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ABSTRACT: O-Phenyloximes tethered to alkenes undergo 5-exo-trig iminyl radical cyclizations upon microwave irradiation. 
Trapping of the resulting cyclic radicals results in C–C, C–N, C–O, C–S, or C–X bond formation. Allylic sulfides undergo a 
tandem cyclization–thiyl radical -elimination, affording terminal alkenes. The cyclizations exhibit a broad scope, and in some 
cases they are highly diastereoselective. The pyrroline adducts are versatile intermediates that can be transformed into a range of 
different species.

The chemistry of nitrogen-centered radicals1 is experiencing 
a renaissance that has largely been fueled by the development 
of new transformations mediated by photoredox catalysts2 and 
other types of transition metal catalysts. Iminyl radical 
cyclizations, which were pioneered by Zard,3 are an important 
subset of nitrogen-centered radical reactions.4 Several recent 
reports describe the synthesis of functionalized pyrrolines via 
5-exo-trig cyclizations of iminyl radicals that are generated via 
single-electron transfer (SET) reduction of O-acyloximes or 
O-aryloximes. These processes require oxidation of the cyclic 
adduct to facilitate catalyst turnover, which limits the scope of 
reagents that can be used to trap and functionalize the cyclic 
radical or cationic intermediate5 (Scheme 1a). Inspired by 
Forrester’s seminal work,6 Studer7 and Leonori8 demonstrated 
that -imino-oxy acids are useful substrates for cyclizations 
featuring iminyl radical generation via SET oxidation9 
(Scheme 1b). The cyclic adducts produced in these reactions 
are reduced to regenerate the catalyst, allowing a 
complementary set of trapping agents to be employed when 
compared to the reactions described above. Nonetheless, the 
number of viable radical traps is still constrained by reliance 
on a redox cycle. Additionally, base is required to deprotonate 
the -imino-oxy acids prior to iminyl radical generation via 
SET oxidation.7–9 Accordingly, a method of forming iminyl 
radicals that does not rely on SET10 would complement these 
protocols by permitting the use of a wide range of radical 
traps, thereby enabling construction of numerous 
functionalized pyrrolines.

In 2007, Walton showed that microwave-promoted 
homolytic cleavage of the weak N–O bond of O-phenyloximes 
(BDE = ca. 35 kcal/mol)11 could trigger initiator- and catalyst-
free iminyl radical cyclizations that employ toluene as both 

solvent and radical trap.12 By using solvents that do not readily 
undergo hydrogen atom abstraction (e.g., PhCF3, CH3CN), we 
modified this protocol and synthesized 2-acylpyrroles via 5-
exo-dig cyclizations and functionalized nitriles via 
fragmentations of iminyl radicals.13,14 A large number of 
radical traps are compatible with the fragmentations, allowing 
formation of C–C, C–O, C–N, or C–X bonds.14 Based on these 
results, we reasoned that application of our protocol to 
Walton’s original microwave-promoted pyrroline synthesis 
would enable trapping of the cyclic radical intermediate with a 
host of agents, greatly expanding the scope of this 
transformation (Scheme 1c). Herein we report the results of 
our study, which establish microwave-promoted 5-exo-trig 
iminyl radical cyclizations as convenient and user-friendly 
reactions that forge pyrrolines endowed with diverse 
functionality. The broad scope of this process can be attributed 
to the catalyst- and base-free conditions as well as the absence 
of redox cycles. The reactions are also fast, easy to perform, 
and in some cases stereoselective.
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Scheme 1. Pyrrolines via Iminyl Radical Cyclizations
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We began by probing the microwave-promoted cyclization 
of O-phenyloxime 1 in the presence of allylsulfone 2a15 (Table 
1). This radical trap permitted convenient measurement of 
reaction yields via 1H NMR spectroscopy. Performing the 
cyclization at 100 °C in PhCF3 as solvent afforded a low yield 
of pyrroline 3a (entry 1). Elevating the temperature to 120 °C 
delivered better results (entry 2), but a further increase was not 
beneficial (entry 3). Switching to a more polar solvent did not 
significantly improve the yield (entries 4 and 5). Finally, we 
were pleased to discover that extending the reaction time to 2 
h furnished 3a in a satisfactory 72% isolated yield (entry 6).
Table 1. Optimization of Cyclization Conditions

Ph

N
PhO

N

Ph
1 3a

solvent, temp
W, time

SO2Ph
CO2Me

2a (3.0–3.3 equiv)
CO2Me

entry solvent temp (°C) time (min) yield of 3a (%)
1 PhCF3 100 60 20a

2 PhCF3 120 45 35a

3 PhCF3 130 45 30a

4 CH3OH 110 45 30a

5 CH3CN 120 120 41b

6 PhCF3 120 120 72b

aCalculated from 1H NMR spectra of reaction mixtures.     
bIsolated yield.

We then evaluated several other radical traps in the 
microwave-promoted cyclization of 1 (Figure 1). A host of 
different reagents were viable, affording pyrrolines 3 in 
generally good yields. For example, C–O bond formation 
could be accomplished by trapping the cyclic radical 
intermediate with TEMPO (entry 1). C–X bonds were forged 
by employing CCl4,16a CBr4,17 or 2-iodopropane.18 (entries 2–
4). C–N and C–S bonds were constructed by using sulfonyl 
azide 2f19 and xanthate 2g,20 respectively (entries 5 and 6). 

Finally, C–C bond formation was achieved by trapping with 
benziodoxolone-based hypervalent iodine reagent 2i21 (entry 
8). The ability to install a diverse range of functional groups is 
clearly a hallmark of this radical process that does not require 
SET.

Unfortunately, use of Selectfluor16 (2h) as a radical trap 
yielded only trace amounts of the desired fluorinated adduct 
3h (entry 7). The major product (ca. 10–15%) was an adduct 
of the cyclic radical intermediate with PhCF3. Apparently, the 
rate of radical trapping by Selectfluor was slower than the rate 
of trapping by the solvent. The poor solubility of Selectfluor in 
PhCF3 was likely responsible for this problem. However, other 
solvents such as CH3CN or CH3OH did not afford detectable 
amounts of the desired product. Microwave irradiation of a 
solution of 1 in PhCF3 in the absence of radical traps resulted 
in slow formation of the PhCF3 adduct. Thus, practical radical 
traps in these iminyl radical cyclizations must be able to 
outcompete the solvent for the cyclic radical intermediate.
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Figure 1. Scope of radical traps in cyclizations of 1. Conditions 
were PhCF3, 120 °C (W), and 1–2 h unless otherwise specified. 
aIrradiated at 110 °C for 5 h. bIrradiated at 120 °C for 3 h. The 
major detected product was an adduct where the cyclic radical 
was trapped with PhCF3. cIrradiated at 110 °C for 2 h.

Substrates that can undergo -elimination of a thiyl radical 
after cyclization22 provide an attractive alternative to using 
radical traps, as the resulting alkene can be elaborated to 
introduce numerous functional groups. Accordingly, we 
performed the cyclization of allylic sulfide 4 (Scheme 2). 
Gratifyingly, this substrate reacted smoothly under microwave 
irradiation to produce alkene-containing pyrroline 5 in good 
yield.
Scheme 2. Cyclization–Thiyl Radical -Elimination

Page 2 of 5

ACS Paragon Plus Environment

Submitted to Organic Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Ph

N
PhO

N

Ph
4 5

PhCF3

120 °C (W)
1 h, 64%

SPh

Upon establishing the wide scope of the iminyl radical 
cyclization with respect to radical traps, we subsequently 
demonstrated the viability of various O-phenyloximes 6 in 
iminyl radical cyclizations with TEMPO trapping (Scheme 3). 
These substrates were readily obtained by condensation of the 
corresponding ketones with O-phenylhydroxylamine 
hydrochloride (PhONH2•HCl). Replacement of the phenyl 
substituent in 1 with an alkyl group was permitted, albeit with 
a somewhat lower cyclization yield (7a; cf. Figure 1, entry 1). 
Alkyl substitution of the alkene acceptor at the distal (7b) or 
proximal (7c) positions was also tolerated. The use of a cyclic 
alkene substrate afforded cis-fused bicycle 7d as a 12:1 
mixture of C–O epimers, with TEMPO trapping favored from 
the convex face of the radical intermediate. A geminal 
dimethyl-substituted O-phenyloxime furnished pyrroline 7e in 
good yield, demonstrating that 5-exo-trig cyclization of the 
iminyl radical intermediate is faster than the undesired 
fragmentation that would have afforded a tertiary radical in 
this case. Interestingly, cyclizations of - and -hydroxy-
substituted O-phenyloximes afforded pyrrolines 7g and 7i with 
excellent diastereoselectivity (15:1 and >20:1 dr, respectively), 
whereas cyclizations of the corresponding methyl-substituted 
substrates yielded pyrrolines 7f and 7h with negligible levels 
of selectivity (1.4:1 and 2.4:1 dr, respectively). The reasons 
for this disparity are unclear and will be the subject of future 
investigation. The modest yields of 7g and 7i can at least 
partially be attributed to degradation during the purification 
process that may be a result of the labile nature of the alcohol 
moiety.
Scheme 3. Scope of O-Phenyloxime Substratesa
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aConditions: 120 °C (W), 3h. 
In an effort to probe the scalability of the reaction, ca. 1 

mmol of O-phenyloxime 1 was subjected to microwave 
irradiation in the presence of TEMPO. We were pleased to 
find that pyrroline 3b was produced in good yield (Scheme 4, 

eq 1). Additionally, conventional heating using an oil bath was 
explored as an alternative to microwave irradiation. Although 
a longer reaction time was required, cyclization of 1 in an oil 
bath with TEMPO trapping proceeded in comparable yield to 
the analogous microwave-mediated reaction (Scheme 4, eq 2). 
Our results contrast with those of Walton and co-workers, who 
observed lower yields when iminyl radical cyclizations were 
promoted via conventional heating instead of microwave 
irradiation.12 While the reason for this discrepancy is yet to be 
determined, we are gratified that our iminyl radical 
cyclizations are accessible to researchers who do not possess a 
microwave reactor.
Scheme 4. Cyclizations on a Larger Scale and with 
Conventional Heating
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The pyrrolines generated by the iminyl radical cyclizations 
are versatile and can be transformed into functionalized 
pyrrolidines as illustrated in Scheme 5. Pd-catalyzed 
hydrogenation of 3b afforded pyrrolidine 8 in high yield and 
excellent selectivity for the cis-diastereomer. This reduction 
could also be mediated by NaBH(OAc)3 or NaBH3CN, albeit 
with lower yields and dr values. Subsequent tosylation and 
reductive N–O bond cleavage23 furnished alcohol 9. Grignard 
addition to 3b was also diastereoselective, generating 
pyrrolidine 10 as the major product due to preferential attack 
on the less-hindered face of the pyrroline ring. Finally, 
subjection of terminal alkene 5 to cross metathesis with 
methyl acrylate and the Grubbs second-generation catalyst 
afforded enoate 11 in excellent yield. A second loading of the 
catalyst was required to drive the reaction to completion, 
possibly due to catalyst decomposition facilitated by the basic 
imine moiety.
Scheme 5. Transformations of Pyrroline Adducts
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In conclusion, we have developed microwave-promoted 5-
exo iminyl radical cyclizations for the synthesis of 
functionalized pyrrolines. The simple protocol, short reaction 
times, and in some cases excellent stereoselectivity are 
noteworthy. The direct thermal generation of iminyl radicals 
from O-phenyloximes proceeds in the absence of catalysts and 
SET cycles, allowing a wide range of radical traps to be 
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employed.24 The process is scalable and can be performed with 
conventional heating instead of microwave irradiation, albeit 
with longer reaction times. The pyrroline adducts can undergo 
a number of interesting transformations. We anticipate that 
this practical method will be valuable to the organic synthesis 
community.
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