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1. Introduction

We begin by defining Ramanujan graphs. Suppose k > 3 is a fixed integer, and let
G be a k-regular connected graph with adjacency matrix Ag. Since Ag is symmetric,
all its eigenvalues are real. Furthermore, it is easy to see that k is the largest eigenvalue
of the adjacency matrix Ag. Letting Ag be the second largest eigenvalue, it is a the-
orem of Alon-Boppana [Alo86] that A > 2vk — 1 + o(1), where o(1) goes to zero as
|G| — 0o. We say that G is a Ramanujan graph if A\g < 2v/k — 1. The natural question
that arises is if we can construct an infinite sequence of such Ramanujan graphs. Such
graphs have been constructed by Lubotzky—Pillips—Sarnak [L.PS88], Margulis [Mar8§],
Morgenstern [Mor94], and others. Though the first two constructions are the same and
are p + l-regular, p a prime, those of Morgenstern are g 4+ 1-regular, ¢ any prime power.
Recently, Marcus—Spielman—Srivastava have proved the existence of d-regular bipartite
Ramanujan graphs for arbitrary d [MSS15]; Cohen has shown how to construct such
d-regular graphs in polynomial time [Coh16]. The study of such graphs is intimately con-
nected to deep questions in number theory, and is also of interest to computer scientists.

Lubotzky—Phillips—Sarnak [LPS88], and independently Margulis [Mar88], constructed
the first examples of Ramanujan graphs; they are Cayley graphs of PGLy(Z/NZ) or
PSLy(Z/NZ) with p 4+ 1 explicit generators, for every prime p and natural number N.
We denote them by XP'V. The fact that X?"V is a Ramanujan graph follows from the
Ramanujan bound on the p-th Fourier coefficients of the weight 2 holomorphic mod-
ular forms of level N, hence the naming of Ramanujan graphs. This was proved by
Lubotzky, Phillips, and Sarnak in [LPS88]. Another result of Lubotzky—Phillips—Sarnak
is that the diameter of every k-regular Ramanujan graph G is bounded from above by
2log;,_1 |G| + O(1). As of today, this is still the best known upper bound on the diam-
eter of a Ramanujan graph. Though it was conjectured by Sarnak that the diameter
is bounded from above by (1 + ¢€)log,_; |G| as |G| = oo (see [Sar90, Chapter 3]), the
first author proved that for some infinite families of LPS Ramanujan graphs X7V the
diameter is bigger than 4/3log, | X?"" |+ O(1) (see [Sarl8]).

Let ¢ be a prime power and I, be the finite field with ¢ elements. Morgenstern also
constructed Ramanujan graphs X%9 by considering a suitable quaternion algebra over
F,[t], where g € Fy[t] and ged(g, t(t — 1)) = 1 [Mor94]. For a discussion of the connection
to strong approximation, see the introduction to the authors’ paper [SZ20]. The graph-
theoretic conjecture with which this paper is concerned is the following.
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Conjecture 1.1. The diameter of q + 1-reqular Morgenstern Ramanujan graphs X49 is
bounded from above by

4
(§ + e) log, | X%9] 4+ O.(1),

at least when q is odd and g is irreducible.

Let us assume from now on that the base field F, is of odd characteristic. Consider
the following system of equations

(1)

Fx)=f,

x = A mod g,
where F is a quadratic form in 4 variables over F,[t], f,g € F,[t], and X € F,[t]*. We
say that all the local conditions for the system (1) are satisfied if the system (1) has
solutions over F,[t]/(gh) for any nonzero h € F,[t], in addition to F(x) = f having a
solution over Fy((1/t)). As discussed in the introduction to the authors’ paper [SZ20],
the above conjecture would follow from the following very general conjecture regarding
strong approximation for quadratic forms over F,[t| in 4 variables. Throughout this
paper, the ideal (a,b) of F,[t] generated by polynomials a,b € F,[t] (which is a principal
ideal domain) will be identified with its monic generator.

Conjecture 1.2. Let F' be a quadratic form over Fy[t] in 4 variables and of discriminant
A #0. Let f,g € Fyt] be nonzero polynomials such that (fA,g) =1, and let X € F,[t]*
be a quadruple of polynomials at least one of whose coordinates is relatively prime to
g. Finally, suppose that all local conditions for the system (1) are satisfied. There is a
solution x € Fy[t]* to (1) if deg f > (4 +¢)degg + O r(1).

In fact, to obtain Conjecture 1.1, it suffices to prove the above strong approximation
result for Morgenstern quadratic forms given by

F(x1, 22,03, %4) = mai + 1223 + 0323 + maay,

where ny =1,y = —v, m3 = —(t—1), )4 = v(t—1) and v € F, is not a square. In [SZ20],
we proved Conjecture 1.2 when the number of variables is d > 5. Furthermore, we showed
that for quadratic forms in d = 4 variables, Conjecture 1.2 holds if we strengthen the
condition to deg f > (6+¢) deg g+ O. r(1) (see [SZ20] for details). However, as we saw in
Corollary 1.6 of [SZ20] this implies the weaker upper bound (24 ¢)log;,_; | X?9|+ O.(1)
on the diameter of such graphs. The main purpose of this paper is to show that the
3-bound is a consequence of a twisted Linnik-Selberg conjecture over F,(t) that we
formulate; the way we show this is that the twisted Linnik—Selberg conjecture below
implies Conjecture 1.2 for the Morgenstern quadratic form F.
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Working over function fields is not merely a curiosity; as we will see, in the func-
tion field case, the oscillatory integrals, once a suitable weight function is chosen, can
be computed explicitly for Morgenstern quadratic forms in terms of Kloosterman sums
at the infinite place. This uses the function field stationary phase theorem proved by
the authors in [SZ20]. It turns out that the exponential sums can also be written in
terms of Kloosterman sums at the finite places. Furthermore, these graphs constructed
by Morgenstern provide us with ¢ 4+ 1-regular Ramanujan graphs, where g need not be
a prime, contrary to the Ramanujan graphs constructed by Lubotzky—Phillips—Sarnak,
and independently by Margulis. Most importantly, since the untwisted Linnik—Selberg
conjecture is known to be true over function fields [CPS90] (a consequence of the Ra-
manujan conjecture over function fields proved by Drinfeld), we are hopeful that we
will be able to prove at least a variant of the twisted Linnik—Selberg conjecture and
at least improve upon the best known upper bound on the diameter of such graphs;
see Remark 4. When working over the integers, even if one reduces the optimal strong
approximation theorem in four variables to a twisted Linnik—Selberg over the integers,
there is little hope in saying much about LPS Ramanujan graphs. Indeed, in the inte-
ger case, the Linnik—Selberg conjecture is, as of the writing of this paper, open and is
not a consequence of the Ramanujan conjecture. We now devote some time to precisely
formulating this conjecture.

In order to formulate the twisted Linnik—Selberg conjecture over function fields, we
first define the Kloosterman sums under consideration in this paper. In Subsection 3.2,
we define a nontrivial additive character ¢ = 9o, on Ko = F,((1/t)) that is trivial on
O :=F,[t]. Given nonzero r € [F,[t], we have an additive character

P By t]/(r) = C

given by sending = — v (£). We may extend this to an additive character on the additive
structure of the subring O, of K with denominator relatively prime to r. The extension
we are thinking of here is given by sending x € O, to ¥ (%Odr)

Definition 1.3. Suppose r € F,[t] is nonzero, and suppose m,n € O,. Then we define the
Kloosterman sum associated to r, m,n as follows:

Kl.(m,n) := Z Yy (Mmx 4+ nT),

ze(Fq[t]/(r))*

where T is the multiplicative inverse of  in Fg[t]/(r). At the infinite place, we have the
following definition of the Kloosterman sum. For o € K, define

f\w\oo:ﬂ/} (& +a)de, if ol =12 for some | € Z

0 otherwise,

Kl (¢, ) := {
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where we are integrating on a subset of K, equipped with the Haar measure normalized
such that the unit open ball T in K., has measure 1, |.|o is the norm on K, induced
by the norm |a/b|s = ¢9°8*~4°8% on K, and [ := ¢! throughout this paper.

By Weil’s estimate on the Kloosterman sums, we have square-root cancellation on the
Kloosterman sums. The following is a twisted analogue of the Linnik—Selberg conjecture
positing that sums of Kloosterman sums exhibit an additional square-root cancellation.

Conjecture 1.4 (Twisted Linnik—Selberg conjecture over function fields). Suppose g €
F,[t] is a nonzero polynomial, and let 6 € Fy[t] be relatively prime to g. Then for each
integer T > 0, a € Fy[t], and nonzero a,b € F,[t, g7,

> g2 (ar ) Klo(a,b)| <es [gabls, T

|r|=T
(g9,7)=1, 8|r

for every e > 0. Furthermore, for every e > 0,

Z Pg2 (aril) Kl,(a,b)Klo (v, ab/r?)| <c 5 |gab|iof1+5,
|r|=T

r|l=T
(9,m)=1, é|r

Remark 2. Note that in the above conjecture, it is equivalent to prove the statement by
replacing |r| = T with Ir] < T. Indeed, if we have the latter for every T, then we have the
former by simply subtracting the terms for |r| < T from those with |r| < %. Conversely,
if we assume the former for every T, then the latter follows from the triangle inequality
and the fact that we are summing 7" <, T¢ elements.

Remark 3. As previously mentioned, we remark that the untwisted version of the above
conjecture is known to be true. For example, see [CPS90] for a proof of the Linnik—Selberg
conjecture over function fields. The authors hope to study this twisted Linnik—Selberg
conjecture in the future.

We prove the following in Section 6.
Theorem 1.5. Conjecture 1.4 implies Conjecture 1.2 for the Morgenstern quadratic form

F at least when g is irreducible. In particular, the twisted Linnik—Selberg conjecture
implies that the Morgenstern Ramanujan graphs have diameter at most

4
(§ + 5) log, [ X%9] 4+ Oc(1)
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if the Ramanujan graph is constructed (at least) for irreducible g over Fy of odd charac-
teristic.

We briefly discuss the history behind the proof. Versions of the circle method, as
developed over the integers by Heath-Brown [HB96] and later over function fields by
Browning and Vishe [BV15], were successfully applied by the first author to prove opti-
mal strong approximation results for quadratic forms in at least five variables over the
integers [Sarl9] and later joint with the second author over F[¢] [SZ20]. These results
were achieved with suitable choices of weight functions and delicate divisions of the cir-
cles in the two settings. A novelty of the paper [SZ20] was the development of a function
field version of the stationary phase theorem that was essential for our calculations there
(and here in this paper). That being said, in the case of quadratic forms in four variables
(both over the integers and over F,[t]), which is the case of interest for applications to
the covering exponent of S? and Ramanujan graphs, the results there are suboptimal. It
had been observed in [Sar19, Remark 6.8] that if a certain cancellation in a sum involving
exponential sums and oscillatory integrals is true, then optimal strong approximation in
the case of four variables would also follow. It was the insight of Browning—Kumaras-
vamy—Steiner [BKS19] that for the problem regarding optimal covering exponents of
S3—where the quadratic form is a sum of four squares—the stationary phase theo-
rem can be used to reduce the optimal covering exponent to a twisted Linnik—Selberg
conjecture over the integers. We also refer the reader to the work of Steiner [Stel9)]
on this integral twisted Linnik—Selberg conjecture; though that paper lead to some in-
sights regarding the limitations of the Kuznetsov trace formula for this covering exponent
problem, the desired results were not obtained, unfortunately. In the case of Morgenstern
Ramanujan graphs, there are two main differences with the case of the covering expo-
nent problem. Firstly, as mentioned above, the stationary phase theorem in the setting
of function fields had to be developed by the authors in [SZ20] and applied successfully
to the computation of the oscillatory integrals in this paper. Secondly, in addition to the
infinite place, the finite places also play a role, complicating the precise computation of
the exponential sums under consideration. It is in the Morgenstern case where we are
able to relate the exponential sums and oscillatory integrals to Kloosterman sums; for a
general quadratic form in four variables, the computations are much more complicated
and cannot be written simply in terms of Kloosterman sums. Furthermore, most of the
main computations in [SZ20] were done using techniques different from those over the
integers; those techniques over function fields are also used in this paper.

Remark 4. Though the twisted Linnik—Selberg Conjecture 1.4 would prove the desired
Conjecture 1.2, in Conjecture 1.4 any power |g|?*¢ with 0 < 6 < 1/2 would allow us to
weaken the deg f > (6 +¢) deg g + O (1) condition, as will be clear from the proof of the
theorem above in Section 6. In turn, this would allow us to decrease the upper bound
given for the Morgenstern Ramanujan graphs.
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We also prove the following theorem stating that the coefficient % cannot be improved
upon; see Section 2 for a proof.

Theorem 1.6. Suppose that ¢ =3 mod 4. There exist infinitely many g € F,[t] such that
the Morgenstern Ramanujan graph X 99 is non-bipartite (or bipartite) and

. 4
diam(X99) > 3 log, | X%+ O(1),
where O(1) is an absolute constant.

This also gives us a new family of ¢+ 1-regular non-bipartite (or bipartite) Ramanujan
graphs with large diameter and with ¢ = 3 mod 4 any prime power.

2. Lower bound on the diameter

In this section, we prove Theorem 1.6. Our argument is similar to the previous argu-
ment of the first author in [Sarl8, Theorem 1.2].

Proof. Since ¢ = 3 mod 4, —1 is a quadratic non-residue in F,, and the Morgenstern
quadratic form for v = —1 is

F(x17x27x37x4) = l’? —I—x% - (t - ].)(.’E% + x?l)

Let g(t) € Fy[t] be any irreducible polynomial relatively prime to ¢(t — 1) such that ¢
is a quadratic non-residue in the finite field F acecs) := F[t]/(g), and —1 is a quadratic
residue in [Fyaco(s), (Which means deg(g) is even). Then it follows from the work of Mor-
genstern that X9 is isomorphic to the Cayley graph of PGLa(IF acs(s)) generated by
q+ 1 generators. The identification is given by the following map sending the quaternion

T — Tot T3 — mz’]

Ty + 1T + jxs + kxy — . )
' B ! [(tl)($3+x4l) x1 + @i

where 7 is a choice of v/—1 in queg(g). Moreover the quadratic residue of the determinant
gives a bipartite structure on X%9. Let [ := [(1) (1)} € X99 and W := [(1) 01] € X9,

We show that

dist(I, W) >

L W~

log, |X%9| + O(1).

Suppose that there exists a path of minimal length & from I to W. Then, by [Mor94,
Theorem 4.5] there exists an integral solution u := (us,...,us) € Fy[t]* to

22 pxd— (t—1) (a2 +22) =",
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where g| ged(u1,us3, us), ged(g, uz) = 1 and t—1| ged(ug —1, ug). This implies that u2 = ¢
mod ¢2. Here, we are using that g is irreducible and relatively prime to ¢, and so g cannot
divide both +t". Since t is a quadratic non-residue mod ¢ and t" is a square mod g, h
is even. Suppose that h = 2. If [ > 2deg(g) then

. 4
dist(I,W) = h > 4deg(g) = 3 log, | X%9] 4+ O(1).
So, we suppose that I < 2deg(g). We have u3 = t" = mod g2. This implies uy =
+#! mod g2. We write uy = ag?+t! for some a € F,[t]. For a # 0, deg(ag?£t') > 2deg(g),
and we have

t2l

21 = deg(F(u)) > 2deg(uy) = 2deg(ag® +t') > 4deg(g) > 21,

because —1 is a non-square residue modulo ¢. This is a contradiction. So a = 0, and this
implies u; = 0, which is a contradiction since ¢ — 1|u; — 1. This proves Theorem 1.6 in
the bipartite cases.

Next, we give an infinite family of non-bipartite Morgenstern Ramanujan graphs with
the same lower bound on their diameter. Let r € F,[t] be any irreducible polynomial
relatively prime to t(t — 1) and such that ¢ and —1 are quadratic residues in the finite
field Fjacery := F[t]/(r). Consider the Morgenstern Ramanujan graph X +1/4r 1
follows from the work of Morgenstern that X 0. +1/4)r g isomorphic to the Cayley
graph of PSLy (F[t]/((t* 4+ 1/4)r)) generated by g + 1 generators, and X+ g 5

non-bipartite Ramanujan graph. Let I and W be as before and define I’ := [ (1) 7{] . Let

v/—1 be a square root of —1 in F[t]/((t*> + 1/4)r). Also let W’ := \/—1W € PSLy. We
show that

max(dist(7, I'), dist(I, W')) > = log, |X @@ +1/97 4 O(1).

[SSRFEN

Assume to the contrary that max(dist(Z,I’),dist(I,W’)) < 4deg(r) =
3 log, | X197 L O(1). Since dist(I,I') < 4deg(r), by [Mor94, Theorem 4.5 it
follows that there exists an integral solution

ai +a3— (t—1)(a3 +aj) =t

for some hy < 4deg(r), where r|ged(az, as,aq), (t — 1) ged(a; — 1,a2), and at least one
of az or a4 is non-zero. This implies a% = t" mod r2. We consider two cases: hy is
even or h; is odd. First, suppose that h; = 2I;. Then a; = #+t"* mod 2. This implies
a1 = c19? £ th for some ¢; € F,[t]. Suppose that ¢; # 0. Then deg(a;) > 2deg(r), and
we have

h = deg(a% + a% —(t— 1)(a§ + ai)) > 2deg(ay) > 4 deg(r).
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This is a contradiction. Hence, ¢; = 0. This implies a3 = a4 = 0, which is also a
contradiction. Therefore, hy = 2[; + 1 is odd.

Similarly, since dist(I,W’) < 4deg(r) by assumption, it follows that there exists an
integral solution

b2+ b2 — (t —1)(b2 4+ b3) =t

for some hy < 4deg(r), where r|ged(by,bs,bs), (t — 1)|ged(by — 1,b2). By a similar
argument it follows that hy = 23+ 1 is odd and we have b3 = t"2 mod r2. Therefore, we
have

a; =1 mod (t — 1), and a? = t*T! mod 72, and I; < 2deg(r),
by =0 mod (t — 1), and b2 = t?>*! mod 2, and Iy < 2deg(r).

Without loss of generality, suppose that [y > ls. Then, we have
a1 = :i:tll_lzbg mod 72.
Note that deg(a;) < I; +1/2 < 2deg(r) and deg(th~2by) < I; + 1/2 < 2deg(r). Hence,
a; = :I:tll*l"‘bg.

i . . a3 =1 mod (¢t —1), .
This contradicts with This completes the proof of our theo-
by =0 mod (t —1).

rem. O
3. Recollections on the delta method

The primary purpose of this section is to collect some of the facts related to the delta
method over F,[t]. This section also serves the purpose of setting the notation for the rest
of the paper. For details, the reader may consult Section 2 of the authors’ paper [SZ20].

Roughly, the delta method is a procedure by which one rewrites the delta function over
integral points inside a region as a weighted sum of characters. In this section, we define
a weighted sum N (w, A) counting the number of integral solutions to the system (1).

3.1. Notation

As in the authors’ paper [SZ20], we let K = F,(t) and let O = F,[t] be its ring of
integers. We denote the prime at infinity ¢! by co. We may equip K with the norm at
infinity given by

|Cl/b|<x> = qdcg a—dcgb.
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Completing K with respect to this norm gives K. Henceforth, we drop the subscript co
from |.|oo and write |.| for simplicity. We can also extend the norm to higher dimensions:
for every d, the natural norm on K2 is given by |a| := max; |a;|. These norms equip
K¢ with the metric topology.

Note that we may identify K., with the field

(1)) = Zaz : for a; € Fy and some N € Z
i<N

The (open) unit ball in this topological space is

T={a€Ky:l|of<1}= Zaiti:foraiqu
i<—1

3.2. Characters

Let e, : F; — C* be the nontrivial additive character given by sending a € F, to
eq(a) = exp(2mitr(a)/p), where p := char F, and tr : F; — F), is the trace map. From
this, we obtain the non-trivial additive character ¢ : Ko, — C* given by 9(a) = e4(a—1)
for any a = ),y a;t’* in K. By construction, 1|0 is trivial. Furthermore, for any
v € K, the map o — Y(ary) is also an additive character on K. A basic lemma that
will be useful in our computations is the following.

Lemma 3.1 (Kubota, Lemma 7 of [Kub7/]).

. AA
Z:sz{M £l < B,

beO_ 0, otherwise,
|b|<N

for any v € Ky and any integer N > 0, where (7)) is the part of v with all degrees
negative.

We also have the following

Lemma 3.2 (Kubota, Lemma 1(f) of [Kub7}]). LetY € Z and v € Ko,. Then

!/wmwmz{? ifll <V,

R 0, otherwise.
lal<Y

In particular, if we set Y = 0, then we obtain the following expression for the delta
function on O:
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3() = [ v(az)da.
T

1 ifz=0,
where 6(z) = n
0 otherwise.

3.8. The delta function

The idea now is to decompose T into a disjoint union of balls (with no minor arcs)
which is the analogue of Kloosterman’s version of the circle method in this function field
setting. This is done via the following lemma of Browning and Vishe [BV15, Lemma 4.2].

Lemma 3.3. For any QQ > 1 we have a disjoint union

T = |_| |_| {aGT:|r0¢fa|<@*1}.

reO_ acO
[r|<Q la|<|r|
7 monic (0«,7"):

The following follows from Lemma 3.3; see [SZ20, Lemma 2.4].

Lemma 3.4. Let Q > 1 and n € O. We have

= 3T () () g
> i

7 monic

where we henceforth put Z* =Y aco , and h is only defined for x # 0 as:

laj<|r| a monic

la|<|r|

(a,r)=1
oy~ {1 <le
’ 0 otherwise.

Moreover,

éh (tLQ’t?LQ) = / ¥ (an) do.

laf<|r[~1Q~T
3.4. Smooth sum N(w, \)
Let

0 otherwise.

; 1/2
W) = {1 if x| < |£72,
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Note that

1if [t| < R,

0 otherwise,

w(gt+ A) = {

where R := |deg(f)/2—deg(g)+1]. Assume that x € O satisfies the conditions F(x) = f
and x = A mod g. We uniquely write x = gt + X, where t € O% and A = (\y,..., \q) for
\; of degree strictly less than that of g. Define

f—FX)
F

k= (6)
If F(x) = f, then g?F(t) + 2gAT At = f — F(X) which implies that g|2A” At — k. Then,
F(t) + §(2ATAt — k) = 0. We also define

Glt) = F(g“;;‘)_f — F(t) + $(2>\TAt — k).

Finally, we define

= w(gt + N)3(G(t)),

where t € O Note that N(w, ) is the weighted number of x € O satisfying the
conditions F(x) = f and x = A mod g. We apply the delta expansion in (5) to 6(G(t))
and follow the computations in [SZ20, Section 2.4], and obtain

Z Z lgr|~ dSqr Iy (c), (7)

| re0_ ce0d
Ir|<Q

7 monic

N(w,\) =

where I, -(c) and S, ,(c) are defined by

I,.(c) = / h <t% C;(;)) w(gt + A <<Z:>) dt, 8)
K&
and
=3 3 S,.(atc) (9)
iggisn
with

Sgr(a,l,c):= p

S ((a +1r0)(2AT Ab — k) + agF (b) — (c, b>> | (10)

be(0/(gr))?



56 N.T. Sardari, M. Zargar / Journal of Number Theory 217 (2020) 44—77

We henceforth assume that r is always monic without saying so. In the next two sections,
we give explicit formulas for Sy, and I, when our quadratic form is the Morgenstern
quadratic form.

4. The oscillatory integrals I, ,.(c)

In this section, we give explicit formulas for the oscillatory integrals I, .(c) in terms
of the Kloosterman sums at infinity. Suppose that F(t ) = mtz is the Morgenstern
quadratic form and F*(c) := >, ¢2/n; i
assume that Q = R+ 1.

Proposition 4.1. Suppose that |r| < @ For the Morgenstern quadratic form, we have

, if k> Q/R,
0, K= %‘,deg(f)is even,
and Qg% < |r| < Q,
B ) )
' Iy,r(0), ifn=L,
max (|es], [ea]) > max (Jea, [ea]),
and deg(f)is even, |r| < Qq~3,
—Q2|g|2|7|2|F*(c)| " *Kls (w, k41:2(° ) , otherwise.

We give the proof of Proposition 4.1 at the end of this section. We proceed by citing
some general results from [SZ20] that are not specific to the Morgenstern quadratic form.
In particular, we do not restrict the number of variables to d = 4 for the moment. Recall
that

Gy = FWEEN =S py é(QATAt k),

g2
where k = %(’\) We have

b= [ (5 S urne (S0 [ () a

Kd, t|<R
IG(t)]<Qlr]

We cite [SZ20, Lemma 5.5].

Lemma 4.2. Let Q and R be as above, and suppose that [t| < R. Then |G(t)| < Q|r | is
equivalent to |F(t) — k/g| < Q|r|. Moreover, if |G(t)| < Q|r|, then |G(t + ¢)| < Q|r| for
every ¢ € K&, where |¢| < min(|r|, R).
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We cite [SZ20, Lemma 5.6].

Lemma 4.3. Suppose that & > Q/R and |r| < Q. Then, I;r(c)=0.

Lemma 4.4. Suppose that k = =, deg(f)is even, and Qq3 < Ir| < Q. Then, I;r(c)=0.

DO>|

Proof. Since deg(f) is even, R = dcg deg( J+1land Q = dcg —deg(g) + 2. Hence,
Q|r| > |k/g|, and by Lemma 4.3, \G( )| < Q|r| is equivalent to

|F(t)] < Qlrl.
Since Qg3 < Ir] < Q and [t] < R,
IF(t)| < 2R —1 < Q|r].
So, the inequality |G(t)| < Q|r| is satisfied automatically, and we have

Ig,r(c>=% / w(ﬁﬁ)mo,

[t|<R

F This completes the proof of our lemma. O

where we used kK =

Lemma 4.5. Suppose that either

(])H<
(2)5—

:u>\ 3 :u>|

ax (|es, [ea]) > max (|e1, |ez]), deg(f)is even, and |r| < Qq~*,

then I, .(c) = 1,,(0).

Proof. Suppose (1). Since max;(|¢;|) < % and [t| < R, ¢ (“:ﬂt)) = 1. Hence, we have

I,.(c) = / %dtzlg,r(o).

[t| <R
IG(t)|<Qlr|

Suppose (2) and that Q|r| < |k/g|. By Lemma 4.2,
|F(t) - k/g] < Qlr| < [k/g].

Hence, the top degree of F(t) and k/g are the same. Since deg(f) is even, deg(k/g) =
deg(f/g?) is even. The top degree of F(t) is even as well. Hence, max (|t3], |ta]) <
max (|t1], |t2]). Hence, | (c,t) | < |c||t|, and
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t
'l/) (<C, >> — 17
gr
which implies I, .(c) = I,(0). Finally, suppose (2) and that Q|r| > |k/g|. This implies
that |r| = Qg¢~3. By Lemma 4.3, |G(t)| < Q|r| is equivalent to |F(t)| < Q|r| = R?*q~!.
We have

2 deg(max (|ts], [ta])) + 1 < deg(F(t)).

Hence,

deg(max (|t3], [t4])) < <R-2.

deg(F(t)) — 1
2
Therefore, 1 <<(;t>) = 1. This implies I, .(c) = I,,(0). O
4.1. Stationary phase theorem over function fields
In [SZ20, Proposition 4.5], we proved a version of the stationary phase theorem in the
function fields setting. We proceed by defining some new notations and cite a special

case of [SZ20, Proposition 4.5]. Let h € K, and define

min(|h|71/2, 1) if ord(h) is even,

G(h) := { |h|=%en if ord(h) > 1 and is odd, (12)
1 otherwise,
where €5, 1= % and G(h) == 3, cF, eq(apz?) is the gauss sum associated to aj, the

top degree coefficient of h. We cite [SZ20, Lemma 4.6].

Lemma 4.6. For every f € Ko, we have
[otratiae=g(s)
T

For a € K and a € Z, define
waai= [ o
‘Iloo—a

We write o = 2900/ (1+-&) and = = t%2/(1+7) for unique &, # € T and o/, 2’ € F,. Note
that for b = 0, we have By (¢, a, @) = Kl (¢, o). Let Kl(a,, Fy) := er]F* (¢ +x).
We cite [SZ20, Lemma 5.8].
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Lemma 4.7. We have

(¢—1)a if max(a+b,a) < -1, and b# 0,

Byo(Y,a,0) = ¢ —a if max(a +b,a) =—1, and b # 0,
0 if max(a+b,a) > —1, and b # 0.
(¢g—1a ifa < —1,
aKl(a/,Fy) if a =—1,

Klo(¥,a) =< _
¥,a) Ay oy 1/)(2t“a:’(1 + d)l/z)g(%"t“) if ' is a quadratic residue,

0 if o is not a quadratic residue.

Proof of Proposition 4.1. In this proof, we assume that we are working with the Mor-
genstern quadratic form. By Lemma 4.3, we have I, ,(c) = 0 for k > Q/R and |r| < Q.
By assuming the conditions of Lemma 4.5, it follows that I, ,(c) = I, ,(0). Hence, the
remaining cases correspond to

(1) <k or
= %, and max (|cs|, |ea]) < max (|e1], |e2]) or deg(f) is odd,

and we proceed to conclude the proposition in these two cases.
By Lemma 4.2, |G(t)| < Q|r| is equivalent to |F(t) — k/g| < Q|r| for |t| < R. By
Lemma 3.2, we have

L, if [F(t) — k/g| < Qlrl,

/ e k/g)) { 0 otherwis;.

We replace the above integral for detecting |F(t) — k/g| < Q|r|. Hence, by (11)

I,.(c) |r// ( T%(F(t)—k/g))dtda.

T |t|<R

Recall that F'(t) =3, nit; 2. We have

©8) 4 O B) ~ kfg) = ’“+1(ZC;‘+O‘Z& )

Hence, I, .(c) = Q Jr ¢(;7%§)Ig7r(a,c)da, where

z « itz
grac H / + ZQz))dti.
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The phase function has a critical point at ¢; = ;;;7 —. This critical point is inside the
domain |t;| < R, if |a| > ;, where r; := | ‘ﬁln‘Q'R Given a € T, we partition the indices
into: '

CR:={1<i<4:l|a| >k},
NCR:={1<i<4:|a| <k;i}.

For i € NCR, we change the variables to v; = t; + ‘Z‘Tg t2. Note that v; is an analytic
8711

£(0) = 1. Hence, by [SZ20, Proposition 4.2], v; is a bijection
from |t;] < R to v; < R For i € CR, we change the variables to w; = ¢; + . By
[SZ20, Section 4], we have

H / (Cﬂz)dvzx H W( élij%;]ja) / 1/1<ft7gw$)dwi.

1ENCR 1€CR ~
\v7|<R Jw;|<R

map in terms of ¢; and

29771

By Lemma 3.2, Lemma 4.6, we have

2} lesl - Irl \
gr 0, otherv&nse7

lvi|<R

o\ o e (ot
/ w(rtQ“’l’)dwle( ) )

|w1,|<1§

Therefore,

tQ 7;2 itQR
Iy (o) = R H(mma%w+55<|a<1w< f >g(‘”7 )) (13)

bl 4rg?n;a rt@

By our assumption, we have %‘ <K< @/1:2 Note that @ = R+ 1 and gk > max k; > k.
This implies that I, .(a,c) = 0 for every |a] < k. For 1 > |a| > Kk > %, we have

4
= t%c;? an;t*f
Iy, =R* I | O — - - .
ool i=1 wlel<1¥ 47“9277ia)g< rtQ )

Hence,
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By (12) and considering the sign of the Gauss sums, we have for the Morgenstern
quadratic form above the equality

—1/2
am;t*# LR?|n;
1:[9( pTo ) Hmm 1, ( ,

r|Q

a quantity dependent not on « itself, but on the norm of « which is 1. Hence,

lA}Af2|77-| e ak t9F*(c)

7‘ 7 1, /\z — - d ;

g, H<lm1n ( ‘T|Q > / w<rth)1/)( 4T9204 ) (e’
k<l<1 ? la|=T
where F*(c) = )",
Il

(1) R < K,
(2) k= %, and max (|cs|, |ea]) < max (|er], |e2]) or deg(f) is odd,
we have

Let a,b € Z where

B k . (kF*(c)
a = l + deg(’rg?)’ and 2a + b = deg (W) .

Since 2a + b > —2, either b = 0 or max(a,a + b) > —1. By Lemma 4.7, we have

—ak t9F*(c) B rgt kE . kF*(c)
[ o e = 1 (1 ()t )

|#|K100 (1/}’ k4€;£(;3:)) lf 2l = deg(ﬁQF*(c))7

0 otherwise.

Note that if 2] = deg(%), then [ > ki, and we have

Lo (e) = — Qg PIr P1F* (c) Kl (w, R (c >) .
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5. The exponential sums S .(c)

In this section, we explicitly compute our exponential sums. Though our computations
can be generalized to all non-degenerate quadratic forms, we focus here on the special
case of the Morgenstern quadratic form

F(x1, 22,33, %4) 1= m&] + 10225 + 1373 + naz]

over F,[t], where 1 =1, 0 = —v, 3 = —(t — 1), qa = v(t — 1) and v € F is not a
square. Its dual quadratic form F* is obtained by inverting the coefficients 7;. Focusing
on the Morgenstern quadratic form is no restriction in our case since we are primarily
interested in proving upper bounds for the diameters of Morgenstern Ramanujan graphs.
Throughout this section, we let A = diag(n1,...,n4) be the diagonal matrix associated
to this quadratic form. Also, by Lemma 3.2 of [SZ20], Sy »(c) = 0 except possibly when
¢ = 23(c)AX mod g for some 3(c) € O

Proposition 5.1. For the Morgenstern quadratic form above and g € Fy[t] not divisible by
t — 1, we have that when ged(r,t — 1)|cs, ca, then Sy ,(c) is equal to

* _mrB(e)U=FA) iy
|g||2(|ng( 1)|m,./(,,.,t_1))2w< e ,C>>¢(<'\’C>)

(g/m)? g°r
S 1—
Z w ( sg/mﬁ( )> Klmzr <g/mf —mrs, 4g/m3F*(c)> ’
s€O/(m)
where m := (g,7°°). If ged(r,t — 1) { ¢3,ca, then Sy .(c) = 0. Note that when c is such
that |c| < |gr| (when v # 1 and k < Q/R = q, for example), then ¥ <<g>‘2—';>> =1.

Proof. Recall that, the exponential sums for quadratic forms in d = 4 variables are

* a+r TAb — a —(c
9= Y Y% ¢<( + 70227 Ab — k) + agF(b) <,b>>

qar
IKEIE(ID ||a|<\r| be(0/(gr))*

Sy oy w((a+r€)(2)\TAb—k+gF(b))—<c,b>).

qgr
¥ ele(lo ||a|<\r| be(0/(gr))*

Summation over £ is zero except possibly when g\QATAb — k, and so we may rewrite the

YOO <a(2,\TAb— k+ gF(b)) — <c,b>> |

r
lal<lgr| be(O/(gr))* I
(am)=1 g|2AT Ab—k

latter as
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Let m := (g,r*). Using this expression for S, ,(c), we may rewrite the exponential
sum in terms of m as follows. First note that gr = £ - (mr). Additionally, (a,r) = 1
is equivalent to (a,mr) = 1. Also, since (m, Z) = 1, the condition g2ATAb — k is

equivalent to the pair of conditions £ 1227 Ab — k and m|2AT Ab — k. Therefore, we have

Sme= Y% w(a(Q)\ Ab—k+gF(b))—<c,b>>

r
lal<]gr| be(O/(gr))* I
(@,7)=1 g|2AT Ab—k

-1 X >

Jal<| & (mr)| be(O/ (£ -(mr))*

(a,mr)=1 2227 Ab—k
S (a(QATAb —k+gF (b)) — <c,b>> y (s(2)\TAb - k))
gr m

ls|<|m|
_1 S %
Iml

|sl<Iml |a|<|-&-(mr)]
(a,mr)=1
(a+ £2) (2ATAb — k + gF(b)) — (c,b)
2. o
be(0/ (& -(mn))*

L1227 Ab—k

_ a(2AT Ab — k + gF (b)) — (c, b>>
R I e 2 |

lal <] £ -(mr)| be(O/ (L (

m

(a,mr)=1 21227 Ab—k

Since Z and mr are coprime, we may write
_ g
a = (mr)a; + —as
m
and
_ g
b= (mr)b1 + =bo,
m

where a; ranges modulo £, ay modulo mr coprime to mr, b; modulo £, by modulo
m m

mr. Furthermore, we also have the condition that %\2)\TAb — k which is equivalent to
the condition that £ |2mrA” Ab; — k. Then

- (mr)

. (a(2)\TAb —k+gF(b)) — (c, b>>

_y (al (2T A(mrby)

k) — (mrc, mrb1>>

9
m
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a2(2AT A(&b2) — k + gF (£b2)) — (g/me, (g/m)b2 )

mr

e

Since ged(mr, Z) = 1, when summing over b; and by we may replace mrb; and Zbs
with by and bs, respectively. Consequently, we have

T
S,0(c) = Z Z y <a1(2)\ A(by)

la1] <] & b1e(O/(g/m))*
21227 Aby —k

3D DN DR

laz|<|mr| by(O/(mmr))*

k) — (e, b1)>

9
m

as(2AT A(bs) — k + gF(bs)) — <g/—mc, b2>

mr

It is easy to see that the first summation is equal to

2] (o)

As a result,
gt (—mTB(c)k
sur) = ' (T )
. as(2AT A(by) — k + gF (by)) — (g/mc, by
laz|<|mr| boe(O/(mr))*
R —mrfB(c)k * —ak
B ’E‘ v ( g/m )Q§T¢ (W)

, ﬁ Z ” (ganjb2 + (2am;\; — g/—mcj)b> .

. mr
Jj=1beO/(mr)

Let us denote the double summation in this expression by S (temporarily neglect the
leading factor). In order to complete our computation of a closed form for S, we use the
following easy lemma whose proof we leave to the reader.

Lemma 5.2. Suppose a,b,c € F,[t]. If gcd(a, c) 1 b, then

2
()

z€0/(c)

Note that ged(mr,gan;) = mged(r,n;). Using Lemma 5.2, we should have
mged(r,n;)|2an;A; — g/me; for every j in order to have a nonzero value. Since A
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and g are relatively prime, m and ged(r,7;) are also relatively prime. Consequently, the
condition that mged(r, n;)|2an;A; — g/mc; for each j can be rewritten as the pair of

conditions m|2aAX — g/mc and ged(r, n)|c (that is, for every j, ged(r,n;)|c;); otherwise,
we have a zero value for S, (c). Let us assume for the rest of this section that ged(r, n)|c.
In this case,

c

"4 L ¥
n g Ceeaptioeimey)

* —ak\ + ia( 5
S=m* > @ <—) I1 v | m
la]<|mr| mr J=1bcO/(r) r/(r, 77j)
m|2aAX—g/mc

b

Completing the square and using the computation of Gauss sums, we may rewrite

j - )
(2a(r,nj))‘1 Q/m(r, j))
m

T/ (Ta 77])

(g/m)aln;/(r. m))) .
/() R

9 M5 2
m Oy b

>

beO/(r)

()|

i n_aTm i\ 2
20ty M g/mmnj))

g myat ) ( -

v "7 ) !

where ((g/m)a(nj/(nnj))

r/(rmn;)

) is the Jacobi symbol. Consequently, S is equal to

4

H‘ng(T7nj)|TT/(r,nj) |m|*
4
* (g/m)a(n;/(r,n;)) —ak
|'1|<Z|mr| ng ( r/(r;n;) ) v < mr >

m|2aAX—g/mc

N\ oo S 2
205y N g/m(r,np)

S, Ga/malm T nm( =

¢ 7o)

So far, all our computations were valid for general quadratic forms. In the rest of this
proof, we restrict to the Morgenstern quadratic form. In this case, we can write S more
explicitly:
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g/m’ (A, c>>

m2r

S <—g/_mfa - %g/—mgF*(c)E>

2
|m‘4 (| ng(Tat - 1)|Tr7—r/(r,t—1)) 1/1 <

m2r
la|<|mr]
m|2aAX—g/mc

where the last equality follows from km + g/mF(X) = g/mf mod m?r. Here, F* is the
dual of F' as before in the computation of the oscillatory integrals. Furthermore, the
condition m|2aAX — g/mc is equivalent to a = g/mf(c) mod m. We deduce that

4 —mrB(c)k gim- (A,
Syr(c) = |g77L| (1 ged(r, t — D)|7er o)) 0 (W) " (W)
. —gimfa—Ygim F*(c)a
e ()
jal<[m?r] e

a=g/mp(c) mod m

2

where we have changed summation over a modulo mr to modulo m*r at the cost of

introducing a factor of ﬁ We may replace the congruence condition by a summation

modulo m and rewrite S, (c) in terms of Kloosterman sums:

g/m m2r

80€) = 1 (Lt = Do)’ 0 (Tt ) <M>
. Z ¥ —sg/mb(c) Kl,,2, Q/—Wf—mTS,lg/—mBF*(c) .
m 4
€0/ (m)

By the Chinese Remainder Theorem,

w<wﬂ(c)k)w<g/—m2 (A,c)) _w<—W6(c>“%“”—m<x,c>>¢(<x,c>)7

g/m m?r (g/m)?

from which the conclusion follows. O
6. Strong approximation and Ramanujan graphs

In this section, we begin by showing how a certain square-root cancellation in an
exponential sum gives us strong approximation for non-degenerate quadratic forms in
four variables over IF,[t]. We then proceed to show that assuming the twisted Linnik-Sel-
berg Conjecture 1.4, we do have the desired square-root cancellation for Morgenstern’s
quadratic forms used in the construction of Ramanujan graphs with even degree (odd q).
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First, let us proceed to estimate the main term contributing to the smooth N(w, A).
The following lemmas are true for quadratic forms in more variables, but we restrict here
tod=4.

Lemma 6.1. Suppose € > 0. With the notation as before with F a non-degenerate
quadratic form in 4 variables over F,[t], and for 1 < |r| < Q'™¢, we have

Ig,r(o) = CF@4

for some non-negative constant Cr and for sufficiently large (depending only on £ and
F) Q. Cr > 0 if the system under consideration is solvable over K,

Proof. It follows from equation (11) that

I,.,(0) = QI / ) / dt.

T |r
lt|<R lgt+A[<|f]"/2
lG®)|<QIr| |F(gt+2)—F|<Qlrl|g|?

Making the substitution x = gt + A gives us the equality

I,.(0) = Q / dx.

I{lgl* _
[x|<IF11/%: P ()~ £1<Qlrllgl?

Write f = aqu, where ay € {1,v,t,vt} is the quadratic residue of f. By Lemma 3.2
and Fubini, we may rewrite this as

~

Iy,-(0) = |rfq|4 / /1/1 <%a> dadx

lx|<|f]*/2 T

|r|g|4/ / < e )d"d“

T |x|<D

- |@|f;| / / ( rg?t@/fég?;))“) o

- |@|§| / / ( rg?tg/?t];/(;; >)“) dxda

where D := 1 4 degu, and the last equality follows from scaling the x coordinate by a
factor of D. Making the substitution 5 = W, we obtain the equality
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he@= 2L [ (60— ag/2)9) axa,

5b T4
1BI< 1o

Note that the integral is equal to

5D ) 2
———vol ({x € T*:|F(x) —ap/t?| < M}) > 0.
Qlrllgl* 2D

Note that @Iillljglz > @6. Applying Lemma 6.2 of [SZ20], we can choose @ large enough

(depending on e and the F') so that the integral over |3| is constant over balls of radii

at least @5. The conclusion follows. O

As in Lemma 6.3 of [SZ20], we can show that for Q1= < |r| < @, the contribution of
the terms in N(w,A) when ¢ = 0 and such 7 is small.

Lemma 6.2.

_ T
S gl THSer (0)]1 Iy (0)] e gIF Q2 TE
Q—=<|r|<Q

Proof. The only difference in the proof of this lemma and that of Lemma 6.3 of [SZ20]
is that the definitions of the oscillatory integrals are different. However, we only need
the same bound

11,,+(0)] <-.p Q*F°

for such 7, which is trivial. The rest of the proof is as before; we also need to use
Proposition 3.1 of [SZ20]. O

We now proceed to show that

Z |9T|74Sg,r(0)

’r':1§|7'|§f

can be written in terms of local densities. Indeed, by Lemma 6.5 of [SZ20], we have the
estimate

ST g8, (0) = lgr| TS (0) + O A (T71/242)

ril<|r|<T

for every € > 0. On the other hand, Lemma 6.6 of [SZ20] shows that

D lgrl ™18y, (0) = [ [ ow > |£17,
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where w ranges over the monic irreducible polynomials in F,[t], and

i | {x mod @"*=(9) : F(x) = f mod @w**"=¥), x = A mod w"=)} \
0w = lim

k—o0 |w|3k

Using the above, estimates, let us take the simple step of showing that conditional on
a square-root cancellation we have optimal strong approximation for any non-degenerate
quadratic form in four variables over F[t]. First, recall from Section 3 that the smooth
sum for quadratic forms of four variables is

N(w,A) = Do D Lol ey (e).

910> |Q2 r€0_ceot
rl<Q

Lemma 6.3. Suppose we have a non-degenerate quadratic form F over Fylt] in d = 4
variables. Additionally, assume that

T 1
ST 3 1gr TS (@) g (e)| e r Q2 HE|gl T
1<|r|<Q e#0

Then Conjecture 1.2 is true for the given quadratic form F.

Proof. Using the assumption, Lemma 4.3, and Lemma 6.2, we have

N A) = — 3 lor 48, ()1, (0) + 0. (QF+]g 3+4).

91Q* =5
Ir|<@*~¢

=C FQ4 for some constant C'r > 0 and sufficiently large

From Lemma 6.1 above, I, ,-(0)
(depending only on € and F') Q. Hence for such Q,

_ CrQ?

410° Z(; 97|~ S,r(0)I,-(0) = B 2(:9 97|~ S,-(0).
re re

lr|<Q'~= Ir|<Q'~¢

From the discussion prior to this lemma, we know that we can express the first sum in
terms of local densities:

Z lgr|~ 4Sgr Haw—i—O( )

reO
Ir|<Q~*

Consequently, the smooth sum is equal to
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N(w,\) = C@?Q (ng ) (@—%-ﬁ-e)) +O0..r (Q\%+e‘g‘—%+e>

CrQ? o
= —ij? HUw + O F <Q%+E\9|_%+E>

_ ey, <1 o, <|f|5@3+5|g|5+6>>

= Q2

oL ( (7))
= Y o (14 0. :
g o= (1 Oer (7=

w

Cr@? <g4+6>“
= . O, .
' (“ F( 7 ))

w

Hence, if | f| > |g|**¢, we have strong approximation. In the third equality, we have used
that the product of the local densities is > |f|7¢. O

Remark 14. In the proof of the main theorem of [SZ20], the only reason we had to have
|f| > |g/°"¢ in the case of four variables was that we used the weaker statement

Do D gl S (@ @) < D0 D 1grl S ()l g (0)]
1<|r|<Q o#0 1<|r|<Q €#0

-5

Cer QG T A (L4 g7 )

proved in Proposition 7.1 of [SZ20]. Indeed, for d = 4, this is weaker than what we ask
above because then 1 + |g|’%+E ~ |g|*/?*¢ and so is not O(1) (in contrast to when
d > 5). The bound we assume in the statement of this lemma is precisely that if we do
not take absolute values we get an extra power saving of | g|1/ 2 when in the case of four
variables.

Remark 15. In light of the previous remark and the proof of the above lemma, any
improvement to the factor |g\1/ 2 in the previous remark would allow us to weaken the
condition deg f > (6 +¢) deg g+ O.(1) that was required for the main theorem of [SZ20]

in the case of non-degenerate quadratic forms in d = 4 variables.

In the rest of this section, we show how the twisted Linnik—Selberg Conjecture 1.4
implies that the above square-root cancellation is true for Morgenstern’s quadratic forms.
This in turn implies Conjecture 1.1 giving the upper bound (% +¢) log, |G| + Oc(1) for
the diameter of g + 1-regular Morgenstern Ramanujan graphs with ¢ odd.

Recall the notations in Section 4. In order to understand the error in the smooth
sum N(w,A) for the Morgenstern quadratic form, we use the explicit formulas for the
oscillatory integrals I, ,(c) and exponential sums derived in the last two sections. Note
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that by Lemma 4.3, I, ,(c) = 0 when |r| < Q and |c| > Q|g|/R. Therefore, it suffices to
study

S S 1Sy n()y(c) = i+ En,

1<[r[<Qo<e|< L2l

where

E; = Z Z |g7”|_4Sg,T(C)Ig7T(C)

0<e<Qlgl/ R 1<r|< Rlelgre=t

and

Brim Y S ol e (@) (),

0<e|<Qlgl/R Rlela™ <jr)<§

Here, m. = 0 if ¢ satisfies max(|cs],|cs4|) > max(|c1], |c2|) and deg f is even; otherwise,
me = 1. In order to obtain the desired bound in the above lemma, it suffices to prove the
desired bound for each of F; and E5 separately. For simplicity, we assume for the rest
of this section that g is an irreducible polynomial in F[t].

We first treat E5. Note that by Proposition 4.1, for R\(\:élilz“ < Irl < @, we have
I;r(c) = I;,(0) or 0. Furthermore, from the definition of I, ,(0), we know that it
depends on [r|, not r itself. Therefore, it makes sense to write I, |,|(0) instead of I, ,(0).

From this discussion, we obtain

Bl< Y S 1L TS Spule)].

0<le|<Qlgl/ R Riela™ <7< Ir|=T

In the following, we will use the following notation: Y. denotes summation over those
c such that S, .(c) # 0 and |c| < |g|. We have the following accompanying lemma.

Lemma 6.4. For every 6 < 0 and every 0 < T < degg, we have

exc

> el <epo T
0<le|<T

Proof. By Lemma 3.2 of [SZ20], we know that such ¢ must be polynomial multiples of AX
modulo g. Since 0 < |c| < |g|, ¢ and « uniquely determine each other. By assumption,
at least one coordinate of A is relatively prime to g, from which the final inequality
follows. O
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Suppose we have for every T > 0,

37 Syale)| <er QFlgl TR, (16)
|r|=T

Then it would follow from this assumption and Lemma 6.4 that

[Es| < > Yo LO)lg T Y Seale)

0<le|<Qlgl/R Rlela™ <7< |r|=T

exc

Ler @4+5|g\6 Z Z T\—H—s

0<e[<Qlgl/ R Blela™ <7<

exc ©|C‘ —1+4e
Lo F Q4+€|g‘6 Z <|g|>
0<le|<Qlgl/R
exc

Ler @3+5|g‘1+6 Z |C|71+5 Ler @7/2+5|g|1/2+5.
0<le|<Qlgl/R

Note that @ and R differ by a factor of ¢q. This is exactly the desired bound on Fs.
Therefore, we have reduced to showing inequality (16) for each integer T' > 0.
By Proposition 5.1, when ged(r,t — 1)|cs, ca, Sq,r(c) is equal to

e UZFN) 5
|g—||42(| ged(r,t — 1|77 (1)) 2 ( ) e <)"c>> (@ <<)"C>>

m (g/m)?

Z " ( sg/mB(c )) Kl, >, (g/—mf p— %g/—mdF*(c)) ,

s€O/(m)

where m := (g,7*°). If ged(r,t—1) { ¢3, ca, then Sy (c) = 0. Since g is irreducible, m =1
or m = g. For the bound on Fs, we split the sum over r such that m = 1 and m = g, and
show the desired bounds separately. First, let us show that we may assume that m = 1.

Lemma 6.5. For every 0 <T < degg,

Z |Sg T | <<s F QE|g|3+6T7/2+E

|r|=T
glr

from which it follows that the contributions to Es from those r such that g|r may be
neglected.
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Proof. When g|r, m = g. From the expression (17) for Sy (c), we see that it suffices to

show that
1 *
) Klge, (f —grs, ZF (c)>

L PV (

|r|=T s€0/(g
Ler @\5 \g|1+6f7/2+6.

Note that in this case, |A| < |g], |c| < |g], and g|r, and so w( AC>) = 1. By the Weil

bound on Kloosterman sums (Lemma 3.5 of [SZ20]), we have that

S ( ) Klye, (f —grs, iF*(c))

s€0/(9)

1 *
Seur oI ged (] — grs, 37 (<), %)

Since ged(g, f)=1 and g|r by assumption, ged(f—grs, iF* (c), g*r)=gcd(f, iF* (¢),7/g).
Therefore,

ST (ged(ryt = Dlratuyime1)? | 3 v (5 (C)) K, (f — grs, iF*(e))

|r|=T s€0/(g
glr
e lgPHETHEE N ged(for/9)V? <er gf2reqeiizee g L

A g
s 9]

glr
ged(rt—1)les,ca

Lo @\5 \g|1+€f7/2+5.

We use this to show that the contribution to Fs from those r such that g|r already
satisfies the desired bound on Es. Indeed, we have

> Yo A OIT g™ Y [Se(c)

0<le|<Qlgl/R &l “q“ <T<Q |r|=T
gl
glr
exc
A4 -1 7—1/2
er QMg Y Z TovErE
0<le|<Qlgl/R Rlela™ <5< 5

\g\

exc @H —1/2+4e
cor QU S (—)

0<le|<Qlgl/R 91
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exc
Lo F Q7/2+s|g|—1/2+s Z |C|—1/2+s Lo F Q7/2—',—5|g|57
0<|e|<Qlgl/R

where the final bound follows from Lemma 6.4. O

From Lemma 6.5, we may assume that m = 1, that is, g 1 r. Using this and the
expression (17) with m = 1, for the inequality (16) it suffices to show that

| S (aedtrt = Dl (AN IR R0
~ ’ rir/(rt— 92
(g1

ged(r,t—1)|cs,cq

.1 4
K1, (gf, 193F (C))‘
Leop |gIfT?e.
(Ac)

Note that since [A| < |g[, [e[ < |g, ¥ (3

contributes a term of norm 1 to the above sum. This is why we may suppress the
A,c)
" (

g2r

) = 1 unless possibly when r = 1, which

We split the sum into two sums, one where ¢ — 1]r and one where ¢ — 1 { 7. Summing
over those r such that ¢ — 1|r gives us the sum

£ ey (THEIAERD 0, (51,1 @)).

2
. g
|r|=T

(g;m)=1, t=1|r
t71|63,64

Since Tfo/(t_l) only depends on |r|, and not r itself, we can pull it out of the sum. This

term has norm 72 /q. The second sum, that is when t — 17, is

Py (TR EN ) g (5 Lpo).

2
" g
r|=T

((t-1)g,r)=1

Therefore, in any case, it suffices to show that we have the following two cancellations.
First, that if ¢ — 1|cs, ¢y,

—T(B(c)(f = F(A) + (A, c)) S B Ae| (elde
" < p )Klr <gf, Zg F (c)) Ler Q°lg|"THe,

=

=7
t7

(g9,m)=1, t—1|r

Second, that
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Z " (—r(ﬁ( o(f - f;( ) + <>\,C>)> Kl, (?f, %gSF*(C)> <ep @s‘g‘afvl-&-s_

- g
((t=1)g,r)=1

Of course, we may replace one of the above bounds, say the second one, with

3 ¢< (c)(f — F(A ))+<>\,C>)> KI, (yf, %gSF*(C)> <oy OF|gl T,

2
g
|r|=T

(g,m)=1

We now use the explicit computation of I, »(c) to show that a different kind of twisted
Linnik—Selberg cancellation over function fields, taking the infinite place into account as
well, gives us the desired bound on FE;. Indeed, by Proposition 4.1, for ¢ and r such that

1< |7”| < %7 we have Ig,r(c) =0or

T (6) = ~@larPIE @)Kl (0517,

Therefore,

T SO T D S R IE

- -~ . 4r3g
0<|c|<Qlgl/R 15\“3%

We can use Proposition 5.1 to rewrite this inequality as

~ . B 1
B <@l Y. Il > W(Igcd(mf1)Inn-/(7-,t_1>)2
mlg 0<|e|<Qlgl/R 1<|r|< Rlelare™?
(g, )=m

ged(r,t—1)|es,ca

—mrf(c) LA — w2 (A e) ((Ac) —sg/mB(c)
“"( (g/m)? (5 T (7

se0/(m)

Kby, (37mf —mrs, T’ P 0)) (w,f4FZ(4))‘~

Using the fact that Morgenstern quadratic forms are anisotropic and so satisfy |c|? <r
|F*(c)|, we may reduce, as in the case of Es, to showing that
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‘ > (ged(rt — )T ri-1) % (—T(ﬁ(c)(f - F2(>\)) + (A, c>)>
|

. g
r|=T

(9.,r)=1
god(r,t—1)|cs,ca

i, (a7, 377 ©) ) Ko (0. 7517 )

When m := (g,r) = g, we may argue as before and use the Weil bound Kl (¢, a) <.
la|'/4t¢ (Lemma 5.8 of [SZ20]) in addition to |c| < |g|. Therefore, as in the case of Es,
we may assume that m = 1, that is, gt r.

<or QFlglET3Te.

As in the case of Es, we may split into two sums, one where ¢t — 1|r and one where
t — 11 r. We similarly obtain that it suffices to show that

S <—r(ﬂ(c)(f SFO) <)\7C>)) Kl, (gf, Igs F*(c)> KL ( p 170 )

r|=7 I ir'e
(g,r)=1, t—1|r

Le.F ©5|g|5j§1+5

and

T (-7(ﬂ(c)(f —FA)) + (A c>)> KI, <gf7 ig3F*(c)) KL (w’ JZ;T!(;))

2
. g
|r|=T

(g,m)=1

LeF Q\s|g|sf1+s.

Therefore, we have reduced proving optimal strong approximation for the Morgenstern
quadratic form to proving the above square-root cancellation. These would follow from
the twisted Linnik—Selberg square-root cancellations over function fields, that is, Conjec-
ture 1.4. Indeed, we let a := B(c)(f—=F(A))+(A,¢), a := f , b= F4g(§),and 0e{l,t—1}.
Note that since ¢ are such that ¢ — 1|cg, ¢4 (otherw1se S’g’,«( ) =0), F*(c) € F,[t], and
so b € F[t,g']. Also, recall that ¥, (x) = 1 (%)7 that is, we first reduce modulo 7,
and then divide by r. The fact that this strong approximation implies the conjectured
upper bound on the diameter of Morgenstern Ramanujan graphs for odd ¢ (see Conjec-
ture 1.1) can be found in the introduction to the authors’ paper [SZ20]; for more details,

the reader is advised to look at Morgenstern’s paper [Mor94].
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