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Abstract. Reduced model spaces, such as reduced bases and polynomial chaos, are linear
spaces Vp, of finite dimension n which are designed for the efficient approximation of certain families
of parametrized PDEs in a Hilbert space V. The manifold M that gathers the solutions of the PDE
for all admissible parameter values is globally approximated by the space V;, with some controlled
accuracy €p, which is typically much smaller than when using standard approximation spaces of the
same dimension such as finite elements. Reduced model spaces have also been proposed in [Y. Maday
et al., Internat. J. Numer. Methods Ergrg., 102 (2015), pp. 933-965] as a vehicle to design a simple
linear recovery algorithm of the state u € M corresponding to a particular solution instance when the
values of parameters are unknown but a set of data is given by m linear measurements of the state.
The measurements are of the form £;(u), j = 1,..., m, where the ¢; are linear functionals on V. The
analysis of this approach in [P. Binev et al., STAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 1-29]
shows that the recovery error is bounded by pnéen, where pn = u(Vy, W) is the inverse of an inf-sup
constant that describe the angle between V,, and the space W spanned by the Riesz representers of
(l1,...,€m). A reduced model space which is efficient for approximation might thus be ineffective for
recovery if uy is large or infinite. In this paper, we discuss the existence and effective construction
of an optimal reduced model space for this recovery method. We extend our search to affine spaces
which are better adapted than linear spaces for various purposes. Our basic observation is that this
problem is equivalent to the search of an optimal affine algorithm for the recovery of M in the worst
case error sense. This allows us to peform our search by a convex optimization procedure. Numerical
tests illustrate that the reduced model spaces constructed from our approach perform better than
the classical reduced basis spaces.
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1. Introduction.

1.1. Background and context. State estimation refers to the general problem
of approximately recovering the true state of a physical system of interest from in-
complete data. This task is ubiquitous in applied sciences and engineering. One can
draw a distinction between two different application scenarios:
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The physical properties of the states, sometimes referred to as background
information, are approximately modeled by a nonlinear dynamical system
which by itself is neither sufficiently accurate nor stable to warrant reliable
predictions. This is typically the case in weather prediction, climatology, or
generally in atmospheric research. One therefore utilizes observational data
to correct the model-based predictions, ideally in real time. Such correction
mechanisms are often based on statistical hypotheses such as Gaussianity
of error distributions. One important approach is ensemble Kalman filtering
which can be viewed as a recursive Bayesian estimation based on Monte Carlo
approximations to the first and second moments of the error distributions
[16, 18]. A second class of methods are so-called variational data assimilation
schemes like 3 dimensional (3D)-VAR or 4 dimensional (4D)-VAR [19]. The
state predicted by the model is then corrected by minimizing a quadratic cost
functional involving inverse covariance matrices for the background model
error and observation error. In this first scenario, the error bounds between
the exact and estimated state are typically expressed in an average sense,
based on the accepted simplified statistical model assumptions.

The physical states of interest are reliably described in terms of a parameter
dependent family of PDEs which for each parameter instance can be com-
puted within a desired target accuracy. The states are therefore elements of
the associated solution manifold that consists of all solutions to the PDE as
parameters vary. The task is then to estimate a state in (or near to) the solu-
tion manifold from only a finite number of measurements generated through
a fized number of sensors. A classical example is to estimate a pressure field
of a porous media flow from a finite number of pressure head measurements.
The parametric model then could arise from a Karhunen—Loeve expansion of a
random field of permeability coefficients in Darcy’s law, and may thus involve
a large or even infinite number of parameters. Problems of this type have been
investigated over the past decade in the context of uncertainty quantification.
Again, a prominent approach is Bayesian inversion where prior information is
given in terms of a probability distribution for the parameter, inducing a prob-
ability distribution for the state [25]. The objective is then to approximate the
posterior probability distribution of states given the data. High dimension-
ality renders such methods computationally expensive. Alternatively, state
estimation can be formulated as a constrained optimization problem. For
instance, one could minimize the deviation of state measurements over the
solution manifold asking for probabilistic or deterministic error bounds. In
practice, one typically chooses first a sufficiently fine discretization of the
high fidelity continuum model which then gives rise to a large scale (discrete)
constrained nonconvex optimization problem that needs to be solved for each
instance of data. Ill-posedness of the inversion task necessitates adding regu-
larization terms which introduce a further ambiguous bias. Reduced models
are used to alleviate the possibly prohibitive cost of the numerous forward
simulations that are needed in the descent method. A central issue is then to
judiciously switch between the high fidelty model, given in terms of the fine
scale discretization, and the low fidelity reduced model; see [27].

In this article, we consider scenario (ii) but pursue a different approach taking up
on recent work in [3, 20]. Although it can be formulated without any reference to a
statistical model, it has conceptual similarities with the 3D- and 4D-Var variational
approach invoked for scenario (i); see [17] and [26] for such connections. In contrast
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to Bayesian inversion, this approach yields deterministic error bounds expressed in
a worst case sense over the solution manifold, which is the primary interest in this
paper. Specifically, we follow [3] and formulate state estimation as an optimal recovery
problem; see, e.g., [21]. This allows us to formulate optimality benchmarks that steer
our development of recovery algorithms.

1.2. Mathematical formulation of the state estimation problem. The
sensing or recovery problem studied in this paper is formulated in a Hilbert space V'

equiped with some norm || - || and inner product (-, -): we want to recover an approx-
imation to an unknown function v € V from data given by m linear measurements
(L.1) li(uw), 1=1,...,m,

where the ¢; are m linearly independent bounded linear functionals over V. This
problem appears in many different settings. The particular one that motivates our
work is the case where u = u(y) represents the state of a physical system described
as a solution to a parametric PDE

(1.2) Pu,y) =0

for some unknown finite or infinite dimensional parameter vector y = (y;);>1 picked
from some admissible set Y. The ¢; are a mathematical model for sensors that capture
some partial information on the unknown solution u(y) € V.

Denoting by w; € V the Riesz representers of the £;, such that ¢;(v) = (w;,v) for
all v € V, and defining

(1.3) W = span{ws, ..., wmn},
the measurements are equivalently represented by
(1.4) w = Pyu,

where Py is the orthogonal projection from V onto W. A recovery algorithm is a
computable map

(1.5) AW -V
and the approximation to u obtained by this algorithm is
(1.6) u* = A(w) = A(Pwu).

The construction of A should be based on the available prior information that de-
scribes the properties of the unknown wu, and the evaluation of its performance needs
to be defined in some precise sense. Two distinct approaches are usually followed:
e In the deterministic setting, the sole prior information is that w belongs to
the set

(1.7) M :={u(y) : yeY}

of all possible solutions. The set M is sometimes called the solution manifold.
The performance of an algorithm A over the class M is usually measured by
the “worst case” reconstruction error

(1.8) Eyc (A, M) =sup{||u — A(Pwu)| : uve M}

The problem of finding an algorithm that minimizes Fy.(A) is called optimal
recovery. It has been extensively studied for convex sets M that are balls of
smoothness classes [5, 21, 22], which is not the case for (1.7).
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e In the stochastic setting, the prior information on u is described by a prob-
ability distribution p on V', which is supported on M, typically induced by
a probability distribution on Y that is assumed to be known. It is then nat-
ural to measure the performance of an algorithm in an averaged sense, for
example, through the mean square error

(1.9) Bus(A,p) = E([lu — A(Pwu)|*) = /V lu — A(Pwu)|*dp(u).

This stochastic setting is the starting point for Bayesian estimation meth-
ods [13]. Let us observe that for any algorithm A one has Fns(A,p) <
Ewe (A, M)2.

1.3. Optimal algorithms. The present paper concentrates on the deterministic
setting according to the above distinction, although some remarks will be given on
the analogies with the stochastic setting. In this setting, the benchmark for the
performance of recovery algorithms is given by

(M) = inf Bye(A, M),

where the infimum is taken over all possible maps A.

There is a simple mathematical description of an optimal map that meets this
benchmark. For any bounded set S C V' we define its Chebyshev ball as the smallest
closed ball that contains S. The Chebyshev ball radius and center denoted by rad(S)
and cen(S) are the radius and center of this ball. Since the information that we have
on u is that it belongs to the set

(1.10) My =MN0Vy, Vy:={veV : Ppv=w}=w+WH,

where W is the orthogonal complement of W in V', it follows that an optimal recon-
struction map A},. for the worst case error is given by

(1.11) A% (w) = cen(My,),

because the Chebyshev ball center of M,, minimizes the quantity sup{|ju —v|| : v €
M, } among all v € V. The worst case error is therefore given by

(1.12) Ef (M) = Ey (AL, M) = sup{rad(M,,) : w € Py (M)}.

Note that the map A¥_ is also optimal among all algorithms for each M,,, w €
Py (M), since

(1.13) Byo(A”

ey M) = manWC(A,./\/lw) =rad(M,), w € Py (M).
However, there may exist other maps A such that Ey.(4, M) = EZ (M), since we
also supremize over w € Py (M).

1.4. Linear and affine algorithms based on reduced models. In practice
the above map A} . cannot be easily constructed due to the fact that the solution
manifold M is a high dimensional and geometrically complex object. One is therefore
interested in designing “suboptimal yet good” recovery algorithms and analyzing their
performance.
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One vehicle for constructing linear recovery mappings A is to use reduced modeling.
Generally speaking, reduced models consist of linear spaces (V,,),>0 with increasing
dimension dim(V;,) = n which uniformly approximate the solution manifold in the
sense that

1.14 dist = in [ju— vl <
(1.14) ist(M, V) i= max min [lu — o] < e,
where

(1.15) go2e1 = 2ep =20

are known tolerances. Instances of reduced models for parametrized families of PDEs
with provable accuracy are provided by polynomial approximations in the y variable
[10, 11] or reduced bases [7, 24, 23]. The construction of a reduced model is typically
done offline, possibly using a large training set of instances of u € M called snapshots.
The offline stage potentially has a high computational cost. Once this is done, the
online cost of recovering u* = A(w) from any data w using this reduced model should,
in contrast, be moderate.

In [20], a simple reduced-model-based recovery algorithm was proposed in terms
of the map

(1.16) Ap(w) := argmin{dist(v, V,,) : v €V},

which is well-defined provided that V,, N W+ = {0}. It turns out that A, is a linear
mapping and so these algorithms are linear. This approach is called the parametrized-
background data-weak method, however, we follow the terminology introduced in [3],
refering to an algorithm of the form A,, as a one-space algorithm. In the latter, it was
shown that A, has a simple interpretation in terms of the cylinder

(1.17) Kn:={veV :dist(v,V,,) <en}
that contains the solution manifold M. Namely, the algorithm A,, is also given by
(1.18) Ap(w) =cen(Ky w);,  Knw =K NV,

and the map is shown to be optimal when M is replaced by the simpler containment
set IC,,, that is,

A, = argmin By (A, Kp,).
AW—=V

*

The substantial advantage of this approach is that, in contrast to A}, the map A,
can be easily computed by solving simple least-squares minimization problems which
amount to finite linear systems. In turn A, is a linear map from W to V. This
map depends on V,, and W, but not on ¢, in view of (1.16). We refer to A,, as the
one-space algorithm based on the space V,,.

This algorithm satisfies the performance bound

(1.19)  |ju— Ap(Pwu)|| < pndist(u, Vi, & (VENW)) < ppdist(u, Vi) < pinen,

where the last inequality holds when u € M. Here

(1.20) tn = p(Vi, W) := max
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is the inverse of the inf-sup constant g, := min, ey, maxy,ew % which describes

the angle between V,, and W. In particular x, = oo in the event where V,, N W+ is
nontrivial.

An important observation is that the one-space algorithm (1.16) has a simple
extension to the setting where V,, is an affine space rather than a linear space, namely,
when

(1.21) Ve =1+ Vy

with 17n a linear space of dimension n and @ a given offset that is known to us.

At a first sight, affine spaces do not bring any significant improvement in terms
of approximating the solution manifold, due to the following elementary observation:
if M is approximated with accuracy € by an n-dimensional affine space V,, given by
(1.21), it is also approximated with accuracy € < ¢ by the (n + 1)-dimensional linear
space

(1.22) Vi1 ==V, @ Ru.

However, the choice of an affine reduced model may significantly improve the perfor-
mance of the one-space algorithm in the case where the parametric solution u(y) is a
“small perturbation” of a nominal solution 7 = u(y) for some § € Y in the sense that

(1.23) diam(M) < ||z]|.

Indeed, suppose in addition that @ is badly aligned with respect to the measurement
space W in the sense that

(1.24) [1Pwall < [luf-

In such a case, any linear space V,, that is well tailored to approximating the solution
manifold (for example, a reduced basis space) will contain a direction close to that
of w and thus, we will have that w, > 1, rendering the reconstruction by the linear
one-space method much less accurate than the approximation error by V,,. The use of
the affine mapping (1.21) has the advantage of elimitating the bad direction w since
tn will now be computed with respect to the linear part X~/n

A further perspective, currently under investigation, is to agglomerate local affine
models in order to generate a nonlinear reduced model. This can be executed, for
example, by decomposing the parameter domain Y into K subdomains Yj; and using
different affine reduced models for approximating the resulting subsets My = u(Yy),
see, for instance, [6, 15].

1.5. Objective and outline. The standard constructions of reduced models
are targeted at making the spaces V,, as efficient as possible for approximating M,
that is, making &,, as small as possible for each given n. For example, for the reduced
basis spaces, it is known [2, 12] that a certain greedy selection of snapshots generates
spaces V;, such that dist(M,V,,) decays at the same rate (polynomial or exponential)
as the Kolmogorov n-width

(1.25) 0p (M) := inf{dist(M, E) : dim(E) = n}.

However these constructions do not ensure the control of u, and therefore these
reduced spaces may be much less efficient when using the one-space algorithm for the
recovery problem.
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In view of the above observations, the objective of this paper is to discuss the
construction of reduced models (both linear and affine) that are better targeted to-
wards the recovery task. In other words, we want to build the spaces V,, to make
the recovery algorithm A,, as efficient as possible, given the measurement space W.
Note that a different problem is, given M, to optimize the choice of the measurement
functionals ¢; picked from some admissible dictionary, which amounts to optimizing
the space W, as discussed for example in [4]. Here, we consider our measurement
system to be imposed on us, and therefore W to be fixed once and for all.

The rest of our paper is organized as follows. In section 2, we detail the affine
map A, associated with V,,, that can be computed in a similar way as in the linear
case. Conversely, we show that any affine recovery map may be interpreted as a
one-space algorithm for a certain affine reduced model V,,. For a general set M, the
existence and construction of an optimal affine recovery map A%, for the worst case
error is therefore equivalent to the existence and construction of an optimal reduced
space for the recovery problem. We then draw a short comparison with the stochastic
setting in which the optimal affine map Af ., for the mean square error (1.9) is derived
explicitely from the second order statistics of w.

In section 3, we compute an approximation of A%, by convex optimization, based
on a training set of snapshots. Two algorithms are considered: subgradient descent
and primal-dual proximal splitting. Our numerical results illustrate the superiority
of the latter for this problem. The optimal affine map A3, , significantly outperforms
the one-space algorithm A,~ when standard reduced basis spaces V,, are used and
an optimal value n* is selected using the training set. It also outperforms the affine
map A ., computed from second order statistics of the training set. All three maps
significanly outperform the minimal V-norm recovery given by A(w) = w = Pyu.

2. Affine one-space recovery. In this section, we show that any linear recovery
algorithm is given by a one-space algorithm and that a similar result holds for any
affine algorithm. We then go on to describe the optimal one-space algorithms by
exploiting this fact.

2.1. The one-space algorithm. We begin by discussing in more detail the
one-space algorithm for a linear space V,, of dimension n < m. As shown in [3], the
map A, associated with V,, has a simple expression after a proper choice of favorable
bases has been made for W and V,, through an SVD applied to the cross-Gramian of

an initial pair of orthonormal bases. The resulting favorable bases {11, ..., ¢, } for
W and {p1,...,p,} for V, satisfy the equations

(2.1) (i, 5) = 5i0i 5,

where

(2.2) 1>s51>8>-->5,>0

are the singular values of the cross-Gramian. Then, if w is in W, we can write
w = Z;”:l w;1; in the favorable basis, and find that

n m
(23) An(w) = Zsj_legaj + Z w;i;.
j=1 j=n+1

Let us observe that the functions v; in the second sum span the space V,.- N W while
the first sum is the solution of the least-squares problem min, ey, ||w— Py v|| corrected
by the second sum so as to fit the data.
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Now consider any linear recovery algorithm A : W — V. Since we are given the
measurement observation w, any algorithm A which is a candidate for optimality must
satisfy Py (A(w)) = w (otherwise the reconstruction error would not be minimized).
Thus A should have the form

(2.4) A(w) = w+ B(w),

where B : W — W+ with W+ the orthogonal complement of W in V. Note that in
functional analysis the mappings A of the form (2.4) are called liftings.

Therefore, in going further in this paper, we always require that A has the form
(2.4) and concentrate on the construction of good linear maps B. Our next observation
is that any algorithm A of this form can always be interpreted as a one-space algorithm
A, for a certain space V,, with n < m.

PROPOSITION 2.1. Let A be any linear map of the form (2.4). Then, there exists
a space V,, of dimension n < m such that A coincides with the one-space algorithm

(2.3) for V,.

Proof. By considering the SVD of the linear transform B, there exists an or-
thonormal basis {11, ..., %} of W and an orthonormal system {ws,...,w;,} in W+
such that, with w = 37" | w;i;,

(2.5) Bw = Zajijj’ we W,

j=1
for some numbers a1 > ag > -+ > ay,y, > 0. Defining the functions
(2.6) pj = sV +oywy), 85 =(1+a3)" 2

and defining V;, as the span of those ¢; for which «; # 0, we recover the exact form
(2.3) of the one-space algorithm expressed in favorable bases. ]

These results can be readily extended to the case where V, is an affine space given
by (1.21) for some given n-dimensional linear space V,, and offset w. In what follows,
we systematically use the notation

(2.7 u=u—71u

for the recentered state, and likewise w = w — w with W = Py u for the recentered
observation. The one-space algorithm associated with V,, has the form

(2.8) Ap(w) =1+ Ap (@),

where Zln is the one-space linear algorithm associated with f/n
Performances bounds similar to those of the linear case are derived in the same
way as in [3]: the reconstruction satisfies

(2.9) lu — Ap(Pyw)|| < pndist(u, i + Vi, ® (VEOW)) < pndist(u, V),

where

(2.10) fin = (Vyy, W) = max o] =5, <o
vev, [[Pwoll

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/18/21 to 129.252.33.113. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

OPTIMAL REDUCED MODEL ALGORITHMS 3363

The map A,, is optimal for the cylinders of the form
(2.11) Kp={ueV : dist(u, V) <ep}

since it coincides with the Chebyshev ball center of ICp, ,, = K;, N V,,. In particular,
one has

(2.12) El . (Kpn) = Ewe(An, Kpn) = tinen.

For a solution manifold M contained in /C,,, one has
(2.13) N N
EyeM) < Eye(An, M) < ppdist(M, V,, & (an_ NW)) < ppdist(M, Vi) < pinen,

and these inequalities are generally strict.
In view of (2.8) the map A, is affine. A general affine recovery map takes the
form

(2.14) A(w) =w+ Bw +e¢,

where B : W — W+ is linear and ¢ = A(0) € W=. The following result is a direct
consequence of Proposition 2.1.

COROLLARY 2.2. Let A be an affine map of the form (2.14). Then, there exists
an affine space V,, =u+V,, such that A coincides with the one-space algorithm (2.8).

2.2. The best affine map. In view of this result, the search for an affine reduced
model V,, that is best tailored to the recovery problem is equivalent to the search of
an optimal affine map. Our next result is that such a map always exist when M is a
bounded set.

THEOREM 2.3. Let M be a bounded set. Then there exists a map A}, that

minimizes Eyc(A, M) among all affine maps A.

a

Proof. We consider any affine map A of the form (2.14), so that the error is given
by

(2.15) Ewe(A, M) =sup{u e M : |Pyru—c— BPwul|} =: F(c, B).

We begin by remarking that for each (c,B) € W= x L(W,W1), the map
u > || Py u—c— BPyul| is uniformly bounded on the bounded set M. Its supremum
F(ec, B) is thus a finite positive number, which we may write as

(2.16) F(e,B) = sup F,(c,B),
ueM

where Fy, (¢, B) = ||Pyyru—c— BPyul|. Each F, is convex and satisfies the Lipschitz
bound

(2.17) IFu(e, B) = Fuld', B)| < lle — ¢| + M||B - Bl
where ||B||s
(2.18) IBlls = max{[|Bv : veW, || =1}

denotes the spectral norm and M := sup{||Pwu| : u € M} < oo. This implies that
the function F' is convex and satisfies the same Lipschitz bound.
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We note that the linear maps of £L(W, W) are of rank at most m and therefore,
given any orthonormal basis (ey,...,en,) of W, we can equip £(W, W) with the
Hilbert—Schmidt norm

m 1/2
(2.19) 1Blls = (Y I1Beill?)
=1

which is equivalent to the spectral norm since
(2.20) IBlls < |Bllas < Vm|Blls, B e LW, W™).
In particular F'is continuous with respect to the Hilbertian norm

1/2

(2.21) e B) = (llel* + 311 Bedl?)

The function F' may not be infinite at infinity: this happens if there exists a nontrivial
pair (¢, B) such that
c+ BPyu=0, ueM.

In order to fix this problem, we define the subspace
(2.22) Sy = {(C,B) eWL x LOW,WL) : ¢+ BPwu =0, ueM}.

and we denote by S; its orthogonal complement in W+ x L£(W, W) for the inner
product associated with the above Hilbertian norm || - || g. The function F' is constant
in the direction of Sy and therefore we are left to prove the existence of the minimum
of F on S;. For any (¢, B) € S, there exists u € M such that ¢ + BPyu # 0. This
implies that

(2.23) lim ||Pyiu—tc—tBPwul = +oo
[t|—+o0

and, therefore, that lim,_, o Fu(t(c, B)) = +oo. This shows that F is infinite at

infinity when restricted to S;. Any convex and continuous function in a Hilbert space

is weakly lower semicontinuous, and admits a minimum when it is infinite at infinity.

We thus conclude the existence of a minimizer (¢*, B*) of F' and therefore

(2.24) Ab o (w)=w+c" + B*'w

wca
is an optimal affine recovery map. 0

2.3. The best affine map in the stochastic setting. In the stochastic set-
ting, assuming that u has finite second order moments, the optimal map that mini-
mizes the mean square error (1.9) is given by the conditional expectation

(2.25) Al s(w) =E(u | Pwu = w),

that is, the expectation of the posterior distribution p,, of u conditioned to the obser-
vation of w. Various sampling strategies have been developed in order to approximate
the posterior and its expectation; see [13] for a survey. These approaches come at a
significant computational cost since they require a specific sampling for each instance
w of observed data. In the parametric PDE setting, each sample requires one solve
of the forward problem.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/18/21 to 129.252.33.113. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

OPTIMAL REDUCED MODEL ALGORITHMS 3365

On the other hand, it is well known that an optimal affine map A% . for the mean

square error can be explicitely derived from the first and second order statistics of u.
We briefly recall this derivation by using an arbitrary orthonormal basis (eq, ..., €m)
of W that we complement into an orthonormal basis (e;);>1 of V. We write

(2.26) u = ijej and uw=E(u)= ijej, w; = E(w;),
Jj=1 Jj=1

as well as
(2.27) ﬂ:u—ﬂ:Z@jej, ﬂ)'j =Wy — Wwj-
j>1

An affine recovery map of the form (2.14) leaves the coordinates w, . . . , w,, unchanged
and recovers for each 7 > 1

m

(2.28) wfnﬂ- =c; + Z bmwj,
j=1

which can be rewritten as

(229) w;H = @mJﬂ' + dl + Z bi’j'[ljj.
j=1

Since Ens(A) = Yo E(lw}, i — Wmgi]?), the numbers d; and b; ; are found by
separately minimizing each term. By the Pythagorean theorem one has

)
which shows that we should take d; = 0. Minimizing the second term leads to the
orthogonal projection equations

(230) E(|'LU:,L+Z‘ - wm+i‘2) = |d1|2 + ]E(

m
> bijWj — Wi
i=1

m
(2.31) Z bi,jtj,l = thrj,l’ | = 1, e,y
Jj=1

which involve the entries of the covariance matrix
(232) S := (ti,j); ti,j = E({Dﬂzj)
Therefore, with the block decomposition
Si1 Si2
2.33 S = ' ’ ;
(2.33) ( S21 Sape
corresponding to the splitting of rows and columns from {1,...,m} and

{m+1,m +2,...}, one obtains that the matrix B = (b; ;) that defines the opti-
mal affine map satisfies Sl,lBT = S; 2 and, therefore,

(2.34) B =85,:87,
where we have used the symmetry of S. In other words,

(2.35) A*

msa

(w) = w+ Py .U+ Bw,
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where the linear transform B € £(W, W) is represented by the matrix B in the basis
(¢j)j>1-

The optimal affine recovery map A ., agrees with the optimal map A’ . in the
particular case where u has Gaussian distribution, therefore entirely characterized by
its average w and covariance matrix S. To see this, assume for simplicity that V'

is finite dimensional. The distribution of u = (wj);>1 has density proportional to
exp(f%<Tﬁ, 1)), where T = S~1. We expand the quadratic form into

1, 1 o~ ~ 1 ~ o~
(236) §(Tu, ll> = §<T1’1W7W> + <T2’1W7WJ_> + §<T2’2WJ_7WJ_>,

where W | = (Wn4j)j>1 and W = (W;)j=1,....m, and where

Ti1 Tio
2.37 T = ' '
(2.37) ( Ty1 Topo )
is a block decomposition similar to that of S. The distribution of the vector w

conditional to the observation of w is also Gaussian and its expectation coincides
with the minimum of the quadratic form

. 1 JU .
(2.38) Qw(wWi) = §<T2,2WLan> + (T 1 W, Wy ).
Therefore
(2.39) E(w.|w) = -T53Ty1W = S,,:S] ;W = Bw,

which shows that

(2.40) Ap(w) = Eu| Pyu = w) = Ay, (w).

One main interest of the above discussed stochastic setting is that the best affine
map is now explicitely given by the second order statistics, in view of (2.34). This
contrasts with the deterministic setting in which the optimal affine map is obtained
by minimization of the convex functional F' from (2.16) and does not generally have a
simple explicit expression. Algorithms for solving this minimization problem are the
object of the next section.

Only for particular cases where M has a simple geometry does the best affine
map A¥ __ in the deterministic setting have a simple expression. One typical example

‘wca
is when M is an ellipsoid described by an equation of the form

(2.41) (T&, &) < 1

for a symmetric positive matrix T. Then, the set M,, = M NV, is also an ellipsoid
associated with the above quadratic form Q. The coordinates of its center are
therefore given by the equation w, = *Ti%TZlW, which is the same as that defining
the conditional expectation in (2.39). This shows that, in the particular case of an
ellipsoid, (i) the optimal map A% agrees with the optimal affine recovery map A%,
for the worst case error, and (ii) it has an explicit expression which agrees with the
optimal map A} _ for the mean square error when the prior is a Gaussian with T as
inverse covariance matrix.
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3. Algorithms for optimal affine recovery.

3.1. Discretization and truncation. We have seen that the optimal affine
recovery map is obtained by minimizing the convex function

(3.1) F(c,B) = sup |Pwiu—c— BPwul,
ueM

over W+ x L(W,W+=). This optimization problem cannot be solved exactly for two
reasons:

(i) The sets W as well as £L(W, W) are infinite dimensional when V is infinite

dimensional.

(ii) One single evaluation of F(c, B) requires, in principle, to explore the entire

manifold M.

The first difficulty is solved by replacing V' by a subspace Zy of finite dimen-
sion dim(Zy) = N that approximates the solution manifold M with an accuracy of
smaller order than that expected for the recovery error. One possibility is to use a
finite element space Zy = V}, of sufficiently small mesh size h. However its result-
ing dimension N = N(h) needed to reach the accuracy could still be quite large.
An alternative is to use reduced model spaces Zx which are more efficient for the
approximation of M, as we discuss further. . .

We therefore minimize F'(c, B) over W x L(W, W), where W+ is the orthogonal

complement of W in the space W + Z, and obtain an affine map Ayea defined by

(3.2) Awea(w) = wte+Bw, (¢ B):=argmin{F(c,B): c€ W, B e L(W,Wh)}.

*
wca’

In order to compare its performance with that of A we first observe that

(3.3) | Pwru— Pyoul| <en = sup dist(u, Zy).
ueM

For any (¢, B) € W+ x L(W, W), we define (¢, B) € W+ x L(W,W=) by ¢ = Pg.c
and B = Py 0 B. Then, for any u € M,

||Pyru—c— EUH < ||]1V[7L (Pwiu—c— BPyu)||+ ||Pyru— PWLUH
< ||PwLU —c— BPWuH +en-

It follows that we have the framing

(3-4) E(Afcas M) < E(Awea, M) < E(Ajea, M) +én,

which shows that the loss in the recovery error is at most of the order ey.
To understand how large IV should be, let us observe that a recovery map A of
the form (2.14) takes it value in the linear space

(3.5) Fp+1 = Re+ran(B),

which has dimension m + 1. It follows that the recovery error is always larger than
the approximation error by such a space. Therefore

(3-6) EwC(A:vca?M) > 5m+1(M)a

where d,,+1 (M) is the Kolmogorov n-width defined by (1.25) for n = m~+1. Therefore,
if we could use the space Z,, := E,, that exactly achieve the infimum in (1.25), we
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would be ensured that, with N = m + 1, the additional error ey = 6y 11(M) in (3.4)
is of smaller order than E, (A%, M). As a result we would obtain the framing

(3.7) E(A5 s M) < E(Ayea, M) < 2B(Aj 0 M).

wca’?
In practice, since we do not have access to the n-width spaces, we use instead the
reduced basis spaces Z,, := V,, which are expected to have comparable approximation
performances in view of the results from [2, 12]. We take N larger than m but of
comparable order.

The second difficulty is solved by replacing the set M in the supremum that
defines F'(c, B) by a discrete training set M, which corresponds to a discretization Y’
of the parameter domain Y, that is,

(3.8) M:={u(y) : ye Y}

with finite cardinality. . .
We therefore minimize over W+ x £(W, W) the function

(3.9 F(c,B) = sup [Py ru—c— BPwull,
ueM

which is computable. The additional error resulting from this discretization can be
controlled from the resolution of the discretization. Namely, let € > 0 be the smallest
value such that M is an e-approximation net of M, that is, M is covered by the
V-balls B(u,¢) for u € M. Then, we find that

(3.10) F(e,B) < F(¢,B) < F(¢,B) + EHB”L(W,WL)v
which shows that the additional recovery error will be of the order of ¢ amplified by
the norm of the linear part of the optimal recovery map.

One difficulty is that the cardinality of e-approximation nets become potentially
intractable for small € as the parameter dimension becomes large, due to the curse
of dimensionality. This difficulty also occurs when constructing a reduced basis by
a greedy selection process which also needs to be performed in sufficiently dense
discretized sets. Recent results obtained in [9] show that in certain relevant instances
€ approximation nets can be replaced by random training sets of smaller cardinality.
One interesting direction for further research is to apply similar ideas in the context
of the present paper.

3.2. Optimization algorithms. As already brought up in the previous section,
the practical computation of Ay, consists in solving

(3.11) ~min _ sup |[Pyiu—c— BPyul*
(¢, B)YEWLXL(W,WL) e M

The numerical solution of this problem is challenging due to its lack of smoothness
(the objective function is convex but nondifferentiable) and its high dimensionality
(for a given target accuracy ¢y, the cardinality of M might be large). One could use
classical subgradient methods, which are simple to implement. However these schemes
only guarantee a very slow O(k‘l/ 2) convergence rate of the objective function, where
k is the number of iterations. This approach did not give satisfactory results in our
case; due to the slow convergence, the solution update of one iteration falls below
machine precision before approaching the minimum close enough; see Figure 3.1. This
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Fic. 3.1. Convergence of the objective function for two different optimization algorithms and
starting guesses. P.D.= Primal-Dual splitting. S.G.= Subgradient. Here, m = 40.

has motivated the use of a primal-dual splitting method which is known to ensure a
O(1/k) convergence rate on the partial duality gap. We next describe this method,
but only briefly, as a detailed analysis would make us deviate too far from the main
topic of this paper. A complete analysis with further examples of application will be
presented in a forthcoming work [14].

We assume without loss of generality that dim(W + Vy) = m + N and that
dim W+ = N. Let {¢;}74" be an orthonormal basis of W + Vi such that W =
span{1,...,%m}. Since for any u € V,

m+N

Pwivyu= Y g,

=1

the components of w in W can be given in terms of the vector w = (u;)7*; and the
ones in W with u = (ujm)Y ;.
We now consider the finite training set

(3.12) M = {ur, ... u’},  Ji=#(M) < oo,

and denote by w’ and u/ the vectors associated with the snapshot functions u/ for
j=1,...,J. One may express the problem (3.11) as the search for

(3.13) min max |[u/ — Rw’ — b2
(R,b)e  j=1,....J
RNmeRN

Concatenating the matrix and vector variables (R, b) into a single x € R™V+1) | we
rewrite the above problem as

3.14 ; (0.
(3.14) onin | max [3(Q;x),

where Q; € RN*™(N+1) js a sparse matrix built using the coefficients of w/ and
fi(y) = llw’ —yll3.
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The key observation to build our algorithm is that problem (3.14) can be equiv-
alently written as a minimization problem on the epigraphs, i.e.,

min t subject to (Qix) <t =1,...,J
(3 15) (x,t)EIR”"(l“‘*'l) xR+ subjec fj( J ) =% J ’ ’
’ < min t subject to Q;x,t) € epis., i=1,...,J,
(.t (l L RE S jec ( j ) eplfj J

or, in a more compact (and implicit) form,

(Pepi) Z Lepl Q] X, t

(x, t)eRm<N+1>xR+

where, for any nonempty set S the indicator function tg has value 0 on S and +oco
on S°.

This problem takes the following canonical expression, which is amenable to a
primal-dual proximal splitting algorithm:

(3.16) min G(x,t) + F o L(x,t).

(x,t) ERM(N+1) xR
Here, G is the projection map for the second variable
(3.17) G(x,t) =t,
the linear operator L is defined by
(3.18) L(x,t) := ((Qux,1), (Qox, 1), ..., (Qux,1))

and acts from R™VF) x R to x/_;(RY x R) and the function F acting from
xJ_ 1 (RY x R) to R is defined by

Mk‘

Lepl V] ,

(3.19) F((vl,tl), (vt )

j=1

Note that F' is the indicator function of the Cartesian product of epigraphs.
Before introducing the primal-dual algorithm, some remarks are in order:
(i) We recall that if ¢ is a proper closed convex function on R?, its proximal
mapping prox,, is defined by

. 1
(3.20) prox(y) = argminga (d)(x) + §||:C - y||§)
(ii) The adjoint operator L* is given by

J J
(3.21) L (it vats)) = | S QIv Y4
j=1 j=1

It can be easily shown that the operator norm of L satisfies |L||*> < J +

J 2
> =1 19517
(iii) Both G and F are simple functions in the sense that their proximal mappings,
prox. and proxp, can be computed in closed form. See [14] for details.
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The iterations of our primal-dual splitting method read for k > 0,
(3.22)
k
(5, = prox 6 ((0,6) = 96 L (V160 (v0.60)) ).
(5,0 = (e, ) 0 (e, ) = (1)),

(180, 060) T =prox, a1 (0,600 (v0,€0) L5

where F' is the Fenchel-Legendre transform of F', v > 0 and v > 0 are such that
vavr < 1/ || L)), and 6 € [—1, +o00] (it is generally set to 6 = 1 as in []).

Algorithm 1 gives some guidelines and summarizes in an informal pseudocode
style the main steps of the primal-dual approach (the implementation of the routine
“BuildQ” is left to the reader).

Algorithm 1 Primal-dual algorithm: R, b = PD(//\/lv, Magreedys W, Kmax)-

1: Input: .
e training manifold M for primal-dual iterations
e training manifold Mg eedy for greedy algorithm
e basis {w;}I"; of measurement space W
e maximum number of iteration K.y
2: Generate basis {v;}, of Viy  // e.g., with a greedy algorithm over Mgrecdy;
see (3.27)
3: Build orthonormal basis {¢;}"1" of W + Vi with a Gram-Schmidt procedure

over {wi,...,Wm,v1,...,0x}. In this way, Wi = span{¥m+1, -, UmiN}
4: Qlist, wlist, ulist = ]
5: for all u € M do // Build matrices Q7 of (3.14)
6:  w = {{u, ) e, W= {(u, i) {itnﬁl’ Q = BuildQ(w)
7. Qlist.append(Q), wlist.append(w), ulist.append(u)
8: end for
9: Estimate ||L|| // e.g., with power method
10: Set vg and g such that ygvr < 1/||L|?
11: X = x = zeros(m(N + 1)) // starting guess for A: W — V set to A(w) = w
12: t=1 // starting guess for ¢ > 0
13: ((Vl, 1),y (Vi fJ)) = L(x,t) // starting guess dual variables
14: for k in [0, Kax] do // primal-dual iterations

15:  (Xold, told) = (X, 1)

16: ((Vhﬁl)a e (VJaéJ)) = prOX,YFﬁ<<(V17€1)v e (VJ7£J)) + “YFL(ivf))
17 (xt) = prox, 6 ((68) = 6L (((vi, €)oo, (va,60)) )

18 (%0) = (6,8 + 0((%,) = (Kotas ota) )

19: end for

20: Retrieve R, c by appropriately reshaping x
21: Qutput: R, c

To illustrate the relevance of this algorithm for our purposes, we compare its
performance with a standard subgradient method. Figure 3.1 plots the convergence
history of the objective function across the iterations of both optimization methods
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Fic. 3.2. Convergence of the objective function in the primal-dual iterations for m =
10, 20, 30, 40, 50.

for the example described in the next section (m = 40, N = 110, and J = 10%). Two
different reconstruction maps have been considered as starting guesses: the minimal
V-norm recovery map given by A(w) = w = Pyu, and the one-space algorithm A,,-
based on reduced basis spaces V,, with an optimal choice n* for n. The convergence
plot shows the superiority of the primal-dual method which converges to the same
minimal value of the objective function after 10° iterations regardless of the intial-
ization, while the subgradient method fails to reach it since its increments fall below
machine precision.

For the same numerical example described next, we vary m and consider
m = 10, 20, 30, 40, 50. Figure 3.2 gives the convergence of the reconstruction er-
ror over the training set M across the primal-dual iterations (for simplicity, we took
Py, as the starting guess for A&Tg) To make sure that we reach convergence, we
perform 108 iterations for each case. As expected, we observe in this figure that
the final value of the objective function decreases as we increase the value of m (the
reconstruction error decreases as we increase the number of measurements).

3.3. Numerical tests. We present some numerical experiments, aiming primar-
ily at comparing the three above discussed recovery maps in terms of the maximum
reconstruction error: the one-space affine map A,,, the best affine map A} ., for the
mean square error, and the best affine map A%, ,. for the worst case error. In addi-
tion, we also consider the mimimum V norm reconstruction map A(w) = w = Py u.
The results highlight the superiority of the best affine algorithm with respect to the
reconstruction error. This comes however at the cost of a computationally intensive
training phase as previously described.

We consider the elliptic problem

(3.23) —div(a(y)Vu) =f, xze€D,
u(z) =0, x€dD,
on the unit square D = ]0,1[?> with a certain parameter dependence in the field a.
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More precisely, for a given p > 1, we consider “checkerboard” random fields where
a(y) is piecewise constant on a p X p subdivision of the unit square:

p—1
D= | Si;

i,7=0

with

i1 i
Si,j::[i,l_k {X{Z,L[, 1,7€0,...,p—1.
p p p p

The random field is defined as

15
(3.24) aly) =1+ 3 Z XS ;Yij
i,j=0

where X s denotes the characteristic function of a set S, and the y; ; are random
coefficients that are independent each with identical uniform distribution on [—1,1].
Thus, our vector of parameters is

y = (i)} 2o € RPXP.

In our numerical tests, we take p = 4, that is, 16 parameters, and work in the am-
bient space V' = H{ (D). All the sets of snapshots used for training and validating the
reconstruction algorithms have been computed by first generating a certain number
J of random parameters y',...,y’ with each y* € [~1,1]P*P, and then solving the
variational form of (3.23) in V' = H}(D) using P; finite elements on a regular grid of
mesh size h = 277. This gives the corresponding solutions u}, = uy(y?) that are used
in the computations. To ease the reading, in the following we drop the dependence
on h in the notation.

The sensor measurements are modeled with linear functionals that are local av-
erages of the form

(3.25) Uy (u) = /D u(r)p,(r — x)dr,
where

(3.26) or (r) o exp(—Jr]/27?)

is a radial function such that [ ¢, = 1. The parameter 7 > 0 represents the spread
around the center x. For the observation space W of our example, we randomly select
m = 50 centers x; € [0.1,0.9]? and spreads 7; € [0.05,0.1], and compute the Riesz
representers wy, , of fx, » in H(D). We then set

W = span{ws, - 12

which is a space of dimension m = 50. Figure 3.3 shows the m centers x;. As
an example, the figure also plots the function wy, . for ¢ = 10, which has center
x; = (0.23,0.75) and spread 7; = 0.06.

As explained in section 3.1, the first step to compute the best algorithm in practice
consists in replacing V = Hg (D) by a finite dimensional space that approximates the
solution manifold M at an accuracy smaller than the one expected for the recovery
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FiG. 3.3. Sensor locations and the function wx, r, for i =10 (x; = (0.23,0.75) and 7, = 0.06).
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F1G. 3.4. Greedy algorithm: decay of the error efgreedy) — MaXuE M gyenqy |18 — Py ull-

error. Here, we replace V by W + Vi, where Vi is a reduced basis of dimension
N = 110 that has been generated by running the classical greedy algorithm from [7]
over a training set Mgreedy Of 10% snapshots. We recall that an idealized version is
defined for n > 1 as

(3.27) up € argmax |u— Py, ,u|, V,:=V,_1®Ru, =span{uy,...,u,},
UEMgreedy

with the convention Vj := {0}. Figure 3.4 gives the decay of the error

(greedy) __

e = max |u—Pyu
" R | v, ul|
across the greedy iterations.

We next estimate the truncation accuracy €y defined in (3.3). This has been done
by computing the maximum of the error |[u — Py, u|| over the training set Mgyecdy
supplemented by a test set Mg, also of 103 snapshots. We obtain the estimate

max u— Pyyu|| < ey =5.1075.
uEMgreedyUMtest H VN H =N
In the comparison of the three different reconstruction algorithms, we want to illus-
trate the impact of the number of measurements that are used. To do this, we consider
the nested subspaces
Wm = Spa’n{wxi,ﬂ'};il cw
for m = 10, 20, 30, 40, 50 so that W5y = W.
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__ For the computation of the best affine algorithm, we generate a new training set
M of 10° snapshots which we project into W + Viy. This projected set, which we
denote by Py v, M with a slight abuse of notation, is used to compute

Al () =™ 4 BU™ Py, w, m =10, 20,..., 50,

wca

by running the primal-dual algorithm of section 3.2. We have added the indices m to
stress that the algorithm depends on it.
For the comparison with the three other reconstruction algorithms, we evaluate

el™ = max |ju— AU (Py, w)||, m=10,20,...,50.

wca wca
UE Meest

We stress the fact that the three sets Mgrcedy, MV, and Mgt are different. We
compare this value with the performance of a straightforward reconstruction with the
minimal V-norm recovery map,

e(m) = max ||u — PWMUH, m = 10, 20, ..., 50,
ue

mvn
test

with the mean square approach,

eM —  hax ||u _ Alm) (PW u)H7 m = 10, 20, ..., 50,

msa msa m
UE Mest

and with the best one-space affine algorithm,

eSne = min e{m),
1<n<m
where
(3.28) elm™) = max ||lu— A" (Py, u)|, m=10,20,...,50.

UE Meest

Some remarks on the computation of the one-space algorithm are in order. First of
all, we have used the average

o 1
e #Mgreedy Z “

ueMgrccdy

as our offset. For m < M and n < m given, the one-space affine algorithm A%m) is

the one involving the spaces W, and V,, = @ + V,,, where V,, = span{uy,...,up}.

"™ in formula (3.28). Figure 3.5(a) shows e{7s™ as

a function of n and m. Note that, for a fixed m, the error e{™™ reaches a minimal

value em, = eéﬁlg"*) for a certain dimension n* = n*(m) of the reduced model, given
by a thick dot in the figure. This behavior is due to the trade-off between the increase
of the approximation properties of V,, as n grows and the degradation of the stability
of the algorithm, given by the increase of u(V,, W,,) with n. For our comparison
purposes, we use Alm) — A;Tgm)

on the reduced basis spaces.

Its performance is given by egﬁlc’

, that is, the best possible one-space algorithm based

Figure 3.6 shows the reconstruction errors e&TQ, egf,z], eﬁn@;, and eg?;;) of the four
different approaches for m = 10, 20, ..., 50. We also append a table with the values.

We observe that a straightforward reconstruction with the minimal V-norm algorithm
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10! 103
m=10
m=20
m=30
m=40

m =50

m=10
m=20

PV W)

5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
(m,n) . . (m) a1s nd
(a) eone i reconstruction error with Ay . (b) Stability factor pu(Vi, Wi).

F1c. 3.5. One-space algorithm.

10?2

P

0 15 20 25 30 35 40 45 50
m

Fic. 3.6. Comparison of the reconstruction errors (left: HE(D) norm; right: L2(D) norm).

performs poorly in terms of approximation error and its quality improves only very
mildly as we increase the number m of measurements. This justifies considering our
three other, more sophisticated, reconstruction algorithms. In this respect, the results
confirm first of all that ZSV";Q is the best reconstruction algorithm. The mean square
approach appears to be slightly superior to the one-space algorithm but still worse
than the best affine algorithm. Note that the accuracy improvement between the
best affine algorithm and the one-space and mean square algorithms is of about a
half-order of magnitude for each m.

Last but not least, we give some illustrations on the reconstruction algorithms
applied to a particular snapshot function w from the test set Miest. The target func-
tion is given in Figure 3.7 and Figures 3.8 and 3.9 show the resulting reconstructions
of u from Py, u with our four different algorithms and for m = 20 and 40. Visually,
the reconstructed functions look very similar. However, the difference in quality can
be better appreciated in the plots of the spatial errors |u(x) — A" (u)(x)| as well as
in the derivatives and their corresponding spatial errors.

Let us briefly discuss the complexity of the primal-dual algorithm. At each it-
eration of the algorithm, the main bottleneck is the computation of L* (see (3.21)).
It requires one to do J matrix-vector products with the matrices @; € RN xm(N+1)
and then do a summation of the resulting vectors. The cost of these operations thus
increases linearly with J in terms of computational time and memory resources. In
fact, the limitation in memory was the main reason to fix J = 10® and not work
with a larger number of training snapshots. Let us make a quick count on the cost
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Figures 3.8 and 3.9.
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Fic. 3.8. Reconstruction of the given function u (m = 20). For each reconstruction strategy
(i) the two first figures are AU (u)(x) and the spatial errors |u(x) — A(™) (u)(x)|; (ii) the two last

figures are

2A(™) () (
oz

x) and the spatial errors |g—;(x) -

aA(m)
04 ().
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Fic. 3.9. Reconstruction of the given function u (m = 40). For each reconstruction strategy
(i) the two first figures are AU™) (u)(x) and the spatial errors |u(x) — AU (u)(x)|; (ii) the two last

(m) (m)
W(x) and the spatial errors |%(x) - w(xﬂ

figures are a

in terms of the number of elements to store at each iteration. The matrices Q); are
sparse. For each row, there are m + 1 nonnegative coefficients. Therefore we need to
store N(m + 1) coefficients for each matrix; therefore, a total number of JN(m + 1)
coefficients. In our case, N = 110 was carefully fixed to guarantee that
max u— Pyyul| < ey =5.1075.
UEMgreedyUMtest || Vv || =N

We have m ranging between 10 and 50. Thus the number of nonnegative elements
that we have to store for each ); ranges between 1210 and 5610. Therefore, taking
J = 102 as in our computation, we need to handle a total number of coefficients
ranging between 1.21.10 and 5.61.10.

4. Conclusions. In this paper, we have studied the notion of a best affine recov-

ery map for a general state estimation problem, that is, the map A}, that minimizes
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the worst case error Ey.(A, M) among all affine maps. This map is the solution to a
convex optimization problem. Up to the additional perturbation induced from replac-
ing M by a discrete training set M, it can be efficiently computed by a primal-dual
optimization algorithm. Since any affine recovery map is associated with a reduced
basis V,, plus an offset u, the optimal affine map amounts to applying the one-space
method from [20] using an affine reduced model space @ + V,, which is optimal for
the reconstruction task. Our numerical tests confirm that this choice outperforms
standard reduced basis spaces, which are not specifically constructed for the recovery
problem, but rather for the approximation of M.

Our approach is readily applicable to any type of parametric PDEs, ranging from
linear PDEs with affine parameter dependence to nonlinear PDEs with nonaffine
parameter dependence. We outline its main limitations:

e The first essential limitation lies in its confinement to linear or affine recov-
ery algorithms. Let us stress that, while state estimation is a linear inverse
problem in the sense that the observed data w are generated from wu by a
linear projection, the optimal recovery map is typically nonlinear, due to the
complex nonlinear geometry of the solution manifold M that constitutes the
prior. Therefore, going beyond the results provided by our method requires
the development of nonlinear recovery strategies. One possible approach,
currently under investigation, is to (i) consider a collection of affine reduced
model spaces {ux + V* : k=1,... K}, each of them of dimension n; < m;
(ii) use the observed data w to properly select a particular space from this
collection; and (iii) apply the affine recovery algorithm using this particular
data-dependent space. One standard way to obtain such local reduced model
spaces is by splitting the parameter domain and searching for local reduced
bases or proper orthogonal decomposition as, for example, proposed in [1] for
forward modeling or in [15] for state estimation, as well as in [6]. However,
the optimal affine recovery approach discussed in the present paper could also
be used in order to improve on such constructions.

e The developed approach implicitly assumes that the parametric PDE model
is perfect although, in full generality, the true physical state may not belong
to M. It is also assumed that measurements are noiseless. One way to
readily extend this approach to the search of optimal affine maps that take
into account model bias and measurement noise is as follows: suppose that
the model bias is of size 4 > 0 in the sense that the real physical state u
belongs to the offset

Ms:={veV :JyeY st ||[v—uly) <}

Suppose further that measurements are given with some deterministic noise,
that is, we are given Py u-+mn such that ||n|| < o for some noise level 0. Then,
the optimal affine map is given by

i — A(P .
Jnin - max [lu— A(Pwu+n)]
Il <o

Once again we may emulate this optimization by introducing a discrete train-
ing set. Let us stress that such an optimization problem requires the knowl-
edge of the size of the model bias § and the noise level . While o may be
known for some applications, § is very hard to estimate in practice.
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ability of computable bounds for the distance of the reduced spaces from the solution

An assessment of the obtained estimation accuracy relies, however, on the avail-

manifold which may depend on the type of the PDE model.
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