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We prove that q + 1-regular Morgenstern Ramanujan graphs 
Xq,g (depending on g ∈ Fq [t]) have diameter at most ( 4

3 + ε
)
logq |Xq,g| + Oε(1) (at least for odd q and irreducible 

g) provided that a twisted Linnik–Selberg conjecture over 
Fq(t) is true. This would break the 30 year-old upper bound 
of 2 logq |Xq,g| + O(1), a consequence of a well-known upper 
bound on the diameter of regular Ramanujan graphs proved 
by Lubotzky, Phillips, and Sarnak using the Ramanujan 
bound on Fourier coefficients of modular forms. We also 
unconditionally construct infinite families of Ramanujan 
graphs that prove that 4

3 cannot be improved.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

We begin by defining Ramanujan graphs. Suppose k ≥ 3 is a fixed integer, and let 
G be a k-regular connected graph with adjacency matrix AG. Since AG is symmetric, 
all its eigenvalues are real. Furthermore, it is easy to see that k is the largest eigenvalue 
of the adjacency matrix AG. Letting λG be the second largest eigenvalue, it is a the-
orem of Alon–Boppana [Alo86] that λG ≥ 2

√
k − 1 + o(1), where o(1) goes to zero as 

|G| → ∞. We say that G is a Ramanujan graph if λG ≤ 2
√
k − 1. The natural question 

that arises is if we can construct an infinite sequence of such Ramanujan graphs. Such 
graphs have been constructed by Lubotzky–Pillips–Sarnak [LPS88], Margulis [Mar88], 
Morgenstern [Mor94], and others. Though the first two constructions are the same and 
are p + 1-regular, p a prime, those of Morgenstern are q + 1-regular, q any prime power. 
Recently, Marcus–Spielman–Srivastava have proved the existence of d-regular bipartite 
Ramanujan graphs for arbitrary d [MSS15]; Cohen has shown how to construct such 
d-regular graphs in polynomial time [Coh16]. The study of such graphs is intimately con-
nected to deep questions in number theory, and is also of interest to computer scientists.

Lubotzky–Phillips–Sarnak [LPS88], and independently Margulis [Mar88], constructed 
the first examples of Ramanujan graphs; they are Cayley graphs of PGL2(Z/NZ) or 
PSL2(Z/NZ) with p + 1 explicit generators, for every prime p and natural number N . 
We denote them by Xp,N . The fact that Xp,N is a Ramanujan graph follows from the 
Ramanujan bound on the p-th Fourier coefficients of the weight 2 holomorphic mod-
ular forms of level N , hence the naming of Ramanujan graphs. This was proved by 
Lubotzky, Phillips, and Sarnak in [LPS88]. Another result of Lubotzky–Phillips–Sarnak 
is that the diameter of every k-regular Ramanujan graph G is bounded from above by 
2 logk−1 |G| + O(1). As of today, this is still the best known upper bound on the diam-
eter of a Ramanujan graph. Though it was conjectured by Sarnak that the diameter 
is bounded from above by (1 + ε) logk−1 |G| as |G| → ∞ (see [Sar90, Chapter 3]), the 
first author proved that for some infinite families of LPS Ramanujan graphs Xp,N the 
diameter is bigger than 4/3 logp |Xp,N | + O(1) (see [Sar18]).

Let q be a prime power and Fq be the finite field with q elements. Morgenstern also 
constructed Ramanujan graphs Xq,g by considering a suitable quaternion algebra over 
Fq[t], where g ∈ Fq[t] and gcd(g, t(t −1)) = 1 [Mor94]. For a discussion of the connection 
to strong approximation, see the introduction to the authors’ paper [SZ20]. The graph-
theoretic conjecture with which this paper is concerned is the following.
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Conjecture 1.1. The diameter of q + 1-regular Morgenstern Ramanujan graphs Xq,g is 
bounded from above by (

4
3 + ε

)
logq |Xq,g| + Oε(1),

at least when q is odd and g is irreducible.

Let us assume from now on that the base field Fq is of odd characteristic. Consider 
the following system of equations {

F (x) = f,

x ≡ λ mod g,
(1)

where F is a quadratic form in 4 variables over Fq[t], f, g ∈ Fq[t], and λ ∈ Fq[t]4. We 
say that all the local conditions for the system (1) are satisfied if the system (1) has 
solutions over Fq[t]/〈gh〉 for any nonzero h ∈ Fq[t], in addition to F (x) = f having a 
solution over Fq( (1/t) ). As discussed in the introduction to the authors’ paper [SZ20], 
the above conjecture would follow from the following very general conjecture regarding 
strong approximation for quadratic forms over Fq[t] in 4 variables. Throughout this 
paper, the ideal (a, b) of Fq[t] generated by polynomials a, b ∈ Fq[t] (which is a principal 
ideal domain) will be identified with its monic generator.

Conjecture 1.2. Let F be a quadratic form over Fq[t] in 4 variables and of discriminant 
Δ �= 0. Let f, g ∈ Fq[t] be nonzero polynomials such that (fΔ, g) = 1, and let λ ∈ Fq[t]4
be a quadruple of polynomials at least one of whose coordinates is relatively prime to 
g. Finally, suppose that all local conditions for the system (1) are satisfied. There is a 
solution x ∈ Fq[t]4 to (1) if deg f ≥ (4 + ε) deg g + Oε,F (1).

In fact, to obtain Conjecture 1.1, it suffices to prove the above strong approximation 
result for Morgenstern quadratic forms given by

F (x1, x2, x3, x4) = η1x
2
1 + η2x

2
2 + η3x

2
3 + η4x

2
4,

where η1 = 1, η2 = −ν, η3 = −(t −1), η4 = ν(t −1) and ν ∈ Fq is not a square. In [SZ20], 
we proved Conjecture 1.2 when the number of variables is d ≥ 5. Furthermore, we showed 
that for quadratic forms in d = 4 variables, Conjecture 1.2 holds if we strengthen the 
condition to deg f ≥ (6 +ε) deg g+Oε,F (1) (see [SZ20] for details). However, as we saw in 
Corollary 1.6 of [SZ20] this implies the weaker upper bound (2 + ε) logk−1 |Xq,g| +Oε(1)
on the diameter of such graphs. The main purpose of this paper is to show that the 
4
3 -bound is a consequence of a twisted Linnik–Selberg conjecture over Fq(t) that we 
formulate; the way we show this is that the twisted Linnik–Selberg conjecture below 
implies Conjecture 1.2 for the Morgenstern quadratic form F .
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Working over function fields is not merely a curiosity; as we will see, in the func-
tion field case, the oscillatory integrals, once a suitable weight function is chosen, can 
be computed explicitly for Morgenstern quadratic forms in terms of Kloosterman sums 
at the infinite place. This uses the function field stationary phase theorem proved by 
the authors in [SZ20]. It turns out that the exponential sums can also be written in 
terms of Kloosterman sums at the finite places. Furthermore, these graphs constructed 
by Morgenstern provide us with q + 1-regular Ramanujan graphs, where q need not be 
a prime, contrary to the Ramanujan graphs constructed by Lubotzky–Phillips–Sarnak, 
and independently by Margulis. Most importantly, since the untwisted Linnik–Selberg 
conjecture is known to be true over function fields [CPS90] (a consequence of the Ra-
manujan conjecture over function fields proved by Drinfeld), we are hopeful that we 
will be able to prove at least a variant of the twisted Linnik–Selberg conjecture and 
at least improve upon the best known upper bound on the diameter of such graphs; 
see Remark 4. When working over the integers, even if one reduces the optimal strong 
approximation theorem in four variables to a twisted Linnik–Selberg over the integers, 
there is little hope in saying much about LPS Ramanujan graphs. Indeed, in the inte-
ger case, the Linnik–Selberg conjecture is, as of the writing of this paper, open and is 
not a consequence of the Ramanujan conjecture. We now devote some time to precisely 
formulating this conjecture.

In order to formulate the twisted Linnik–Selberg conjecture over function fields, we 
first define the Kloosterman sums under consideration in this paper. In Subsection 3.2, 
we define a nontrivial additive character ψ = ψ∞ on K∞ := Fq( (1/t) ) that is trivial on 
O := Fq[t]. Given nonzero r ∈ Fq[t], we have an additive character

ψr : Fq[t]/(r) → C∗

given by sending x �→ ψ
(
x
r

)
. We may extend this to an additive character on the additive 

structure of the subring Or of K with denominator relatively prime to r. The extension 
we are thinking of here is given by sending x ∈ Or to ψ

(
x mod r

r

)
.

Definition 1.3. Suppose r ∈ Fq[t] is nonzero, and suppose m, n ∈ Or. Then we define the 
Kloosterman sum associated to r, m, n as follows:

Klr(m,n) :=
∑

x∈(Fq[t]/(r))∗
ψr (mx + nx) ,

where x is the multiplicative inverse of x in Fq[t]/(r). At the infinite place, we have the 
following definition of the Kloosterman sum. For α ∈ K∞, define

Kl∞(ψ, α) :=
{∫

|x|∞=l̂
ψ
(
α
x + x

)
dx, if |α|∞ = l̂2 for some l ∈ Z

0 otherwise,
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where we are integrating on a subset of K∞ equipped with the Haar measure normalized 
such that the unit open ball T in K∞ has measure 1, |.|∞ is the norm on K∞ induced 
by the norm |a/b|∞ = qdeg a−deg b on K, and l̂ := ql throughout this paper.

By Weil’s estimate on the Kloosterman sums, we have square-root cancellation on the 
Kloosterman sums. The following is a twisted analogue of the Linnik–Selberg conjecture 
positing that sums of Kloosterman sums exhibit an additional square-root cancellation.

Conjecture 1.4 (Twisted Linnik–Selberg conjecture over function fields). Suppose g ∈
Fq[t] is a nonzero polynomial, and let δ ∈ Fq[t] be relatively prime to g. Then for each 
integer T ≥ 0, α ∈ Fq[t], and nonzero a, b ∈ Fq[t, g−1],∣∣∣∣∣∣∣∣∣

∑
|r|=T̂

(g,r)=1, δ|r

ψg2
(
αr−1)Klr(a, b)

∣∣∣∣∣∣∣∣∣
ε,δ |gab|ε∞T̂ 1+ε

for every ε > 0. Furthermore, for every ε > 0,∣∣∣∣∣∣∣∣∣
∑
|r|=T̂

(g,r)=1, δ|r

ψg2
(
αr−1)Klr(a, b)Kl∞(ψ, ab/r2)

∣∣∣∣∣∣∣∣∣
ε,δ |gab|ε∞T̂ 1+ε.

Remark 2. Note that in the above conjecture, it is equivalent to prove the statement by 
replacing |r| = T̂ with |r| ≤ T̂ . Indeed, if we have the latter for every T , then we have the 
former by simply subtracting the terms for |r| ≤ T̂ from those with |r| ≤ T̂

q . Conversely, 
if we assume the former for every T , then the latter follows from the triangle inequality 
and the fact that we are summing T 
ε T̂

ε elements.

Remark 3. As previously mentioned, we remark that the untwisted version of the above 
conjecture is known to be true. For example, see [CPS90] for a proof of the Linnik–Selberg 
conjecture over function fields. The authors hope to study this twisted Linnik–Selberg 
conjecture in the future.

We prove the following in Section 6.

Theorem 1.5. Conjecture 1.4 implies Conjecture 1.2 for the Morgenstern quadratic form 
F at least when g is irreducible. In particular, the twisted Linnik–Selberg conjecture 
implies that the Morgenstern Ramanujan graphs have diameter at most(

4
3 + ε

)
logq |Xq,g| + Oε(1)
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if the Ramanujan graph is constructed (at least) for irreducible g over Fq of odd charac-
teristic.

We briefly discuss the history behind the proof. Versions of the circle method, as 
developed over the integers by Heath-Brown [HB96] and later over function fields by 
Browning and Vishe [BV15], were successfully applied by the first author to prove opti-
mal strong approximation results for quadratic forms in at least five variables over the 
integers [Sar19] and later joint with the second author over Fq[t] [SZ20]. These results 
were achieved with suitable choices of weight functions and delicate divisions of the cir-
cles in the two settings. A novelty of the paper [SZ20] was the development of a function 
field version of the stationary phase theorem that was essential for our calculations there 
(and here in this paper). That being said, in the case of quadratic forms in four variables 
(both over the integers and over Fq[t]), which is the case of interest for applications to 
the covering exponent of S3 and Ramanujan graphs, the results there are suboptimal. It 
had been observed in [Sar19, Remark 6.8] that if a certain cancellation in a sum involving 
exponential sums and oscillatory integrals is true, then optimal strong approximation in 
the case of four variables would also follow. It was the insight of Browning–Kumaras-
vamy–Steiner [BKS19] that for the problem regarding optimal covering exponents of 
S3—where the quadratic form is a sum of four squares—the stationary phase theo-
rem can be used to reduce the optimal covering exponent to a twisted Linnik–Selberg 
conjecture over the integers. We also refer the reader to the work of Steiner [Ste19]
on this integral twisted Linnik–Selberg conjecture; though that paper lead to some in-
sights regarding the limitations of the Kuznetsov trace formula for this covering exponent 
problem, the desired results were not obtained, unfortunately. In the case of Morgenstern 
Ramanujan graphs, there are two main differences with the case of the covering expo-
nent problem. Firstly, as mentioned above, the stationary phase theorem in the setting 
of function fields had to be developed by the authors in [SZ20] and applied successfully 
to the computation of the oscillatory integrals in this paper. Secondly, in addition to the 
infinite place, the finite places also play a role, complicating the precise computation of 
the exponential sums under consideration. It is in the Morgenstern case where we are 
able to relate the exponential sums and oscillatory integrals to Kloosterman sums; for a 
general quadratic form in four variables, the computations are much more complicated 
and cannot be written simply in terms of Kloosterman sums. Furthermore, most of the 
main computations in [SZ20] were done using techniques different from those over the 
integers; those techniques over function fields are also used in this paper.

Remark 4. Though the twisted Linnik–Selberg Conjecture 1.4 would prove the desired 
Conjecture 1.2, in Conjecture 1.4 any power |g|θ+ε with 0 ≤ θ < 1/2 would allow us to 
weaken the deg f ≥ (6 + ε) deg g+Oε(1) condition, as will be clear from the proof of the 
theorem above in Section 6. In turn, this would allow us to decrease the upper bound 
given for the Morgenstern Ramanujan graphs.
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We also prove the following theorem stating that the coefficient 43 cannot be improved 
upon; see Section 2 for a proof.

Theorem 1.6. Suppose that q ≡ 3 mod 4. There exist infinitely many g ∈ Fq[t] such that 
the Morgenstern Ramanujan graph Xq,g is non-bipartite (or bipartite) and

diam(Xq,g) ≥ 4
3 logq |Xq,g| + O(1),

where O(1) is an absolute constant.

This also gives us a new family of q+1-regular non-bipartite (or bipartite) Ramanujan 
graphs with large diameter and with q ≡ 3 mod 4 any prime power.

2. Lower bound on the diameter

In this section, we prove Theorem 1.6. Our argument is similar to the previous argu-
ment of the first author in [Sar18, Theorem 1.2].

Proof. Since q ≡ 3 mod 4, −1 is a quadratic non-residue in Fq, and the Morgenstern 
quadratic form for ν = −1 is

F (x1, x2, x3, x4) := x2
1 + x2

2 − (t− 1)(x2
3 + x2

4).

Let g(t) ∈ Fq[t] be any irreducible polynomial relatively prime to t(t − 1) such that t
is a quadratic non-residue in the finite field Fqdeg(g) := F [t]/〈g〉, and −1 is a quadratic 
residue in Fqdeg(g) , (which means deg(g) is even). Then it follows from the work of Mor-
genstern that Xq,g is isomorphic to the Cayley graph of PGL2(Fqdeg(g)) generated by 
q+1 generators. The identification is given by the following map sending the quaternion

x1 + ix2 + jx3 + kx4 �→
[

x1 − x2i x3 − x4i

(t− 1)(x3 + x4i) x1 + x2i

]
,

where i is a choice of 
√
−1 in Fqdeg(g) . Moreover the quadratic residue of the determinant 

gives a bipartite structure on Xq,g. Let I :=
[
1 0
0 1

]
∈ Xq,g and W :=

[
1 0
0 −1

]
∈ Xq,g. 

We show that

dist(I,W ) ≥ 4
3 logq |Xq,g| + O(1).

Suppose that there exists a path of minimal length h from I to W . Then, by [Mor94, 
Theorem 4.5] there exists an integral solution u := (u1, . . . , u4) ∈ Fq[t]4 to

x2
1 + x2

2 − (t− 1)(x2
3 + x2

4) = th,
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where g| gcd(u1, u3, u4), gcd(g, u2) = 1 and t −1| gcd(u1−1, u2). This implies that u2
2 ≡ th

mod g2. Here, we are using that g is irreducible and relatively prime to t, and so g cannot 
divide both ±th. Since t is a quadratic non-residue mod g and th is a square mod g, h
is even. Suppose that h = 2l. If l ≥ 2 deg(g) then

dist(I,W ) = h ≥ 4 deg(g) = 4
3 logq |Xq,g| + O(1).

So, we suppose that l < 2 deg(g). We have u2
2 ≡ th ≡ t2l mod g2. This implies u2 ≡

±tl mod g2. We write u2 = ag2±tl for some a ∈ Fq[t]. For a �= 0, deg(ag2±tl) ≥ 2 deg(g), 
and we have

2l = deg(F (u)) ≥ 2 deg(u2) = 2 deg(ag2 ± tl) ≥ 4 deg(g) > 2l,

because −1 is a non-square residue modulo q. This is a contradiction. So a = 0, and this 
implies u1 = 0, which is a contradiction since t − 1|u1 − 1. This proves Theorem 1.6 in 
the bipartite cases.

Next, we give an infinite family of non-bipartite Morgenstern Ramanujan graphs with 
the same lower bound on their diameter. Let r ∈ Fq[t] be any irreducible polynomial 
relatively prime to t(t − 1) and such that t and −1 are quadratic residues in the finite 
field Fqdeg(r) := F [t]/〈r〉. Consider the Morgenstern Ramanujan graph Xq,(t2+1/4)r. It 
follows from the work of Morgenstern that Xq,(t2+1/4)r is isomorphic to the Cayley 
graph of PSL2

(
F [t]/〈(t2 + 1/4)r〉

)
generated by q + 1 generators, and Xq,(t2+1/4)r is a 

non-bipartite Ramanujan graph. Let I and W be as before and define I ′ :=
[
1 r
0 1

]
. Let 

√
−1 be a square root of −1 in F [t]/〈(t2 + 1/4)r〉. Also let W ′ :=

√
−1W ∈ PSL2. We 

show that

max(dist(I, I ′),dist(I,W ′)) ≥ 4
3 logq |Xq,(t2+1/4)r| + O(1).

Assume to the contrary that max(dist(I, I ′), dist(I, W ′)) < 4 deg(r) =
4
3 logq |Xq,(t2+1/4)r| + O(1). Since dist(I, I ′) < 4 deg(r), by [Mor94, Theorem 4.5] it 
follows that there exists an integral solution

a2
1 + a2

2 − (t− 1)(a2
3 + a2

4) = th1

for some h1 < 4 deg(r), where r| gcd(a2, a3, a4), (t − 1)| gcd(a1 − 1, a2), and at least one 
of a3 or a4 is non-zero. This implies a2

1 ≡ th1 mod r2. We consider two cases: h1 is 
even or h1 is odd. First, suppose that h1 = 2l1. Then a1 ≡ ±tl1 mod r2. This implies 
a1 = c1g

2 ± tl1 for some c1 ∈ Fq[t]. Suppose that c1 �= 0. Then deg(a1) ≥ 2 deg(r), and 
we have

h1 = deg(a2
1 + a2

2 − (t− 1)(a2
3 + a2

4)) ≥ 2 deg(a1) ≥ 4 deg(r).
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This is a contradiction. Hence, c1 = 0. This implies a3 = a4 = 0, which is also a 
contradiction. Therefore, h1 = 2l1 + 1 is odd.

Similarly, since dist(I, W ′) < 4 deg(r) by assumption, it follows that there exists an 
integral solution

b21 + b22 − (t− 1)(b23 + b24) = th2

for some h2 < 4 deg(r), where r| gcd(b1, b3, b4), (t − 1)| gcd(b1 − 1, b2). By a similar 
argument it follows that h2 = 2l2 +1 is odd and we have b22 ≡ th2 mod r2. Therefore, we 
have {

a1 ≡ 1 mod (t− 1), and a2
1 ≡ t2l1+1 mod r2, and l1 < 2 deg(r),

b2 ≡ 0 mod (t− 1), and b22 ≡ t2l2+1 mod r2, and l2 < 2 deg(r).

Without loss of generality, suppose that l1 ≥ l2. Then, we have

a1 ≡ ±tl1−l2b2 mod r2.

Note that deg(a1) < l1 + 1/2 < 2 deg(r) and deg(tl1−l2b2) < l1 + 1/2 < 2 deg(r). Hence,

a1 = ±tl1−l2b2.

This contradicts with 

{
a1 ≡ 1 mod (t− 1),
b2 ≡ 0 mod (t− 1).

This completes the proof of our theo-

rem. �
3. Recollections on the delta method

The primary purpose of this section is to collect some of the facts related to the delta 
method over Fq[t]. This section also serves the purpose of setting the notation for the rest 
of the paper. For details, the reader may consult Section 2 of the authors’ paper [SZ20].

Roughly, the delta method is a procedure by which one rewrites the delta function over 
integral points inside a region as a weighted sum of characters. In this section, we define 
a weighted sum N(w, λ) counting the number of integral solutions to the system (1).

3.1. Notation

As in the authors’ paper [SZ20], we let K = Fq(t) and let O = Fq[t] be its ring of 
integers. We denote the prime at infinity t−1 by ∞. We may equip K with the norm at 
infinity given by

|a/b|∞ := qdeg a−deg b.
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Completing K with respect to this norm gives K∞. Henceforth, we drop the subscript ∞
from |.|∞ and write |.| for simplicity. We can also extend the norm to higher dimensions: 
for every d, the natural norm on Kd

∞ is given by |a| := maxi |ai|. These norms equip 
Kd

∞ with the metric topology.
Note that we may identify K∞ with the field

Fq((1/t)) =

⎧⎨⎩∑
i≤N

ait
i : for ai ∈ Fq and some N ∈ Z

⎫⎬⎭ .

The (open) unit ball in this topological space is

T = {α ∈ K∞ : |α| < 1} =

⎧⎨⎩∑
i≤−1

ait
i : for ai ∈ Fq

⎫⎬⎭ .

3.2. Characters

Let eq : Fq → C∗ be the nontrivial additive character given by sending a ∈ Fq to 
eq(a) = exp(2πitr(a)/p), where p := char Fq and tr : Fq → Fp is the trace map. From 
this, we obtain the non-trivial additive character ψ : K∞ → C∗ given by ψ(α) = eq(a−1)
for any α =

∑
i≤N ait

i in K∞. By construction, ψ|O is trivial. Furthermore, for any 
γ ∈ K∞, the map α �→ ψ(αγ) is also an additive character on K∞. A basic lemma that 
will be useful in our computations is the following.

Lemma 3.1 (Kubota, Lemma 7 of [Kub74]).

∑
b∈O
|b|<N̂

ψ(γb) =
{
N̂ , if |((γ))| < N̂−1,
0, otherwise,

for any γ ∈ K∞ and any integer N ≥ 0, where ( (γ) ) is the part of γ with all degrees 
negative.

We also have the following

Lemma 3.2 (Kubota, Lemma 1(f) of [Kub74]). Let Y ∈ Z and γ ∈ K∞. Then

∫
|α|<Ŷ

ψ(αγ)dα =
{
Ŷ , if |γ| < Ŷ −1,

0, otherwise.

In particular, if we set Y = 0, then we obtain the following expression for the delta 
function on O:
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δ(x) =
∫
T

ψ(αx)dα,

where δ(x) =
{

1 if x = 0,
0 otherwise.

3.3. The delta function

The idea now is to decompose T into a disjoint union of balls (with no minor arcs) 
which is the analogue of Kloosterman’s version of the circle method in this function field 
setting. This is done via the following lemma of Browning and Vishe [BV15, Lemma 4.2].

Lemma 3.3. For any Q > 1 we have a disjoint union

T = �
r∈O
|r|≤Q̂
r monic

�
a∈O

|a|<|r|
(a,r)=1

{
α ∈ T : |rα− a| < Q̂−1

}
.

The following follows from Lemma 3.3; see [SZ20, Lemma 2.4].

Lemma 3.4. Let Q ≥ 1 and n ∈ O. We have

δ(n) = 1
Q̂2

∑
r∈O
|r|≤Q̂
r monic

∑∗

|a|<|r|
ψ
(an

r

)
h
( r

tQ
,
n

t2Q

)
, (5)

where we henceforth put 
∑∗

|a|<|r|
:=
∑

a∈O
a monic
|a|<|r|
(a,r)=1

, and h is only defined for x �= 0 as:

h(x, y) =
{
|x|−1 if |y| < |x|
0 otherwise.

Moreover,

1
Q̂2

h
( r

tQ
,
n

t2Q

)
=

∫
|α|<|r|−1Q̂−1

ψ (αn) dα.

3.4. Smooth sum N(w, λ)

Let

w(x) =
{

1 if |x| ≤ |f |1/2,
0 otherwise.
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Note that

w(gt + λ) =
{

1 if |t| < R̂,

0 otherwise,

where R := �deg(f)/2−deg(g) +1�. Assume that x ∈ Od satisfies the conditions F (x) = f

and x ≡ λ mod g. We uniquely write x = gt +λ, where t ∈ Od and λ = (λ1, . . . , λd) for 
λi of degree strictly less than that of g. Define

k := f − F (λ)
g

. (6)

If F (x) = f , then g2F (t) + 2gλTAt = f −F (λ) which implies that g|2λTAt − k. Then, 
F (t) + 1

g (2λTAt − k) = 0. We also define

G(t) := F (gt + λ) − f

g2 = F (t) + 1
g
(2λTAt − k).

Finally, we define

N(w,λ) :=
∑
t

w(gt + λ)δ(G(t)),

where t ∈ Od. Note that N(w, λ) is the weighted number of x ∈ Od satisfying the 
conditions F (x) = f and x ≡ λ mod g. We apply the delta expansion in (5) to δ(G(t))
and follow the computations in [SZ20, Section 2.4], and obtain

N(w,λ) = 1
|g|Q̂2

∑
r∈O
|r|≤Q̂
r monic

∑
c∈Od

|gr|−dSg,r(c)Ig,r(c), (7)

where Ig,r(c) and Sg,r(c) are defined by

Ig,r(c) :=
∫

Kd
∞

h

(
r

tQ
,
G(t)
t2Q

)
w(gt + λ)ψ

(
〈c, t〉
gr

)
dt, (8)

and

Sg,r(c) :=
∑
�∈O

|�|<|g|

∑∗

|a|<|r|
Sg,r(a, �, c) (9)

with

Sg,r(a, �, c) :=
∑

b∈(O/(gr))d
ψ

(
(a + r�)(2λTAb − k) + agF (b) − 〈c,b〉

gr

)
. (10)



56 N.T. Sardari, M. Zargar / Journal of Number Theory 217 (2020) 44–77

We henceforth assume that r is always monic without saying so. In the next two sections, 
we give explicit formulas for Sg,r and Ig,r when our quadratic form is the Morgenstern 
quadratic form.

4. The oscillatory integrals Ig,r(c)

In this section, we give explicit formulas for the oscillatory integrals Ig,r(c) in terms 
of the Kloosterman sums at infinity. Suppose that F (t) :=

∑
i ηit

2
i is the Morgenstern 

quadratic form and F ∗(c) :=
∑

i c
2
i /ηi is its dual. Let κ := maxi | cig |. In this section, we 

assume that Q = R + 1.

Proposition 4.1. Suppose that |r| ≤ Q̂. For the Morgenstern quadratic form, we have

Ig,r(c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if κ ≥ Q̂/R̂,

0, κ = |r|
R̂
,deg(f)is even,

and Q̂q−3 < |r| ≤ Q̂,

Ig,r(0), if κ < |r|
R̂
,

Ig,r(0), if κ = |r|
R̂
,

max (|c3|, |c4|) > max (|c1|, |c2|),
and deg(f)is even, |r| ≤ Q̂q−3,

−Q̂2|g|2|r|2|F ∗(c)|−1Kl∞
(
ψ, kF∗(c)

4r2g3

)
, otherwise.

We give the proof of Proposition 4.1 at the end of this section. We proceed by citing 
some general results from [SZ20] that are not specific to the Morgenstern quadratic form. 
In particular, we do not restrict the number of variables to d = 4 for the moment. Recall 
that

G(t) := F (gt + λ) − f

g2 = F (t) + 1
g
(2λTAt − k),

where k = f−F (λ)
g . We have

Ig,r(c) =
∫

Kd
∞

h

(
r

tQ
,
G(t)
t2Q

)
w(gt + λ)ψ

(
〈c, t〉
gr

)
dt =

∫
|t|<R̂

|G(t)|<Q̂|r|

Q̂

|r|ψ
(
〈c, t〉
gr

)
dt. (11)

We cite [SZ20, Lemma 5.5].

Lemma 4.2. Let Q and R be as above, and suppose that |t| < R̂. Then |G(t)| < Q̂|r| is 
equivalent to |F (t) − k/g| < Q̂|r|. Moreover, if |G(t)| < Q̂|r|, then |G(t + ζ)| < Q̂|r| for 
every ζ ∈ Kd

∞, where |ζ| ≤ min(|r|, R̂).
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We cite [SZ20, Lemma 5.6].

Lemma 4.3. Suppose that κ ≥ Q̂/R̂ and |r| ≤ Q̂. Then, Ig,r(c) = 0.

Lemma 4.4. Suppose that κ = |r|
R̂
, deg(f)is even, and Q̂q−3 < |r| ≤ Q̂. Then, Ig,r(c) = 0.

Proof. Since deg(f) is even, R = deg(f)
2 −deg(g) +1 and Q = deg(f)

2 −deg(g) +2. Hence, 
Q̂|r| > |k/g|, and by Lemma 4.3, |G(t)| < Q̂|r| is equivalent to

|F (t)| < Q̂|r|.

Since Q̂q−3 < |r| ≤ Q̂ and |t| < R̂,

|F (t)| ≤ 2̂R− 1 < Q̂|r|.

So, the inequality |G(t)| < Q̂|r| is satisfied automatically, and we have

Ig,r(c) = Q̂

|r|

∫
|t|<R̂

ψ

(
〈c, t〉
gr

)
dt = 0,

where we used κ = |r|
R̂

. This completes the proof of our lemma. �
Lemma 4.5. Suppose that either

(1) κ < |r|
R̂

,
(2) κ = |r|

R̂
, max (|c3|, |c4|) > max (|c1|, |c2|), deg(f)is even, and |r| ≤ Q̂q−3,

then Ig,r(c) = Ig,r(0).

Proof. Suppose (1). Since maxi(|ci|) < |gr|
R̂

and |t| < R̂, ψ
(

〈c,t〉
gr

)
= 1. Hence, we have

Ig,r(c) =
∫

|t|<R̂

|G(t)|<Q̂|r|

Q̂

|r|dt = Ig,r(0).

Suppose (2) and that Q̂|r| ≤ |k/g|. By Lemma 4.2,

|F (t) − k/g| < Q̂|r| ≤ |k/g|.

Hence, the top degree of F (t) and k/g are the same. Since deg(f) is even, deg(k/g) =
deg(f/g2) is even. The top degree of F (t) is even as well. Hence, max (|t3|, |t4|) <

max (|t1|, |t2|). Hence, | 〈c, t〉 | < |c||t|, and
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ψ

(
〈c, t〉
gr

)
= 1,

which implies Ig,r(c) = Ig,r(0). Finally, suppose (2) and that Q̂|r| > |k/g|. This implies 
that |r| = Q̂q−3. By Lemma 4.3, |G(t)| < Q̂|r| is equivalent to |F (t)| < Q̂|r| = R̂2q−1. 
We have

2 deg(max (|t3|, |t4|)) + 1 ≤ deg(F (t)).

Hence,

deg(max (|t3|, |t4|)) ≤
deg(F (t)) − 1

2 ≤ R− 2.

Therefore, ψ
(

〈c,t〉
gr

)
= 1. This implies Ig,r(c) = Ig,r(0). �

4.1. Stationary phase theorem over function fields

In [SZ20, Proposition 4.5], we proved a version of the stationary phase theorem in the 
function fields setting. We proceed by defining some new notations and cite a special 
case of [SZ20, Proposition 4.5]. Let h ∈ K∞ and define

G(h) :=

⎧⎪⎪⎨⎪⎪⎩
min(|h|−1/2

∞ , 1) if ord(h) is even,

|h|−1/2
∞ εh if ord(h) ≥ 1 and is odd,

1 otherwise,
(12)

where εh := G(h)
|G(h)| and G(h) :=

∑
x∈Fq

eq(ahx2) is the gauss sum associated to ah the 
top degree coefficient of h. We cite [SZ20, Lemma 4.6].

Lemma 4.6. For every f ∈ K∞, we have∫
T

ψ(fu2)du = G(f).

For α ∈ K and a ∈ Z, define

B∞(ψ, a, α) :=
∫

|x|∞=â

ψ(α
x

+ x)dx.

We write α = t2a+bα′(1 +α̃) and x = tax′(1 +x̃) for unique α̃, ̃x ∈ T and α′, x′ ∈ Fq. Note 
that for b = 0, we have B∞(ψ, a, α) = Kl∞(ψ, α). Let Kl(α, Fq) :=

∑
x∈F∗

q
eq
(
α
x + x

)
. 

We cite [SZ20, Lemma 5.8].
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Lemma 4.7. We have

B∞(ψ, a, α) =

⎧⎪⎪⎨⎪⎪⎩
(q − 1)â if max(a + b, a) < −1, and b �= 0,
−â if max(a + b, a) = −1, and b �= 0,
0 if max(a + b, a) > −1, and b �= 0.

Kl∞(ψ, α) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(q − 1)â if a < −1,
âKl(α′,Fq) if a = −1,
â
∑

x′2=α′ ψ
(
2tax′(1 + α̃)1/2

)
G(2x′ta) if α′ is a quadratic residue,

0 if α′ is not a quadratic residue.

Proof of Proposition 4.1. In this proof, we assume that we are working with the Mor-
genstern quadratic form. By Lemma 4.3, we have Ig,r(c) = 0 for κ ≥ Q̂/R̂ and |r| ≤ Q̂. 
By assuming the conditions of Lemma 4.5, it follows that Ig,r(c) = Ig,r(0). Hence, the 
remaining cases correspond to

(1) |r|
R̂

< κ, or
(2) κ = |r|

R̂
, and max (|c3|, |c4|) ≤ max (|c1|, |c2|) or deg(f) is odd,

and we proceed to conclude the proposition in these two cases.
By Lemma 4.2, |G(t)| < Q̂|r| is equivalent to |F (t) − k/g| < Q̂|r| for |t| < R̂. By 

Lemma 3.2, we have

∫
T

ψ
( α

rtQ
(F (t) − k/g)

)
dα =

{
1, if |F (t) − k/g| < Q̂|r|,
0, otherwise.

We replace the above integral for detecting |F (t) − k/g| < Q̂|r|. Hence, by (11)

Ig,r(c) = Q̂

|r|

∫
T

∫
|t|<R̂

ψ

(
〈c, t〉
gr

+ α

rtQ
(F (t) − k/g)

)
dtdα.

Recall that F (t) =
∑

ηi
ηit

2
i . We have

〈c, t〉
gr

+ α

rtQ
(F (t) − k/g) = −αk

rgtQ
+ 1

r

(∑
i

citi
g

+ αηit
2
i

tQ
)
.

Hence, Ig,r(c) = Q̂
|r|
∫
T ψ( −αk

rgtQ
)Ig,r(α, c)dα, where

Ig,r(α, c) :=
4∏

i=1

∫
|ti|<R̂

ψ
(1
r
(
∑
i

citi
g

+ αηit
2
i

tQ
)
)
dti.
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The phase function has a critical point at ti = −cit
Q

2gηiα
. This critical point is inside the 

domain |ti| < R̂, if |α| > κi, where κi := |ci|Q̂
|g||ηi|R̂

. Given α ∈ T , we partition the indices 
into:

CR := {1 ≤ i ≤ 4 : |α| > κi} ,
NCR := {1 ≤ i ≤ 4 : |α| ≤ κi} .

For i ∈ NCR, we change the variables to vi = ti + αηig
citQ

t2i . Note that vi is an analytic 

map in terms of ti and ∂vi∂ti
(0) = 1. Hence, by [SZ20, Proposition 4.2], vi is a bijection 

from |ti| < R̂ to vi < R̂. For i ∈ CR, we change the variables to wi = ti + cit
Q

2gηiα
. By 

[SZ20, Section 4], we have

Ig,r(α, c) =
∏

i∈NCR

∫
|vi|<R̂

ψ

(
civi
gr

)
dvi ×

∏
i∈CR

ψ(− tQci
2

4rg2ηiα
)
∫

|wi|<R̂

ψ
(αηi
rtQ

w2
i

)
dwi.

By Lemma 3.2, Lemma 4.6, we have

∫
|vi|<R̂

ψ

(
civi
gr

)
dvi =

{
R̂, if |ci|

|g| < |r|
R̂
,

0, otherwise,

∫
|wi|<R̂

ψ
(αηi
rtQ

w2
i

)
dwi = R̂G

(
αηit

2R

rtQ

)
.

Therefore,

Ig,r(α, c) = R̂4
4∏

i=1

(
δ|α|≤κi

δ |ci|
|g| <

|r|
R̂

+ δκi<|α|<1ψ(− tQci
2

4rg2ηiα
)G
(
αηit

2R

rtQ

))
. (13)

By our assumption, we have |r|
R̂

≤ κ < Q̂/R̂. Note that Q = R+1 and qκ ≥ max κi ≥ κ. 
This implies that Ig,r(α, c) = 0 for every |α| ≤ κ. For 1 > |α| > κ ≥ |r|

R̂
, we have

Ig,r(α, c) = R̂4
4∏

i=1
δκi<|α|<1ψ(− tQci

2

4rg2ηiα
)G
(
αηit

2R

rtQ

)
.

Hence,

Ig,r(c) = Q̂R̂4

|r|
∑

κ≤l̂<1

∫
|α|=l̂

ψ(−αk

rgtQ
)

4∏
i=1

δκi<|α|<1ψ(− tQci
2

4rg2ηiα
)G
(
αηit

2R

rtQ

)
dα.
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By (12) and considering the sign of the Gauss sums, we have for the Morgenstern 
quadratic form above the equality

∏
i

G
(
αηit

2R

rtQ

)
= −

∏
i

min

⎛⎝1,
(
l̂R̂2|ηi|
|r|Q̂

)−1/2
⎞⎠ ,

a quantity dependent not on α itself, but on the norm of α which is l̂. Hence,

Ig,r(c) = −Q̂R̂4

|r|
∑

κ≤l̂<1

∏
i

δκi<l̂ min

⎛⎝1,
(
l̂R̂2|ηi|
|r|Q̂

)−1/2
⎞⎠ ∫

|α|=l̂

ψ(−αk

rgtQ
)ψ(− tQF ∗(c)

4rg2α
)dα,

where F ∗(c) =
∑

i
ci

2

ηi
. Since we assume either

(1) |r|
R̂

< κ,
(2) κ = |r|

R̂
, and max (|c3|, |c4|) ≤ max (|c1|, |c2|) or deg(f) is odd,

we have

deg
(
kF ∗(c)
4r2g3

)
≥ −2.

Let a, b ∈ Z where

a = l + deg( k

rgtQ
), and 2a + b = deg

(
kF ∗(c)
4r2g3

)
.

Since 2a + b ≥ −2, either b = 0 or max(a, a + b) > −1. By Lemma 4.7, we have

∫
|α|=l̂

ψ(−αk

rgtQ
)ψ(− tQF ∗(c)

4rg2α
)dα = |rgt

Q

k
|B∞

(
ψ, l + deg( k

rgtQ
), kF

∗(c)
4r2g3

)

=

⎧⎨⎩| rgt
Q

k |Kl∞
(
ψ, kF∗(c)

4r2g3

)
if 2l = deg( t

2QF∗(c)
kg ),

0 otherwise.

Note that if 2l = deg( t
2QF∗(c)

kg ), then l̂ > κi, and we have

Ig,r(c) = −Q̂2|g|2|r|2|F ∗(c)|−1Kl∞
(
ψ,

kF ∗(c)
4r2g3

)
. �
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5. The exponential sums Sg,r(c)

In this section, we explicitly compute our exponential sums. Though our computations 
can be generalized to all non-degenerate quadratic forms, we focus here on the special 
case of the Morgenstern quadratic form

F (x1, x2, x3, x4) := η1x
2
1 + η2x

2
2 + η3x

2
3 + η4x

2
4

over Fq[t], where η1 = 1, η2 = −ν, η3 = −(t − 1), η4 = ν(t − 1) and ν ∈ Fq is not a 
square. Its dual quadratic form F ∗ is obtained by inverting the coefficients ηj. Focusing 
on the Morgenstern quadratic form is no restriction in our case since we are primarily 
interested in proving upper bounds for the diameters of Morgenstern Ramanujan graphs. 
Throughout this section, we let A = diag(η1, . . . , η4) be the diagonal matrix associated 
to this quadratic form. Also, by Lemma 3.2 of [SZ20], Sg,r(c) = 0 except possibly when 
c ≡ 2β(c)Aλ mod g for some β(c) ∈ O.

Proposition 5.1. For the Morgenstern quadratic form above and g ∈ Fq[t] not divisible by 
t − 1, we have that when gcd(r, t − 1)|c3, c4, then Sg,r(c) is equal to

|g|4
|m|2 (| gcd(r, t− 1)|τrτr/(r,t−1))2ψ

(
−mrβ(c) (f−F (λ))

m −m2r 〈λ, c〉
(g/m)2

)
ψ

(
〈λ, c〉
g2r

)

·
∑

s∈O/(m)

ψ

(
−sg/mβ(c)

m

)
Klm2r

(
g/mf −mrs,

1
4g/m

3
F ∗(c)

)
,

where m := (g, r∞). If gcd(r, t − 1) � c3, c4, then Sg,r(c) = 0. Note that when c is such 

that |c| < |gr| (when r �= 1 and κ < Q̂/R̂ = q, for example), then ψ
(

〈λ,c〉
g2r

)
= 1.

Proof. Recall that, the exponential sums for quadratic forms in d = 4 variables are

Sg,r(c) :=
∑
�∈O

|�|<|g|

∑∗

|a|<|r|

∑
b∈(O/(gr))4

ψ

(
(a + r�)(2λTAb − k) + agF (b) − 〈c,b〉

gr

)

=
∑
�∈O

|�|<|g|

∑∗

|a|<|r|

∑
b∈(O/(gr))4

ψ

(
(a + r�)(2λTAb − k + gF (b)) − 〈c,b〉

gr

)
.

Summation over � is zero except possibly when g|2λTAb −k, and so we may rewrite the 
latter as

Sg,r(c) =
∑

|a|<|gr|
(a,r)=1

∑
b∈(O/(gr))4

g|2λTAb−k

ψ

(
a(2λTAb − k + gF (b)) − 〈c,b〉

gr

)
.
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Let m := (g, r∞). Using this expression for Sg,r(c), we may rewrite the exponential 
sum in terms of m as follows. First note that gr = g

m · (mr). Additionally, (a, r) = 1
is equivalent to (a, mr) = 1. Also, since (m, gm ) = 1, the condition g|2λTAb − k is 
equivalent to the pair of conditions g

m |2λTAb −k and m|2λTAb −k. Therefore, we have

Sg,r(c) =
∑

|a|<|gr|
(a,r)=1

∑
b∈(O/(gr))4

g|2λTAb−k

ψ

(
a(2λTAb − k + gF (b)) − 〈c,b〉

gr

)

= 1
|m|

∑
|a|<

∣∣ g
m ·(mr)

∣∣
(a,mr)=1

∑
b∈(O/

(
g
m ·(mr)

)
)4

g
m |2λTAb−k

·
∑

|s|<|m|
ψ

(
a(2λTAb − k + gF (b)) − 〈c,b〉

gr

)
ψ

(
s(2λTAb − k)

m

)

= 1
|m|

∑
|s|<|m|

∑
|a|<

∣∣ g
m ·(mr)

∣∣
(a,mr)=1

·
∑

b∈(O/
(

g
m ·(mr)

)
)4

g
m |2λTAb−k

ψ

((
a + grs

m

)
(2λTAb − k + gF (b)) − 〈c,b〉

gr

)

=
∑

|a|<
∣∣ g
m ·(mr)

∣∣
(a,mr)=1

∑
b∈(O/

(
g
m ·(mr)

)
)4

g
m |2λTAb−k

ψ

(
a(2λTAb − k + gF (b)) − 〈c,b〉

g
m · (mr)

)
.

Since g
m and mr are coprime, we may write

a = (mr)a1 + g

m
a2

and

b = (mr)b1 + g

m
b2,

where a1 ranges modulo g
m , a2 modulo mr coprime to mr, b1 modulo g

m , b2 modulo 
mr. Furthermore, we also have the condition that g

m |2λTAb − k which is equivalent to 
the condition that g

m |2mrλTAb1 − k. Then

ψ

(
a(2λTAb − k + gF (b)) − 〈c,b〉

g
m · (mr)

)

= ψ

(
a1(2λTA(mrb1) − k) − 〈mrc,mrb1〉

g
m

)
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· ψ

⎛⎝a2(2λTA( g
mb2) − k + gF ( g

mb2)) −
〈
g/mc, (g/m)b2

〉
mr

⎞⎠ .

Since gcd(mr, gm ) = 1, when summing over b1 and b2 we may replace mrb1 and g
mb2

with b1 and b2, respectively. Consequently, we have

Sg,r(c) =
∑

|a1|<
∣∣ g
m

∣∣
∑

b1∈(O/(g/m))4
g
m |2λTAb1−k

ψ

(
a1(2λTA(b1) − k) − 〈mrc,b1〉

g
m

)

·
∑∗

|a2|<|mr|

∑
b2∈(O/(mr))4

ψ

⎛⎝a2(2λTA(b2) − k + gF (b2)) −
〈
g/mc,b2

〉
mr

⎞⎠ .

It is easy to see that the first summation is equal to

∣∣∣ g
m

∣∣∣4 ψ(−mrβ(c)k
g/m

)
.

As a result,

Sg,r(c) =
∣∣∣ g
m

∣∣∣4 ψ(−mrβ(c)k
g/m

)

·
∑∗

|a2|<|mr|

∑
b2∈(O/(mr))4

ψ

⎛⎝a2(2λTA(b2) − k + gF (b2)) −
〈
g/mc,b2

〉
mr

⎞⎠
=
∣∣∣ g
m

∣∣∣4 ψ(−mrβ(c)k
g/m

) ∑∗

|a|<|mr|
ψ

(
−ak

mr

)

·
4∏

j=1

∑
b∈O/(mr)

ψ

(
gaηjb

2 + (2aηjλj − g/mcj)b
mr

)
.

Let us denote the double summation in this expression by S (temporarily neglect the 
leading factor). In order to complete our computation of a closed form for S, we use the 
following easy lemma whose proof we leave to the reader.

Lemma 5.2. Suppose a, b, c ∈ Fq[t]. If gcd(a, c) � b, then

∑
x∈O/(c)

ψ

(
ax2 + bx

c

)
= 0.

Note that gcd(mr, gaηj) = m gcd(r, ηj). Using Lemma 5.2, we should have
m gcd(r, ηj)|2aηjλj − g/mcj for every j in order to have a nonzero value. Since Δ
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and g are relatively prime, m and gcd(r, ηj) are also relatively prime. Consequently, the 
condition that m gcd(r, ηj)|2aηjλj − g/mcj for each j can be rewritten as the pair of 
conditions m|2aAλ−g/mc and gcd(r, η)|c (that is, for every j, gcd(r, ηj)|cj); otherwise, 
we have a zero value for Sg,r(c). Let us assume for the rest of this section that gcd(r, η)|c. 
In this case,

S = |m|4
∑∗

|a|<|mr|
m|2aAλ−g/mc

ψ

(
−ak

mr

) 4∏
j=1

∑
b∈O/(r)

ψ

⎛⎜⎝ g
ma

ηj

(r,ηj)b
2 +

(2a ηj
(r,ηj )λj−g/m

cj
(r,ηj ) )

m b

r/(r, ηj)

⎞⎟⎠ .

Completing the square and using the computation of Gauss sums, we may rewrite

∑
b∈O/(r)

ψ

⎛⎜⎝ g
ma

ηj

(r,ηj)b
2 +

(2a ηj
(r,ηj )λj−g/m

cj
(r,ηj) )

m b

r/(r, ηj)

⎞⎟⎠
= | gcd(r, ηj)|

(
(g/m)a(ηj/(r, ηj))

r/(r, ηj)

)
τr/(r,ηj)

· ψ

⎛⎜⎜⎜⎝
−(g/m)a(ηj/(r, ηj))

(
2a ηj

(r,ηj)λj−g/m
cj

(r,ηj )

2m

)2

r/(r, ηj)

⎞⎟⎟⎟⎠ ,

where 
(

(g/m)a(ηj/(r,ηj))
r/(r,ηj)

)
is the Jacobi symbol. Consequently, S is equal to

⎛⎝ 4∏
j=1

| gcd(r, ηj)|τr/(r,ηj)

⎞⎠ |m|4

·
∑∗

|a|<|mr|
m|2aAλ−g/mc

⎛⎝ 4∏
j=1

(
(g/m)a(ηj/(r, ηj))

r/(r, ηj)

)⎞⎠ψ

(
−ak

mr

)

· ψ

⎛⎜⎜⎜⎝
−
∑

j (g/m)a(ηj/(r, ηj))
(

2a ηj
(r,ηj)λj−g/m

cj
(r,ηj )

2m

)2

r/(r, ηj)

⎞⎟⎟⎟⎠ .

So far, all our computations were valid for general quadratic forms. In the rest of this 
proof, we restrict to the Morgenstern quadratic form. In this case, we can write S more 
explicitly:



66 N.T. Sardari, M. Zargar / Journal of Number Theory 217 (2020) 44–77

|m|4
(
| gcd(r, t− 1)|τrτr/(r,t−1)

)2
ψ

(
g/m

2 〈λ, c〉
m2r

)

·
∑∗

|a|<|mr|
m|2aAλ−g/mc

ψ

(
−g/mfa− 1

4g/m
3
F ∗(c)a

m2r

)
,

where the last equality follows from km + g/mF (λ) ≡ g/mf mod m2r. Here, F ∗ is the 
dual of F as before in the computation of the oscillatory integrals. Furthermore, the 
condition m|2aAλ− g/mc is equivalent to a ≡ g/mβ(c) mod m. We deduce that

Sg,r(c) = |g|4
|m|

(
| gcd(r, t− 1)|τrτr/(r,t−1)

)2
ψ

(
−mrβ(c)k

g/m

)
ψ

(
g/m

2 〈λ, c〉
m2r

)

·
∑∗

|a|<|m2r|
a≡g/mβ(c) mod m

ψ

(
−g/mfa− 1

4g/m
3
F ∗(c)a

m2r

)
,

where we have changed summation over a modulo mr to modulo m2r at the cost of 
introducing a factor of 1

|m| . We may replace the congruence condition by a summation 
modulo m and rewrite Sg,r(c) in terms of Kloosterman sums:

Sg,r(c) = |g|4
|m|2

(
| gcd(r, t− 1)|τrτr/(r,t−1)

)2
ψ

(
−mrβ(c)k

g/m

)
ψ

(
g/m

2 〈λ, c〉
m2r

)

·
∑

s∈O/(m)

ψ

(
−sg/mβ(c)

m

)
Klm2r

(
g/mf −mrs,

1
4g/m

3
F ∗(c)

)
.

By the Chinese Remainder Theorem,

ψ

(
−mrβ(c)k

g/m

)
ψ

(
g/m

2 〈λ, c〉
m2r

)
= ψ

(
−mrβ(c) (f−F (λ))

m −m2r 〈λ, c〉
(g/m)2

)
ψ

(
〈λ, c〉
g2r

)
,

from which the conclusion follows. �
6. Strong approximation and Ramanujan graphs

In this section, we begin by showing how a certain square-root cancellation in an 
exponential sum gives us strong approximation for non-degenerate quadratic forms in 
four variables over Fq[t]. We then proceed to show that assuming the twisted Linnik–Sel-
berg Conjecture 1.4, we do have the desired square-root cancellation for Morgenstern’s 
quadratic forms used in the construction of Ramanujan graphs with even degree (odd q).
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First, let us proceed to estimate the main term contributing to the smooth N(w, λ). 
The following lemmas are true for quadratic forms in more variables, but we restrict here 
to d = 4.

Lemma 6.1. Suppose ε > 0. With the notation as before with F a non-degenerate 
quadratic form in 4 variables over Fq[t], and for 1 ≤ |r| ≤ Q̂1−ε, we have

Ig,r(0) = CF Q̂
4

for some non-negative constant CF and for sufficiently large (depending only on ε and 
F ) Q̂. CF > 0 if the system under consideration is solvable over K∞.

Proof. It follows from equation (11) that

Ig,r(0) = Q̂

|r|

∫
|t|<R̂

|G(t)|<Q̂|r|

dt = Q̂

|r|

∫
|gt+λ|≤|f |1/2

|F (gt+λ)−f |<Q̂|r||g|2

dt.

Making the substitution x = gt + λ gives us the equality

Ig,r(0) = Q̂

|r||g|4
∫

|x|≤|f |1/2:|F (x)−f |<Q̂|r||g|2

dx.

Write f = αfu
2, where αf ∈ {1, ν, t, νt} is the quadratic residue of f . By Lemma 3.2

and Fubini, we may rewrite this as

Ig,r(0) = Q̂

|r||g|4
∫

|x|≤|f |1/2

∫
T

ψ

(
(F (x) − f)

rg2tQ
α

)
dαdx

= Q̂

|r||g|4
∫
T

∫
|x|<D̂

ψ

(
(F (x) − f)

rg2tQ
α

)
dxdα

= Q̂D̂4

|r||g|4
∫
T

∫
T4

ψ

(
(F (x) − f/(t2u2))

rg2tQ/(t2u2) α

)
dxdα

= Q̂D̂4

|r||g|4
∫
T

∫
T4

ψ

(
(F (x) − αf/(t2))
rg2tQ/(t2u2) α

)
dxdα

where D := 1 + deg u, and the last equality follows from scaling the x coordinate by a 
factor of D̂. Making the substitution β = α

rg2tQ/(t2u2) , we obtain the equality
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Ig,r(0) = Q̂2D̂4

|g|22̂D

∫
|β|< 2̂D

Q̂|r||g|2

∫
T4

ψ
(
(F (x) − αf/t

2)β
)
dxdβ.

Note that the integral is equal to

2̂D
Q̂|r||g|2

vol
({

x ∈ T 4 : |F (x) − αf/t
2| ≤ Q̂|r||g|2

2̂D

})
≥ 0.

Note that 2̂D
Q̂|r||g|2 � Q̂ε. Applying Lemma 6.2 of [SZ20], we can choose Q̂ large enough 

(depending on ε and the F ) so that the integral over |β| is constant over balls of radii 
at least Q̂ε. The conclusion follows. �

As in Lemma 6.3 of [SZ20], we can show that for Q̂1−ε ≤ |r| ≤ Q̂, the contribution of 
the terms in N(w, λ) when c = 0 and such r is small.

Lemma 6.2. ∑
Q̂1−ε≤|r|≤Q̂

|gr|−4|Sg,r(0)||Ig,r(0)| 
ε,F |g|εQ̂ 7
2+ε

Proof. The only difference in the proof of this lemma and that of Lemma 6.3 of [SZ20]
is that the definitions of the oscillatory integrals are different. However, we only need 
the same bound

|Ig,r(0)| 
ε,F Q̂4+ε

for such r, which is trivial. The rest of the proof is as before; we also need to use 
Proposition 3.1 of [SZ20]. �

We now proceed to show that ∑
r:1≤|r|≤T̂

|gr|−4Sg,r(0)

can be written in terms of local densities. Indeed, by Lemma 6.5 of [SZ20], we have the 
estimate ∑

r:1≤|r|≤T̂

|gr|−4Sg,r(0) =
∑
r

|gr|−4Sg,r(0) + Oε,Δ(T̂−1/2+ε)

for every ε > 0. On the other hand, Lemma 6.6 of [SZ20] shows that∑
r

|gr|−4Sg,r(0) =
∏
�

σ� � |f |−ε,
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where � ranges over the monic irreducible polynomials in Fq[t], and

σ� := lim
k→∞

|
{
x mod �k+ν�(g) : F (x) ≡ f mod �k+ν�(g), x ≡ λ mod �ν�(g)} |

|�|3k .

Using the above, estimates, let us take the simple step of showing that conditional on 
a square-root cancellation we have optimal strong approximation for any non-degenerate 
quadratic form in four variables over Fq[t]. First, recall from Section 3 that the smooth 
sum for quadratic forms of four variables is

N(w,λ) = 1
|g|Q̂2

∑
r∈O
|r|≤Q̂

∑
c∈O4

|gr|−4Sg,r(c)Ig,r(c).

Lemma 6.3. Suppose we have a non-degenerate quadratic form F over Fq[t] in d = 4
variables. Additionally, assume that∣∣∣∣∣∣

∑
1≤|r|≤Q̂

∑
c�=0

|gr|−4Sg,r(c)Ig,r(c)

∣∣∣∣∣∣
ε,F Q̂
7
2+ε|g| 12+ε.

Then Conjecture 1.2 is true for the given quadratic form F .

Proof. Using the assumption, Lemma 4.3, and Lemma 6.2, we have

N(w,λ) = 1
|g|Q̂2

∑
r∈O

|r|≤Q̂1−ε

|gr|−4Sg,r(0)Ig,r(0) + Oε,F

(
Q̂

3
2+ε|g|− 1

2+ε
)
.

From Lemma 6.1 above, Ig,r(0) = CF Q̂
4 for some constant CF > 0 and sufficiently large 

(depending only on ε and F ) Q̂. Hence for such Q̂,

1
|g|Q̂2

∑
r∈O

|r|≤Q̂1−ε

|gr|−4Sg,r(0)Ig,r(0) = CF Q̂
2

|g|
∑
r∈O

|r|≤Q̂1−ε

|gr|−4Sg,r(0).

From the discussion prior to this lemma, we know that we can express the first sum in 
terms of local densities:∑

r∈O
|r|≤Q̂1−ε

|gr|−4Sg,r(0) =
∏
�

σ� + O
(
Q̂− 1

2+ε
)
.

Consequently, the smooth sum is equal to
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N(w,λ) = CF Q̂
2

|g|

(∏
�

σ� + O
(
Q̂− 1

2+ε
))

+ Oε,F

(
Q̂

3
2+ε|g|− 1

2+ε
)

= CF Q̂
2

|g|
∏
�

σ� + Oε,F

(
Q̂

3
2+ε|g|− 1

2+ε
)

= CF Q̂
2

|g|
∏
�

σ�

(
1 + Oε,F

(
|f |εQ̂ 3

2+ε|g| 12+ε

Q̂2

))

= CF Q̂
2

|g|
∏
�

σ�

(
1 + Oε,F

(
|g|1+ε

|f | 14−ε

))

= CF Q̂
2

|g|
∏
�

σ�

(
1 + Oε,F

((
|g|4+ε

|f |

) 1
4−ε
))

.

Hence, if |f | � |g|4+ε, we have strong approximation. In the third equality, we have used 
that the product of the local densities is � |f |−ε. �
Remark 14. In the proof of the main theorem of [SZ20], the only reason we had to have 
|f | � |g|6+ε in the case of four variables was that we used the weaker statement∣∣∣∣∣∣

∑
1≤|r|≤Q̂

∑
c�=0

|gr|−dSg,r(c)Ig,r(c)

∣∣∣∣∣∣ ≤
∑

1≤|r|≤Q̂

∑
c�=0

|gr|−d|Sg,r(c)||Ig,r(c)|


ε,F Q̂
d+3
2 +ε|g| d−3

2 +ε(1 + |g|− d−5
2 +ε)

proved in Proposition 7.1 of [SZ20]. Indeed, for d = 4, this is weaker than what we ask 
above because then 1 + |g|− d−5

2 +ε ∼ |g|1/2+ε and so is not O(1) (in contrast to when 
d ≥ 5). The bound we assume in the statement of this lemma is precisely that if we do 
not take absolute values we get an extra power saving of |g|1/2 when in the case of four 
variables.

Remark 15. In light of the previous remark and the proof of the above lemma, any 
improvement to the factor |g|1/2 in the previous remark would allow us to weaken the 
condition deg f ≥ (6 + ε) deg g+Oε(1) that was required for the main theorem of [SZ20]
in the case of non-degenerate quadratic forms in d = 4 variables.

In the rest of this section, we show how the twisted Linnik–Selberg Conjecture 1.4
implies that the above square-root cancellation is true for Morgenstern’s quadratic forms. 
This in turn implies Conjecture 1.1 giving the upper bound 

(4
3 + ε

)
logq |G| + Oε(1) for 

the diameter of q + 1-regular Morgenstern Ramanujan graphs with q odd.
Recall the notations in Section 4. In order to understand the error in the smooth 

sum N(w, λ) for the Morgenstern quadratic form, we use the explicit formulas for the 
oscillatory integrals Ig,r(c) and exponential sums derived in the last two sections. Note 
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that by Lemma 4.3, Ig,r(c) = 0 when |r| ≤ Q̂ and |c| ≥ Q̂|g|/R̂. Therefore, it suffices to 
study ∑

1≤|r|≤Q̂

∑
0<|c|< Q̂|g|

R̂

|gr|−dSg,r(c)Ig,r(c) = E1 + E2,

where

E1 :=
∑

0<|c|<Q̂|g|/R̂

∑
1≤|r|≤ R̂|c|qπc−1

|g|

|gr|−4Sg,r(c)Ig,r(c)

and

E2 :=
∑

0<|c|<Q̂|g|/R̂

∑
R̂|c|qπc

|g| ≤|r|≤Q̂

|gr|−4Sg,r(c)Ig,r(c).

Here, πc = 0 if c satisfies max(|c3|, |c4|) > max(|c1|, |c2|) and deg f is even; otherwise, 
πc = 1. In order to obtain the desired bound in the above lemma, it suffices to prove the 
desired bound for each of E1 and E2 separately. For simplicity, we assume for the rest 
of this section that g is an irreducible polynomial in Fq[t].

We first treat E2. Note that by Proposition 4.1, for R̂|c|qπc

|g| ≤ |r| ≤ Q̂, we have 
Ig,r(c) = Ig,r(0) or 0. Furthermore, from the definition of Ig,r(0), we know that it 
depends on |r|, not r itself. Therefore, it makes sense to write Ig,|r|(0) instead of Ig,r(0). 
From this discussion, we obtain

|E2| ≤
∑

0<|c|<Q̂|g|/R̂

∑
R̂|c|qπc

|g| ≤T̂≤Q̂

|Ig,T̂ (0)||g|−4T̂−4

∣∣∣∣∣∣
∑
|r|=T̂

Sg,r(c)

∣∣∣∣∣∣ .
In the following, we will use the following notation: 

∑exc denotes summation over those 
c such that Sg,r(c) �= 0 and |c| ≤ |g|. We have the following accompanying lemma.

Lemma 6.4. For every θ < 0 and every 0 ≤ T ≤ deg g, we have

exc∑
0<|c|≤T̂

|c|θ 
ε,F,θ T̂ θ+1.

Proof. By Lemma 3.2 of [SZ20], we know that such c must be polynomial multiples of Aλ

modulo g. Since 0 < |c| ≤ |g|, c and α uniquely determine each other. By assumption, 
at least one coordinate of λ is relatively prime to g, from which the final inequality 
follows. �
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Suppose we have for every T ≥ 0,∣∣∣∣∣∣
∑
|r|=T̂

Sg,r(c)

∣∣∣∣∣∣
ε,F Q̂ε|g|4+εT̂ 3+ε. (16)

Then it would follow from this assumption and Lemma 6.4 that

|E2| ≤
∑

0<|c|<Q̂|g|/R̂

∑
R̂|c|qπc

|g| ≤T̂≤Q̂

|Ig,T̂ (0)||g|−4T̂−4

∣∣∣∣∣∣
∑
|r|=T̂

Sg,r(c)

∣∣∣∣∣∣

ε,F Q̂4+ε|g|ε

exc∑
0<|c|<Q̂|g|/R̂

∑
R̂|c|qπc

|g| ≤T̂≤Q̂

T̂−1+ε


ε,F Q̂4+ε|g|ε
exc∑

0<|c|<Q̂|g|/R̂

(
Q̂|c|
|g|

)−1+ε


ε,F Q̂3+ε|g|1+ε
exc∑

0<|c|<Q̂|g|/R̂

|c|−1+ε 
ε,F Q̂7/2+ε|g|1/2+ε.

Note that Q̂ and R̂ differ by a factor of q. This is exactly the desired bound on E2. 
Therefore, we have reduced to showing inequality (16) for each integer T ≥ 0.

By Proposition 5.1, when gcd(r, t − 1)|c3, c4, Sg,r(c) is equal to

|g|4
|m|2 (| gcd(r, t− 1)|τrτr/(r,t−1))2ψ

(
−mrβ(c) (f−F (λ))

m −m2r 〈λ, c〉
(g/m)2

)
ψ

(
〈λ, c〉
g2r

)

·
∑

s∈O/(m)

ψ

(
−sg/mβ(c)

m

)
Klm2r

(
g/mf −mrs,

1
4g/m

3
F ∗(c)

)
,

(17)

where m := (g, r∞). If gcd(r, t −1) � c3, c4, then Sg,r(c) = 0. Since g is irreducible, m = 1
or m = g. For the bound on E2, we split the sum over r such that m = 1 and m = g, and 
show the desired bounds separately. First, let us show that we may assume that m = 1.

Lemma 6.5. For every 0 ≤ T ≤ deg g,∑
|r|=T̂
g|r

|Sg,r(c)| 
ε,F Q̂ε|g|3+εT̂ 7/2+ε,

from which it follows that the contributions to E2 from those r such that g|r may be 
neglected.
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Proof. When g|r, m = g. From the expression (17) for Sg,r(c), we see that it suffices to 
show that

∑
|r|=T̂
g|r

(| gcd(r, t− 1)|τrτr/(r,t−1))2
∣∣∣∣∣∣
∑

s∈O/(g)

ψ

(
−sβ(c)

g

)
Klg2r

(
f − grs,

1
4F

∗(c)
)∣∣∣∣∣∣


ε,F Q̂ε|g|1+εT̂ 7/2+ε.

Note that in this case, |λ| < |g|, |c| ≤ |g|, and g|r, and so ψ
(

〈λ,c〉
g2r

)
= 1. By the Weil 

bound on Kloosterman sums (Lemma 3.5 of [SZ20]), we have that∣∣∣∣∣∣
∑

s∈O/(g)

ψ

(
−sβ(c)

g

)
Klg2r

(
f − grs,

1
4F

∗(c)
)∣∣∣∣∣∣


ε,F |g|2+ε|r|1/2+ε| gcd(f − grs,
1
4F

∗(c), g2r)|1/2.

Since gcd(g, f)=1 and g|r by assumption, gcd(f−grs, 14F
∗(c), g2r)= gcd(f, 14F

∗(c), r/g). 
Therefore,

∑
|r|=T̂
g|r

(| gcd(r, t− 1)|τrτr/(r,t−1))2
∣∣∣∣∣∣
∑

s∈O/(g)

ψ

(
−sβ(c)

g

)
Klg2r

(
f − grs,

1
4F

∗(c)
)∣∣∣∣∣∣


ε,F |g|2+εT̂ 2+1/2+ε
∑
|r|=T̂
g|r

gcd(r,t−1)|c3,c4

| gcd(f, r/g)|1/2 
ε,F |g|2+εT̂ 2+1/2+ε|f |ε T̂

|g|


ε,F Q̂ε|g|1+εT̂ 7/2+ε.

We use this to show that the contribution to E2 from those r such that g|r already 
satisfies the desired bound on E2. Indeed, we have∑

0<|c|<Q̂|g|/R̂

∑
R̂|c|qπc

|g| ≤T̂≤Q̂

|Ig,T̂ (0)|T̂−4|g|−4
∑
|r|=T̂
g|r

|Sg,r(c)|


ε,F Q̂4+ε|g|−1+ε
exc∑

0<|c|<Q̂|g|/R̂

∑
R̂|c|qπc

|g| ≤T̂≤Q̂

T̂−1/2+ε


ε,F Q̂4+ε|g|−1+ε
exc∑

0<|c|<Q̂|g|/R̂

(
Q̂|c|
|g|

)−1/2+ε
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ε,F Q̂7/2+ε|g|−1/2+ε
exc∑

0<|c|<Q̂|g|/R̂

|c|−1/2+ε 
ε,F Q̂7/2+ε|g|ε,

where the final bound follows from Lemma 6.4. �
From Lemma 6.5, we may assume that m = 1, that is, g � r. Using this and the 

expression (17) with m = 1, for the inequality (16) it suffices to show that∣∣∣∣∣ ∑
|r|=T̂

(g,r)=1
gcd(r,t−1)|c3,c4

(| gcd(r, t− 1)|τrτr/(r,t−1))2ψ
(
−r(β(c)(f − F (λ)) + 〈λ, c〉)

g2

)

· Klr
(
gf,

1
4g

3F ∗(c)
)∣∣∣∣∣


ε,F |g|εT̂ 3+ε.

Note that since |λ| < |g|, |c| ≤ |g|, ψ
(

〈λ,c〉
g2r

)
= 1 unless possibly when r = 1, which 

contributes a term of norm 1 to the above sum. This is why we may suppress the 
ψ
(

〈λ,c〉
g2r

)
.

We split the sum into two sums, one where t − 1|r and one where t − 1 � r. Summing 
over those r such that t − 1|r gives us the sum

q2
∑
|r|=T̂

(g,r)=1, t−1|r
t−1|c3,c4

(τrτr/(r,t−1))2ψ
(
−r(β(c)(f − F (λ)) + 〈λ, c〉)

g2

)
Klr
(
gf,

1
4g

3F ∗(c)
)
.

Since τ2
r τ

2
r/(t−1) only depends on |r|, and not r itself, we can pull it out of the sum. This 

term has norm T̂ 2/q. The second sum, that is when t − 1 � r, is

T̂ 2
∑
|r|=T̂

((t−1)g,r)=1

ψ

(
−r(β(c)(f − F (λ)) + 〈λ, c〉)

g2

)
Klr
(
gf,

1
4g

3F ∗(c)
)
.

Therefore, in any case, it suffices to show that we have the following two cancellations. 
First, that if t − 1|c3, c4,∣∣∣∣∣∣∣∣∣

∑
|r|=T̂

(g,r)=1, t−1|r

ψ

(
−r(β(c)(f − F (λ)) + 〈λ, c〉)

g2

)
Klr
(
gf,

1
4g

3F ∗(c)
)∣∣∣∣∣∣∣∣∣
ε,F Q̂ε|g|εT̂ 1+ε.

Second, that
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∑
|r|=T̂

((t−1)g,r)=1

ψ

(
−r(β(c)(f − F (λ)) + 〈λ, c〉)

g2

)
Klr
(
gf,

1
4g

3F ∗(c)
)∣∣∣∣∣∣∣∣∣
ε,F Q̂ε|g|εT̂ 1+ε.

Of course, we may replace one of the above bounds, say the second one, with

∣∣∣∣∣∣∣∣∣
∑
|r|=T̂

(g,r)=1

ψ

(
−r(β(c)(f − F (λ)) + 〈λ, c〉)

g2

)
Klr
(
gf,

1
4g

3F ∗(c)
)∣∣∣∣∣∣∣∣∣
ε,F Q̂ε|g|εT̂ 1+ε.

We now use the explicit computation of Ig,r(c) to show that a different kind of twisted 
Linnik–Selberg cancellation over function fields, taking the infinite place into account as 
well, gives us the desired bound on E1. Indeed, by Proposition 4.1, for c and r such that 
1 ≤ |r| ≤ R̂|c|qπc−1

|g| , we have Ig,r(c) = 0 or

Ig,r(c) = −Q̂2|gr|2|F ∗(c)|−1Kl∞
(
ψ,

fF ∗(c)
4r2g4

)
.

Therefore,

|E1| ≤ Q̂2
∑

0<|c|<Q̂|g|/R̂

|F ∗(c)|−1

∣∣∣∣∣∣∣
∑

1≤|r|≤ R̂|c|qπc−1
|g|

|gr|−2Sg,r(c)Kl∞
(
ψ,

fF ∗(c)
4r2g4

)∣∣∣∣∣∣∣ .
We can use Proposition 5.1 to rewrite this inequality as

|E1| ≤ Q̂2|g|2
∑
m|g

∑
0<|c|<Q̂|g|/R̂

|F ∗(c)|−1

∣∣∣∣∣ ∑
1≤|r|≤ R̂|c|qπc−1

|g|
(g,r∞)=m

gcd(r,t−1)|c3,c4

1
|mr|2 (| gcd(r, t− 1)|τrτr/(r,t−1))2

·ψ
(
−mrβ(c) (f−F (λ))

m −m2r 〈λ, c〉
(g/m)2

)
ψ

(
〈λ, c〉
g2r

) ∑
s∈O/(m)

ψ

(
−sg/mβ(c)

m

)

·Klm2r

(
g/mf −mrs,

1
4g/m

3
F ∗(c)

)
Kl∞

(
ψ,

fF ∗(c)
4r2g4

) ∣∣∣∣∣.
Using the fact that Morgenstern quadratic forms are anisotropic and so satisfy |c|2 
F

|F ∗(c)|, we may reduce, as in the case of E2, to showing that
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|r|=T̂

(g,r)=1
gcd(r,t−1)|c3,c4

(| gcd(r, t− 1)|τrτr/(r,t−1))2ψ
(
−r(β(c)(f − F (λ)) + 〈λ, c〉)

g2

)

·Klr
(
gf,

1
4g

3F ∗(c)
)

Kl∞
(
ψ,

fF ∗(c)
4r2g4

) ∣∣∣∣∣
ε,F Q̂ε|g|εT̂ 3+ε.

When m := (g, r) = g, we may argue as before and use the Weil bound Kl∞(ψ, α) 
ε

|α|1/4+ε (Lemma 5.8 of [SZ20]) in addition to |c| ≤ |g|. Therefore, as in the case of E2, 
we may assume that m = 1, that is, g � r.

As in the case of E2, we may split into two sums, one where t − 1|r and one where 
t − 1 � r. We similarly obtain that it suffices to show that∣∣∣∣∣∣∣∣∣

∑
|r|=T̂

(g,r)=1, t−1|r

ψ

(
−r(β(c)(f − F (λ)) + 〈λ, c〉)

g2

)
Klr
(
gf,

1
4g

3F ∗(c)
)

Kl∞
(
ψ,

fF ∗(c)
4r2g4

)∣∣∣∣∣∣∣∣∣

ε,F Q̂ε|g|εT̂ 1+ε

and∣∣∣∣∣∣∣∣∣
∑
|r|=T̂

(g,r)=1

ψ

(
−r(β(c)(f − F (λ)) + 〈λ, c〉)

g2

)
Klr
(
gf,

1
4g

3F ∗(c)
)

Kl∞
(
ψ,

fF ∗(c)
4r2g4

)∣∣∣∣∣∣∣∣∣

ε,F Q̂ε|g|εT̂ 1+ε.

Therefore, we have reduced proving optimal strong approximation for the Morgenstern 
quadratic form to proving the above square-root cancellation. These would follow from 
the twisted Linnik–Selberg square-root cancellations over function fields, that is, Conjec-
ture 1.4. Indeed, we let α := β(c)(f−F (λ)) +〈λ, c〉, a := f

g , b := F∗(c)
4g3 , and δ ∈ {1, t −1}. 

Note that since c are such that t − 1|c3, c4 (otherwise, Sg,r(c) = 0), F ∗(c) ∈ Fq[t], and 
so b ∈ Fq[t, g−1]. Also, recall that ψr(x) = ψ

(
x mod r

r

)
, that is, we first reduce modulo r, 

and then divide by r. The fact that this strong approximation implies the conjectured 
upper bound on the diameter of Morgenstern Ramanujan graphs for odd q (see Conjec-
ture 1.1) can be found in the introduction to the authors’ paper [SZ20]; for more details, 
the reader is advised to look at Morgenstern’s paper [Mor94].
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