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VANISHING FOURIER COEFFICIENTS OF HECKE
EIGENFORMS

FRANK CALEGARI AND NASER TALEBIZADEH SARDARI

ABSTRACT. We prove that, for fixed level (IV,p) = 1 and p > 2, there are only
finitely many Hecke eigenforms f of level I'1 (V) and even weight with ap(f) =
0 which are not CM.

1. INTRODUCTION

Lehmer [Leh47] raised the question of whether 7(n) = 0 for any of the non-
trivial Fourier coefficients of Ramanujan’s Delta function A = ¢ [ 2 (1 — ¢")** =
>>7(n)q". He proved that if 7(n) = 0 for some n, then necessarily 7(p) = 0 for
a prime p|n. Lehmer’s problem remains open, as does the analogous question for
any cuspidal eigenform f of level one. If one weakens the hypothesis further and
assumes only that f has level N for some N prime to p, then there are a number
of ways in which a,(f) = 0, including the following:

(1) If f is a modular form with CM arising from an imaginary quadratic
field F/Q in which p is inert, then a,(f) = 0.

(2) If f is a weight two modular form arising from an elliptic curve E/Q with
good supersingular reduction at p, and p > 5, then a,(f) = 0.

In this paper, we examine a vertical analogue of Lehmer’s conjecture where p is
fixed and we vary the weight. Our main theorem is as follows:

Theorem 1.0.1. Fiz a prime p > 2 and an integer (N,p) = 1. Then there are only
finitely many non-CM Hecke eigenforms of level N and even weight with ap,(f) = 0.

We shall deduce from this the following;:

Corollary 1.0.2. Fiz a prime p. There are only finitely many eigenforms of level 1
with ap(f) = 0.

Our arguments are not effective. The existence of non-CM (modular) elliptic
curves E/Q which are supersingular at p shows that some exceptions must be
included. The assumption p > 2 and the assumptions on the weight are not intrinsic
to our method, but rather reflect the absence of certain R = T theorems either
when p = 2 or when the residual representation p, |G(Q(Cp)) is reducible. The weight
condition can be weakened to requiring either that the weight n is even or n —1 is
not divisible by (p +1)/2.

We now explain two further motivations for considering this problem (in addition
to the analogy with Lehmer’s question).
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1.1. Analogies with counting Maass forms. Let Ago) denote the finite adeles,

let G = GL(2)/Q, and let U C G(Ago)) denote a compact open subgroup. The
problem of counting spaces of cuspidal modular forms of level U and weight n > 2
amounts to computing the sum

(1) S dim ¥

as m C L2,,,(G(Q)\G(Aq), x) ranges over all cuspidal automorphic representa-
tions (with a fixed suitably chosen central character y) such that 7, corresponds
to a discrete series representation D, of weight n. In contrast, the problem of
counting spaces of algebraic Maass forms with eigenvalue A = 1/4 amounts to the
same sum () except now where 7, corresponds to a particular principal series rep-
resentation. The philosophical explanation for why the first sum can be estimated
precisely using the trace formula while the latter can not is that discrete series rep-
resentations have positive measure in the Plancherel measure of the unitary dual
of PGLy(R) whereas any fixed principal series does not. (For this perspective on
counting automorphic forms, see [Shil2].) Finally, consider the problem of counting
modular forms of weight n > 2 and level prime to p with a, = 0 (the subject of
this paper). This amounts to computing the same sum (II) where once more 7
corresponds to the discrete series D,,, but now one additionally requires that m,
is the spherical representation of GL2(Q,) with given central character and with
Satake parameters o and [ satisfying o + 8 = 0. The obstracle in computing this
sum is the same problem as for Maass forms except now the difficulties have moved
from the place oo to the place p, namely, the representation m, up to twist has
zero measure in the Plancherel measure of the unitary dual of PGL2(Q,). From an
analytic point of view, these difficulties are quite similar. Using the trace formula,
one can try to estimate (I) where now 7 or m, respectively are now allowed to
range over some class of unitary representations of positive measure (amounting
to allowing the Laplace eigenvalue A or the Hecke eigenvalue a, to vary in an e
ball around A = 1/4 or a, = 0 respectively) and then try to control the error as &
becomes small. The (upper) bounds one obtains in this way typically (see the dis-
cussion before Theorem 1 in [Duk95]) have the shape O(V/log V') where V is the
trivial bound (which in the case of eigenforms with a, = 0 amounts to V' < n).
Thus one is led to ask whether the extra arithmetic structure present when con-
sidering the latter question allows one to improve upon this analytic estimate (for
which the answer is clearly yes).

1.2. Analogies with a question of Greenberg. Consider an irreducible modu-
lar Galois representation

prGaq = GLa(Qy)
of weight n > 2. If f has CM by an imaginary quadratic field F/Q in which p
splits, then the restriction of p; to Gq, splits into a direct sum of characters. A
well-known open question (attributed to Ralph Greenberg [GV04]) asks whether
the converse holds:

Question 1.2.1. Suppose that py splits after restriction to Gq,. Does f necessarily
have CM?

Equivalently, is any local splitting of p; due to a global splitting over some finite
extension of Q? The condition that a, = 0 for a modular form of level prime
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to p turns out to imply (see Theorem [ZI1] below) that the representation py is
induced after restriction to Gq,. If f has CM by an imaginary quadratic field F//Q
in which p is inert, then p; is globally induced from F' and the restriction of py
to Gq, is induced from the unramified quadratic extension K/Q,. Hence the
problem we are considering is the analogue of Question [[L2.I] when split is replaced
by induced. The analogy here is not perfect, however, since (as noted above) non-
CM elliptic curves with supersingular reduction provide a negative answer to this
question in general whereas the answer to Greenberg’s question is expected to
always be positive. Note that in addition to supersingular elliptic curves there are
other isolated counterexamples, including

q+4¢> —8¢* —5¢° —22¢° —11¢° 4 ... € S4(T0(95), Q),

q—2¢% +4¢* +2¢° — 7" —8¢® — 27¢° + ... € S4(Tp(154), Q)
with ao = 0 and a3 = 0 respectively. The listed forms are identified by their la-
bels 95.4.a.a and 154.4.a.b in the L-functions and modular forms database [LME20].

1.3. Some preliminaries on Group representations. We recall some standard
facts about Galois representations. Let

p:I'— GL,(Q,)
be any continuous homomorphism of a compact group I" (such as a local or global
Galois group with its natural topology). As explained in [Ski09, §2], p takes val-
ues in GL,(E) for some finite extension F/Q, which comes with a fixed embed-
ding £ — Gp, and thus also fixed embeddings Og — Zp and kg = Og/mg < Fp.
Since I' is compact, the image of p preserves a lattice A C E™ and thus gives rise
to a representation
pa : T — Aut(A) ~ GL,(OF).

We obtain from this a corresponding residual representation
pr: T = GL,(kg) C GL,(F,).

The representation p, may depend on A. On the other hand, by the Brauer—
Nesbitt theorem, the semisimplification of 5, does not depend on any choices [B6c13,
§3.2]. We denote the correspond semisimple representation I' — GL,(F,) by p.
If k C F,, is any field such that 7 is valued in GL, (k), we say that k is a coefficient
field for p. By abuse of notation, we shall also let p denote the representation of I'

to GL,, (k) for any coefficient field k.
We now prove a few straightfoward group theory lemmas to be used in the sequel.

Lemma 1.3.1. If H is an index 2 subgroup of G and x is a character of H,
then Indgx is reducible if and only if x extends to a character of G.

Proof. If V = Indgx is reducible, then V' ~ x; @ x2 for two characters x; of G.
Restricting to H, we deduce that x;|g = x for at least one 4, and hence x extends
to a character of G. Conversely, if x extends to a character of G (which by abuse of
notation we also denote by x), then V' ~ x @ (x ®n¢,m) where 1, g is the the non-
trivial quadratic character of G with kernel H. In particular, V is reducible. O

Lemma 1.3.2. Suppose G acts irreducibly on a 2-dimensional vector space V
over Fy,, but this action becomes reducible after restriction to a normal subgroup H



4 F. CALEGARI AND N.TALEBIZADEH SARDARI

such that G/H ‘s cyclic of order prime to p. Then the projective image of G is di-
hedral, and the representation V is induced from an index two subgroup. Moreover,
either the index two subgroup is unique and contains H, or the projective image
of G is Dy ~ (Z/2Z)* and V is induced from exactly three index two subgroups
of G, precisely one of which contains H.

Proof. We first claim that V|g is completely decomposable. Let V' C V be a
one-dimensional H-stable submodule. Since V is irreducible as a G-module, there
exists g € G such that gV’ # V'. But since H is normal in G, it follows that gV’
is also an H-stable submodule of V' and hence there is a decomposition V ~ V' @
gV’ as H-modules. We deduce that the representation V restricted to H is the
direct sum of two characters, which implies that the projective representation of H
associated to V has cyclic image (given by the image of the ratio of the characters)
and has order prime to p. The assumption that G/H is cyclic of order prime to p
then implies that the image of G in PGLy(F,) is metacyclic of order prime to p.
The finite subgroups of PGLy(F,,) of order prime to p consist of the groups Z/r,
Ds,., Ay, S4, and As (see for example [Ser72, §2.5]). The latter three groups are
not metacyclic. If the projective image of G is cyclic, then the image I" of G on V'
has the property that I'/Z(T") is cyclic. But I'/Z(T') is cyclic only if it is trivial,
which implies that I' is abelian and acts reducibly on V. Thus the projective image
of G is the dihedral group Ds, for some r > 2. If V is induced from more than
one index two subgroup, then the projective image of G must contain at least two
cyclic subgroups of index two, and for Ds, and r > 2 this happens only for r = 2,
when there are precisely three such subgroups. Taken together, this proves the
lemma. (]

Lemma 1.3.3. Let (A,m) be a local Artinian ring with residue field k. Let V4
be an A[G]|-module which is free of rank 2 over A. Assume that there exists a
decomposition Va/m =: Vi, >~ Uy @ Uj, of G-modules where dim Uy, = dimUj, = 1
and Uy, is not isomorphic to Uj.. Then any G-equivariant decomposition:

Vi~ Us @ U
is unique, and — possibly swapping the factors — Ua/m = Uy and Ul /m’ = U

Proof. It U, is any A[G]-module which is free of rank one as an A-module, then
all the Jordan—Hélder factors of U4 are isomorphic to Us/m. Assume that there
exists two decompositions Va4 ~ Usg ® Uy and V4 ~ T4 ® T%. Since Uy is not
isomorphic to U}, the decomposition Vi, = Uy @ U}, is unique and thus (up to
reordering) we may assume that Ug/m = Uy and also Ta/m = Ug. If Ty # Uy,
then I := (T4 + Ux) NU’, must be non-trivial. Viewing I as a subspace of T4 + Ua
(which is a quotient of T4 ® Ua) and U’; respectively, we deduce that all the
Jordan—Holder factors of I are all both isomorphic to Uy, and isomorphic to U}, a
contradiction if I is non-trivial. Hence T4 = U4 and similarly T = U/,. O

1.4. Preliminaries on Galois deformations. If k is a finite field, we let W (k)
denote the Witt vectors of k, and

() kX = W (k)"

the Teichmiiller map. Let € denote the category of local Artinian W (k)-algebras (A, m)
with a fixed identification A/m = k.
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Throughout this paper, we shall often consider 2-dimensional representations V' =
Vi of a group I' over a field k.

Definition 1.4.1. Assume that Vj is absolutely irreducible as a representation
of T'. A deformation V4 of Vi to A € € consists of an A[l'l-module V4 free over A
such that V4 ®4 A/m ~ Vj.. Two deformations are equivalent if they are isomorphic
as A[T']-modules.

We now explain why this notion of deformation coincides with the alternate
description in terms of matrix representations in [Maz89]. A fixed choice of basis
for V}, gives rise to a representation: p : I' — GLa(k). A choice of basis for Vy
lifting the given choices of basis for Vj, gives rise to a representation

p:I'— GL2(A)

such that the corresponding residual representation is isomorphic to p, and any
such p gives rise to a module V4. If p and p’ are two representations such that the
underlying modules V4 and V) are isomorphic, then they are conjugate by some
matrix M. Since we are assuming Vj is absolutely irreducible, it follows by Schur’s
lemma that this matrix must be scalar modulo m. Hence (after scaling) we may
assume M € I+mMs(A), which is the usual notion of strict equivalence in [Maz89].

The deformation functors D : € — Sets we consider will all be pro-represented
by complete local Noetherian rings. We shall assume basic familiarity with the
further theory of Galois deformations as contained in [Maz89, [Gou01].

2. THE ARGUMENT

2.1. Local consequences of the condition a,(f) = 0. Suppose we have a cus-

pidal modular eigenform f € S,,(I'1(N),Z,), and let
pr: Gal(Q/Q) — GL2(Q,)

denote the corresponding Galois representation. By the main theorem of [Sch90,
Sai97], the p-adic representation pf|GQp is crystalline, and the characteristic poly-
nomial of crystalline Frobenius is 2% — a,(f)z + p"~'x(p), where x is the Neben-
typus character of f. For irreducible 2-dimensional crystalline representations
of Gal(ap /Qp), the characteristic polynomial of crystalline Frobenius is enough
to determine the representation uniquely by [Bre03, Prop.3.1.1]. When a,(f) = 0,
there is a very simple description of the corresponding local Galois representation
which we now describe. Let K/Q, denote the unique unramified quadratic exten-
sion. By local class field theory, there is a unique character K* — G3%° — KX

which sends p to 1 and z € Of to z. With respect to the two embeddings of K

into Qp, this gives two characters ea, &} from G to 6; which are permuted by
the action of Gal(K/Q,). We have the following result which follows from [Bre03|
Prop 3.1.2J:

Theorem 2.1.1 (Breuil). Suppose that ap(f) =0. Then
Gap n_
Ptloq, = (IndG2p52 1) ® ¢

for some unramified character v with ¥? = XlGQp'
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Note that v is a priori only uniquely defined up to the unramified quadratic
character 7x/q,, but since prlcq, ®NK/q, = Pflcq,. either choice is correct.

Following §I.3) the characters g2 and &), from G to F: correspond by local class
field theory to the maps K* — G — ky sending p to 1 and z € O to z mod p
composed with the two embeddings of kx ~ F, into Fp. Moreover, we also have
a corresponding identification

_ G p—=n— A
2) Ploq, = (MG E") 07

For any p, we fix a coefficient field k = kg C F, as above such that Py is valued
in GLa(k). For the remainder of §2 (with the exception of of §2.6) we assume
that p > 2. We now show that p; is absolutely irreducible after restriction to Gq,-

Lemma 2.1.2. Assume that ap(f) = 0.

(1) The representation py|cq, is absolutely irreducible if n — 1 is not divisible
by (p+ 1), and in particular absolutely irreducible whenever n is even.

(2) The representation pglaq,.,, is absolutely irreducible if n—1 is not divisible
by (p+1)/2. In particular, ifﬁf|GQ(<p) 1s reducible and n is even, thenp =1
mod 4 and (n—1) = (p+1)/2 mod (p+1).

Proof. The representation ﬁf|GQp is induced from a character of an index 2 sub-
group. Thus, by Lemma [[3] to prove part (1)) it suffices (via the description
of pslcq, in equation (@) to show that the character g0~ of Gk does not extend
to Gq,. Assume otherwise. Then 5" coincides with its Gal(K/Q,) conjugate.
By local class field theory, the action of Gal(K/Q,) on G coincides with the
action of Gal(K/Q,) on K* under the Artin map. Since the non-trivial element
of Gal(K/Q,) acts on the residue field k of K by Frobenius, it follows that the

conjugate of Z, is &, = 5. Thus we may assume that 5~ = Eg(nfl) and hence
Eézﬂfl)(nfl) —1

Since g5 has order |k*| = p? — 1, this forces (n — 1) to be divisible by (p+ 1). This
proves part ().

Now suppose that p; is irreducible as a representation of G = Gq, but becomes
reducible over H = Gq,,(c,)- Since G/H = Gal(Q,((,)/Qp) is cyclic of order prime
to p, it follows by Lemma that p f|GQp is induced from an index two subgroup
of Gq, containing Gq,(,). In particular, it must be induced from G, where L/Q,,
is the ramified quadratic extension inside Q,(¢,). On the other hand, ﬁf|gqp is
also induced from the unramified extension K/Q,, and so ﬁ|GQp is irreducible and
induced from at least two distinct quadratic fields. By Lemma[[.3.2 it follows that
the projective image of Gq, is isomorphic to (Z/2Z)?, and that the projective image
restricted to G has order 2. Since the representation p; restricted to Gk is (up to

twist) the direct sum 25" @E’Q)(n_l), it follows that the ratio of the characters 25!
_p(n—1)

and &, is quadratic, or equivalently that

gg(pfl)(nfl) -1
It follows that (n — 1) is divisible by (p + 1)/2, which proves part (2) after noting
that (p +1)/2 is even if p =3 mod 4. O
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The proof of Lemma is the only place where we use the assumption that
the weight n is even. The proof otherwise proceeds without any further changes
required under the weaker assumption that (n — 1) is not divisible by (p + 1)
and (n — 1) is divisible by (p+1)/2 only if p=1 mod 4.

2.2. Some reductions. By a theorem of Jochnowitz [Joc82], there are only finitely
many irreducible modular residual representations of level N. By class field theory,
there are only finitely many Nebentypus characters x : (Z/NZ)* — Z; of level N.
Moreover, if
(X) : (Z/NZ)* — k* — W (k) = Z,
is the Teichmiiller lift of the mod my reduction of x, then x/(X) is valued in 1 +
mz . Any such character is the square of a unique character valued in 1+ my
because v/1+2 = 1+ x/2 + ... converges in Z, for p > 2. Thus, after a finite
global twist, we may assume that the Nebentypus characters of f are fixed and
valued in W (k)*.
In particular, to prove Theorem [[.LO.1l we may assume the following:

Assumption 2.2.1. There exist an infinite number of cuspidal eigenforms f of
level T'1(N) and even weight n with a,(f) = 0 satisfying the following further
assumptions:

(1) All such f have the same fixed residual representation

(2) There is an isomorphism

_ GQp_n—
p|GQp = (IndGE 52 1) ®/¢)

for fixed n and fixed v : Gq, — k.

(3) If ¢ denotes the character () : Gq, — W(k)*, then the Nebentypus
character x of f restricted to Gq, is equal to ¢*. By Theorem 2.1, this
is equivalent to saying that the representation det(p f)|Gabp evaluated at p

considered as an element of Q, — Gg)p via the Artin map is 1?(p).

2.3. Local deformation rings. In this section, we define some local deformation
rings associated to p.

Recall that we have fixed a coefficient field k for p. After increasing k if necessary,
we may assume that the eigenvalue of any element in the image of p lands in &k, and
moreover that O C W (k), where W (k) is the Witt vectors of k.

Associated to mGQp is a local universal deformation ring R'°¢ which is a complete
local Noetherian W (k)-algebra (it represents the functor D recalled below). We now
construct a quotient of this ring corresponding to deformations which are “induced”
from K. Let Vi denote the underlying representation of g over k. After restricting
to Gk, there is a canonical splitting Vi, = U & U,’C such that Gg acts on U, and U,’C
by 257" @1 and (25)" ! ® ¥ respectively, and Uy, is not isomorphic to Uy

Definition 2.3.1 (Locally induced deformations). For a local Artinian W (k)-
algebra (A, m) € €, let D'°°(A) denote the deformations V4 of Vj, to A. Let D"d(A)
denote the subset of deformations V4 which admit a splitting V4 = U @ U/, into
free A-modules of rank one such that U4 and U/, are Gx-modules which are G-
deformations of Uy, and Uj, respectively.
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Let Dind:¥(A) denote the subset of D(A) such that the action of p € KX —
G432 on Uy is given by (p), where 1 : Gq, — W (k)* is the Teichmiiller lift of ¢
as in Assumption Z2.TI[3).

Finally, let Dy denote the deformations Ua of Uy.

Let Ok (p) = 1+ mg denote the units in K* which are 1 (mod p). Since p > 2,
the exponential map gives an isomorphism exp : mg — Ok(p). The group mg
may be further identified as a topological group with (Z,)? via an arbitrary choice
of a basis for mg over Z,,.

Lemma 2.3.2. D™ js pro-represented by a complete W (k)-algebra R4 which
is isomorphic to the universal deformation ring of
Bl ey Gg — kX,

In particular, R ~ W(k)[Ok(p) ® Z,] is smooth of relative dimension 3
over W (k). D% is pro-represented by the quotient R%MY ~ W (k)[Ok (p)]
Of Rloc,ind'

Proof. Tt suffices to identify the functors D' and Dy. Given an element of D,
there exists a corresponding free A-submodule Uy C V4 deforming Uy, by definition,
and a decomposition V4 = Uy @U,. This decomposition is unique by Lemma [[33
Conversely, given a deformation U4 of Uy, then V4 = Indgzp (Ug4) gives an element

of D"d(A), and this gives the desired identification (one easily checks that these
maps are mutual inverses). Hence the two deformation functors coincide.
Let I' denote the Galois group of the maximal pro-p abelian extension of K. By

local class field theory, we have G3P ~ K* ~ O (p)@kﬁ@i and then (since p > 2)
we have an isomorphism I'x ~ Og(p) @ Zp. It follows that the 1-dimensional
deformation ring associated to any character ¥ : Gx — k™ is isomorphic to
W(E)[Cx] = W) Ok (p) © Zp],
where the Z, factor on the right hand side is topologically generated by p € K*.
The corresponding Galois representation
K> — G2 = W(k)[Tk]*

is given explicitly as follows:

3) z = (X(2))[p(2)],

where p(z) € T'k is the image of  under the natural map K* — Gi}? — k. In
particular, when ¥ = 5~ 14, we have the desired isomorphism (noting that Z,(p) =
1 and ¢ is the Teichmiiller lift of v)

Rleemb o RS/ (@ (p))[p(p)] = () = R/ ([p(p)] = 1) = W (k) [Ok (p)]-
O
We now define local deformation rings R°%"" and R!°¢split,
Definition 2.3.3 (Unramified and split local deformation rings). Let M/Q,, denote
the fixed field of ker(ps|Gq, ). Let M denote the maximal unramified extension
of M. We define subfunctors D" and D*P!i* of D as follows:

(1) D'r(A) C D'°(A) consists of deformations V4 such that the action of Gq,
on V4 factors through Gal(M""/Q,).
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(2) DPlit(A) € DUr(A) C D°¢(A) consists of deformations V4 such that the
action of Gq, on V4 factors through Gal(M/Q,).

Let DUnt%(A) and DPHt¥(A) denote the subsets of D™ and D®PH respectively
such that the action of p € K* — G2 on A%V}, is given by ¥?(p). (Equivalently,
the determinant character of V4 evaluated on p is 1?(p).)

Lemma 2.3.4. The functor D™ is a subfunctor of D™, and the functor D" ¥
is a subfunctor of D&Y The functors D", D%t gnd Dwr¥  DSPItY gre pro-
representable by quotients of R°%" and R'S"Y respectively. There are isomor-
phisms and surjections as follows:

W ()[Or (p) & Zy] == Bownd —— RIoindd o (k) [Oxc (p)]

| |

W(k) [[ZPH ~ Rloc,unr Rloc,unr,i/; ~ W(k)

| H

W(k;) ~ Rlocsplit —_____________ ploc,split,y) ~, W(]{i)

where the maps in the first column send all elements of Ok (p) to 1 for the first
map and all elements of Z,, to 1 for the second.

Proof. We start by proving that D" (A) C D"d(A4). Let G = Gal(M"/Q,),
let H = Gal(M""/K), and let I C H C G denote the inertia group. There is
an isomorphism M""" = M.Q;"". We deduce that I is cyclic of order prime to p
and H is abelian. It follows that the action of I on V4 is diagonalizable. Since the
action of I on Vj decomposes as the direct sum Uy, @ Uj, of distinct characters, it
follows that the action of I on V4 decomposes as Ua @ U/, where Uy and U/; are free
rank one A-modules which reduce to U and Uj, modulo m respectively. Since H
is abelian and contains I, it follows that hU4 for h € H is also a free rank one A-
module which is preserved by I, and thus V4 = hUa @ hU/,. By Lemma [[33] we
deduce that hU4 = U4 or UA, and the former is ruled out by noting that AUy = Uy.
Hence the decomposition V4 =~ U @ U/; extends to a decomposition of H-modules.
Since the image of G in G is H, this says precisely that V4 € D"d(A).

Having shown that R'°“"™ is a quotient of R!°%"d e can reinterpret the
functors D", DsPlit in terms of the deformations of the one dimensional char-
acter ?3_1 ®1Y : Gg — k*. The unramified lifts correspond to deformations of
the unramified character times the Teichmiiller lift of the ramified character, and
the split lift corresponds to the Teichmiiller lift of the entire representation. Since
the action of Gal(K/Q,) on K* fixes p, the action of p € K* — G% on Uy for
any element of D™4(A) coincides with the action of p on U’j, and thus the sub-
sets DU Y (A) € DW(A) and DPit¥(A) C DPlit(A) are given by imposing the
condition that the image of p of any deformation of our character acts by ¥ (p). The
explicit descriptions of these rings can then be read off from the explicit description
of R in Lemma [Z33.2 and from equation (3]). O

2.4. Global deformation rings. We now consider some global deformation rings
associated to 7 : Gq — GLa(k).
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Definition 2.4.1. Let D(A) denote the deformations of V}, which are unramified
outside Np.

The functor D(A) is represented by the universal global deformation ring R&!°P.
The ring R#°P is an R!°°-algebra by Yoneda’s lemma. This allows us to define the
key deformation ring R of interest, together with auxiliary rings R"™" and R°Pt.

Definition 2.4.2. Let R = Rs'°P ® Rioc Rloc,ind,v,b7 let Rurr — Relob ® Rioe Rloc,unr7
and let RSPlit ~ Reglob ® ploc Rloc,split

The ring R represents the functor D&°%nd:¥(A) of deformations V4 unramified
outside Np such that Valcq, € DY (A). Similarly (following Lemma E23.4)) the
rings R" and R®P® represent the subfunctor of D&°>i"d(A) for which the cor-
responding representations locally factor through Gal(M""/Q,) and Gal(M/Q,)
respectively, where M is the fixed field of p|gq,. Because Replit,unr g~ psplit, ¢ 1y

Lemma 234 the ring R%!* is a quotient of R. On the other hand, R"™ need not
be a quotient of R. The construction of R guarantees that all of our eigenforms
(satisfying Assumption [Z27]) give rise to Gp—valued points of R.

The last global deformation ring we consider parametrizes deformations of p
which are globally induced from a quadratic field F'. If p is induced from G, then
there is a decomposition Vi, ~ Uy @ U], as Gp-modules. Since Gx C Gp, this
decomposition must coincide with the unique such decomposition of G i-modules
for the unramified quadratic extension K/Q,,.

Definition 2.4.3 (CM deformation rings). Suppose that 7 : Gq — GLa(k) is
induced from a quadratic field F/Q. Let D:¥(A) denote the subset of deforma-
tions D(A) of V4 which admit a splitting V4 = Ua & U/, into free A-modules of
rank one such that Uy and U/, are Gp-modules which are G p-deformations of Uy
and U}, respectively, and such that the image of p € Q) — G"(‘i on A2V, is given
by 4 (p).

Lemma 2.4.4. There exist at most three quadratic fields F/Q such thatp: Gg —

GLa(k) is induced from F. For any such F, the functor DMF(A) C D(A) is
pro-representable by a ring RgM which is a quotient of R.

Proof. The first claim follows from Lemma The second claim follows from
the fact that any element of DM:F(A) gives an element of D&% (A) by restriction
to Gx C Gp. O

Remark 2.4.5. If p is induced from a quadratic extension F/Q, the field F/Q
is either real or imaginary. There is some abuse of notation to call RgM a CM
deformation ring when F' is real. This will not cause any issues since we use only
the fact that all CM deformations of p of level N lie on REM for some F' (which will
be imaginary). When F/Q is a real quadratic field, the maximal pro-p extension
of F' unramified outside Np is the compositum of the Z,-cyclotomic extension
with a finite extension of F', and so R$M(Q,) consists of a finite number of Artin

representations up to twist.

P

2.5. The ring R is small. We have now constructed a deformation ring R which
captures the eigenforms F' with a,(f) = 0. The first key step is establish a finiteness
result for this ring.

Lemma 2.5.1. R is finite as a module over R°“™Y = W (k)[Ok (p)].
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Proof. Let mpgiocina,» denote the maximal ideal of R1°%"4:¥ By Nakayama’s lemma,
to show that R is finite over R1°%"d¥ it suffices to show that R/mpgiocina,¢ is finite
over R1°®MY /i b inaw =~ k. Now by Lemma 2:3.4] we have isomorphisms

k = Rloc#nd’w/leoc,ind,w ~ Rloc,Spht/leoc,split 5

and thus

R/leoc,ind,w ~ RSplit/leoc,split.
If RSP s finite over RI°®SPLt ~ W (k), then RSP!/mpiocpie is certainly finite
over RSPt /i pioe i =~ k, and we would be done. The finiteness of R¥PY* follows
immediately from [ACI4] Thm.1(2)] under the additional Taylor—Wiles hypothesis
that ﬁ|GQ( ) is absolutely irreducible. Indeed, that reference proves the stronger

claim that R is finite over W (k), and R*P!i® is a quotient of R"M.

It suffices to consider the remaining case when the Taylor—Wiles hypothesis fails,
or equivalently that ﬁ|GQ( ) is reducible. This certainly implies that E|GQP ) is
reducible, and hence, by Lemma [ZT.2] we may assume that n — 1 = (p + 1)/2
mod (p+ 1) and that p =1 mod 4. But now we may invoke Theorem [A.0.7] of the
appendix. (Il

Remark 2.5.2. An alternative approach to proving finiteness is to specialize to
a height one prime ideal p of R°%"4¥ corresponding to a representation of the

€]
form eT"'® (Imdczp 512“_1)@)1#, where 2 < k < p—1 and ¢; is the cyclotomic character.

. . . . G _
In order for the corresponding residual representation to agree with (IndGQp B 1) ®

K
1), it suffices (using the identity ; = gépﬂ))

congruence is satisfied:

to chose m and k such that the following

mip+1)+k—1=m-1)or (n—1)p mod (p?—1).

We may take k =n mod (p+ 1) unless n =0 mod (p + 1), and we may take k =
(p+3—n)=2—-—n mod (p+ 1) unless n =2 mod (p + 1), and so m and k exist
as long as p > 5. The corresponding deformation ring R'°“"%¥ /p is a quotient of
the crystalline local deformation ring with Hodge-Tate weights [m, m 4+ k — 1], and
is thus a twist of a crystalline deformation ring of weight [0,k — 1] which is in the
Fontaine—Laffaille range. Since one expects to be able to prove R = T theorems
in this context (exploiting the fact that the corresponding local deformation rings
are Cohen-Macaulay), this leads to explicit bounds on dimq, (R/p)[1/p] in terms
of dimensions of spaces of modular forms of weight at most p — 1, although in this
approach one would also need to deal separately with the case when E|G(Q(<p)) is
reducible.

We now turn to the study of the finite A := W(k)[Ox (p)]-module R. The
eigenforms with a,(f) = 0 captured by R give rise to a map from R to Qp and
thus a prime of R. Any such prime is contained inside a minimal prime of R, and
since R is Noetherian, there are only finitely many minimal prime ideals, and thus
we may assume that there are infinitely many non-CM points which lie inside a

fixed minimal prime B, or equivalently lie on a fixed irreducible component R/B
of R.

Lemma 2.5.3. Suppose that there are infinitely many modular Galois representa-
tions py of level dividing N giving rise to points of R/B. Then the support of R/
is all of A.
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Proof. The ring R/B is a finite A module by Lemma 251l The support of a finite
module is closed, and thus it suffices to show that the support includes a Zariski
dense subset of A. Since there are only finitely many Galois representations of any
fixed weight, we may assume that R/ has points p; for modular eigenforms f of
infinitely many different weights. If f has weight n, then we may explicitly write
down the corresponding point of A. We make the explicit identification:

Ok (p) =~ (1+p)Zp @ (1 +p)"Zy,

where n = /u for any fixed non-quadratic residue . We may then take X =
[1+p]—1and Y =[(1+p)"] — 1. The classical modular forms we are considering
all correspond to specializations where z € @* maps to 2" !, or equivalently to

(4) X 1+p" ' —1,Y = (14p)" Y 1,

It suffices to show that any infinite collection of these points are Zariski dense in A.
The problem is that the Zariski closure is trying to be given by the equation
(5) H=nlog(1+ X)—1log(1+Y)=0,
but this is not an element of A® Q,, because the denominators grow without bound.
(Note that we have chosen the field k so that n € Oxg C W (k).) Alternatively, the
Zariski closure wants to be (1 + X)7 — (1 +Y) = 0, although the corresponding
formal power series (unlike H) doesn’t even converge for all | X |, |Y]| < 1 as we shall
see shortly in Sublemma [ below.

Suppose the Zariski closure of these points is given by the vanishing set of F(X,Y)
in W(k)[X,Y]. Choose a primitive p"th root of unity (,, for each m and let 7, =
1 — (. There is an inclusion

FX,Y)e WK)[X,Y] Cc WE)[m][X,Y] C WE)[mn)[X/7m, Y/7m],
which amounts to considering the restriction of functions bounded by 1 on the

open unit ball B(1) to functions bounded by 1 on the open ball B(m,,). (Here B(r)
denotes the open ball centered at the origin with radius |r|.)

Sublemma 1. Suppose that v(n) =0 but n ¢ Z,. Then

(6) Hp=1+X)"" " — 141"

is an element of W (k)[mm, Y|[X/mm] C W(k)[mn][X/Tm, Y/mn], but is not an
element of W (k)[Tm41][X/Tm+1, Y/Tm41] @ Qp.

Proof. Tt suffices to analyze the growth of the coefficient of X™ as n varies. The
coefficient is explicitly given by a binomial coefficient, and hence its valuation is

v ((”p::_l» — (:i:[:(npm‘l - z’)) ~ ()

Our assumptions on 7 imply that the valuation of np™ =1 —i is v(i) when v(i) < m—1

and m — 1 otherwise. Hence the valuation of the X™ coefficient is equal to

(5 £l

k=1 k=1

A lower bound for this expression is given by

oo

i el B e

k=1 k=1 k=m
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whereas an upper bound when n = p” and r > m — 1 is given by

50 [ ) Sl e )

k=1 k=1
Since v(m,) = 1/(p™~(p—1)), the lower bound implies that H,, € W (k)[rm, Y][X/7m].
On the other hand, the upper bound shows that this cannot be improved. O

Now H,, also vanishes at all the weights z — 2z"~!. We claim that H,, is
irreducible in W (k) {7 ][ X/Tm, Y/7m]. Viewing H,, as an element inside the larger
ring W (k)[m][X/m1,Y/m1], we do have the factorization

pmfl
Hy=[] Q+Y-Q+X)7¢, ).
=1

Certainly any factorization over the smaller ring is thus promoted to a factorization
over W (k)[mm, Y][X/mm]. But if there exists a factor with r < p™~1 terms, then
the constant term considered as a polynomial in (Y + 1) will be a non-zero multiple
of (1 4+ X)"", which does not lie in this ring by Sublemma [I] a contradiction.
Because H,,, € W (k)[mm][X/7m, Y /7] is irreducible, we deduce that FI(X,Y)
must vanish at all points in B(m,,,) where H,, vanishes. But then F(X,Y) must
vanish at the finitely many pairs (§; — 1, &2 — 1) of p-power roots of unity with v(&; —
1) > v(my,). But repeating this with m arbitrarily large implies that F(X,Y)
vanishes at all such pairs of p-power roots of unity, which is impossible because
they are Zariski dense in A. |

H,(X,Y
We note in passing that (formally) lim (X, ¥)

m—00 pm_l

= H(X,Y).

Lemma 2.5.4. If a component R/B has infinitely many points which correspond
to modular Galois representations which are not CM, then the support of CM points
on R/ is either empty or lies on a proper closed subscheme of A.

Proof. If there are no CM points the result is immediate. If R/ has a single point
which admits CM by F/Q, then certainly p is induced from F. By Lemma 2.4.4]
there are at most three such fields F', and it suffices to prove the lemma for any
given F'. In particular, the points with CM by F all give rise to points on RgM and
hence on the intersection R/ @z REM. Either this is all of R/, which contradicts
the assumption, or, because R/P is irreducible, it has positive co-dimension. But
since R is finite over A, the dimension of R and any of its quotients coincides with
the dimension of its support, and hence we are done. ([l

To complete the proof of Theorem [LO] it suffices to show that if the support
of R/ is all of A, then R/B contains a Zariski dense set of points which are
CM. To this end, we use a variation of the idea of Ghate—Vatsal [GV04] to prove
local indecomposability of non-CM Hida families by specializations in weight one.
Consider points in A corresponding to maps Ok (p) — Q: with finite image and
such that the ratio of any such map to its Gal(K/Q,)-conjugate has order greater
than 60. These points are clearly Zariski dense in A. The assumption that R/
has full support means that for any such specialization we obtain corresponding
global Galois representations:

p:Gq — GL2(Q,)
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which locally at p has finite image on inertia at p. Thus, by [PS16, Thm.0.2]
when p|g(q(c,)) 18 irreducible and by [Sas, Thm.1] otherwise (noting that we may
assume that p =1 mod 4 and hence p is induced from a real quadratic extension),
it follows that p is modular of weight one. By construction, the image of inertia
in the corresponding projective representation has order greater than 60 (given our
choice of point of A), and hence the global projective representation also has order
greater than 60. This ensures that the projective image is not of exceptional type
(A4, S4, or As). It follows that p must be of dihedral type. Exactly as in [GV04],
all but finitely many of these forms must additionally be of CM type. But then we
have produced a Zariski dense set of CM points on R/, a contradiction, and we
are done.

Remark 2.5.5. The fact that any infinite set of characters of the form z — 2"
are Zariski dense in some irreducible component of A = Spec(Z,[OF]) can be
viewed as a special case of a local p-adic analogue of Lang’s conjecture [Lan83]
(See also [Ser18]). The classical analogue of our example is the statement that any
infinite set of points (exp(nz), exp(x)) are Zariski dense in (C*)? whenever n € Q.

2.6. Proof of Corollary If f is a form of level 1 which is CM, then the
corresponding automorphic representation is induced from a character on some
imaginary quadratic field K/Q. But then the level of f will be divisible by any
prime dividing the discriminant of K, a contradiction. Hence Corollary[L.0.2] follows
immediately for all p > 2. For p = 2, we prove directly that if as(f) = 0 then py is
dihedral, and so f is CM, from which the result follows by the argument above. Note
that for N =1 and p = 2 the representation p will have trivial semi-simplification
(see [Che08, Lemme 1.7]), and it follows that the image of py factors through the
maximal pro-2 extension of Q unramified outside 2. By [Che(8, Prop 1.8], it follows
that the image of py is isomorphic to the image of p restricted to inertia at 2. But
the assumption that as(f) = 0 implies that p; is locally induced, which now implies
it is also globally induced, and thus CM.
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APPENDIX A. FINITENESS OF UNRAMIFIED DEFORMATION RINGS

Let p: Gq — GL2(k) be an absolutely irreducible odd Galois representation of

the form Indg?x, where L/Q is the quadratic subfield L C Q((,). Suppose that,
up to unramified twist:

GQy—_n— +1
(8) Plog, = Wmdgs n—lEmeodp—i-l.

The main theorem of this section is the following.
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Theorem A.0.1. Assume that p=1 mod 4, so L/Q is real. Let (N,p) =1, and
let R®PH denote the universal deformation ring of p consisting of representations
which are unramified outside N and totally split at p defined in Definition [2.4.2
Then RPH is finite over W (k).

Before proving this, we begin with a preliminary lemma:

Lemma A.0.2. There exists a finite extension F'/Q with the following properties

(1) F is totally real.

(2) If v|N, then p|p, is trivial.

(3) Play is absolutely irreducible.

(4) If v|p, then F, ~ K, the unique unramified quadratic extension of Q.

Proof. The existence of F follows immediately from [Call2, Proposition 3.2] (see
also [MB90]). For example, one may can choose G = GLy(k), and then make the
following choices:

(1) ¢, for v|N is the map plg, — G,

(2) ¢y for v = p is any injective map Gal(K/Q,) — G,

(3) coo is trivial.
The irreducibility of p|¢ . is then guaranteed by choosing F//Q to be linearly disjoint
from the fixed field M of ker(p) by [Call2, Lemma 3.2] (2). O

Proof of Theorem[A.0.1l We begin with some reductions. If F//E is any finite ex-
tension so that p|g, remains absolutely irreducible, and Rr and Rp denote the
universal deformation rings of p|¢,. and p|¢, respectively, then the map Rp — Rp
is always finite. As a consequence, to prove the finiteness of R*P it suffices to
replace Q by any totally real field in which p remains absolutely irreducible. We
replace Q by the field F'/Q constructed in Lemma [A0.2] so that p|g, is trivial
for each v|N. By Lemma [A.0.2] the field F), for v|p is precisely the unramified
extension K/Q, for all v|p. In particular,

—|  ~ z=n—1 5 =p(n—1)
Plr, ~E ©F

is reducible and p-distinguished. Make an arbitrary choice of one of these characters
for each v|p, which gives a distinguished choice Uy of the decomposition Vj, =
Ui @ U}, as G, modules for each v|p.

We now recall the deformation ring Rp defined in [SWO0Il §2] with respect to D =
(W(k),%,0) where X is the set of primes dividing N. Note that p|g, is absolutely
irreducible and satisfies all the conditions of [SWO0I] by construction. The ring Rp
is global deformation ring of p unramified outside Np subject to the following
condition: for all v|p, there exists a short exact sequence

0—>Ua—Va—Uy—0

of Gp,-modules where U and U/, are free over A of rank one and Ua/m = Uy,
After extending F' if neccessary we may assume that [F' : Q] is even and thus
the hypothesis (Hoyen) of [SWOIL §3] holds. By [All14, Lemma 5.1.2], there exists
a lift pg of p giving rise to a point on Rp relative to our choices both over F' and
any totally real extension of F' in which p|g,. remains irreducible. This implies that
condition (Hger) of [SWOI| §3] holds for any such F. In this situation we have a
corresponding Hecke ring Tp as defined in [SWO01], p.196], and a surjection Rp —
Tp of A-modules where A is an Iwasawa algebra [SWO0Il, p.191] (denoted Ap).
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There is a surjection Rp — R, Any deformation coming from R%P! locally has
the form Uy & U/, where the action of Gx on Ua and U/, is via the Teichmiiller

lifts of ngl and Eg(nfl) respectively. In particular, the map
A— Rp — ]’%Split

factors through a quotient of the form W (k), as can be seen from the formulas
in [SWO0I] on the last line of p.191 and the first line of p.192 respectively. A more
intrinsic way to see this is that the ring A represents weight space and all split
representations lie in the same fixed unramified weight. Hence to prove that RSPt
is finite over W (k) it suffices to show that Rp is finite over A.

By taking the compositum of F' with a suitably large totally subfield of a cyclo-
tomic extension (exactly as in the first two lines at the top of page 204 of [SWO01])
we may further ensure that the pair (F, pg) is good in the sense of [SWOIl §4]. Tt
folows from [SWO1l, Prop 4.1] and [SWO01l Prop 8.2] that all primes of Rp are pro-
modular. If Tp is the Hecke ring defined in [SWO01l p.196], it follows that there is
an isomorphism Rp/p ~ Tp/p for every prime p of Rp, which implies immediately
that (Rp)™ = (Tp)™? and hence (Rp)™? is finite over A (since T'p is finite over A
by [SWO0I, Lemma 3.3]). Since Rp is Noetherian, it follows that Rp is also finite
over A. But Rp surjects onto R*P''*/p, and the kernel contains the image of the
maximal ideal of A. Tt follows that RSP!*/p is finite over k and hence R*P! is also
finite over W (k), as claimed. O
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