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Abstract

Given integers m, n and k, we give an explicit formula with an optimal error term
(with square root cancelation) for the Petersson trace formula involving the mth and
nth Fourier coefficients of an orthonormal basis of S; (N)* (the weight k newforms

with fixed square-free level N) provided that 4w /mn — k| = o (k%) Moreover,

we establish an explicit formula with a power saving error term for the trace of the
Hecke operator 7,* on Si (N)* averaged over k in a short interval. By bounding the
second moment of the trace of 7, over a larger interval, we show that the trace of 7,

is unusually large in the range |47 /n — k| = o0 (n% . As an application, for any fixed

prime p coprime to N, we show that there exists a sequence {k, } of weights such that
the error term of Weyl’s law for 7, is unusually large and violates the prediction of
arithmetic quantum chaos. In particular, this generalizes the result of Gamburd et al.
(J Eur Math Soc 1(1):51-85, 1999) [Theorem 1.4] with an improved exponent.

Mathematics Subject Classification Primary 11F25 - Secondary 11F72

1 Introduction

In this paper, we give bounds for the error term of Weyl’s law for the Hecke eigenvalues
of the family of classical holomorphic modular forms with a fixed level. We briefly
describe this family, its Weyl’s law, and known bounds and predictions on its error
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514 J.Jung et al.

term. Next, we explain our results and compare them with the previous results and
predictions.
Let

To (N) ::{(i 2>6SL2(Z) S =0 (modN)}

be the Hecke congruence subgroup of level N. Let S; (N) be the space of even weight
k € Z modular forms of level N. It is the space of the holomorphic functions f such
that

f<cz+d)—(cz+d) f@

Z € I'g (N), and f converges to zero as it approaches each cusp (we
have finitely many cusps for I'g (N) that are associated to the orbits of I'g (N) acting
by Mobius transformations on P! (Q)) [31]. It is well-known that Sy (N) is a finite

dimensional vector space over C, and is equipped with the Petersson inner product

for every <j

—— dxdy
(f.8) :=f f@g @y —5—.
To(N)\H y

Assume that n is fixed and is coprime to N. Then the nth (normalized) Hecke operator
7, acting on Sy (N) is given by

1 , b
L(H@=n" Y at Y f(‘”; ) (L.

ad=n b (mod d)

The Hecke operators form a commuting family of self-adjoint operators with respect
to the Petersson inner product, and therefore Sy (V) admits an orthonormal basis By y
consisting only of joint eigenfunctions of the Hecke operators. Any form f belonging
to By, n is referred as a (Petersson normalized) holomorphic Hecke cusp form.

Let

F@=Yprwn'T enz)
n=1

be the Fourier expansion of f € By y at the cusp oo. For ged(n, N) = 1, we denote
by A r(n) the nth (normalized) Hecke eigenvalue of f, i.e.,

T.f =rr(n)f,
and we have pr(n) = pr(1)A r(n) [20, p. 107]. By the celebrated result due to Deligne

[8], we have
A ()| <o(n), (1.2)
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Asymptotic trace formula for the Hecke operators 515

for all n, where o is the divisor function.!

Under Langlands’ philosophy, the Hecke operator 7, is the p-adic analogue of the
Laplace operator, in the following sense. The eigenvalues of 7, determine the Satake
parameters of the associated local representation 7, of GL» (Q p) just as the Laplace
eigenvalue of the Maass form determines the associated local representation 77, of
GL> (R).

Now fix a rational prime p that is coprime to N, and let

1
_=—_—---- 5
HEN = Gim (¢ (V) 2 B

feBi N

be the spectral probability measure associated to 7, acting on S (N). Using the
Eichler-Selberg trace formula, Serre [36] proved that 114 vy converges weakly to 1), as
k+ N — oo with ged(N, p) = 1, where u, is the Plancherel measure of GL> (Qp)
given by

Moreover, if we let

I'k—1)
v = —— Y. s,
(47)
fe€Bi N

then it follows from the Petersson trace formula (see Sect. 2) that v; y converges
weakly to the semi-circle law

1 x2
Hoo (X) := — /1 — —dx,
T 4

ask + N — oo with gcd(N, p) = 1.

1.1 Quantitative rate of convergence

Given two probability measures (41 and i, on R, we denote the discrepancy between
them by D (1, 2) , where

D (p1, p2) == sup{lur (1) —p2 (1) | : I = [a, b] C R}.

1 We use the divisor function parameterized by ¢, defined by oy (n) = Zd|n d'. When t = 0, we drop 0,
and use o instead of oy).
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In [10], Gamburd, Jakobson and Sarnak studied the spectrum of the elements in the
group ring of SU (2), and proved

1
D (k2 1p) = O <@> : (13)

Moreover, [10, Theorem 1.4] is equivalent to the existence of a sequence of integers

k;, — oo such that
1
D (1t 2, 1) > ————— (14)
ki (log ky)?

This is a corollary of their lower bound for the variance of the trace of the Hecke
operators by varying the weight k (Theorem 1.6).

1.2 Bounds for the error term of Weyl's law

We now present some details regarding the philosophical analogy between Weyl’s
law and ux y — wp. To this end, we first review Weyl’s law. Let X C R? be a
bounded domain with smooth boundary. Let T be a positive real number, and let
N (T') be the number of Dirichlet Laplacian eigenvalues of X less than T2 (counted
with multiplicity). It was conjectured independently by Sommerfeld and Lorentz,
based on the work of Rayleigh on the theory of sound, and proved by Weyl [39]
shortly after, that

N(T) =cqvol (X) T4 (1 +0(1)) asi — oo,

where ¢, is a constant depending only on d and vol (X) is the volume of X in R¥. This
gives the distribution of the eigenvalues of the Laplace—Beltrami operator as T — oo.
As in Langlands’ philosophy, this is analogous to the convergence of ux v — (p
giving the distribution of the Hecke eigenvalues as k — oo.

More generally, let (M d g) be a compact smooth Riemannian manifold of dimen-
siond. Let N (T') be the number of eigenvalues of the Laplace—Beltrami operator —A,
less than 72, counted with multiplicity. Then Hormander [17] proved that

N (T) = cqvol (M) T¢ + Ry (T),

where Ry (T) = O (Td_l). In fact, this general estimate is sharp for the round sphere
M = S%. However, given a manifold M the question of finding the optimal bound
for the error term Ry (T) is a very difficult problem. An analogue of R, (T") for
Mi,N —> Ip is the discrepancy D (uk N, [hp).

Remark If M is a symmetric space, then Weyl’s law is formulated and expected to
hold in great generality for families of automorphic forms [38, Conjecture 1].

We now restrict to the case d = 2, and discuss the relation between the size of
Ry (T) and the geodesic flow on the unit cotangent bundle S*M, predicted by the
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Asymptotic trace formula for the Hecke operators 517

correspondence principle. The two extreme behaviors that the geodesic flow can have
are being chaotic or completely integrable, and in these two cases the correspondence
principle predicts the distribution of eigenvalues to be modeled by a large random
matrix, and a Poisson process, respectively [4,5].

In particular, we expect that for a generic 2 dimensional flat torus or a compact
arithmetic hyperbolic surface [32, Figure 1.3 and Section 3], the set of eigenvalues
inside the universal interval [Tz, (T + %)2], wherelogT < L =o (T),3 is modeled
by Poisson process. For details, we refer the readers to the very interesting work
of Rudnick [30] and Sarnak’s letter [34] explaining the critical window log T <«
L = o (T) using Kuznetsov’s trace formula. This suggests that these surfaces satisfy
Ry (T) = O (T %+E). In fact, Petridis and Toth proved that the average order of the
error term in Weyl’s law for a random torus chosen in a compact part of the moduli

space of two dimensional tori is R (T) = O, (T%J“f) [28]. Moreover, for compact

arithmetic surfaces it was proved by Selberg [14, p.315] that R (T') = Q (T %/ log T).
This bound is the analogue of (1.4).
For the rational torus T = R?/Z?, bounding R (T) is equivalent to the classical

Gauss circle problem. It was conjectured by Hardy that Rt (T) = O (T%“), and it

is known by Hardy and Landau [15] that Rt (T) = Q (T% (log T)%). Note that the

eigenvalue distribution here is known not to be Poisson [33].

As mentioned above, for generic compact hyperbolic surfaces, we expect the set of
eigenvalues inside the interval [Tz, (T + %)2] to follow the eigenvalue distribution
of a large symmetric matrix, which has a rigid structure. As a result, it is conjectured
that these surfaces satisfy Ry (T) = O, (T°).

Proving an optimal upper bound for Ry (T') is extremely difficult, and we do
not have any explicit example of M other than the sphere where the optimal bound
is known! The best known upper bound for hyperbolic manifolds is Ry (T) =
o (Td_1 / log T), due to Bérard [3]. As pointed out by Sarnak [34, p. 2], even improv-
ing the constant and showing that R (T") = o (T'/log T') for the cuspidal spectrum of
S L, (Z) \H (after removing the contribution of the Eisenstein series) is very difficult
(Remark 1.3.1). This bound is the analogue of (1.3).

1.3 Main results
1.3.1 Large discrepancy for pj;

Let Si (N)* be the subspace of S (N) consisting only of newforms of weight k and
fixed level N. Let Tp* be the restriction of 7, from Si (N) to Sx (N)*. We denote by

2 The geodesic flow in this case is chaotic, but Sarnak explains that one expects to see Poisson behavior
due to the high multiplicity of the geodesic length spectrum.

3 Here and elsewhere we write A <t B when |A| < C(t)B holds with some constant C(t) depending
only on 7.
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Wy, and vy the spectral probability measures associated to 7, defined analogously
to k. v and vg N.

The main theorem of this paper is a generalization of (1.4) to u,’j  With any square-
free level N and an improved exponent of k in the lower bound.

Theorem 1.1 Let N > 1 be a fixed square-free integer. Then there exists an infinite
sequence of weights {k,} with k, — oo such that

1
D (/"LZ,,,N’ H/p) >> 1 .
ki (log kn)?

Remark As mentioned in the introduction the best known upper bound for
D ("’LZ,N’ up) is

1
D (- 1p) = O (k)gk), (1.5)

by Murty and Sinha [29]. The standard method for giving an upper bound for the
discrepancy of a sequence of points is the Erd6s—Turan inequality [9]. Even to improve
the implied constant in (1.5) using the Erdés—Turdn inequality, one needs to obtain
a nontrivial upper bound for the trace of the Hecke operator 7, for n > k*, where
A > 0is an arbitrarily large constant. But the error term in the Selberg trace formula is
very hard to bound non-trivially in this range and this makes the problem very difficult
by this approach.

Theorem 1.1 follows from an explicit asymptotic formula for the weighted average
of the trace of the Hecke operator in a short interval. More precisely, let ¢ be a non-

negative smooth function supported in [—1, 1] that satisfies f_ll Y (t)dt = 1. Let
Tr 7, (k, N)* be the trace of the Hecke operator 7, on Si (N)*.

Theorem 1.2 Let N > 1 be a fixed square-free integer, and % <8 < % be a fixed
constant. Let K be an integer satisfying K = 4mw/n + o (né) Then we have

1 k—K
FZI/I( K®

) (—DITr T, (k. N)*

ke2N
n(N)K o (n)
— TTJK (4 /n) (1 + 05,4 (1)),

where J is the J-Bessel function (the Bessel function of the first kind) and (. is the
Mobius function.

Remark By the asymptotic of the J-Bessel function in the transition range (2.3) (see
also §2.1.1), we have | Jx (4m/n) | > K~ 3. Hence, we have [Tr Z;, (k, N)* | > k3
for some k € [K ~ K, K+K 5]. This lower bound violates the naive expected

square root cancelation for the eigenvalues of the Hecke operator 7, (k, N)*. How-
ever, we show that almost all  in the range [37/n, 57 /n] satisfy Tr 7, (k, N)* =

O, (k%+€> ; see Theorem 1.3.
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Asymptotic trace formula for the Hecke operators 519

We give the proof of the above theorem in Sect. 3. The proof is based on the Petersson
trace formula and the proof of Theorem 1.7 that we give in Sect. 2. The main term
of the above formula comes from the J-Bessel function in the transition range. Next,
we simplify the error term by using bounds on the J-Bessel function outside the
transition range. For the remaining error terms, we average over weights and apply
the Poisson summation formula and obtain a sum of the Kloosterman sums twisted
by oscillatory integrals. Theorem 1.2 subsequently follows by using Weil’s bound for
the Kloosterman sums and by exploiting the cancellation coming from the summation
over the Bessel functions (Sect. 3.1). There are some similarities between our method
and the circle method, especially the version developed by Heath-Brown [13].

1.3.2 Variance of the trace

If we consider the variance of the trace of the Hecke operator over k ~ /i, the
largeness of the trace in Theorem 1.2 is no longer present. To be precise, we have the
following results.

Theorem 1.3 Let N > 1 be a squarefree integer. For any positive integer n, we have

k—1 §(n, 0|2
S mem - e ) 222« nogny? oglogmy?
12 NG
ke2Z
3 /n<k<5m/n

where § (n, ) = 1 ifn is a square, and O otherwise. Here ¢ is Euler’s totient function.
In particular, almost all k in the range [371 Jn, 5w ﬁ] satisfy

Tt 7, (k, N)* = O, (k%“).

We also prove a lower bound for the variance of the trace of the Hecke operator.
To make a precise statement, let ¢ be a positive even rapidly decaying function whose

Fourier transform ¢ is supported in [~ 1k, 755 -

Theorem 1.4 Let N > 1 be a squarefree integer and let n = p™, where p is an
odd prime. There exists a sufficiently large fixed constant A > 0 such that for any
K > A./n, we have

. B )

k-1
2 ke2z ® (T ) k>0.k€2Z

2
T (N — Ly vy 20D

1
7,
12 | TN

(1.6)
This immediately implies the following weaker version of Theorem 1.1.

Corollary 1.5 Let N > 1 be a fixed square-free integer and let p be an odd prime.

Then we have
D (i) = 2 (———
N2 PP) — .
k2 (log k)2

@ Springer



520 J.Jung et al.

Remark Note that this generalizes [10] to any square-free level N > 1.

Theorem 1.3 and 1.4 are consequences of the following asymptotic formula,
which we derive from the Eichler-Selberg trace formula for 7 > /n and N > 1
(Lemma 4.6):

> ¢<@) T, Ny — Ly 2
k>0,ke2Z r 12 ﬁ
2
—22¢< )Z Dy (. n)|2—¢( )“1,(1”) +0 (n2*).

ke2Z 12<4n

Here Dy (¢, n) is a weighted sum of class numbers:

i 2 —4n\ _
DN(ﬂn):ﬁ;hw (T>M(f,f’",N),

with weights | (¢, f,n, N)| = Oy (1) (for the precise definition, see Lemma 4.2).
The upper bound (Theorem 1.3) then follows by applying a standard upper bound
for the class numbers of imaginary quadratic fields.
Note that inputting the sharp lower bound for the class numbers of imaginary
quadratic fields,

By (—d) ¢ d2~¢,

to (1.7) is not sufficient to prove the lower bound in Theorem 1.4. Therefore we relate
the problem of estimating the sparse sum of sums of class numbers

> Dy (e n) )P

t2<4n

to the problem of counting integral lattice points on 3-spheres, under certain congru-
ence conditions on the coordinates. This can be done by following the circle method
developed by Kloosterman [22], and we are able to show that

Y Dyt m) P>y Vi,

t2<dn

under the assumption that n is odd (Theorem 4.7). Now if n = p™ for a fixed odd
prime p, and if T > A./n for some large A, we see that

2Z¢( ) > Dy )

ke t2<4n
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is larger than ¢ (1) %”)2 > n, from which Theorem 1.4 follows. These steps are
carried out in Sect. 4.

1.3.3 Large discrepancy for the measure with harmonic weights

Next, we give our results on the error term of the Weyl law associated to the measures
Vi y ask — oo.

Theorem 1.6 Let N > 1 be afixed square-free integer. There exists an infinite sequence
of weights {k,} with k,, — oo such that

1

D (vj;, s Hoo) > (1.8)

T
ki (log kn)?

Remark The above exceptional sequence of weights is very explicit and is given by
k, = |4m p™|. Based on heuristics stemming from arithmetic quantum chaos, numer-
ical evidence [10, Figure 5 and Figure 6], and the random model described in the
introduction for the eigenvalues of the Hecke operator, it is expected that

D (s 1p) = Ocoy (K37) and D (v s toc) = Ocw (k727) - (19)

for adensity 1 set of k. In this context, the exponent % in Theorem 1.6 (and Theorem 1.1)
shows that one can not achieve (1.9) for every even weight k.

Theorem 1.6 is an immediate consequence of an explicit asymptotic formula for the
Petersson trace formula. More precisely, let B; 5 be the orthonormal basis of Si(N)*
consists of holomorphic Hecke cusp forms, and let

k-1 -
AZ,N (m,n) := # Z pr(m)pr ).
feB; y

Theorem 1.7 Let N > 1 be a fixed square-free integer. Assume that |47 /mn — k| <
Zk% and gcd (mn, N) = 1. Then

N
Af y (m,n) = %8 (m, n)

+2ni_k$ l—[ <1 — #) Je—1 (4n\/mni + Opn (k_%> )

PIN
where § (m,n) = 1 ifm = n and § (m, n) = 0 otherwise.

Remark Since |4 /mn — k| < Zk%, by the asymptotic behavior of the J-Bessel

function in the transition range (2.3), we have |Jr_ (471 «/mn) | > Ll It follows
k

5]
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that

2ni_k# 1_[ <1 — %) Ji—1 (4 /mn)
PIN

is the main term, and
N 1
ALy (m.n) =8 (m, )| > —.
k3

The above lower bound violates the naive expected square root cancelation in
the sum of the normalized Fourier coefficients of the newforms in this range. More

4w /mn
q

generally, one can generalize Theorem 1.7 if ‘ - k‘ < 2k for any fixed integer

g > 0. In the appendix by Simon Marshall, the existence of this asymptotic trace
formula is explained via the geometric side of the Petersson trace formula.

We prove Theorem 1.7 in Sect. 2 by applying the Petersson trace formula and
partitioning the geometric side of this formula into three parts according to the various
behavior of the J-Bessel function in different ranges. This partition is explained in the
appendix according to the incidence of the associated pairs of horocycles.

Theorem 1.2 follows from Theorem 1.7 upon averaging over the parameters m and
k. In fact we expect that a stronger version of Theorem 1.2 to be true, namely

)k/zﬂ (N)k o (n)
b n

Tr T, (k, N)* = (—1 Jx (4m/n) (1 +0 (1)),

| . . . .
where k = 4 /n+o (n 6 ) . However, removing the harmonic weights in Kuznetsov’s

formula by only averaging over m in our context is equivalent to a very strong unproven
bound for the L-functions, namely:

Hypothesis 1.8 Letn = O (kz) and N be a fixed square free integer. Then

Tk —1)

3 JoraymL G +ir, sym2f> — 0 (k—%—s), (1.10)

feBZ‘,N

wheret = O (log kA)for some A > 0and § > 0.

We overcome this problem by averaging over k in a very short interval.

2 Large discrepancy

In this section, we deal with the lower bounds for the discrepancies
D (MZ N> w p) )
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and
D (v,’:N, /,Loo) )

The main technical input for the lower bounds that we prove is an explicit asymptotic
formula for the Petersson trace formula, Theorem 1.7. Before we go into the details,
we review some preliminary facts that are going to be used in the subsequent sections.

2.1 Preliminary
2.1.1 J-Bessel function

We first collect here estimates for the J-Bessel function from [26].
Whena > 0and 0 < x < 1, we have [26, 10.14.7]

o (@) _ ) @2.1)
T X%y () T ’ ’

Note that xe! ™ < 1 for0 < x < 1, and 0 < J, (@) < Ll as @ — +00; see (2.3).

3
Hence, (2.1) implies that J,, («ex) is positive and exponentigllly small in « for any fixed
0<x<lasa — +oo.
The transition range of the J-Bessel function J,(y) is the range where y is close
to «, i.e.,

1 1
a—col3 <y<o-+ca3

. . . . 1
is satisfied for some fixed constant ¢ > 0. In this range, we write y = « +a«a 3, and the
J-Bessel function has an asymptotic in terms of the Airy function Ai [24, Theorem

1]
T (a +aa%) = iAi (—2%a) (1 o (%)) , 2.2)

o3 o3
where a = O(1) and @ — o0. (See [26, 10.19.8] for the full asymptotic expansion of

Jy (x) in this range.) Note that all zeros of Airy function Ai(x) are negative, and the
first zero is approximately —2.33811 ... [2]. This implies that for |a| < 1, we have

1 1 1
— <o (a+a0t) « . 2.3)

o3 o3

We also have the following uniform upper bound for % <x<l,

1
o (ax) | L —————
(1 —xz)“oﬁ

, (2.4)
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and forx > 1,

1
[Jo (ax) | < S — 2.5)
(x2=1)*a2
If we combine (2.1), (2.3), (2.4), and (2.5), we have
1
Ve € —- (2.6)

o3

2.1.2 Kloosterman sum

For integers m, n, and ¢ > 1, the Kloosterman sum S(m, n; c) is defined by

mx + nx*
S 9 ; = - 9
(m,n;c) Z e( . )

x (mod ¢)
ged(x,c)=1

where e(x) = exp(2wix), and x™* is the multiplicative inverse of x modulo ¢. We
frequently use the following bound for the Kloosterman sum

|S (m,n;c)| <o (c)+/ged(m,n, c)\/z, 2.7

which is often referred as Weil’s bound.

2.1.3 Petersson trace formula

The Petersson trace formula [27] is given by

rk-1) N
Ag,N (m, n) = AT Y. pym)yps(n)
(47) f€BrN
S (m,n; 4/
= sm.my+27xiF Y (m, n C)Jk_l( 7 m")
¢=0 (mod N) ¢ ¢

2.8)

For M|N, each newform f of level M gives rise to o (%) old forms in S; (N) [1].

By choosing a special orthonormal basis of Sy (N), one may deduce the Petersson
trace formula only for the newforms of squarefree level N [18, Proposition 2.9]
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T'k—1)

o] > ppm)ps )

fE€B; N

C TS, e

LM=N I1L>®

Ay y (m,n) =

where gcd(mn, N) = 1. Henceforth, we assume that gcd (mn, N) = 1 and

47 /mn — k| < 2k3. (2.10)

2.2 Proof of Theorem 1.7.

Proof We apply the identity (2.9) and obtain

W) 1 )
T Z TAk’M(ml ,n).

LM=N 1)L

Af y(myn) =

First, we analyze the contribution from § (mlz, n) which occurs when we apply the
Petersson trace formula (2.8) to (2.9). Since I|N°° and gcd (N, mn) = 1, the condition
ml? = n can only be met if / = 1 and m = n. By summing over [, we obtain

Z %ZES(mlz,n)Z Z M(S(m’n)ZMS(m,n)

l L N
LM=N 1|L%>® LM=N
Therefore
A @ (N)
C (mom) = =28 (mom) + S1 4 2,
where
;1 (N) 1
S = 2mi kT l_[ 1-— —2> Jr—1 (4n«/mn) ,
p
PIN
L 1 S (ml?, n;c drly/
S = 2mi—k &) — Z ( )Jk—l mtymn .
L l c c
LM=N [IL® "~ ¢=0 (mod M)

c#l

2.11)

We have broken up the sumoverc = 0 (mod N) into the terms Sy, for whichc = [, and
S», for which ¢ # [. The term S; has been simplified using the fact that the condition
¢ = [ restricts the summation over LM = N to L = N and M = 1, since M|c,l|L,
and ged (L, M) = 1, together with the fact that S (mi?; n; 1) = S (0; n;1) = p (1).
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L}. Next, we

k3

By the estimate (2.3) and the assumption (2.10), we have |S| >n

W

give an upper bound for S,. For § > 0 to be chosen, let

S (ml?, n;
Sp5i=2mi™* Y # Z% )3 (mi?, n; c) . (4ﬂl«c/_mn>.

c
LM=N 1=k ¢=0 (mod M)
1|L*>® c#l

For k* > N, it follows from (2.9) and (2.11) that

S5 = Z @ Z % (Ak,M (mlz, n) ) (ml2, n)) .
LM=N llilgi

By [18, Corollary 2.2], we have
1 1
Z+E l§+€
Ax.m (mlz,n> ) (mlz, n) =OpN.e L .
ks
Therefore

1 (mn)i+e [a+e
[82,5] <K N.e -_—

5
I>k8 ! ks
I|N>®
By (2.10), we have
1S2.5] e k73S0 173 = oy (k*%*%%). (2.12)
I>k?
[|N®

Finally, we give an upper bound for S (§) := S2 — S2.5. We split S (8) into three parts,
each of which has a restriction on the sum over ¢ = 0 (mod M). We write S; (8) for
the sum § (§) subjected to the ith condition listed below.

1.2l <c
2.l <c<?2
3.c<l

By (2.1), (2.3) and (2.7), we first have

L 1 S (ml?, n;c 4l /mn
seI<| Y B2y » (C )Jk1< ) )
LM=N I1<k® ¢=0 (mod M)
[|L>® c>21
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<<szze—

T
IIN® e k3
1<k®
ek(l—%—log@))
<N Z —— Ky e O (2.13)
[IN® k3
1<k®

Next, we give an upper bound for S, (8) and S5 (8). Assume that | < ¢ < 2] < 2k°.
By the inequality (2.4), (2.10) and (2.7)

(L) 1 S (ml% n;c 4rl/mn
RO =D DD ( )JH
LM=N 1<k® ¢=0 (mod M) ¢ ¢
I|L>® c<?2l

1
<K N.e Z 7 Z \/gcd(m,n,c)c*%Jr€

[IN® = I<c<2]

Arl/mn
Ji—1 —

1<k®
1 | ! 1
KLNe Z 7 Z gcd(m,n,c)c_i'*‘ék—j—l
[IN®  l<c<2] 1 — £)4
1<k® 2
-1 -3 ged (m, n, c)
cwerd vy LElnno
[N l<c<a  (c—=1D*
1<k®
<KNe k2 Z [mate <N = (2.14)
[|N®
1<k®

where we let € = 1/100 in the last estimate. Finally, assume that ¢ < [ < k°. Then
by (2.5) and (2.7)

L 1 S (mi?, n; 4xl
IR M= SIS (m nc)Jk_l<nc¢ﬁ)

LM=N 1<k ¢=0 (mod M) ¢
[|L>® c<l
1 _1 4ml/mn
e X 3 et ()
[IN*® <l ¢

I<k®
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1
2
anekt Y Y Vet e e
[IN® c<l (l—(,')Z

1<k®

ne kT3 gy ke, (2.15)
IIN®
<k}

again, where we let € = 1/100 in the last estimate.
Now let § = 1 and combine (2.12), (2.13), (2.14) and (2.15) to obtain

AZ)N(m,n):%(S( n)

+2n k“](VN)]_[<1—pi>Jk | (4 /) + Oy (K72).

PIN

2.3 Proof of Theorem 1.6.
Proof Recall that

(471_)](—1 5

*

v = rgo 2 lerOPsp.
FEB y

Since A (p) | < 2, we can write A ¢ (p) = 2cos (6 (p)) for a unique 0 < 6 (p) <
. Let Uy, (cosf) = W for n > 0 be the nth Chebyshev polynomial of the
second kind. Recall from [6, Lemma 3] that A 7 (p") = U, (MT(IJ)) In order to give
a lower bound for the discrepancy between v,f v and fioo for ky = 47 VP, we

compute the difference between the expected value of U, ( ) with respect to these
measures. Note that {U,(5)};2, is an orthogonal set of polynomials with respect to
Moo [11,7.343.2]. Hence forn > 1,

/22 U, (%) djioe (x) = 0.

On the other hand, by Theorem 1.7, since |k, — 47 /p"| < 1 we have

/2 U, (_x) dv v (x) = A} (1 ”)
n\3 k,N kn,N \ 1> P
-2
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= ZJTi_kw 1_[ (1 — %) Ji, -1 (47T\/ﬁ) + Opn (k_%) .

N
PIN

As pointed out in Remark 1.3.1, since |k;, — 4w /p™| < 1 then by (2.3), we have

2 1
X L
[0 () avin o >w i,

By integration by parts and the upper bound |U;, (3) | < n?, it follows that

« 1
D (vkmN, Poc) > T (2.16)
nZk;}

Since k, = [474/p"], we conclude that

1
D(U;:)“N7 ,uoo) > -
k; (log k,)?

3 Removing the weights

In this section we give the proof of Theorem 1.2, from which Theorem 1.1 follows
as a corollary. Note that the trace of the Hecke operator 7,, (N, k)* is obtained by
removing the arithmetic weights | pr(D) |2 from the Petersson trace formula (2.9) with
m = 1. The usual trick for removing these weights is to average the Petersson trace
formula (2.9) smoothly over m? where ged (m, N) = 1. Unfortunately, once summed
over m?, it is difficult to prove a bound for the contribution coming from S, (8) and
S3 () that is smaller than the contribution from the main term. We therefore sum the
trace formula as k varies inside a short interval of size ~ k% for some % <4 < %
and exploit the cancellation coming from the summation of J-Bessel function over
the order £ (Lemma 3.1). We note here that § < % is not large enough to bound the
error term and § > % makes the main term smaller than the error term! Theorem 1.2
then follows from Weil’s bound for the Kloosterman sum and Lemma 3.1.

3.1 Averaging over the weight

Recall that ¥ is a positive smooth function supported in [—1, 1] and f_ll Y (t)dt = 1.
Let K > 0 be a positive real number.

Lemma3.1 Fix0 < § < %andn> 1-38>0.Letx >0.If|x — K| > K", then

> v

=1 mod 2

K —A
5 ) () Layns K7 3.1

| —
K
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If |x — K| < K", we have
1 |- K _1
= > 1#( =5 )Jl(x)<<K 3. (3.2)
=1 mod 2

Moreover, if x = K 4+ o0 (K%) then

1 _1
X Z v < ) Ji (x) = Jk (x) ( +0¢(1)) >y K73, (3.3)
I=1 mod 2

Proof Asdonein[20,§5.5], we use the integral representation of the J-Bessel function

1

2 . -
Ji (x) — / e—2mlte—zx szmdt,

|
=

from [11, 8.411.1]. By the Poisson summation formula, it follows that

> w( )h(x)

=1 mod 2
/ 1//(14) —owiuk -t < —1xsm(2;g§‘) _eixsin(zs))du

Because /(1) <4 |u|~*, we may assume that the integral is taken over |u| < K*
with some « that satisfies

0<«k <min{8, %(n—(l—%))}.

Since the remaining portion of the integral contributes a negligible amount. Let

2mu
= —uk'+ i (X)),
fr(u) u 7 sm( %5 )

and then we have

, 1—s 2mu —K £x xu?
f:l:(l/{)_ —K :,:—COS K‘S _T+0 ﬁ .

Now assume that x > 0 and that |[K — x| > K®t7. If x > 2K, then

}fi(u)/‘ > xK % + o(x](—5—2(8—n)) > K179,
If0 < x < 2K, then

| fe@)| > K"+ O(K 12739,

@ Springer



Asymptotic trace formula for the Hecke operators 531

and because 1 + 2« — 38 <1 —38 + (n — (1 — 38)) = n, we have

| fe@)'] > K.

Therefore, by repeated integration by parts, we have

27u

K dwiuk 1= —ixsin(z”—”) ixsin( ) A
¥ (u)e e K —e” AR N du La s K77,
7[(/(

for any A > 0. This completes the proof of (3.1).
The inequality (3.2) follows from the upper bound (2.6), and the fact that v is sup-

ported in [—1, 1]. Finally, (3.3) follows from the asymptotic of the J-Bessel function
in the transition range. More precisely, recall (2.2) and (2.3)

N 2% 1 1
Ja<a+aa3>=—1Az(—23a) 1+ 0s(—=))>»—.
o3 o3

o3

where |a| < 2. Hence, forx = K +0(K%> and 0 < 6 < %

1 |- K 1 _1

X Z Y (T) Jr (x) = Jg (x) <§ + 0¢(1)> >y K73,
I=1 mod 2

O

First, we cite some identities from [18] that we use in the proof. Let f be a newform
of Sy (N) of level M. Then by [18, Lemma 2.5], we have

Am)*=1 12M . p(m) ¢ (n)
_ ’ 3.4
Prmps () = =R o N Z(L. ) oY

where Z (s, f) = ZZOZI Ay (nz) n~". Note that Z (s, f) is related to L (s, sym2f)
by

2.\ _ ¢ (@2s)
L(s,sym f) = (2S)Z(S, 5,

where ¢y (25) = [T,y (1— p~2) " [18, 3.14)]. Let

o0 g 2
ZN (s, f) = Z %
gcd(rg:I\ll):l
Then by [18, (3.16)],
¢n (25) (3.5)

N - )
z (S,f)—L(S’Sym f);(Zs)CN(S‘f‘I)'
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By the celebrated result of Shimura [37], L (s, sym2 f ) is an entire function. Hence

ZN (s, f) is holomorphic for i (s) > % and has a meromorphic continuation to the
complex plane. Let w (x) = exp (—x). Note that the Mellin transform of w is the
Gamma function

W (s) :=/ lwx)dx =T (s).
0

3.2 Proof of Theorem 1.2

Proof Assume thatk € [K — K%, K + K®] where § < % By the Petersson formula
(2.9),

k-1 -
fE€B; N

-y @ 3 %Ak,M (m212,n). (3.6)

LM=N 11L>®

Let T = K¢ for some fixed 0 < o < 1 that we choose at the end of the proof. We
average the left-hand side of the above by the smooth function %w (%) and use (3.4)
to obtain

Ttk—1) 1 -
o 2w (7) X pr(m?)orm
m>1 feB
ged(m,N)=1 ’

2
_ Z Z w(ﬂ) IZAf(n)Af(m){NQ)

T/ mk—-1)NZ(,f)

feBl y m>1

ged(m,N)=1
12 v (2) my Ay (m?)
- Af (— CY,
(k—l)NfEXB; 7T m; w T) m 7
k,N —
’ ged(m,N)=1
1 2+i00

By the Mellin inversion formula, we have w (§) =
this implies

I' (s) T*x*ds and

27i J2—ico

s m2 1 2+ioco
3 w(T)M:—, ZV (s + 1, f) T*T (s) ds.
e T m 278 Jo_ico
ged(m,N)=1

@ Springer



Asymptotic trace formula for the Hecke operators 533

We shift the contour to the line R (s) = —% and pick up the pole of I' (s) at s = 0
with residue ZV (1, f) = Z{fvl(’-zf)), and hence
ar(m?)  zq, | [ati ‘

3 w(T) s () _ Z( Doy L7 N a1 ) TT (5) ds.

ot T m N @) 2mi ol
ged(m,N)=1

3.8)
By (3.5),
1 —%+ioo

— ZN (s +1, f)T°T (s)ds
2mi ~loico

[ (1 1+ 2it ‘ 1
=5—= L (— +it, sym2f> v+ ’3) T3t (—— + it) dt.
2mi Jooo  \2 ¢ (1+2i0 ¢y (3 +it) 2

First, we bound the portion of the integral for which |f| > (logk)?. By Stirling’s
formula [26, 5.11.9],

1 ™
r <_§ + it) —0 ((1 4! e*%).
By using the above bound, the convexity bound [19, (34)]
1
L (5 +it, symzf) Ko KIFE(It] + DT,

the well-known bound ¢ (1 + 2i~ ' = 0 (log(]t] 4+ 1)), the fact that ¢y (25) ¢y
(s + 1)~" is bounded on % (s) = 4 and |7~ 2% < T~2 < k=% it follows that

—(ogh)>  roo \ 1 (14 sym? 1+ 2it ; 1
- (

00 log k)2 (1 +4+2it) ey (%—i—il‘)
o)

for any A > 0. By the above, (3.7) and (3.8), we obtain

Ck—1) 1 m - 12 .
@)k m; a0 (F) Xoo (mz)pf(”):m“mf"vk)

gcd(m,N)=1 FeBin
1 [logk)? 12¢5(2) 1
T SN, (n)L<—+it,s m? )
271 o2 Z *k—DNZ, ) 2 ym=f
feBk,N
1
1+2in T2 (=1 +ir
u ( )1 . ( 2 Var + 0 (k—A). (3.9)
¢ (1 +2it) ¢y (5 +it)
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From (1.2), we have |A s (n) | < 0(n) < n€ K¢ k¢, and we also have Z(1, 1 <.
k€ [16, Theorem 0.2]. Therefore we have

1 [ogh? 12¢0 (2 1
LS O (L)
270 J_(logk)? P (k—1DNZ{1, f)

k,N

ey (14 2in) T-2HT (=4 4 in)
¢(L+2in ey (3 +ir)

(logk)? 1

L kTIrer 7/ > ‘L <§+it,sym2f)‘dt

—(log k)2
(log ) TeBy

To simplify the notation, we let

(logk)?
Mk = /

—(logk)?

1
L (5 —i—it,symzf)‘dt

feBiy

By the above and (3.9), we have

D Y L) s e()am

1 *
gcd(m N)=1 T€BiN
2
iy A K* + O, (T—%k—HfM](k)) . (3.10)

Finally, we average the right-hand side of (3.6) with the same weights %w (%)
Let

si= 2 u(F) X5 X pakm (nn).
m>1 LM=N 1Lee,
ged(m,N)=1

We analyze the contribution of & (mzl 2, n) by applying the Petersson formula (2.8).

Since [|N*° and gcd (N, mn) = 1, then the condition m?2% = n can only be met when
! = 1 and m? = n. Therefore,

Z;l ( ) Z M(L) (m2127n>

gcd(rr’r11_N)=1 LM=N l|L00
NG
1 (n (L) B ‘P<N>w(T)
_ﬁw<7>L§;N—L 8 (n, )_—Nﬁ §(n,0).
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Note that by our choice of w, if T <« n%’e, then

ﬁ
%5 (n,0) = O, (k‘A) . (3.11)
Let
§T . o w5~ Loy 22 5( 22 ))
;ﬁ mw<T>LA§::N L ”LZ);’I< o () = (w2

ged(m,N)=1
By [18, Corollary 2.2], we have
n%+e (ml)%"'e
Ak.m (mzlz, n) ) <m212, n) =0ONe|———]-
ke

It follows from the above and the choice of w and T that ST = O4 (k‘A). Hence

S=S8 485404 (k—A), (3.12)
where
. w (L) 1 m
Sy = 2mi~* — — (—)
p=2mit Y ==y Y —w (5
LM=N [IL® < Tl+e
ged(m,N)=1
S (m212, n: ¢ Arml
% Z s(c, ml)y‘]kil (M) ,
c c
c=0 (mod M)
and

L D V== DD D

ml
LM=N IIL® o7 lte
ged(m,N)=1
Z S (m*12,n; c) ; drml/n
X — .
c k=l C
c=0 (mod M)
c#ml

In what follows, we give an asymptotic formula for S;, which is the sum over the
diagonal terms m/ = ¢ where gcd (m, N) = 1 and [|L*°. Observe that the condition
ml = ¢ can only be metif M = 1 and L = N and so we have

S<m212,n;c):S(0,n;c): Z u(%)d.

d| ged(c,n)
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Hence,

N
S1 =2mi™ Jkl( M( )

1 m ml
——w(= E wl—\)d
[|IN® ~Tl+e (ml) (T> d| ged(ml,n) d

gcd(m,N):l

=2mi 1(47“/7“(1\]) > 5 M(Z) > %w (% > “(%)d

[|N®® m<T1+e€ d| ged(m,n)
ged(m,N)=1

=i kg (4 ym) &

1 1 hd
128 Z (7w

din — p<Tt€/d

ged(h,N)=1
. pN) 1 (o) o(n)

Next, we give an upper bound for S>. Let § > 0 be some positive real number and
S>, p be the same sum as S, but subjected to K# <1, namely

L 1
syt © UL ST ()

LM=N I>KP m<T'te
[|L*® ged(m,N)=1

S (m?1%, n; dreml
y Z (m : nC)Jkl< nni\/ﬁ)

c=0 (mod M)
c#ml

Since N is fixed and S is supported on /| N°° and u (1) # 0, it follows from (2.9) that
for sufficiently large k (e.g., K# > N),

1
S8 =27i K Z —w (%)
m

m<T1+e
ged(m,N)=1
L
Z M( ) (A M( 2lz,n)—5(m12,n)).
LM=N 1>Kﬁ
[|L™®

By [18, Corollary 2.2], we have

1 1
ate (ml)2te
Au (20 = (w2, 0) = O (L) .
ko
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Therefore,

1 1
1 m 1 nate (ml)z+e
sosn ¥ e(@)E et

5
m<T1te I~KP k¢
ged(m,N)=1 [IN%®
By (2.10), we have
B
82,8 KN.e kst Z Z (ml)~2+€ = ON.c (T%k—%—ﬁ‘f). (3.14)

m<Tlt+e > KP
[|N%®

Finally, we give an upper bound for § (8) := 52 — 52, 5. We split § (8) into two ranges,
each of which has a restriction on the sum over ¢ = 0 (mod M):

1. 2ml < c,
2. ¢ < 2ml and ¢ # ml,

and we write S; (8) for the sum S () subjected to the ith condition listed above. First,
we give an upper bound for S7 (8). Assume that 2ml < c. Then by (2.1), (2.3), and
(2.7), we have

272 .
S1(B) < @ D milw(¥> 3 S (m lc,n,c) s (4nnzzﬁ)

LM=N 1<KP m<T1te c>2ml
1|1L>° ged(m,N)=1 Mlc
1 m N (mzlz, n; c) dml/n
y L, (my 3 [Sermal ),
<Y T w(f) X [P ()
I<KP m<Tlte c>2ml
L% ged(m,N)=1
k 1J+10g(’l))
1 e( c c
—(0.19)k
< Iy L ke . (3.15)
DD DL
h<KBM!+e — ¢>2h

By inequalities (3.10), (3.11), (3.12), (3.13), (3.14), and (3.15), we have

12 p(N) 1 o(n)
(k— DN N ¢(@2)

+ O <O’(I’l)k_%T_l> + 06 (T—%k—l-i-EM](k) + T%k_%_g-‘re) .

Tr 7, (N, k)* = 21i ¥ Ji_y (47/n) + 5 (B)

We use o (n) < k€ to make the first error term O, (k’%“T’l). We then multiply

the above identity by i¥ = (—1)% and take a smooth average by

1 k—1—-K
a2 ().

k>0,ke2Z
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yielding

k
k—1—K)\ 12(-1)2 .
> w( =5 )(k_l)NTrmzv,k)

k>0,ke2Z

N) 1
_nJK(4ﬂf)M§V)Z(2)gfln) (140 (1)>+K— 3 w(T) i*$2 (B)

k>0,ke2Z

S
+

1
K73~

=

+ 0. (T—%K—l—“f > /\/ll(k)) +o. (T

k—1—K|<K?

where we applied (3.3) in Lemma 3.1 to the main term.
Next, we give an upper bound for the average of i* S, (8). We first have

1 k—1—-K ,u(L) 1 /m

D> w(iﬂ )ksz(ﬂ)_ZTF > >y —w(3)
k>0,k€27Z LM=N I<KP m<T!te
[|[L*® ged(m,N)=1

272
S( l "0) 1 k—1-K dmmln
Z — ¥ 3 Jr—1 . . (3.17)
c<2ml k>0,ke2Z

Mi|c, c#ml

X

Let x := M. Then we have x > 27 /n > K, because we assumed that K —
dm/n=o (n%) Letn > 1 — 36 > 0 be a constant to be chosen later. Note that

Ix — K| < K0
implies that

mi 1‘ < 2K
C

We assume that 7 is chosen sufficiently close to 1 — 34 so that the exponent  + 8§ — 1
is negative. In order to apply Lemma 3.1, we now split the sum (3.17) into two ranges

1. ¢ < 2ml and |m71 — 1] > 2K~ and
2. ¢ <2ml and |m71 — 1] < 2K+
each of which has a restriction on the sum over c = 0 (mod M). We denote the sums

by S»,1 and $» 2 respectively, so that (3.17) is equal to S2.1 + S2.2. By (3.1), (3.17),
and (2.7), we have

S2,1 KA s Z Z Z

I<KP m<T!te <2m
[|IN®® ged(m,N)=1

ml nc) KA
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Lanse K™ Z Z — Z Vged (m,n, c)e” 2+
I<KP m<T'te€ c<2ml
[|N®° ged(m,N)=1
1
Lanse TTTEKA (3.18)
For S 2, we apply (2.7) and (3.2), yielding
1 S (mzlz, n; c) 1
S — — | K3
SR M D) :
I<KP m<Tlte |2 1| <2K N1
”NOO ng(m,N):l ¢ c;éml
| 1 1
-3 —5+e€
LeNKT3Y N il ged (m, n) > c?
I<KP m<T+e | 1<K 01
[N cstml
1 )2+e
Len K73 Z Z — v ged (m, n) Kl -
I<K# m<T“rE
[|N®
(ml)~3+¢
Len K- 32 > Veed(nm K1n6
I<KP m<T1+e
[N
Koy TEHERK—371H048, (3.19)

Therefore, by inequalities (3.16), (3.18), and (3.19), we have

k
> (k— 1— K) 12(=1)2 T (N B

K$ (k—1N
k>0,ke2Z
u(N) 1 o(n)
=nJg (471f) N IO (1+o0(1))

B
+O*""*5‘<T2K18+€ Y Mk +TiETAE
lk—K|<K?

Lpiteg il T1K§+€>.

In order to bound the contribution from Y M (k), we recall from [25] that

(logh)? | >
> / ‘ <§+it,sym2f>

—K| <o’ ~0gh? po €Bf

dl <<E,9 K1+9+6
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provided that & > 1/3. This in particular implies that

2

Y. Mk

lk—K|<K?

log k)2 log k)2
- Z Z/(Og)dt Z /(Og)

2 2
lk—K|<K® f€B} (ogh)™ g <k 7 —(ogh) IeBly

2
dt

| 2
L E—i—zt,symf

Lo K2+9+3+6

by the Cauchy—Schwarz inequality. We therefore have

Y M) < K5
k—K|<K?

and so by choosing § large enough, 7 = K1+38

that

,and n = 1 — 3§ + €, we conclude

k
1 1 k—1-—K)\ 12(=1)2
Ko Z 11”( K ) (N)ZTrT”(N’k)*
k>0,ke2Z
wN) 1 o)
N ¢

= nJk (47/n) (14 0(1)) + O 5(K~T730%€),

In order to complete the proof, note that

1 1 K—k+1
k—1 K (k—DK

= 0(K*™),
and that

Tr 7, (N, k)* < o(n)K.

So the error that occurs when replacing lel by % in the left hand side of the equation
is

< U(n)K‘s_l.

Assuming that % <é< % and rearranging lead to the final expression in Theorem 1.2.
O
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3.3 Proof of Theorem 1.1

Proof The method of the proof is similar to the proof of Theorem 1.6. Let U, (x) be
the nth Chebyshev polynomial of the second kind. A quick computation shows that

/2 ( )d ) = Lﬂ if n is even
Wy (x
- r O otherwise.
By Theorem 1.2, there exists k,, € [|[4m/p"]| — % , 4/ pt] + p6] such that

/_22 Up (%) ity (x) — /_22 Uy (%) duf y > ko

By the above inequality and by integration by parts with the upper bound |U; (x)| <

I\)

n?, we have
N 1
D (13, o 1p) > —
n2k;
We complete the proof of Theorem 1.1 by observing that n < logk,. O

4 The Eichler-Selberg trace formula

The main purpose of this section is to prove Theorem 1.3 and Theorem 1.4. We first
recall the Eichler—Selberg trace formula. We use the version from [29, Theorem 10]
(see also [36]).

Theorem 4.1 (The Eichler-Selberg trace formula) For every positive integer n > 1,
the trace Tr of T, = T,, (k, N) acting on Sy (N) is given by

Tr7,=A1(n,k,N)+ Ay (n,k, N) + Az (n, k, N) + As (n, k),

where A; (n, k)’s are as follows:

k=1 1
k=1, Ny L 1
Ak, N)y=1] 12 v ( )ﬁ if n is a square wherev(N):Nl—[<1+—>.

0 otherwise DIN
1 - k=1 =k—1
Ak, Ny = —n'30 3 P e Zhw( )M(tan)
teZ, t2<4n Pt.n ptn

where p; , and p; , are zeros ofx2 — tx + n, and the inner sum runs over all positive
divisors f of t> — 4n such that (t2 - 4n) /f* € Z is congruent to 0 or 1 (mod 4).
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The function  (¢t, f,n, N) is given by

v (N)

M(fvf,n,N)=W

M (t,n,NNy),

where Ny = gcd (N, f) and M (t,n, K) denotes the number of solutions of the
congruence X2—tx+n=0 (mod K). Next,

A3 (n,k,N) = —n_k%1 Z d*! Z © <gcd (c, g)) .

din, 0<d</n c|N,gcd(c,¥)|ng(Nv%_d)

Here, ¢ is Euler’s totient function, and in the first summation, if there is a contribution
from the term d = \/n, it should be multiplied by % Finally,

_1 .
Ak — | S irk=2,
0 otherwise.

Torelate the trace of 7,, acting on Si (N) and the trace of its restriction 7, to S (N)*,
one may use Atkin—-Lehner decomposition for squarefree integers N to derive (see for
instance, [12, Equation (2)])

Te 7, (k. N) =Y o (N/d) Tt T, (d. k).
d|N

and by Mobius inversion, this implies that

Tr T (N k) =Y o (N/d) ju (N/d)Tx T, (d. k). .1)
d|N

Therefore we have the following.

Lemma 4.2 Assume that N is a squarefree integer. For every positive integer n > 1,
the trace Tr of T,, = T,, (k, N) restricted to Si (N)* is given by

Tr 7, = By (n,k, N) + By (n,k, N) + B3 (n,k, N) + B (n, k, N),

where B; (n, k)’s are as follows:

%(p (N) \/LZ if n is a square,

By (n,k,N) = )
0 otherwise.
k—1 —k—1 2
1 - — - —4
By(nk,Ny=—zn"'2 3 ME ' <_2”> i, fon N,
2 > Pt.n — Pt.n f
teZ, t><4n
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where p; , and p; n are zeros of)c2 — tx 4 n, and the inner sum runs over all positive
divisors of t* — 4n such that (t2 — 4n) | f* € Zis congruent to 0 or 1 (mod 4). The
function i (t, f,n, N) is given by

At fon,Ny=> o (Njdyu(N/d)p(t, f,n,d).

d|N

_ k=1 _ .
By k. Ny =177 7 Xap ocasynd™ N =1,
0 otherwise.

In the first summation, if there is a contribution from the term d = \/n, it should be
multiplied by %

_1 .
Ba(n k, Ny = | RN 2 3t ifk =2,
0 otherwise.

Proof This follows from Theorem 4.1 and (4.1). m]

4.1 Analytic setup

Let ¢ be a positive even rapidly decaying function whose Fourier transform b is
supported in [—ﬁ, ﬁ]. In this section, we study the second moment of Bj:

k—1 1 k—1

k>0,ke2Z ke2Z

where we used By (n,k, N) = —B, (n,2 — k, N).
We first collect some preliminary estimates.

Lemma 4.3 We have
" k—1
[Sk (N)" | = 7 ¢ (N)+On (1), 4.3)

and
By (n,k, N) <y o1 (n). 4.4

Proof The asymptotic (4.3) follows from [29, Theorem 13] and (4.1).
To prove (4.4), note that

k—1 —k—1
k=1 — 2
'n_2 pt,n pt,n < 2.

2
< — = <
 |pr,n — Pl Van — 12

Pt.n — Pt.n
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Therefore
2 —4n\ .
1By (0, k, N)[ <2 ) Y hy — )R o N) <xor ().
2<4n f

where we combined Lemma 16 [29] and the trivial upper bound & (¢, f,n, N) <y 1
in the last estimate. O

For ¢ € 7 such that 2 < 4n, define 0 < 0;.n <7 by

: 1
«/Eetgt’" = E (t +iv 4dn — 12> .

We record some trivial estimates regarding 6, ,,’s.
Lemma 4.4 For an integer t such that t2 < n, we have

1 1
T— ——Op gy > ——,
2 n " T 2un

and

1
60 — 6 > —.
t,n t+1,n = 2«/ﬁ

Proof We have

. an — 12 1
sinb; , = NG > N
n n

Also,

: 1
ot Orn—0rtin) = n (t +ivadn — t2> (t +1—iydn—(+ 1)2> ,

n

SO

1
sin (0,0 — Or1.0) = ™ ((t + 1) Van — 12 —ty/4n — (t + 1)2>

L+ D? (4n —12) — 12 (4n — (t + 1)?)

CAn (4 D)V — 24 An — (1 + 1)
2t + 1

- (t+ D) NAn — 12 4 1y/dn — (1 + 1)°
1

=

5

@ Springer



Asymptotic trace formula for the Hecke operators 545

We define Dy (z, n) by

D (tn):;Zh (ﬂ_—‘L”),:L(ran)
M 2 =12 5 Y o

where the inner sum runs over all positive divisors f of > — 4n such that
(t2 — 4n) /f2 € Z is congruent to O or 1 (mod 4). Then we may write By (n, k, N)
as

By (n. k. N) = Z <ei(k—1)6)z,n _ e—i(k—l)éz‘n) Dy (t. 1) .

teZ, t2<4n

Then expanding (4.2) and using Dy (t,n) = —Dy (—t, n), we get

Z¢>( )IBz(n k. N)I?

ke2Z

—4Z¢< )Z |Dy (¢, n) |

ke2Z t2<4n
k—1Y\ .
+2.2.¢ <T) DO a=000) Dy, (11, 1) Dy (2. 1)
t#th ke
k—1 +i (k= 1) (01 n401y.n)
-2 > (e nat0on) Dy (11, n) Dy (12, n)
H#—t ke2Z
=D+ 0D, 4.5)

where the diagonal part D comes from 6;, , +6;, , = 7 and from 6, , = 6;, ,,, and the
off diagonal part O D amounts to remaining terms. Note from Lemma 4. 4 that, unless

it is an integer multiple of =, 6;, , £ 6;, , are contained in [ 1 ] modulo

2/ 2f

7. Therefore we have

0D K sup
ge[ﬁ’”_ZI]

> IDy (t1,n) Dy (12, ) |

Z ¢( >ei(kl)9
ke2Z 1n,n
Z ¢( )ei(kl)e
ke2Z

Lemma4.5 Let T > \/n. Then for any 0 that satisfies 6 € [

<N sup o1 (n)*. (4.6)

ee[ﬁ’”’ZI]

2f’ — ﬁﬁ] , we have

Y (k ; 1) k=10 _

ke2Z
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and as a result
—1
qu( >|Bz<nkN)|2—4Z¢( - )Z|DN<t,n>|2.
ke2Z ke2Z 2<4n
Proof From the Poisson summation formula we have
k—1\ .._ 2n — 1
ke2Z nez meZ

where

T T(ty—6
D (y) = *’”Vqﬁ (—(nzyn )>.

In the last expression, for any m € Z, we have

‘T(nm—@)‘>_

and since ¢ is assumed to be supported in [—ﬁ %] the right-hand side of (4.7)

vanishes. o
We are ready to prove the following.

Lemma 4.6 Let N > 1 be a fixed square-free integer. Let ¢ be a positive even rapidly
decaying function whose Fourier transform qb is supported in [ 1(1)0 100] Let T >
«/n. Then we have

Z ¢><k_1)Tr *_k 1 o (V)
k>0,ke2Z r ! f
1 2 1
—224’( ) > Dy )P - (?) o1 () +0€(n§+6).
ke2Z t2<4n "

4.8)
Proof By Lemma 4.2, for N > 1 we have
B3y (n,k, N) =0.

The summand of the left-hand side of (4.8) agrees with B, (1, k, N) unless k = 2, so
from (4.2), (4.5), (4.6), and Lemma 4.5, we have

> o

k - 1 (S n D 2
k>0,kEZZ

SR NG
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=2 o(5) X v

ke2Z 12<4n

1 . Oy
“’(7)(\”“ v

By Lemma 4.2, fork =2 and N > 1 we have

B2 (1,2, N) |2) +0c (n3*).

§(n, L) o1 (n)
RS

By the Ramanujan bound for weight 2 modular forms, we have

B> (n,2,N) = TrT*—— (N)

Tr 7" Ke N n°.
Hence,

s,y ]?
Jn

1 o1 (n)? 1
*_— —_ 2:——1 +e
Tr 7, 12<P(N) |By (n,2,N) | " + O¢ (nz )

4.2 Arithmetic sum

In this section, we estimate the arithmetic part of (4.8):

Y Dy .

t2<4n

Theorem 4.7 Assume that n is odd. Then we have

Vi &y Y IDN (t,n) [P <n +/n (logn)* (loglog n)* .

12<4n

Recall that

D (tn):;Zh (tz_—4n>/1(tan)
N 2an -2 5 YL o

where the inner sum runs over all positive divisors f of > — 4n such that
(t2 - 4n) /f? € Zis congruent to 0 or 1 (mod 4). fi (t, f,n, N) is given by

i, fon, N)y=Y o (N/d)u(N/d)ut, f,n,d),

dIN
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and u (¢, f,n, N) is given by

v (N)

M(fvfyn,N)=W

M (t,n, NNy),

where Ny = ged (N, f) and M (¢, n, K) denotes the number of solutions of the
congruence x2—tx+n=0 (mod K).

Denote by H (n) = Y_ 2, (—n/ f?) the Hurwitz class number. For the upper
bound for the arithmetic sum, we write

1
2 2 (2
Z Dy (1,n)” <Ly Z 4n—t2H (t —4n>, (4.9)
12<4n 12<4n

using the estimate u (¢, f,n, N) <y 1.
For the lower bound, we first prove the following.

Lemma 4.8 Assume that n is odd. Fix an odd integer 0 < ng < 2N such that

2_
<¥> = —1 for all odd primes p|N. Then [ (t, f,n,N) = o (N)u (N) for

anyt = ng (mod 2N).
Proof For such ¢, we have u (¢, f,n,d) = 0 unless d = 1 or 2. So for an odd N,
pu(t, fin,N)y=0 (N)u(N).

When N is even, we have

p(t, fin,N)y=o0(N)u(N)+o (N/2)uw(N/2) u(t, f,n,2)
=0 (N/2)u(N/2) (u(t, f,n,2) =2),

where
u(, fon,2)=M(t,n,2),

because ged (N, f) | ged (N, 12— 4n) = 1. Then M (¢, n,2) = 0 since both n and ¢
are assumed to be odd, and therefore

p, fon,N)y=0(N/2)p(N/2)x (=2) =0 (N)n(N).
O

Using this lemma, we bound the arithmetic sum from the below under the assump-
tion that n is odd as follows:

3 Dy’ = 3 Dy (t,n)? = 3 o M)? o (z2 —4n)
- 4n — 12
t2<4n 12 <4n 12 <4n
t=ng (mod 2N) t=nop (mod 2N)
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v

1 2(.2
22 Tt (z —4n). (4.10)
t“<4n
t=ng (mod 2N)

We now handle the right-hand sides of (4.9) and (4.10) separately.

4.2.1 Upper bound

We first recall from [7, p.273, ¢)] that for n = sz <0,

h (D
H(n) = ((D)) Y u(d xp @)o (f> (4.11)
dlf

where 2w (D) is the number of units in Q («/ —D). Note that

> 1@ xo @ <§)

dlf

is multiplicative in f, and

D 1(d) xp (o <%k> =1 (") = a0 (a1 (P)

<o (i) b () < (145 ) (04)

Therefore

1
Y w(d) xp (d)o (5) <aNH]] (1 + ;) < f (loglog f)*,
dlf plf

where we used Gronwall’s theorem in the last inequality. Using a standard upper bound
h (D) <« ~/Dlog D yields

H ) < \/Bf log D (loglog N« /nlogn (loglog n)?.

Now we apply this to (4.9) to conclude that

Y Dy (t.n)* <y /n(logn)* (loglogn)* .

12<4n
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4.2.2 Lower bound

From the Cauchy—Schwarz inequality,

Z n 1_ 2 H? (tz — 4n> Z (4n — tz)

t2<4n 12<4n
t=ng (mod 2N) t=ng (mod 2N)
2

> > H(t2—4n> ,

2<4n
t=ng (mod 2N)

and so we have

(T[]

1 2(,2 - 2
Z 4n—t2H (t —4n> >n Z H(t —4n)

12 <4n t2<4n, t=noy (mod 2N)
t=ny (mod 2N)

Let 3 (n) be the number of ways of representing n as a sum of three squares. Then
Gauss’ formula (see for instance, [23, Equation (1)]) asserts that

12H (—4n) n=1,2 (mod 4)
o |24 =3 mod 8)
AR Y n=0 (mod4)

4
0 n=7 (mod 8)

Observe from (4.11) that if 4 4 m, then
H <4km) — H (m) (01 (2’<) — xp Q)0 (2"*‘)) ,
and so
*H (m) < H <4km) < (2"“ 4ok 2) H (m).
Combining all these, we conclude that
r3(n) <48H (—n).

Therefore we have

48 3 H (7 —4n) = 3 s (4n—1%),

t2<4n, t=no (mod 2N) t2<4n, t=nog (mod 2N)
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and observe that the last sum is equal to the number of elements in the following set:
Aoy (n) == {(x, y,2,1) € Z* : 4n = >+x>+y*+2%, t =ng (mod 2N)}. (4.12)

Note that we assume that n is odd and N is fixed. Kloosterman [22] developed a
version of the classical circle method with no minor arcs for quadratic forms in four
variables. Based on the work of Kloosterman, we have [35, Theorem 1.6]

Ay (n) >n n.

The work of the second author [35, Theorem 1.6] gives the optimal exponent for strong

approximation for quadratic forms in five and more variables. For quadratic forms in

four variables, it implies the above lower bound with an explicit dependence on N.
This completes the proof of the lower bound in Theorem 4.7.

4.3 Completion of proofs

In this section, we prove Theorem 1.3, 1.4, and Corollary 1.5.

Proof of Theorem 1.3 This is a simple consequence of combining Lemma 4.6 and The-
orem 4.7. O

Proof of Theorem 1.4 From Lemma 4.6 and Theorem 4.7, we see that the left-hand
side of (1.6) is

o1 (n)?
> C
NV — A
for some constant ¢y > 0 depending only on N. If n = p™, then 0| (n) = pn:_ll_l <
2p™ = 2n, which implies that

Vf_mwz AN

N Ani 2 .
O

Proof of Corollary 1.5 We first note that from [10, (61)] that for n = p™,

6 (n,d
Te T, (k, Ny — By 2

< 2m?|Bf 1D (1} - thp) -

By (4.3) and Young’s inequality 2x2 4+ 2y2 > (x + y)?,

T (k, N)* — | By | — =

NG
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2+0<n—1).

k—1
Tr 7, (k, N)* — ——¢ (N) ———
> |Tr 7, (k, N) TRAR N

Now from Theorem 1.4, we have

2 1
Z ¢< )m4|B;:,N|2D (MEn: 1p)” >N 02, (413)

ZkeZZ ¢ (kT) k>0,ke2Z

where K = A./n for some fixed sufficiently large A. Suppose in order to obtain a
contradiction that

1
D (- 1p) =0 <]—> (4.14)

k2 (log k)?
Then from (4.13), we have

I”ll s ¢( >m4|B* |2D M* o 2
Zkezz¢(l‘7) Z SN D (WE s )

k>0,ke2Z

1 k—1 k
(b B (R
K k>0,k€2Z K (10g k)

However,
k—1 k K
> ¢< >m4 c<mt—— <n
iy K (logk) (log K)
contradicting the assumption (4.14). O

5 Appendix: by Simon Marshall

The purpose of this appendix is to illustrate the geometric origin of the transition
behavior of the J-Bessel function, by recalling the derivation of the Petersson trace
formula as a relative trace formula following [21]. Let G = PSL> (R), and ' =
PSL, (Z). Let k > 2 be even, and define f € C* (G) by

flg) = ! 2i)* _(a b>
P T Chrer@rant $T\e a)

This is the L?-normalized matrix coefficient of the lowest weight vector in the weight
k discrete series [21, Section 3.1]. We form the function

Kr(.y)=)_f (X‘lyy)

yell
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on (I'\G)?. The Petersson trace formula can be proved by integrating K- (x, y) against
characters over two horocycles on I'\ G, and comparing the geometric and spectral
expansions of K. More precisely, if m, n > 1 and we define

o, = (k/47m 1>’

and likewise for o;,, then the integral we wish to expand is

1 pl
//Kr((l T)Un,(l {>Um>e(—nx+my)dxdy.
o Jo

Note that the heights we have chosen for our horocycles are optimal for picking up
the nth and mth Fourier coefficients on the spectral side.
We shall analyze the geometric side of this integral, which is

1 ,l
/ / Z ! <Jn_1 <1 1x> 14 <1 )1]> Um) e (—nx +my)dxdy.
0 JO yer
We break the sum over y into double cosets NnN, which gives
e (1 =x\ (1
Z / / Z f (Gn ( 1 ) 14 ( 1> Um) e (—nx +my)dxdy.
neN\[/N 0 70 yengn

The contribution from the identity coset is

bt (1 —x 1y dxd
/O/OZf o, 1 y 1 o | e(—nx +my)dxdy.

This vanishes unless m = n, in which case it is

dan [ 1 x
& _oof(( 1))‘”’

i.e., the integral of f over the horocycle of height 1. If n 7~ 1, there is no repetition
among the elements n1yn;, and so we may unfold the two integrals to obtain

I, = /OO /oo f (Un—l (1 _1x> n (1 }1]> orm) e(—nx +my)dxdy. (5.1

This integral has a simple geometric meaning, as the integral of the kernel
Kx,y) =f (x_ly) against characters over the two horocycles No,, and nNoy,.

. a b . . .
If we write n = (c ) with ¢ > 0, then ¢ corresponds to the index of summation

d
on the geometric side of the Petersson formula. Moreover, the ranges ¢ < 4w /mn/k,
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c = 4w /mn/k, and ¢ > 4 /mn/k correspond to the oscillation, transition, and
decay range of the J-Bessel function in the following way. We shall use the fact that
the kernel K concentrates near the diagonal in H? x H?. If ¢ < 47 /mn /k, then the
two horocycles intersect transversally. The integrand is roughly supported on two balls

of radius k~ 2 and has magnitude k, and we have I, ~ 1 as expected. If ¢ > 47 /mn/k
then the horocycles do not intersect, and I;; <y k=N . The case ¢ = 4w /mn/k is
where the horocycles are tangent, and so the integral is roughly supported on a ball of

radius k. One might expect I, ~ k? from this, but in fact it is of size ks. As we
shall see below, the point is that the phase in (5.1) has a cubic degeneracy, and this
(rather than the support) determines the size of I,.

We now explicate the relation between /,, and the geometric side of the Petersson
formula, and analyze the phase of the integral in the transition range. Writing n =

<i Z) with ¢ > 0, the double coset NnN is determined by ¢ and the residue class

of a mod c¢. Moreover, we have

a b\ (1 ajc —1/c\ (1 dJc
cd )™ 1 ¢ 1)
Changing variable in x and y by a translation, we have

I, =e(—(na+md)/c)

X /_Z /—Zf (Unl (1 _1x> (C _1/c> (1 1y) 0m> e (—=nx +my)dxdy.

Conjugating the matrices o, and o, though to the middle and changing variable gives

2
177 =é€ (— (na +md) /C) m
FIAC D (e

If we define

o= [0 TN e

then the contribution from all 5 with a given value of ¢ is

2

(47:;—2’””5 (m,n,c)A (kc/4n’«/mn, k) .

In [21, Prop. 3.6], Knightly and Li calculate

1
e kikam k=1

k2
At k)= mjk_l (k/t) ~ TJk—l (k/r),
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which gives the required appearance of J;_; on the geometric side.

One again sees the geometric meaning of A (¢, k). It is an integral of K (x, y)
against characters over a horocycle of height 1, and a horocycle corresponding to the
point 0 € 9H? and whose highest point is at i /2. One therefore expects a transition
of A(t,k) at t = 1, and this corresponds to ¢ = 4m/mn/k as claimed above. We
now write A (1, k) as an oscillatory integral (with non-imaginary phase function), and
examine its critical point. Using our formula for f gives

AC D=0 )
z%ik<1+ 2 (y;x))

k—1 —
o ikexp<—klog<1~|— > +i (yzx)>>.

Computing the Taylor expansion of log (1 + 3 +i @) gives

log<1+7+ (y;x))

Cxy = x) 1 -0 xy(—x) . 3 4 4
—7—0—1 2 —2<— 7 +1i 5 )—4z(y—x)2—|—0<x +y)

e+ (-0 xy(—x) 3 4, 4
= — +z< -2 —4(y—x)2>+0<x +5*).

Substituting this into A (1, k) gives

k—1
l'k
A

<+y> xy(y—x)  (y—x)? 4 4
// exp( 3 +lk< 1 + 7 >+k0(x +y) dxdy.

The leading term —k (x + y)? /8inthe phase truncates the integral to the linex+y = 0

Al k) =

atscale k2 , and along this line the leading term in the phase is imaginary with a cubic
degeneracy. This is why one has A (1, k) ~ ko compared to A (¢,k) ~ 1 fort < 1.
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