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Summary

Large samples are generated routinely from various sources. Classic statistical models, such
as smoothing spline ANOVA models, are not well equipped to analyse such large samples
because of high computational costs. In particular, the daunting computational cost of selecting
smoothing parameters renders smoothing spline ANOVA models impractical. In this article, we
develop an asympirical, i.e., asymptotic and empirical, smoothing parameters selection method
for smoothing spline ANOVA models in large samples. The idea of our approach is to use
asymptotic analysis to show that the optimal smoothing parameter is a polynomial function of
the sample size and an unknown constant. The unknown constant is then estimated through
empirical subsample extrapolation. The proposed method significantly reduces the computa-
tional burden of selecting smoothing parameters in high-dimensional and large samples. We
show that smoothing parameters chosen by the proposed method tend to the optimal smooth-
ing parameters that minimize a specific risk function. In addition, the estimator based on the
proposed smoothing parameters achieves the optimal convergence rate. Extensive simulation
studies demonstrate the numerical advantage of the proposed method over competing meth-
ods in terms of relative efficacy and running time. In an application to molecular dynamics
data containing nearly one million observations, the proposed method has the best prediction
performance.

Some key words: Asymptotic analysis; Generalized cross-validation; Smoothing parameters selection; Smoothing
spline ANOVA model; Subsample.

1. Introduction

In this article, we consider a nonparametric model of the form

yi = η(xi) + εi (i = 1, . . . , n), (1)

where yi ∈ R is the response variable for the ith observation, η is a nonparametric function
varying in an infinite-dimensional functional space, xi = (xi〈1〉, . . . , xi〈d〉)T is a d-dimensional
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vector of predictors for the ith observation, and the εi are independent and identically distributed
random errors with mean zero and unknown variance σ 2. We focus on the smoothing spline
ANOVA model (Wahba et al., 1995) for a multi-dimensional problem, i.e., with d > 1. In the
smoothing spline ANOVA model we decompose the function η as

η(x) = ηø +
d∑

j=1

ηj(x〈j〉) +
∑
j<k

ηj,k(x〈j〉, x〈k〉) + · · · + η1,2,...,d(x〈1〉, x〈2〉, . . . , x〈d〉), (2)

where ηø is a constant, the ηj are main-effect functions, the ηj,k are two-way interaction functions,
and η1,2,...,d(x〈1〉, x〈2〉, . . . , x〈d〉) is a d-way interaction function. Side conditions on the components
are imposed to guarantee a unique decomposition. The nonparametric function η can be estimated
by minimizing the penalized least squares

1

n

n∑
i=1

{yi − η(xi)}2 + λP(η), (3)

where P(η) = P(η, η) is a quadratic roughness penalty and the smoothing parameter λ controls
the trade-off between the lack of fit of η and the roughness of η. Extra smoothing parameters
are included in P(η, η) to adjust the strength of the components in (2), but for simplicity we
omit them from the notation. The explicit formula for P(η, η) can be found in § 2.1. Since the
minimizer of (3), denoted by ηn,λ, is sensitive to the selection of λ, it is crucial to choose an
effective and efficient method for selecting the smoothing parameter.

Numerous computational methods for smoothing parameter selection have been proposed.
One of the earliest is the CL method (Mallows, 1973). To circumvent the impracticality of the
CL method due to its dependence on an unknown σ 2, Craven & Wahba (1978) proposed gen-
eralized cross-validation. They showed that the smoothing parameter estimated by generalized
cross-validation minimizes a specific risk function asymptotically. Although their method gives
a good estimate of λ without prior knowledge of the variance σ 2, it occasionally has an under-
smoothing problem. To overcome this problem, Kim & Gu (2004) developed a modified version
of generalized cross-validation by adding a fudge factor. Under the Bayes framework, Wahba
(1985) proposed a maximum likelihood estimate for the smoothing parameter. Extensive simula-
tions were performed to demonstrate that the maximum likelihood estimate provides satisfactory
estimates. Nonetheless, the minimizer ηn,λ based on the smoothing parameter chosen by maxi-
mum likelihood cannot be guaranteed to attain the optimal convergence rate. In contrast to the
above methods, the improved Akaike information criterion proposed by Hurvich et al. (1998)
aims to avoid the undersmoothing problem of generalized cross-validation. However, the empir-
ical performance of Hurvich et al.’s criterion is not as good as that of other criteria, such as
generalized cross-validation, in some situations (Aydin et al., 2013). Moreover, its soundness
is hard to justify owing to the lack of theoretical analysis under the smoothing spline ANOVA
framework. A more recent line of work for large datasets is the divide-and-recombine method
(Shang & Cheng, 2017; Xu & Wang, 2018). In this approach, a large dataset is divided into
small subsets to which smoothing spline models are fitted, and the outputs of these models are
then recombined. Since the smoothing spline is applied to small subsets, selecting the smoothing
parameter is computationally feasible.

For multivariate η, multiple smoothing parameters are used to adjust the strength of the
corresponding components in (2). Gu & Wahba (1991) proposed to select multiple smoothing
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Asymptotic and empirical smoothing parameters selection 151

parameters by minimizing the generalized cross-validation function through a modified Newton
method. With all smoothing parameters being tunable, the iterative algorithm takes O(Sn3) flops
per iteration, where S is the number of smoothing parameters, and needs tens of iterations to
converge. The algorithm is quite efficient when S is small. As the number of multi-way interac-
tion components in (2) increases, the number of smoothing parameters grows dramatically. For
example, S is 5 for the full two-way model and 19 for the full three-way model. Thus, the algo-
rithm is computationally expensive for multi-dimensional models with interaction terms. Several
methods have been proposed to alleviate the heavy computational burden of these models. An
obvious option is to provide good prespecified values for multiple smoothing parameters. Gu
& Wahba (1991) proposed an algorithm for calculating these values, and showed that the min-
imizer of (3) based on them usually yields good estimates. Although the algorithm performs
well in additive models, it is unreliable when interaction components are present. The unreliable
performance may be exacerbated when the model is misspecified. Helwig & Ma (2015) pro-
posed a reparameterization of smoothing parameters in the smoothing spline ANOVA model. For
the reparameterization, there is one smoothing parameter for each predictor and the smoothing
parameter for an interaction term is the product of the smoothing parameters of the correspond-
ing predictors. This new algorithm has a computational cost comparable to that of generalized
additive models (Hastie & Tibshirani, 1986). Nevertheless, the algorithm may produce a biased
estimate when the smoothing spline ANOVA model is misspecified. In addition, its theoretical
foundation requires further justification.

Parallel to the work under the smoothing spline ANOVA framework, several authors have
proposed efficient smoothing parameter selection methods for generalized additive models. For
univariate functions, many attempts have been made to estimate the smoothness of functions
(Buja et al., 1989; Marx & Eilers, 1998). These algorithms are fast even for large datasets. For
multivariate functions, low-rank tensor product methods were developed (Wood, 2006; Lee &
Durbán, 2011). To control the smoothness on different predictors within an interaction term,
multiple smoothing parameters are associated with the smoothing penalties corresponding to
the interaction. For example, for any bivariate interaction ηj, k(x〈j〉, x〈k〉) there are two smoothing
parameters for controlling the smoothness on predictors x〈j〉 and x〈k〉, whereas three smoothing
parameters are used under the smoothing spline ANOVA framework to adjust the smoothness
on x〈j〉, x〈k〉, and the interaction of these two predictors separately. The low-rank tensor product
methods reduce the number of smoothing parameters and improve the computational efficiency.
However, when the bivariate function ηj, k(x〈j〉, x〈k〉) is not an additive function with respect to
the x〈j〉 and x〈k〉 directions, the smoothing spline ANOVA models may have numerical advan-
tages since they can model the interaction of these two predictors. Recently, some extensions
of the multivariate smoothing approach in generalized additive models have been proposed to
estimate the smooth functions (Ruppert et al., 2003; Wand, 2003; Lee et al., 2013; Wood et al.,
2013; Rodríguez-Álvarez et al., 2015; Wood & Fasiolo, 2017). Wood et al. (2017) developed an
efficient fitting method to estimate generalized additive models in large samples. In particular,
a reparameterization is implemented in the fitting iteration, where the smoothing matrix can be
computed blockwise. Moreover, instead of fully optimizing the restricted marginal likelihood at
each iteration, a single-step Newton update is utilized. To reduce the memory usage for large
matrices, a novel covariate discretization scheme is also implemented. While this discretiza-
tion scheme significantly reduces the computational time of estimation, a rigorous theoretical
investigation is still lacking.

The asymptotic behaviour of ηn,λ and the optimal λ has been studied extensively; see Silverman
(1982), Rice & Rosenblatt (1983), Cox (1984), Speckman (1985), Cox & O’Sullivan (1990) and
Gu & Qiu (1993). The estimator can achieve an optimal convergence rate when the smoothing
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parameter is of order O{n−r/(pr+1)} for r > 1 and p ∈ [1, 2]. Lin (2000) further studied the
optimal convergence rate of the estimator in tensor product space ANOVA models, and showed
that the optimal rate of smoothing parameters depends on the highest order of interactions in (2).
One can directly use Cn−r/(pr+1) with some predefined C, r and p as the smoothing parameter
when fitting the model to a sample of size n (Hall, 1990). This method is referred to as the order-
based method. However, the numerical performance of the order-based method is unreliable,
which is also observed in our simulation studies.

To make the selection of smoothing parameters practical in large samples, we develop an
asympirical, i.e., asymptotic and empirical, smoothing parameters selection approach by com-
bining the theoretical properties of smoothing parameters and the aforementioned computational
methods in a synergistic manner. In the proposed method, we choose a subsample of size much
smaller than the full sample size n, and we select smoothing parameters for the subsample
using the generalized cross-validation method. The smoothing parameters for the full sample
are extrapolated based on the selected smoothing parameters and the optimal rate O{n−r/(pr+1)}.
The proposed smoothing parameters selection method reduces the computational complexity
from tens of O(Sn3) flops, as required by the generalized cross-validation method, to O(B3),
where B is the size of the subsamples. The numerical advantage of the proposed algorithm
over the other approaches is significant when there are multiple interaction components in
the model, as demonstrated through our extensive simulation studies and real data examples.
Besides the numerical advantages, the smoothing parameters obtained using our approach share
optimal properties with parameters that minimize a specific risk function for full samples.
Furthermore, the estimator based on the proposed smoothing parameters attains the optimal
convergence rate.

2. Smoothing spline ANOVA models

2.1. Estimation

We review the Kimeldorf–Wahba representer theorem (Kimeldorf & Wahba, 1971; Wahba,
1990; Wang, 2011), which states that the solution of penalized least squares defined in an
infinite-dimensional functional space actually resides in a finite-dimensional space. Recall that
the minimization of (3) is performed in the tensor product reproducing kernel Hilbert space
H = {η : P(η, η) < ∞} with the quadratic roughness penalty P(η, η) = ∑S

δ=1 θ−1
δ (η, η)δ ,

where the θδ are smoothing parameters that adjust the strengths of the corresponding compo-
nents, (· , ·)δ is the inner product in Hδ with reproducing kernel Rδ(· , ·), and S is the number of
subspaces based on the tensor product decomposition. The space H has the tensor sum decompo-
sition H = NP ⊕HP where NP, the null space of H, is spanned by {φν}M

ν=1 and HP = ⊕S
δ=1 Hδ

has the reproducing kernel R(· , ·) = ∑S
δ=1 θδRδ(· , ·).

Theorem 1 (Kimeldorf–Wahba representer theorem). The minimizer of (3) is

η(x) =
M∑

ν=1

dνφν(x) +
n∑

i=1

ciR(xi, x),

where d = (d1, . . . , dM )T and c = (c1, . . . , cn)
T are unknown coefficients.
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Theorem 1 facilitates the estimation by reducing an infinite-dimensional optimization problem
to a finite-dimensional one. Based on the representer theorem, the minimization in (3) becomes

(Y − Td − Kc)T(Y − Td − Kc) + nλcTKc, (4)

where Y = (y1, . . . , yn)
T, Tn×M is a matrix with (i, ν)th entry φν(xi), and Kn×n is a matrix with

(i, j)th entry R(xi, xj). By differentiating (4) with respect to d and c, and setting the derivatives
to zero, one obtains the linear system of equations(

T TT T TK
KTT KTK + nλK

) (
d
c

)
=

(
T TY
KTY

)
. (5)

To estimate d and c, one needs to solve the linear system (5). If the smoothing parameters λ and
θδ are known, the computational cost is typically O(n3).

2.2. Roughness penalties

One can choose different forms of roughness penalties for the estimation. The most popular
choice for univariate η on a compact interval X is

P(η, η) =
∫

X
(η(m))2 dx,

where η(m) = dmη/dxm. Setting m = 2, a cubic spline estimator is obtained by minimizing (3)
(Wahba, 1990). One convenient way to define the penalty for multivariate functions that have the
form (2) is to construct the tensor product reproducing kernel Hilbert space. The reproducing
kernel Hilbert space H can be decomposed into the space of constants, the spaces of main
effects, and the corresponding spaces of interaction terms lying in the tensor product space of the
interacting main-effect spaces.

Example 1. For the tensor product cubic spline on [0, 1]2, one has the following space
decomposition in each variable:

{f : f (2) ∈ L2[0, 1]} = {f : f ∝ 1} ⊕ {f : f ∝ k1}

⊕
{

f :
∫ 1

0
f dx =

∫ 1

0
f (1) dx = 0, f (2) ∈ L2[0, 1]

}
= H00 ⊕ H01 ⊕ H1,

where k1(x) = x − 0.5. The space of constant terms is H00〈1〉 ⊗ H00〈2〉; H00〈1〉 ⊗ (H01〈2〉 ⊕ H1〈2〉)
and H00〈2〉 ⊗ (H01〈1〉 ⊕H1〈1〉) span the space of main effects; and the subspace (H01〈1〉 ⊕H1〈1〉)⊗
(H01〈2〉 ⊕ H1〈2〉) spans the space of interactions. Let Hν, μ = Hν〈1〉 ⊗ Hμ〈2〉 for ν, μ = 00, 01, 1,
with inner products (η, η)ν,μ and reproducing kernels Rν, μ = Rν〈1〉Rμ〈2〉; see Gu (2013, Theorem
2.6). One may set

P(η, η) = θ−1
1,00(η, η)1,00 + θ−1

00,1(η, η)00,1

+ θ−1
1,01(η, η)1,01 + θ−1

01,1(η, η)01,1 + θ−1
1,1 (η, η)1,1.

The null space of P(η, η) is

NP = H00,00 ⊕ H01,00 ⊕ H00,01 ⊕ H01,01.
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As in Example 1, a two-dimensional η can be decomposed into four main terms: one constant
term, two main effect terms, and one two-way interaction term. There are five effective smoothing
parameters, namely λ/θ1,00, λ/θ00,1, λ/θ1,01, λ/θ01,1 and λ/θ1,1. Two of them, λ/θ1,00 and λ/θ00,1,
are for the main effects, and the rest are for the interaction effects.

Example 2. For the tensor product cubic spline on {1, . . . , K}× [0, 1], one can use the kernels
R0〈1〉(x〈1〉, x̀〈1〉) = 1/K and R1〈1〉(x〈1〉, x̀〈1〉) = I(x〈1〉=x̀〈1〉) − 1/K on {1, . . . , K} and the kernels
R00〈2〉(x〈2〉, x̀〈2〉) = 1, R01〈2〉(x〈2〉, x̀〈2〉) = k1(x〈2〉)k1(x̀〈2〉) and R1〈2〉(x〈2〉, x̀〈2〉) = k2(x〈2〉)k2(x̀〈2〉) −
k4(x〈2〉 − x̀〈2〉) on [0, 1], where the ku (u = 1, 2, 4) are scaled Bernoulli polynomials. The tensor
product space can be constructed in an analogous way to Example 1.

2.3. Generalized cross-validation

When estimating multivariate functions in a tensor product space, multiple smoothing param-
eters are involved; see Example 1. The multiple smoothing parameters λ/θ control the trade-off
between the lack of fit of η and the roughness of η, where θ = (θ1, . . . , θS)T. Gu & Wahba (1991)
proposed a modified Newton method for minimizing the generalized cross-validation score,

G(λ/θ) = n−1Y T{I − A(λ/θ)}2Y

[n−1 tr{I − A(λ/θ)}]2 ,

iteratively for multiple smoothing parameters, where the smoothing matrix A(λ/θ) is given in the
Supplementary Material. In particular, the method consists of the following steps: (i) for fixed θ ,
minimize the generalized cross-validation score with respect to nλ; (ii) update θ based on current
information on nλ.

With all smoothing parameters being tunable, the above iterative algorithm takes O(Sn3) flops
per iteration and needs tens of iterations to converge. The number of smoothing parameters,
S, increases dramatically as the number of multi-way interactions grows. In particular, S =
d + 3d(d − 1)/2 for the two-way interaction model which truncates the decomposition in (2)
at two-way interactions, so it is impractical to apply smoothing spline ANOVA models to large
samples. Even for the additive model with d smoothing parameters being tunable, tens of iterations
of O(n3) flops become infeasible in large samples. Since the iterative algorithm depends heavily
on the starting values, Gu & Wahba (1991) proposed an algorithm for calculating good starting
values of θ . The software developed by Gu (2014) uses these starting values as the final estimate
of θ , and the algorithm is called the skip algorithm. With the aid of the skip algorithm, the
multiple smoothing parameters selection problem reduces to the single smoothing parameter
selection problem, which takes O(n3) flops. The skip algorithm comprises two steps: (i) for
θδ = {tr(Rδ)}−1, minimize the generalized cross-validation score with respect to nλ, and calculate
c; (ii) estimate the starting values θδ0 = θ2

δ cTRδc.

3. Asympirical smoothing parameters selection

3.1. The optimal smoothing parameter

We review the optimal smoothing parameters selection method, which motivates the proposed
algorithm. The optimality of smoothing parameter selection can be characterized by minimization
of the expectation of the loss function, E{L(λ)}, i.e., the risk function, where the loss function is

L(λ) = 1

n

n∑
i=1

{
ηn,λ(xi) − η(xi)

}2. (6)
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Wahba (1975) derived the optimal smoothing parameter by minimizing the risk function for
smoothing periodic splines in H(m), defined by

H(m) =
{

f : f (ν) absolutely continuous for ν = 0, 1, . . . , m − 1, f (m) ∈ L2[0, 1],
f (ν)(0) − f (ν)(1) = 0 for ν = 0, 1, . . . , m − 1

}
.

Suppose that η ∈ H(2m), i.e., η is very smooth, and ‖η(2m)‖ |= 0, where ‖ · ‖ is the L2-norm. The
optimal choice of smoothing parameter, ignoring o(1) terms, is

{
k̃m

4m

σ 2

‖η(2m)‖
2
}2m/(4m+1)

n−2m/(4m+1), (7)

where k̃m = (1/π)
∫ ∞

0 1/(1 + t2m)2 dt is a constant depending on m. We rewrite the smoothing
parameter in (7) as Cn−2m/(4m+1), since the first term is a constant unrelated to the full sample
size n. Likewise, in the subsample of size b → ∞, the asymptotically optimal smoothing param-
eter λrisk(b) is Cb−2m/(4m+1) for the same C. If we can estimate C in a subsample of size b,
then the smoothing parameter λrisk(b)(n/b)−2m/(4m+1) for the full sample of size n is thereby
estimated. Under different smoothness conditions, to be defined later, the optimal smoothing
parameter that minimizes the risk function has the form Cb−r/(pr+1) for r > 1 and p ∈ [1, 2] in a
subsample of size b (Wahba, 1977, 1985). For instance, we have r = 2m and p = 2 for the above
smoothing periodic spline case. Based on the same rationale, the smoothing parameter for the full
sample is

λrisk(b)(n/b)−r/(pr+1). (8)

3.2. The asympirical algorithm

It is infeasible to choose the optimal smoothing parameter if the true η and σ 2 are unknown.
Therefore, we replace the optimal smoothing parameter λrisk(b) in (8) with λgcv(b) chosen by the
generalized cross-validation method in a subsample of size b. The detailed procedure is outlined
in Algorithm 1.

Algorithm 1. The asympirical smoothing parameters selection algorithm.

Step 1. Take a random subsample of size b from the original data, and apply the generalized
cross-validation method to the subsample to estimate the smoothing parameters λgcv(b) and
θgcv(b).

Step 2. Set smoothing parameters λasp(n; b) = λgcv(b)(n/b)−r/(pr+1) and θasp(n; b) =
θgcv(b) to find the minimizer of (3) for the full sample of size n.

In the first step, the random subsample is selected using uniform sampling. More delicate
sampling approaches can be found in Ma et al. (2015) and Meng et al. (2020). To make the
estimated smoothing parameters more stable, we usually take multiple subsamples and choose the
median of a group of smoothing parameters. In the algorithm, we assume that optimal smoothing
parameters share the same rate of decrease as n increases (Gu & Wahba, 1991). Since smoothing
parameters θ are used to adjust the roughness penalties imposed on different components, see
Example 1, we calculate the optimal θgcv(b) for the subsample and perform the minimization
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based on the estimated θgcv(b) for the full sample. Further details on how to choose b, r and p in
practice are given in § 4.

4. Theoretical analysis

This section presents the theoretical analysis of the smoothing parameters selected by Algo-
rithm 1. The selected smoothing parameters tend to the parameter values that minimize the risk
function. Our theoretical analysis also provides a guide to choosing b, r and p. We then present
results on convergence rates of the estimator based on the proposed smoothing parameters. For
simplicity, we suppress λ’s dependence on θ and only make λ explicit. All proofs are given in
the Supplementary Material.

Let the subsample size be b. The matrix I − A(λ) for the smoothing spline ANOVA model has
the representation

I − A(λ) = bλZ(D + bλI )−1ZT,

where the matrix Z satisfies ZTZ = I(b−M )×(b−M ) and Db−M is a (b − M ) × (b − M ) diagonal
matrix with real-valued entries ζνb > 0; more details are given in the Supplementary Material.
We derive theoretical results under the following smoothness assumption.

Assumption 1. The function η ∈ Hp, where the space Hp is defined as

Hp =
{

η : P(η, η) > 0,
b−M∑
ν=1

h2
νb/b

(ζνb/b)p � Jp + Jp o(1)

}
.

Here the real-valued vector (h1,b, . . . , hb−M , b)
T = ZTH with H = {η(x1), . . . , η(xb)}T, Jp for

p ∈ [1, 2] is a real-valued constant independent of the subsample size b, and o(1) → 0 as b → ∞.

Under Assumption 1, we only consider the case where P(η, η) > 0. When P(η, η) = 0, both
the risk function and the generalized cross-validation function are minimized for λ = ∞ (Craven
& Wahba, 1978).

Theorem 2. Suppose that Assumption 1 holds for some p ∈ [1, 2]. Let r > 1, let λgcv(b) be
the smoothing parameter chosen by the generalized cross-validation method for the subsample
of size b, let λrisk(n) be the optimal smoothing parameter minimizing the risk function for the full
sample of size n, and let λasp(n; b) be the proposed smoothing parameter for the full sample of
size n. Suppose that λgcv(b) → 0 and bλ

1/r
gcv

(b) → ∞. Then λasp(n; b) = λrisk(n){1 + o(1)}.
Theorem 2 shows that the proposed smoothing parameter λasp(n; b) is an estimate of the

minimizer of E{L(·)} asymptotically. We have the following immediate corollary under regularity
conditions stated in the Supplementary Material.

Corollary 1. Under regularity conditions in the Supplementary Material, as λgcv(b) → 0,
bλ

1/r
gcv

(b) → ∞ and n → ∞, we have

E[L{λasp(n; b)}]
E[L{λrisk(n)}] = 1 + o(1).
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This corollary gives the expectation inefficiency of λasp(n; b) relative to λrisk(n) as the number
of observations n tends to infinity.

In Theorem 2 one needs bλ
1/r
gcv

(b) → ∞. We further assume that λgcv(b) achieves the optimal
rate n−r/(pr+1), and it suffices to have b � n1/(pr+1)+ε for any ε > 0. For P(η, η) = ∫ 1

0 (η(2))2 dx
on [0, 1], r = 4, and we have p = 1 when η(2) is square-integrable and p = 2 when η(4) is
square-integrable. For the tensor product cubic spline, r is typically less than 4 (Wahba, 1990;
Lin, 2000), so we set r = 3 empirically. Taking these facts into consideration, we set r = 3,
p = 1 and ε = 0, and use b ∝ n1/4 empirically. In real applications, the subsample size b is set
to 50n1/4. The smoothness of η is indexed by p, which is estimated empirically. We first take a
random subsample of size B, and minimize the generalized cross-validation score with respect
to p ∈ {1, 2} by replacing λ in the score with λgcv(b)(B/b)−r/(pr+1). We take B = 2b in our
simulation studies and real data examples. Thus the computational complexity of the proposed
algorithm is of order O(B3). To reduce the computational burden of fitting smoothing spline
ANOVA models for large samples, one can implement the fast algorithm proposed by Kim & Gu
(2004). In the algorithm, one first randomly selects q̆ basis functions from n and then estimates
the minimizer of (3). The algorithm requires O(nq̆2) flops to estimate the minimizer for each
choice of smoothing parameters. Thus, the corresponding computational complexities of the
generalized cross-validation method and the proposed method are also reduced. The complexity
of the proposed method is of order O(Bq̆2) when the fast algorithm is applied.

We now show the convergence rate of the estimator that relies on the proposed smoothing
parameters. To study theoretical properties of smoothing spline ANOVA models, one needs the
quadratic functional V defined by

V (ηn,λ − η, ηn,λ − η) =
∫

X
{ηn,λ(x) − η(x)}2f (x) dx,

where f (·) is the marginal density of x. The functional represents the mean squared error of the
estimator ηn,λ in estimating the function η on a compact domain X ⊂ R

d . To avoid interpolation,
the regularization λP needs to restrict the estimate to an effective model space. To control the bias,
the effective model space needs to be increased by letting λ → 0 as the sample size n → ∞.
It was shown in Gu (2013, Ch. 9) that (V + λP)(ηn,λ − η, ηn,λ − η) = O(n−1λ−1/r + λp).
We establish the following theorem under regularity conditions described in the Supplementary
Material.

Theorem 3. Under the regularity conditions in the Supplementary Material and for some
p ∈ [1, 2] and r > 1, as λrisk(n) → 0 and nλ

2/r
risk

(n) → ∞, we have

{V + λrisk(n)P}(ηn,λasp(n;b) − ηn,λrisk(n), ηn,λasp(n;b) − ηn,λrisk(n)) = O(n−pr/(pr+1)).

Remark 1. Our result is for the general smoothing spline estimator. If some structures of the
underlying function, e.g., shape-restricted, are known a priori, the convergence rate may be faster,
and the estimator may converge in o(·) rather than O(·).

5. Simulation studies

5.1. Simulation settings

Simulation studies, including univariate and multivariate cases, were carried out to assess
the performance of the proposed method in terms of mean squared error. For univariate cases,
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we compared the proposed method with the generalized cross-validation method and the order-
based method of Hall (1990). For multivariate cases, the proposed method was compared with
the generalized cross-validation method, the skip method, and another three approaches, namely
generalized cross-validation, restricted maximum likelihood, and fast restricted maximum like-
lihood (Wood et al., 2017) in generalized additive models. For the proposed method we used two
sampling schemes to select subsamples: uniform sampling and asymptotic sampling. The former
is described in Algorithm 1. The asymptotic sampling strategy is implemented in two steps. First,
take random subsamples of size b1, . . . , bN from the original data and apply the generalized cross-
validation method to the subsamples to estimate smoothing parameters λgcv(b1), . . . , λgcv(bN ).
Second, apply the constrained optimization method to estimate the constant C and rate parameters
r and p by minimizing the objective function (1/N )

∑N
k=1{λgcv(bk) − Cb−r/(pr+1)

k }2 with con-
straints p ∈ [1, 2] and r > 1. Compared with the uniform sampling scheme, asymptotic sampling
provides empirical estimates of parameters needed for the asympirical smoothing parameters
selection without using any prior knowledge on rate parameters. In multivariate cases we set
N = 10, and b1 and b10 were set to 50n1/4 and 120n1/4, respectively. In the order-based method,
we directly used n−r/(pr+1) as the smoothing parameter λ for sample size n. The skip method
is described in § 2.3. The generalized cross-validation, restricted maximum likelihood, and fast
restricted maximum likelihood methods under the generalized additive models framework were
implemented in the mgcv package (Wood, 2004, 2011; Wood et al., 2017) of R (R Development
Core Team, 2021). We used the fast algorithm proposed by Kim & Gu (2004) to reduce the compu-
tational burden of fitting smoothing spline ANOVA models. To make a fair comparison, the same
number of basis functions was used for all methods. We chose the generalized cross-validation
method to be the benchmark and report the log-transformed relative efficacy. This relative effi-
cacy is defined as

∑n
i=1{η̂(xi) − η(xi)}2/

∑n
i=1{η̃(xi) − η(xi)}2, where η̂ is the estimator for the

method being compared and η̃ is the estimator based on the generalized cross-validation method.
A smaller log-transformed relative efficacy indicates better performance. If the log-transformed
relative efficacy is zero, the method being compared has the same numerical performance as
the generalized cross-validation method. Three univariate and four multivariate functions were
evaluated. The full sample size n was set to 20 000, 30 000 and 40 000. Four values, 1, 2, 5 and
7, of the signal-to-noise ratio, defined as snr = sd{η(x)}/σ , were used to generate the data. One
hundred replicates were generated for each setting.

5.2. Univariate scenarios

We simulated the data according to (1) using three univariate functions with different orders
of smoothness.

Univariate scenario 1:

ηu1(x) = 1

3
B20,5(x) + 1

3
B12,12(x) + 1

3
B7,30(x),

where

Bα,β(x) = �(α + β)

�(α)�(β)
xα−1(1 − x)β−1 (0 � x � 1).

Univariate scenario 2:

ηu2(x) = 10 sin2(2πx)1(x� 1
2 ),
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Fig. 1. The univariate true functions (solid lines) of (a) ηu1, (b) ηu2 and (c) ηu3, with the data used in the simulation
represented by circles.

where 1(x� 1
2 ) is an indicator function that equals 1 for x � 1

2 and equals 0 otherwise.

Univariate scenario 3:

ηu3(x) = 10 ×
{
−x + 2

(
x − 1

4

)}
1(x� 1

4 ) + 2
(

−x + 3

4

)
1(x� 3

4 ),

where 1(x�1/4) and 1(x�3/4) are two indicator functions that equal 1 when the conditions in
parentheses are satisfied and equal 0 otherwise.

We generated x from a uniform distribution on [0, 1]. The generated data for three univariate
functions with snr = 1 and three true function values are shown in Fig. 1. The log-transformed
relative efficacies of the proposed method and the order-based method for the three scenarios
are shown in Fig. 2. The skip method reduces to the generalized cross-validation method in the
single smoothing parameter selection. The performance of the proposed method is comparable
to that of the generalized cross-validation method when the signal-to-noise ratio is low, with log-
transformed relative efficacies close to zero. The performance of our method is better than that
of the generalized cross-validation method as the signal-to-noise ratio increases. Such behaviour
may result from unstably estimated smoothing parameters based on subsamples when the signal-
to-noise ratio is low. Even though the order-based method performs well in some scenarios, such
as univariate scenario 3, it is not reliable because of the large variability in most scenarios.

5.3. Multivariate scenarios

We simulated the data according to (1) using four multivariate functions. In these four scenarios,
the x values were drawn from the uniform distribution on [0, 1].
Multivariate scenario 1:

ηm1(x) = 0.75

πσx〈1〉σx〈2〉
exp

{
−(x〈1〉 − 0.2)2

σ 2
x〈1〉

− (x〈2〉 − 0.3)2

σ 2
x〈2〉

}

+ 0.45

πσx〈1〉σx〈2〉
exp

{
−(x〈1〉 − 0.7)2

σ 2
x〈1〉

− (x〈2〉 − 0.8)2

σ 2
x〈2〉

}
,

where σx〈1〉 = 0.3 and σx〈2〉 = 0.4.
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Fig. 2. Log-transformed relative efficacies of the proposed method and the order-based method with respect to the
generalized cross-validation method for the three univariate scenarios. The vertical axis represents the log-transformed
relative efficacies, and the horizontal axis shows the different methods. Different signal-to-noise ratios are indicated
by different colours. The results of univariate scenarios 1, 2 and 3 are displayed in the upper, middle and lower
panels, respectively, and the results for full sample sizes 20 000, 30 000 and 40 000 are shown in the left, middle and
right columns, respectively. asp-u, asympirical method using uniform sampling; order, order-based method; snr,

signal-to-noise ratio.

Multivariate scenario 2:

ηm2(x) = 10 sin(πx〈1〉) + exp(3x〈2〉) + 106x11
〈3〉(1 − x〈3〉)

6 + 104x3
〈3〉(1 − x〈3〉)

10.

Multivariate scenario 3:

ηm3(x) = 10x〈2〉 + 10 sin{π(x〈3〉 − x〈2〉)} + 5 cos{2π(x〈1〉 − x〈2〉)}.
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Multivariate scenario 4:

ηm4(x) =
18∑

j=1

g1(x〈j〉) +
9∑

j=1

g2(x〈2j−1〉, x〈2j〉) +
6∑

j=1

g3(x〈3j−2〉, x〈3j−1〉, x〈3j〉),

where g1(x) = 106x11(1 − x)6, g2(x〈1〉, x〈2〉) = exp(3x〈1〉x〈2〉) and g3(x〈1〉, x〈2〉, x〈3〉) =
15 sin(2πx〈1〉)/{2 − sin(2πx〈2〉x〈3〉)}.

The full model η = ηø + η1 + η2 + η12 was considered for multivariate scenario 1, and the
additive model η = ηø + η1 + η2 + η3 was fitted in multivariate scenario 2. In multivariate
scenario 3, we considered the partial model η = ηø + η2 + η23 + η12. We further considered
the high-dimensional case in multivariate scenario 4. Log-transformed relative efficacies of all
methods over the generalized cross-validation method are displayed in Fig. 3.

All the methods have similar numerical performance in multivariate scenarios 1 and 2. How-
ever, the restricted maximum likelihood method has slightly larger relative efficacies in these
two scenarios. In multivariate scenario 3, the proposed method based on uniform sampling
has slightly larger relative efficacies when the signal-to-noise ratio is small, but its relative
efficacies become smaller as the signal-to-noise ratio increases. The proposed method based
on asymptotic sampling has smaller relative efficacies than the one based on uniform sam-
pling in this scenario. The median of relative efficacies of the methods under the generalized
additive models framework is more than 35, which implies that the mean squared error of
these methods is at least 35 times as large as for the generalized cross-validation method.
In addition, the relative efficacies of the skip method are around 15. In the high-dimensional
setting, to make the generalized cross-validation method feasible, we used the estimated smooth-
ing parameters after the first iteration as the final smoothing parameters. It is expected that
the proposed method will perform better than the one-iteration generalized cross-validation
method.

Comparing the performances in multivariate scenario 3, we observe a similar phenomenon
for the methods under the generalized additive models framework and the skip method in this
high-dimensional setting. The median of the relative efficacies of the methods under the gen-
eralized additive models framework is about 4, while that for the proposed methods is around
0.7. The methods under the generalized additive models framework construct the bivariate inter-
action using two smoothing parameters, which control the smoothness on the directions of two
predictors. In the smoothing spline ANOVA framework, there are three smoothing parameters
associated with the bivariate interaction. The additional smoothing parameter could improve
the numerical performance when the interaction is not an additive function, and this may be
the reason that the proposed method performs well in the scenarios where multiple interac-
tion components are present. The number of smoothing parameters is different for the methods
under the smoothing spline ANOVA models and under the generalized additive models frame-
work. For methods under the smoothing spline ANOVA framework, there are 5, 3, 7 and 87
effective smoothing parameters in multivariate scenarios 1, 2, 3 and 4, respectively, whereas
the corresponding numbers of tunable smoothing parameters for methods under the general-
ized additive models framework are 4, 3, 5 and 54. Although the number of basis functions is
the same for all methods, the generalized cross-validation method under the generalized addi-
tive models framework is typically faster than the one under the smoothing spline ANOVA
models framework, since the method for generalized additive models has fewer tunable smooth-
ing parameters. This is observed in the running time analysis reported in the Supplementary
Material.
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Fig. 3. Log-transformed relative efficacies of the methods under comparison in four multivariate scenarios. The vertical
axis represents the log-transformed relative efficacies, and the horizontal axis shows the different methods. Different
signal-to-noise ratios are indicated by different colours. From top to bottom the panels display the results for multivariate
scenarios 1 to 4, and the results for full sample sizes 20 000, 30 000 and 40 000 are shown in the left, middle and right
columns, respectively. asp-u, asympirical method using uniform sampling; asp-a, asympirical method using asymptotic
sampling; gam-gcv, generalized cross-validation for generalized additive models; reml, restricted maximum likelihood
for generalized additive models; bam, fast restricted maximum likelihood for generalized additive models; skip, the

skip method; snr, signal-to-noise ratio.

6. Real data examples

6.1. Superconductivity data

Superconductivity refers to the phenomenon wherein materials can conduct current with zero
resistance. Many applications, such as magnetic resonance imaging, are based on superconduc-
tivity. Since this phenomenon is only observed at or below a characteristic critical temperature,
prediction of the critical temperature of a superconductor is an important problem. In this real data
example, we aim to predict the critical temperature by using elemental properties extracted from
superconductors. The response is the critical temperature in kelvins. The predictors represent the
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Table 1. Fitting and prediction statistics of the methods under comparison applied to the
superconductivity dataset

Method R2 Root fitting MSE Root prediction MSE (mean) Root prediction MSE (sd) CPU time (s)

ASP-U 0.786 15.675 15.871 0.239 0.030
ASP-A 0.785 15.719 15.870 0.281 0.790

GAM-GCV 0.765 16.556 16.627 0.249 0.270
REML 0.764 16.625 16.630 0.252 15.200
BAM 0.763 16.625 16.645 0.248 0.062
GCV 0.789 15.363 15.514 0.289 40.560

MSE, mean squared error; sd, standard deviation; ASP-U, asympirical method using uniform sampling; ASP-A,
asympirical method using asymptotic sampling; GAM-GCV, generalized cross-validation for generalized additive
models; REML, restricted maximum likelihood for generalized additive models; BAM, fast restricted maximum
likelihood for generalized additive models; GCV, generalized cross-validation method.

elemental properties of a superconductor. For instance, one can derive a feature of the supercon-
ductor by calculating the average thermal conductivities of the elements in its chemical formula.
More details about all the predictors in this example are available in Hamidieh (2018). The dataset
contains 21 263 observations. We fit the cubic tensor product smoothing spline ANOVA model to
the dataset. Based on the preliminary model diagnostics (Gu, 2004), we consider the following
functional ANOVA decomposition:

η(x) = ηø +
42∑

j=1

ηj(x〈j〉),

where ηø is a constant function and η1(x〈1〉), . . . , η42(x〈42〉) denote the main-effect func-
tions for 42 selected features. Details of the selected features can be downloaded
at https://github.com/shawnstat/Asympirical-Smoothing-Parameters-
Selection. There are 42 effective smoothing parameters in the decomposition. For a fair
comparison, the number of basis functions for all methods is taken to be 10n2/9 (Kim & Gu,
2004).

Table 1 shows the fitting and prediction statistics for the methods under comparison. To evaluate
the prediction performance, we compare the five-fold cross-validated root mean squared errors
obtained by dividing the full data into five equal parts. The mean and standard deviation of the five
root mean squared errors in predicting the testing data are reported. Compared with the proposed
methods and the methods under the generalized additive models framework, the generalized
cross-validation method has better performance in terms of fitting and prediction mean squared
errors. On the other hand, the proposed methods are much faster in terms of CPU time.

6.2. Molecular dynamics data

With the aid of modern quantum chemistry methods, researchers can conduct systematic
simulations of quantum chemical systems, obtaining accurate results on molecular dynamics at
the quantum level. Analysis of such molecular dynamics trajectories is crucial for the discovery
of new chemicals (Chmiela et al., 2017; Schütt et al., 2017). The molecular dynamics data on
malondialdehyde used in this example contain 893 238 observations. The response is the energy
in kcal/mol. The predictors encode the molecular structure, which is measured in terms of the
reciprocal of the pairwise Euclidean distance between atoms (Montavon et al., 2013). Since there
are nine atoms in malondialdehyde, we have a distance vector of length 36 for each trajectory.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/108/1/149/5897688 by U
niversity of G

eorgia user on 21 M
ay 2021



164 X. Sun, W. Zhong and P. Ma

Table 2. Fitting and prediction statistics of the methods under comparison applied to the
molecular dynamics dataset

Method R2 Root fitting MSE Root prediction MSE (mean) Root prediction MSE (sd) CPU time (s)

ASP-U 0.925 1.130 1.134 0.006 1.596
ASP-A 0.926 1.124 1.134 0.003 1.969

GAM-GCV 0.911 1.229 1.226 0.003 4.891
BAM 0.913 1.219 1.224 0.006 0.490
SKIP 0.918 1.173 1.162 0.010 193.788

MSE, mean squared error; sd, standard deviation; ASP-U, asympirical method using uniform sampling; ASP-A,
asympirical method using asymptotic sampling; GAM-GCV, generalized cross-validation for generalized additive
models; BAM, fast restricted maximum likelihood for generalized additive models; SKIP, skip method.

Therefore, there are 36 predictors for this dataset. We fit the cubic tensor product smoothing
spline ANOVA model to the dataset. Based on the preliminary model diagnostics (Gu, 2004), we
consider the following functional ANOVA decomposition:

η(x) = ηø +
36∑

j=1

ηj(x〈j〉)

+ η9,10(x〈9〉, x〈10〉) + η9,13(x〈9〉, x〈13〉) + η24,35(x〈24〉, x〈35〉) + η25,36(x〈25〉, x〈36〉),

where x〈j〉 (j = 1, . . . , 36) is the jth predictor. The numbers of smoothing parameters for the
proposed methods and the methods under the generalized additive models framework are 48 and
44, respectively. Bearing in mind the limits on computational resources, we set the number of
basis functions to 4.3n2/9 for all methods (Kim & Gu, 2004).

We compare the fitting and prediction errors of these smoothing parameter selection methods
in Table 2. The mean and standard deviation of the five root mean squared error results for the
testing datasets are reported as the prediction error. Since the generalized cross-validation method
was infeasible even for one iteration, we compared only the proposed methods and the methods
under the generalized additive models framework with the skip method. We also compared the
proposed methods with the fast restricted maximum likelihood method for generalized additive
models (Wood et al., 2017). The proposed method based on asymptotic sampling has the best
performance in terms of fitting and prediction errors. The fast restricted maximum likelihood
method for generalized additive models is the fastest in terms of CPU time.
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