Submitted to Organic Letters

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not
copy or disclose without written permission. If you have received this item in error, notify the sender and
delete all copies.

Synthesis of Functionalized Pyrrolines via Microwave-
Promoted Iminyl Radical Cyclizations

Journal: | Organic Letters

Manuscript ID | 0l-2021-01148b.R1

Manuscript Type: | Communication

Date Submitted by the

Author: 21-Apr-2021

Complete List of Authors: | Singh, Jatinder; Brigham Young University

Nickel, Garrison; Brigham Young University

Cai, Yu; Scripps Research Institute, Chemistry

Jones, Dakota; Brigham Young University

Nelson, Tanner; Brigham Young University

Small, Jeshurun; Brigham Young University

Castle, Steven; Brigham Young University, Department of Chemistry and
Biochemistry

SCHOLARONE™
Manuscripts

ACS Paragon Plus Environment



Page 1 of 5

oNOYTULT D WN =

Submitted to Organic Letters

Synthesis of Functionalized Pyrrolines via Microwave-Promoted

Iminyl Radical Cyclizations

Jatinder Singh, Garrison A. Nickel, Yu Cai, Dakota D. Jones, Tanner J. Nelson, Jeshurun E. Small, and

Steven L. Castle*

Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, United States

Supporting Information Placeholder

direct homolytic cleavage
(no catalysts or initiators)

wide range of
radical traps

5

R .
radical 1
PhO 4 R N
R = 4
1 3 microwave R2 sY
R R irradiation rR3 R

R2

ABSTRACT: O-Phenyloximes tethered to alkenes undergo 5-exo-trig iminyl radical cyclizations upon microwave irradiation.
Trapping of the resulting cyclic radicals results in C-C, C-N, C-O, C-S, or C—X bond formation. Allylic sulfides undergo a
tandem cyclization—thiyl radical B-elimination, affording terminal alkenes. The cyclizations exhibit a broad scope, and in some
cases they are highly diastereoselective. The pyrroline adducts are versatile intermediates that can be transformed into a range of

different species.

The chemistry of nitrogen-centered radicals! is experiencing
a renaissance that has largely been fueled by the development
of new transformations mediated by photoredox catalysts? and
other types of transition metal catalysts. Iminyl radical
cyclizations, which were pioneered by Zard,® are an important
subset of nitrogen-centered radical reactions.* Several recent
reports describe the synthesis of functionalized pyrrolines via
5-exo-trig cyclizations of iminyl radicals that are generated via
single-electron transfer (SET) reduction of O-acyloximes or
O-aryloximes. These processes require oxidation of the cyclic
adduct to facilitate catalyst turnover, which limits the scope of
reagents that can be used to trap and functionalize the cyclic
radical or cationic intermediate’ (Scheme la). Inspired by
Forrester’s seminal work,® Studer’ and Leonori® demonstrated
that o-imino-oxy acids are useful substrates for cyclizations
featuring iminyl radical generation via SET oxidation’
(Scheme 1b). The cyclic adducts produced in these reactions
are reduced to regenerate the catalyst, allowing a
complementary set of trapping agents to be employed when
compared to the reactions described above. Nonetheless, the
number of viable radical traps is still constrained by reliance
on a redox cycle. Additionally, base is required to deprotonate
the o-imino-oxy acids prior to iminyl radical generation via
SET oxidation.” Accordingly, a method of forming iminyl
radicals that does not rely on SET!® would complement these
protocols by permitting the use of a wide range of radical

traps, thereby enabling construction of numerous
functionalized pyrrolines.
In 2007, Walton showed that microwave-promoted

homolytic cleavage of the weak N-O bond of O-phenyloximes
(BDE = ca. 35 kcal/mol)!'! could trigger initiator- and catalyst-
free iminyl radical cyclizations that employ toluene as both

solvent and radical trap.'> By using solvents that do not readily
undergo hydrogen atom abstraction (e.g., PhCF3;, CH;CN), we
modified this protocol and synthesized 2-acylpyrroles via 5-
exo-dig  cyclizations and functionalized nitriles via
fragmentations of iminyl radicals.!>* A large number of
radical traps are compatible with the fragmentations, allowing
formation of C—C, C-O, C-N, or C—X bonds.!* Based on these
results, we reasoned that application of our protocol to
Walton’s original microwave-promoted pyrroline synthesis
would enable trapping of the cyclic radical intermediate with a
host of agents, greatly expanding the scope of this
transformation (Scheme 1c). Herein we report the results of
our study, which establish microwave-promoted 5-exo-trig
iminyl radical cyclizations as convenient and user-friendly
reactions that forge pyrrolines endowed with diverse
functionality. The broad scope of this process can be attributed
to the catalyst- and base-free conditions as well as the absence
of redox cycles. The reactions are also fast, easy to perform,
and in some cases stereoselective.
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Scheme 1. Pyrrolines via Iminyl Radical Cyclizations

(a) SET reduction: Oxidation of adduct required
(narrow scope of trapping agents)

R Y zf at:'Iysltt ) RUN ge
2 —£ (radical trap = R
XO”“MW MW
| X= | |
. acyl, aryl groups R“Y

(b) SET oxidation: Base, reduction of adduct required
(broader scope of trapping agents)

catalyst R!
y 2

R3
YZ
=~ R4
R4

(c) Microwaves: No catalysts, bases, or redox cycles
(broadest scope of trapping agents)

R3 heat (W) g1 N
PhO, R2 Y-Z = R?
N = R4 —_— R
| Y
R1 R4

We began by probing the microwave-promoted cyclization
of O-phenyloxime 1 in the presence of allylsulfone 2a'> (Table
1). This radical trap permitted convenient measurement of
reaction yields via 'H NMR spectroscopy. Performing the
cyclization at 100 °C in PhCF; as solvent afforded a low yield
of pyrroline 3a (entry 1). Elevating the temperature to 120 °C
delivered better results (entry 2), but a further increase was not
beneficial (entry 3). Switching to a more polar solvent did not
significantly improve the yield (entries 4 and 5). Finally, we
were pleased to discover that extending the reaction time to 2
h furnished 3a in a satisfactory 72% isolated yield (entry 6).

Table 1. Optimization of Cyclization Conditions

CO,Me
SO,Ph
PO, 2a (3.0-3.3 equiv) " COMe
J\/\/ solvent, temp \
Ph uW, time Ph
1 3a
entry solvent temp (°C)  time (min)  yield of 3a (%)
1 PhCF; 100 60 204
2 PhCF; 120 45 354
3 PhCF; 130 45 304
4 CH;0H 110 45 304
5 CH;CN 120 120 41°
6 PhCF; 120 120 726

aCalculated from 'H NMR spectra of reaction mixtures.
bsolated yield.

We then evaluated several other radical traps in the
microwave-promoted cyclization of 1 (Figure 1). A host of
different reagents were viable, affording pyrrolines 3 in
generally good yields. For example, C—O bond formation
could be accomplished by trapping the cyclic radical
intermediate with TEMPO (entry 1). C—X bonds were forged
by employing CCl,,'%* CBry,!” or 2-iodopropane.'® (entries 2—
4). C-N and C-S bonds were constructed by using sulfonyl
azide 2f"° and xanthate 2g,?° respectively (entries 5 and 6).

Finally, C—C bond formation was achieved by trapping with
benziodoxolone-based hypervalent iodine reagent 2i?! (entry
8). The ability to install a diverse range of functional groups is
clearly a hallmark of this radical process that does not require
SET.

Unfortunately, use of Selectfluor'® (2h) as a radical trap
yielded only trace amounts of the desired fluorinated adduct
3h (entry 7). The major product (ca. 10-15%) was an adduct
of the cyclic radical intermediate with PhCF;. Apparently, the
rate of radical trapping by Selectfluor was slower than the rate
of trapping by the solvent. The poor solubility of Selectfluor in
PhCF; was likely responsible for this problem. However, other
solvents such as CH;CN or CH;OH did not afford detectable
amounts of the desired product. Microwave irradiation of a
solution of 1 in PhCFj; in the absence of radical traps resulted
in slow formation of the PhCF; adduct. Thus, practical radical
traps in these iminyl radical cyclizations must be able to
outcompete the solvent for the cyclic radical intermediate.

TEMPO CCl; CBry i-Prl Q\//O o)
2b 2c 2d 2e _S.
Ph N3
2f 0
1 i |
Et0” 57 COLEt [NJ 2BF,~ R
29 F 2n 2i (R = C=C-TIPS)
tra . tra .
entry (equ[i)v) pyrroline entry (equ‘i)v) pyrroline
O\
N
2f
2b N 58
1 @1 | (2.1)
Ph f (72%)
3b (84%) )
N 29
2
N oI
' Ph g (73%
3¢ (75%) o)
Br
2d N 7b 2h
3 6.0) Ph):g (4.0)
3d (73%) n (<5%)
| = TIPS
2e N
4 C
(38) Ph):g 8 (13
3e (45%) 3i (67%)

Figure 1. Scope of radical traps in cyclizations of 1. Conditions
were PhCF;, 120 °C (uW), and 1-2 h unless otherwise specified.
“Irradiated at 110 °C for 5 h. ’Irradiated at 120 °C for 3 h. The
major detected product was an adduct where the cyclic radical
was trapped with PhCFj. ¢Irradiated at 110 °C for 2 h.

Substrates that can undergo B-elimination of a thiyl radical
after cyclization?? provide an attractive alternative to using
radical traps, as the resulting alkene can be elaborated to
introduce numerous functional groups. Accordingly, we
performed the cyclization of allylic sulfide 4 (Scheme 2).
Gratifyingly, this substrate reacted smoothly under microwave
irradiation to produce alkene-containing pyrroline 5 in good
yield.

Scheme 2. Cyclization—Thiyl Radical B-Elimination
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Upon establishing the wide scope of the iminyl radical
cyclization with respect to radical traps, we subsequently
demonstrated the viability of various O-phenyloximes 6 in
iminyl radical cyclizations with TEMPO trapping (Scheme 3).
These substrates were readily obtained by condensation of the
corresponding  ketones  with  O-phenylhydroxylamine
hydrochloride (PhONH,*HCI). Replacement of the phenyl
substituent in 1 with an alkyl group was permitted, albeit with
a somewhat lower cyclization yield (7a; cf. Figure 1, entry 1).
Alkyl substitution of the alkene acceptor at the distal (7b) or
proximal (7¢) positions was also tolerated. The use of a cyclic
alkene substrate afforded cis-fused bicycle 7d as a 12:1
mixture of C—O epimers, with TEMPO trapping favored from
the convex face of the radical intermediate. A geminal
dimethyl-substituted O-phenyloxime furnished pyrroline 7e in
good yield, demonstrating that 5-exo-trig cyclization of the
iminyl radical intermediate is faster than the undesired
fragmentation that would have afforded a tertiary radical in
this case. Interestingly, cyclizations of a- and B-hydroxy-
substituted O-phenyloximes afforded pyrrolines 7g and 7i with
excellent diastereoselectivity (15:1 and >20:1 dr, respectively),
whereas cyclizations of the corresponding methyl-substituted
substrates yielded pyrrolines 7f and 7h with negligible levels
of selectivity (1.4:1 and 2.4:1 dr, respectively). The reasons
for this disparity are unclear and will be the subject of future
investigation. The modest yields of 7g and 7i can at least
partially be attributed to degradation during the purification
process that may be a result of the labile nature of the alcohol
moiety.

Scheme 3. Scope of O-Phenyloxime Substrates®
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aConditions: 120 °C (uW), 3h.

In an effort to probe the scalability of the reaction, ca. 1
mmol of O-phenyloxime 1 was subjected to microwave
irradiation in the presence of TEMPO. We were pleased to
find that pyrroline 3b was produced in good yield (Scheme 4,

eq 1). Additionally, conventional heating using an oil bath was
explored as an alternative to microwave irradiation. Although
a longer reaction time was required, cyclization of 1 in an oil
bath with TEMPO trapping proceeded in comparable yield to
the analogous microwave-mediated reaction (Scheme 4, eq 2).
Our results contrast with those of Walton and co-workers, who
observed lower yields when iminyl radical cyclizations were
promoted via conventional heating instead of microwave
irradiation.!> While the reason for this discrepancy is yet to be
determined, we are gratified that our iminyl radical
cyclizations are accessible to researchers who do not possess a
microwave reactor.

Scheme 4. Cyclizations on a Larger Scale and with
Conventional Heating
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The pyrrolines generated by the iminyl radical cyclizations
are versatile and can be transformed into functionalized
pyrrolidines as illustrated in Scheme 5. Pd-catalyzed
hydrogenation of 3b afforded pyrrolidine 8 in high yield and
excellent selectivity for the cis-diastereomer. This reduction
could also be mediated by NaBH(OAc); or NaBH;CN, albeit
with lower yields and dr values. Subsequent tosylation and
reductive N-O bond cleavage?® furnished alcohol 9. Grignard
addition to 3b was also diastereoselective, generating
pyrrolidine 10 as the major product due to preferential attack
on the less-hindered face of the pyrroline ring. Finally,
subjection of terminal alkene 5 to cross metathesis with
methyl acrylate and the Grubbs second-generation catalyst
afforded enoate 11 in excellent yield. A second loading of the
catalyst was required to drive the reaction to completion,
possibly due to catalyst decomposition facilitated by the basic
imine moiety.

Scheme 5. Transformations of Pyrroline Adducts
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In conclusion, we have developed microwave-promoted 5-
exo 1iminyl radical cyclizations for the synthesis of
functionalized pyrrolines. The simple protocol, short reaction
times, and in some cases excellent stereoselectivity are
noteworthy. The direct thermal generation of iminyl radicals
from O-phenyloximes proceeds in the absence of catalysts and
SET cycles, allowing a wide range of radical traps to be
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employed.?* The process is scalable and can be performed with
conventional heating instead of microwave irradiation, albeit
with longer reaction times. The pyrroline adducts can undergo
a number of interesting transformations. We anticipate that
this practical method will be valuable to the organic synthesis
community.
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