is equivalent to solving

(β̂SS, ĉ) = argmin
β ,c

1
n
(y − Xβ − Hc)ᵀ(y − Xβ − Hc)

+ λcᵀHc. (10)
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Figure 7. Comparison of different estimators when p = 20. Each row represents a different data distribution (D1−3) and each column represents a different
misspecification term (H1–5).

We could then view the estimated β̂SS in (10) as the “corrected”
estimate of the true coefficient β0 that takes into consideration
the misspecified terms quantified by Ĥc. We calculate such an
estimate using the R package gss with the default parameters.

To compare the performance of different SLS estimators,
we calculate the empirical MSE (EMSE) through one hundred
replicates. In the ith replicate, each subsampling method selects
a subsample leading to an SLS estimator β̂

(i). For each of the
four full-sample estimators (β̂OLS, β̂M, β̂CRM, and β̂SS), the
corresponding EMSE is then calculated as

EMSEOLS =
100∑
i=1

||̂β(i) − β̂OLS||2/100,

EMSEM =
100∑
i=1

||̂β(i) − β̂M||2/100,

EMSECRM =
100∑
i=1

||̂β(i) − β̂CRM||2/100,

EMSESS =
100∑
i=1

||̂β(i) − β̂SS||2/100.

We emphasize that none of these full-sample estimators can
be regarded as the gold standard. However, a robust SLS estima-
tor should at least be relatively “close” to all of these estimators.
That is to say, intuitively, a robust SLS estimator yields relatively
small values of EMSEOLS, EMSEM, EMSECRM, and EMSESS.

Throughout this section, we set the parameter θ for the
proposed LowCon method as 1. We opt to choose the subsample
size r as 5p, 10p, and 20p. The results in this section show that
the proposed SLS estimator yields the smallest empirical mean
squared error in almost all of the scenarios.

5.1. Africa Soil Property Prediction

Soil functional properties refer to the properties related to a
soil’s capacity to support essential ecosystem services, which
include primary productivity, nutrient and water retention, and
resistance to soil erosion (Hengl et al. 2015). The soil func-
tional properties are thus important for planning sustainable
agricultural intensification and natural resource management.
To measure the soil functional properties in a target area, a
natural paradigm is to first collect a sample of soil in this
area, then analyze the sample using the technique of diffuse
reflectance infrared spectroscopy (Shepherd and Walsh 2002).
Such a paradigm might be time-consuming or even impractical
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if the desired sample of soil from the target area is difficult
to obtain. Predicting the soil functional properties is thus a
measurement-constrained problem.

With the help of greater availability of Earth remote sensing
data, the practitioners are provided new opportunities to predict
soil functional properties at unsampled locations. One of the
Earth remote sensing databases is provided by the Shuttle Radar
Topography Mission (SRTM), which aims to generate the most
complete high-resolution digital topographic database of Earth
(Farr et al. 2007). In this section, we consider the Africa Soil
Property Prediction dataset, which contains the soil samples
from 1157 different areas (n = 1157). We aim to analyze the
relationship between the sand content, one of the soil functional
properties, and the five features (p = 5) derived from the
SRTM data. The features include compound topographic index
calculated from SRTM elevation data (CTI), SRTM elevation
data (ELEV), topographic Relief calculated from SRTM eleva-
tion data (RELI), mean annual precipitation of average long-
term Tropical Rainfall Monitoring Mission data (TMAP), and
modified Fournier index of average long-term Tropical Rainfall
Monitoring Mission data (TMFI). We assume the data follow the
model,

yi = β0 + β1CTIi + β2ELEVi + β3RELIi + β4TMAPi

+β5TMFIi + ui, i = 1, 2, . . . , n, (11)

where the random errors ui are iid and follow a non-
centered normal distribution N(h(xi), σ 2). Here, xi =
(1, CTIi, ELEVi, RELIi, TMAPi, TMFIi)ᵀ and h(·) represents
a multivariate function that is unknown to the practitioner.
The postulated model is thus a misspecified linear model.
In our measurement-constrained setting, we assume the
response vector is hidden unless explicitly requested. We
then estimate the true coefficient of Model (11), that is,
(β0, β1, β2, β3, β4, β5)

ᵀ, using subsampling methods.
The subsampling methods considered here are uniform sub-

sampling (UNIF), basic leverage subsampling (BLEV), shrink-
age leverage subsampling (SLEV) with parameter α = 0.9,
unweighted-leverage subsampling (LEVUNW) (Ma, Mahoney,
and Yu 2015; Ma and Sun 2015), information-based optimal
subset selection (IBOSS) (Wang, Yang, and Stufken 2018) and
the proposed LowCon method. Table 1 summarizes the EMSEs
for all six SLS estimators, and the best result in each row is
in bold letter. We observe that the proposed LowCon method
yields the best result in every row.

5.2. Diamond Price Prediction

The second real-data example we consider is the Diamond
Price Prediction dataset 1, which contains the prices and the
features of around 54,000 diamonds. Of interest is to analyze
the relationship between the price of the diamond, and three
continuous features (p=3): weight of the diamond (caret), total
depth percentage (depth), and width of top of diamond relative
to widest point (table).

1The dataset can be downloaded from https://www.kaggle.com/shivam2503/
diamonds.

Table 1. EMSEs for the Africa soil property prediction dataset

UNIF BLEV SLEV LEVUNW IBOSS LowCon

EMSEOLS 5.39 2.92 3.44 2.09 34.87 1.18
r = 5p EMSEM 5.38 2.97 3.50 2.13 34.07 1.17

EMSECRM 5.32 3.01 3.52 2.20 34.98 1.30
EMSESS 9.82 6.71 7.31 5.71 43.59 4.89

EMSEOLS 1.34 1.13 1.37 0.88 18.62 0.48
r = 10p EMSEM 1.36 1.17 1.35 0.92 17.97 0.51

EMSECRM 1.38 1.21 1.37 1.00 18.51 0.61
EMSESS 5.49 5.04 5.71 4.55 27.09 4.06

EMSEOLS 0.61 0.45 0.64 0.38 2.84 0.27
r = 20p EMSEM 0.62 0.44 0.65 0.39 2.64 0.29

EMSECRM 0.66 0.47 0.68 0.47 2.90 0.38
EMSESS 4.68 4.71 4.72 4.25 8.30 4.01

Table 2. EMSEs for the diamond price prediction data

UNIF BLEV SLEV LEVUNW IBOSS LowCon

EMSEOLS 7.01 4.24 5.29 4.67 8.96 3.40
r = 5p EMSEM 7.08 4.52 5.60 4.96 6.07 4.09

EMSESS 11.16 9.13 10.13 9.69 10.32 8.36

EMSEOLS 2.54 2.09 1.76 2.68 8.68 1.58
r = 10p EMSEM 2.88 2.37 2.15 2.89 5.82 2.19

EMSESS 7.41 6.83 6.53 7.54 10.18 6.28

EMSEOLS 1.36 0.83 1.03 1.28 8.16 0.80
r = 20p EMSEM 1.72 1.17 1.40 1.32 5.38 1.33

EMSESS 6.27 5.50 5.91 5.67 9.56 5.45

As the same setting used in Section 5.1, we assume the data
follow a misspecified linear model,

yi = β0 + β1careti + β2depthi + β3tablei + ui,
i = 1, 2, . . . , n.

Here, the random errors ui are iid and follow a non-
centered normal distribution N(h(xi), σ 2), where xi =
(1, careti, depthi, tablei)ᵀ, and h(·) is a multivariate function
that is unknown to the practitioner. Note that the price of
a diamond might be time-consuming or even impossible to
obtain if the diamond has not been on the market yet. We
thus assume the value of the response vector is hidden unless
explicitly requested, and we estimate the true coefficient using
subsampling methods.

Table 2 summarizes the EMSEs for all the subsample esti-
mators, and the best result in each row is in bold letter. From
Table 2, we observe that the proposed LowCon algorithm yields
decent performance in all the cases and the best result in most
of the cases.

6. Concluding Remarks

We considered the problem of estimating the coefficients in a
misspecified linear model, under the measurement-constrained
setting. When the model is correctly specified, various sub-
sampling methods have been proposed to solve this problem.
When the model is misspecified, however, we found the worst-
case bias for a subsample least-squares estimator can be inflated
to be arbitrarily large. To overcome this problem, we aim to
find a robust SLS estimator whose variance is bounded, and
the worst-case bias is relatively small. We found such a goal
can be achieved by selecting a subsample whose information

https://www.kaggle.com/shivam2503/diamonds
https://www.kaggle.com/shivam2503/diamonds
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matrix has a relatively small condition number. Motivated by
this, we proposed the LowCon subsampling algorithm, which
utilizes the orthogonal Latin hypercube design to identify sam-
pling points. We proved the proposed estimator based on the
subsample has a finite mean squared error. Furthermore, the
bias of the proposed estimator has an upper bound, which
approximately achieves the minimum value of the worst-case
bias. We evaluated the performance of the proposed estimator
through extensive simulation and real data analysis. Consistent
with the theorem, the empirical results showed the proposed
method has a robust performance.

The proposed algorithm can be easily extended to the cases
when the predictor variables are categorical or are a mixture of
categorical and continuous variables. The key idea is to replace
the OLHD in Algorithm 1 by a proper design in a categorical
(or mixture) design space. We refer to Minasny and McBratney
(2006) and the reference therein for more discussion of such
designs. Intuitively, utilizing such designs in Algorithm 1 will
result in a subsample in a categorical (or mixture) design space
with relatively low “condition number.”

Appendix A. More Discussion of Figure 1

In the example shown in Figure 1, one may wonder about the chances
of poor performances of the existing subsampling methods. To answer
this question, we compare the proposed method (LowCon) with the
uniform subsampling (UNIF) and the basic leverage subsampling
method (BLEV) in terms of estimation error. We consider the mean
squared error for each of the subsample least squares (SLS) based on
one hundred replicates, MSE = ∑100

i=1 ||̂β(i) − β0||2/100, where ̂β
(i)

represents the SLS estimator in the ith replication. We consider different
subsample sizes r from ten to fifty. Table 3 summarizes the results, and
the best result in each row is in bold letters. We observe that although
the BLEV method performs better than UNIF, it still yields pretty large
MSE. In other words, both UNIF and BLEV may result in unacceptable
performance, especially when r is small. We also observe the proposed
LowCon method yields the best result in every row, indicating the
performance of LowCon is robust to the misspecification term.

Appendix B. More Simulation Results

Recall that the design space in Algorithm 1 is set to be X = [θj1, θj2]p,
where θj1 and θj2 are the θ-percentile and (100−θ)-percentile of the jth
column of the scaled data points, respectively. Throughout Section 4,
we set θ = 1. In this section, we illustrate the impact of different choices
of the parameter θ . We consider three different choices of θ , that is,
θ = 0, 5, 10. Here, θ = 0 means the design space X = [0, 1]p. We let
the dimension p = 10. Other simulation settings are the same as the
ones we used in Section 4. The results are shown in Figures 8, 9, and
10, respectively.

Table 3. MSEs for the example in Figure 1.

UNIF BLEV LowCon

r = 10 0.148 0.091 0.028
r = 20 0.118 0.075 0.027
r = 30 0.111 0.068 0.027
r = 40 0.108 0.067 0.028
r = 50 0.105 0.060 0.028

Consider the cases when θ = 0. First, we observe that LowCon gives
the best of the results in most of the cases when the model is correctly-
specified, as shown in the leftmost column. Such an observation is
expected since when θ = 0, the LowCon method tends to select more
data points with large leverage scores, resulting in a better estimation.
We then observe that the performance of LowCon when θ = 0 is not
as good as its performance when θ = 1, indicating that a positive
value of θ is essential for LowCon to work well in misspecified models.
Consider the cases when θ = 10. We observe LowCon yields unac-
ceptable performance in many cases. Such an observation indicates the
choice θ = 10 yields a large sampling bias to LowCon, resulting in
poor performance. Finally, when θ = 5, we observe LowCon yields
reasonably well performance in most of the cases.

In summary, it is essential to select a θ that is neither too large
nor too small for LowCon to perform well in misspecified models. In
practice, we find θ ∈ [0.5, 5] works reasonably well in most of the cases.

Appendix C. Proofs of Theoretical Results

C.1. Proof of Lemma 2.1

Proof. Inequality (2) yields ||h||2 ≤ α2 ∑r
i=1 ||x∗

i ||2 = α2tr(X∗ᵀX∗).
One thus has

hᵀQᵀQh ≤ λmax(QᵀQ)||h||2 ≤ λmax(QᵀQ) · α2tr(X∗ᵀX∗) (C.1)

= λmax((X∗ᵀX∗)−1) · α2tr(X∗ᵀX∗) = α2tr(X∗ᵀX∗)

λmin(X∗ᵀX∗)
.

(C.2)

Recall that μmax(·) is the corresponding eigenvector to λmax(·).
The first equation in (C.1) holds when h = c · μmax(QᵀQ) for
some real number c, and the second equation in (C.1) holds when
||h||2 = α2tr(X∗ᵀX∗). As a result, both equations in (C.1) hold when
h = √

α2tr(X∗ᵀX∗) · μmax(QᵀQ). The desired result follows directly
after plugging Inequality (C.2) into Equation (4).

C.2. Proof of Theorem 3.1

The following Weyl’s inequalities are needed in the proof.

Theorem C.1. Weyl’s inequalities (Horn and Johnson 1990) Let A ∈
R

n×d and B ∈ R
n×d be two matrices and t = min{n, d}. Let s1(A) ≥

s2(A) ≥ . . . ≥ st(A) ≥ 0, s1(B) ≥ s2(B) ≥ . . . ≥ st(B) ≥ 0 and
s1(A + B) ≥ s2(A + B) ≥ . . . ≥ st(A + B) ≥ 0 be the singular values
of A, B and A + B, respectively. Then

|si(A + B) − si(A)| ≤ s1(B), i = 1, . . . , t.

Proof of Theorem 3.1. Let i = 1; the Weyl’s inequalities yield

s1(X∗
L) = s1(L + D) ≤ s1(L) + s1(D). (C.3)

Let i = p; Weyl’s inequalities yield

sp(X∗
L) = sp(L + D) ≥ sp(L) − s1(D). (C.4)

Recall that, in Theorem 3.1, we assume sp(L) − s1(D) > 0.
Combining Inequality (C.3) and Inequality (C.4) thus yields

κ(X∗ᵀ
L X∗

L) =
( s1(X∗

L)

sp(X∗
L)

)2
≤

(
s1(L) + s1(D)

sp(L) − s1(D)

)2
. (C.5)

Performing a Taylor expansion of the right-hand side of Inequality
(C.5), which can be viewed as a function of s1(D), around the point 0



12 C. MENG ET AL.

Figure 8. Comparison of different estimators when p = 10, θ = 0.

yields

(
s1(L) + s1(D)

sp(L) − s1(D)

)2
=

(
s1(L)

sp(L)

)2
+ 2

(
s1(L)

(
s1(L) + sp(L)

)
sp(L)3

)
s1(D)

+ W1

≤ κ(LᵀL) + 4
s1(L)2

sp(L)3 s1(D) + W1

= κ(LᵀL) + 4
κ(LᵀL)

sp(L)
s1(D) + W1, (C.6)

where W1 = o(s1(D)) is the remainder. Plugging Inequality (C.6) back
into (C.5) yields

κ(X∗ᵀ
L X∗

L) ≤ κ(LᵀL) + 4
κ(LᵀL)

sp(L)
s1(D) + W1. (C.7)

We now derive an upper bound for the first term on the right-hand
side of Inequality (4). Note that

tr[(X∗ᵀ
L X∗

L)−1] ≤ pλmax((X∗ᵀ
L X∗

L)−1) = p
sp(X∗

L)2

≤ p
(sp(L) − s1(D))2 , (C.8)

where Inequality (C.4) is used in the last step.

By performing a Taylor expansion of the right-hand side of Inequal-
ity (C.8) around the point 0, one has

p
(sp(L) − s1(D))2 = p

sp(L)2 + 2
√p

sp(L)2 s1(D) + W2, (C.9)

where W2 = o(s1(D)) is the remainder. Plugging Inequality (C.9) back
into (C.8) yields

tr[(X∗ᵀ
L X∗

L)−1] ≤ p
sp(L)2 + 2

√p
sp(L)2 s1(D) + W2. (C.10)

Finally, plugging both Inequality (C.7) and (C.10) in Inequality (4)
yields

MSE(β̃X∗) ≤ σ 2
(

p
sp(L)2 + 2

√p
sp(L)2 s1(D) + W1

)

+ α2p
(

κ(LᵀL) + 4
κ(LᵀL)

sp(L)
s1(D) + W2

)

=
(

σ 2

sp(L)2 + α2κ(LᵀL)

)
p

+
(

2σ 2√p
sp(L)2 + 4α2pκ(LᵀL)

sp(L)

)
s1(D) + σ 2W1 + α2pW2

≤ σ 2p2 κ(LᵀL)

tr(LᵀL)
+ α2pκ(LᵀL) + O(s1(D)).

The fact that tr(LᵀL)) ≤ pλmax(LᵀL)) = pκ(LᵀL))sp(L)2 is used in
the last step. This completes the proof.
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Figure 9. Comparison of different estimators when p = 10, θ = 5.

Figure 10. Comparison of different estimators when p = 10, θ = 10.
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Appendix D. More Discussion on Theorem 3.1

We now discuss the impact of θ on Theorem 3.1. Recall that we
have Xθ = [θj1, θj2]p. For simplicity, we assume all the marginal
distributions of the probability density function are symmetric, that
is, θj1 = −θj2, for j = 1, . . . , p. Note that the data are first scaled to
[−1, 1]p, and thus we have −1 < θj1 < 0 < θj2 < 1. Let Lθ to denote
the design matrix generated from Xθ . By the definition of orthogonal
Latin hypercube design, it is easy to check that κ(Lᵀ

θ Lθ ) = κ(LᵀL). We
also have

tr(Lᵀ
θ Lθ ) = tr(LᵀL) ×

p∏
j=1

(1 − θj2)
2.

In summary, we have

MSE(β̃X∗
L
) ≤ σ 2p2 κ(Lᵀ

θ Lθ )

tr(Lᵀ
θ Lθ )

+ α2pκ(Lᵀ
θ Lθ ) + W

= σ 2p2 κ(LᵀL)

tr(LᵀL) × ∏p
j=1(1 − θj2)2

+ α2pκ(LᵀL) + W.

(D.1)

Inequality (D.1) indicates that a large θ is associated with a larger upper
bound of MSE(β̃X∗

L
). Furthermore, for fixed θ , a “heavy-tailed” proba-

bility density function also yields a larger upper bound of MSE(β̃X∗
L
).
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