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ABSTRACT

Signaling pathways drive cellular response, and understanding such
pathways is fundamental to molecular systems biology. Amounting
volume of experimental protein interaction data has motivated the
development of algorithms to computationally reconstruct signal-
ing pathways. However, existing methods suffer from low recall in
recovering protein interactions in ground truth pathways, limiting
our confidence in any new predictions for experimental validation.
We present the Pathway Reconstruction AUGmenter (PRAUG),
a higher-order function for producing high-quality pathway re-
construction algorithms. PRAUG modifies any existing pathway
reconstruction method, resulting in augmented algorithms that
outperform their un-augmented counterparts for six different al-
gorithms across twenty-nine diverse signaling pathways. The al-
gorithms produced by PRAUG collectively reveal potential new
proteins and interactions involved in the Wnt and Notch signal-
ing pathways. PRAUG offers a valuable framework for signaling
pathway prediction and discovery.
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1 INTRODUCTION

Signaling pathways describe the series of molecular interactions
that occur in response to a certain stimulus, which mediates the
expression of relevant genes. Understanding the specific reactions
that occur within pathways is a fundamental question in molecular
systems biology and through decades of researchwe now have some
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understanding of how cells grow, proliferate, and die. Many of these
reactions are stored in databases that characterize pathways such
as NetPath [13], KEGG [14], Reactome [11], and dozens of others.
Biologists have extensively used these databases to help determine
which pathways are activated or inhibited in high-throughput gene
expression experiments. Despite the promise of pathway database
resources, we know that they are incomplete. The same pathway
can be represented very differently across databases, and they of-
ten have little overlap among the proteins and interactions. There
are also new discoveries about protein membership and interac-
tions involved in canonical signaling pathways that are not yet
in these databases. Further, pathways in non-model systems or
under-studied pathways are often missing from these resources.

In the past decade, there have been two emerging solutions for
improving pathway databases. First, pathways have been integrated
into resources that attempt to capture the current knowledge base
of signaling. Repositories such as WikiPathways [17] and Path-
wayCommons [23] now contain thousands of pathways comprised
of millions of interactions by aggregating information from other
databases. WikiPathways also offers a community-driven platform,
allowing researchers to submit and curate pathways [17].

While these resources are useful for exploration, they are not
intended to make predictions about new proteins and interactions
that may be associated with a pathway of interest. Another area
of signaling pathway research develops new methods that can
predict new players in signaling pathways of interest. Many of these
approaches generate new predictions by integrating protein-protein
interaction data with gene [7, 12, 21, 21, 29, 30, 33] or protein [4, 15,
19, 24] expression. Other approaches work to remove biologically
implausible predictions [20, 34]. Here, we will focus on methods
that use protein-protein interaction data to predict new proteins and
molecular interactions involved in canonical signaling pathways.

1.1 Network-based Pathway Reconstruction

Protein-protein interactions can be modeled as graphs where the
nodes stand in for proteins and the edges represent a (possibly
directed) interaction between two proteins. These graphs, called
interactomes, can be built from experimental dataset repositories
and can be weighted by confidence in the interaction, functional re-
lationship, or tissue [1, 2, 5, 6, 22, 26, 32, 34]. Interactomes provide a
background set of plausible interactions for consideration in a path-
way of interest, and network-based methods generally have been
successful with amplifying the signal of interacting proteins [9].

We are interested in predicting new proteins and interactions
involved with a particular pathway of interest. The Pathway Re-

construction Problem is summarized as the following [22]: Given
an interactome, a set of receptors in a specific pathway, and a set of
transcriptional regulators in the pathway, recover the intermediate
proteins and interactions responsible for transmitting the signal
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from the receptors to the transcriptional regulators. The pathway-
specific receptors and transcriptional regulators may come from
proteins in existing pathway databases [22, 25] or from experimen-
tal data [21, 21, 29, 30, 33].

1.2 Contributions

We present the Pathway Reconstruction AUGmenter (PRAUG), a
higher-order function which maps any pathway reconstruction
method to an augmented method that improves pathway recon-
struction performance. PRAUG is designed based on the observa-
tion that pathway reconstruction methods typically perform well
when predicting the proteins in a pathway. PRAUG takes as input a
pathway reconstruction method and provides a method which uses
a traversal on the input method’s predicted nodes to explore pro-
tein interactions. Despite PRAUG’s simplicity, this augmentation
improves the protein interaction accuracy of almost any pathway
reconstruction method that is used to seed the algorithm. Thus,
PRAUG can serve as a framework to boost the performance of any
existing method for the Pathway Reconstruction Problem. We high-
light PRAUG’s generalizability by running it on an interactome
of 612516 weighted edges to recover 29 diverse human signaling
pathways from the NetPath pathway database [13], using 6 state-
of-the-art pathway reconstruction methods as seeds. We highlight
the improved pathway reconstructions using a case study of the
Wnt and Notch pathways.

2 METHODS

We first describe PRAUG and the pathway reconstruction methods
used as input to PRAUG. We then describe the interactome and
pathway datasets, and details about assessment.

2.1 PRAUG

We are given a potentially directed interactome 𝐺 = (𝑉 , 𝐸), which
may have weights 𝑤𝑢𝑣 for every edge (𝑢, 𝑣) ∈ 𝐸. A pathway 𝑃 =

(𝑉𝑃 , 𝐸𝑃 ) can be described as a subgraph of 𝐺 (e.g. 𝑉𝑃 ⊆ 𝑉 and
𝐸𝑃 ⊆ 𝐸). Pathway 𝑃 includes a set 𝑆 ⊆ 𝑉𝑃 of receptors and a
set 𝑇 ⊂ 𝑉𝑃 of transcriptional regulators (TRs). A solution to the
Pathway Reconstruction Problem connects the sources 𝑆 to the
targets 𝑇 through the interactome 𝐺 .

Many existing pathway reconstruction methods offer a solution
to the Pathway Reconstruction Problem. Here, we focus on the
space of methods 𝕄 that take an interactome 𝐺 , a set of sources 𝑆
and targets𝑇 , and potentially other user-defined parameters which
we denote {∗}. These methods return a subgraph of𝐺 . Examples of
such methods are outlined in Section 2.2. An instance of a method
M ∈ 𝕄 will return a subgraph 𝐻 of 𝐺 :

M(𝐺, 𝑆,𝑇 , {∗}) → 𝐻 = (𝑉M , 𝐸M ), (1)

where 𝑉M ⊆ 𝑉 and 𝐸M ⊆ 𝐸. The edges of 𝐻 are often ranked
by the order in which they were found by M, but may also be
unranked.

PRAUG transforms a method M ∈ 𝕄 into another method
M̃ ∈ 𝕄 (Figure 1). An instance of M̃ will return a subgraph 𝐻 of
𝐺 :

M̃(𝐺, 𝑆,𝑇 , {∗}) → 𝐻 = (𝑉M̃ , 𝐸M̃ ), (2)

where 𝑉M̃ ⊆ 𝑆 ∪𝑇 ∪𝑉M and 𝐸M̃ ⊆ 𝐸. The PRAUG-augmented
counterpart ofM works as follows:

(1) Run M(𝐺, 𝑆,𝑇 , {∗}) and return a subgraph 𝐻 = (𝑉M , 𝐸M ).
(2) Define a node set 𝑋 = 𝑆 ∪𝑇 ∪𝑉M .
(3) Introduce a super source node 𝜎 to 𝐺 and add edges from 𝜎

to every node 𝑣 ∈ 𝑆 .
(4) Starting from 𝜎 , perform an unweighted depth-first traversal

on the 𝑋 -induced subgraph of 𝐺 . Terminate when no new
edge can be traversed.

(5) Return the traversed edges as a subgraph 𝐻 = (𝑉M̃ , 𝐸M̃ ),
with edges sorted by their traversal order.

M̃ uses the nodes predicted byM as a scaffold to find edges that
connect predicted nodes (Figure 1). Some of these edges may not
have been discovered by the original M, which may potentially
include known interactions for a particular pathway. Since the
sources 𝑆 and targets 𝑇 depend on the specific pathway 𝑃 that we
wish to reconstruct, we parameterize the methods by the pathway
𝑃 instead of 𝑆 and 𝑇 . We also drop the interactome 𝐺 from the
parameterization for simplicity, leaving the methods parameterized
asM(𝑃, {∗}) and M̃(𝑃, {∗}).

2.2 Pathway Reconstruction Methods

We use six different pathway reconstruction methods as inputs for
PRAUG (Table 1).

2.2.1 PathLinker (PL) [22]. This method computes the 𝑘 shortest
paths from any source 𝑆 to any target 𝑇 in a weighted, directed
interactome. PathLinker uses an 𝐴∗ speedup to the classic Yen’s
𝑘-shortest loopless paths algorithm [22]. PL requires a number of
shortest paths 𝑘 ∈ Z+ (by default 𝑘 = 500), and edges are ranked in
increasing order by the first path in which they appear.

2.2.2 ResponseNet (RN) [7, 33]. This method formulates the path-
way reconstruction problem as a network flow algorithm, and
presents a linear program to find a subgraph that balances out-
going flow from the sources and incoming flow to the targets. RN
requires a sparsity parameter 𝛾 ∈ R+ that penalizes flow through
multiple sources (by default𝛾 = 20). The unranked set of edges with
positive flow are considered the predicted pathway reconstruction.

2.2.3 BowTieBuilder (BTB) [25]. This method iteratively connects
sources to targets using short paths that aim to determine an hour-
glass, or “bowtie” structure in the pathway reconstruction. The
method terminates when as many sources and targets as possi-
ble have been added to the graph. The unranked set of edges are
considered the predicted pathway reconstruction.

2.2.4 Prize Collecting Steiner Forecst (PCSF) [29, 30]. This method
places node prizes on the sources and targets in a weighted, undi-
rected interactome and identifies a forest (set of trees) that connect
prizes while simultaneously minimizing the edge costs [29]. We
convert the directed, weighted interactome 𝐺 into an undirected
graph by converting any bidirected edge between nodes 𝑢 and 𝑣 to
an undirected edge with the minimum cost of (𝑢, 𝑣) and (𝑣,𝑢); the
remaining directed edges simply become undirected. In addition
to a prize 𝑝 ∈ R+, the method also has a parameter 𝑏 ∈ R+ that
controls the tradeoff between including more prizes and taking
higher-cost edges, a weight 𝜔 ∈ R+ for dummy edges, and a degree
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Figure 1: Overview of PRAUG. Pathway reconstruction methods take as input an interactome 𝐺 and a pathway comprised of

sources (blue diamonds) and targets (orange rectangles). Given a pathway reconstruction method M, PRAUG defines a new

method M̃ that callsM and performs a traversal on the resultant node set.

penalty 𝑔 ∈ R+. Default parameters are 𝑏 = 1,𝜔 = 5, and 𝑔 = 3. We
use the optimal forest returned by Omics Integrator 2 [30], and take
the unranked set of edges in the forest as the predicted pathway
reconstruction.

2.2.5 Random Walk with Restarts (RWR). Inspired by TieDIE [21],
we implemented a random walk with restarts using the following
procedure. First, we run a random walk with restarts from the
sources 𝑆 , teleporting to sources uniformly at random. We then
reverse the edges of the graph and run a random walk with restarts
from the targets 𝑇 , teleporting to targets uniformly at random. For
a node 𝑣 ∈ 𝑉 , let the forward visitation probability be denoted as
𝑝𝐹 (𝑣) and let the backward visitation probability be denoted as
𝑝𝐵 (𝑣). We calculate the combined flux 𝑓 (𝑢, 𝑣) for an edge (𝑢, 𝑣) as

𝑓 (𝑢, 𝑣) = fwd(𝑢, 𝑣) × bkwd(𝑢, 𝑣), where (3)

fwd(𝑢, 𝑣) = 𝑝𝐹 (𝑢)𝑤𝑢𝑣

𝑑out (𝑣) and bkwd(𝑢, 𝑣) = 𝑝𝐵 (𝑣)𝑤𝑢𝑣

𝑑 in (𝑢)
, (4)

where 𝑑 in(𝑣) and 𝑑out(𝑣) are the in-degree and out-degree of 𝑣 ,
respectively. We return the number of edges that capture 𝜏% of the
total 𝑓 (𝑢, 𝑣) in the entire graph. RWR requires a damping factor
𝛼 ∈ (0, 1] which is one minus the teleportation probability and a
threshold 𝜏 ∈ (0, 1]. Default parameters are 𝛼 = 0.85 and 𝜏 = 0.3.
We take the negative log(𝑓 (𝑢, 𝑣)) such that the predictions are
ranked in increasing order.

2.2.6 All Pairs Shortest Paths. Finally, we also computed the short-
est path from every source to every target and took the union of
such paths as the reconstruction. If there are many tied paths be-
tween a source and a target, one path is arbitrarily chosen. The
unranked set of edges in the shortest paths are considered the
predicted pathway reconstruction.

2.3 Data

2.3.1 Interactome. We use PLNet2, a weighted, directed interac-
tome constructed from both molecular interaction data and sig-
naling pathway databases (including the database used for ground
truth pathways) [34]. PLNet2 is weighted using an evidence-based

Method Name Abbrv. Parameters

PathLinker [22] PL number of shortest paths 𝑘
ResponseNet [7, 33] RN sparsity parameter 𝛾
BowTieBuilder [25] BTB
Prize Collecting PCSF terminal prize 𝑝
Steiner Forest [29, 30] edge reliability 𝑏

dummy edge weight 𝜔
degree penalty 𝑔

Random Walk with RWR teleportation probability 𝛼
Restarts (insp. by [21]) flux threshold 𝜏
Shortest Paths SP

Table 1: Pathway Reconstruction Methods.

Bayesian method introduced by RN [33] that assigns a high confi-
dence to edges supported by experimental methods that successfully
predict signaling interactions [34]. PLNet2 contains 17168 nodes
(UniProtKB identifiers [8]) and 612516 directed edges, including
286520 physical interactions that are converted to bidirected edges.

2.3.2 Signaling Pathways. We consider a set of 29 signaling path-
ways from the NetPath database, a repository of cancer and im-
mune related pathways [13]. Sources and targets are automatically
detected for each of the pathways from curated lists of human re-
ceptors and transcriptional regulators (see [22] for more details).
The Advanced Glycation End Products (AGE/RAGE) pathway, In-
hibitor of Differentiation (ID) pathway, and Interleukin 11 (IL-11)
pathway did not have an automatically-detected receptor and/or
a transcriptional regulator, and were removed from consideration.
Twenty-nine remaining pathways are listed in Table 2.

2.4 Assessment

2.4.1 Precision/Recall. We evaluate reconstruction methods based
on their precision as well as their recall. Recall that Section 2.1
defines an interactome 𝐺 = (𝑉 , 𝐸), a pathway 𝑃 = (𝑉𝑃 , 𝐸𝑃 ), and a
method M’s prediction 𝐻 = (𝑉M , 𝐸M ). Let 𝑁𝑃 be a set of nega-
tive edges from 𝐸 with respect to pathway 𝑃 ; that is, 𝑁𝑃 contains
interactions that are unlikely to be related to signaling and are
disjoint from 𝐸𝑃 . The negatives 𝑁𝑃 need to be selected carefully, as
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Pathway # Nodes # Edges

(𝑛 = 29) Total |𝑆 | |𝑇 | Dir. Undir.

𝛼6 𝛽4Integrin 66 7 3 223 116
Androgen Receptor 165 2 75 491 251

BCR 137 1 18 456 261
BDNF 72 5 4 139 76
CRH 24 2 8 54 27
EGFR1 231 6 33 1456 756
FSH 19 2 1 30 18

Hedgehog 36 6 13 124 64
IL1 43 3 5 178 93
IL2 67 3 12 242 139
IL3 70 2 9 176 97
IL4 57 5 12 173 91
IL5 30 2 3 71 36
IL6 53 4 14 162 83
IL7 18 2 3 52 28
IL9 13 2 3 29 15
Kit 76 6 8 207 109

Leptin 55 3 15 135 74
Notch 74 4 27 255 154
OSM 37 5 12 82 42

Prolactin 68 4 10 199 103
RANKL 57 2 12 142 76
TCR 154 7 20 504 271

TWEAK 17 1 4 30 15
TSLP 7 1 2 14 7
TSH 48 2 6 90 47
TGF𝛽 209 5 77 863 452
TNF𝛼 239 4 44 913 473
Wnt 106 14 14 428 220

Table 2: NetPath pathways used in this study. Edges are

taken as undirected for the assessment.

is described in more detail in Section 2.4.2. IfM produces unranked
predictions (as is the case for RN, BTB, PCSF, and SP), then the edge
(or interaction) precision 𝑝edge and recall 𝑟edge of method M for
pathway 𝑃 are

𝑝edge =
|𝐸M ∩ 𝐸𝑃 |

|𝐸M ∩ (𝐸𝑃 ∪ 𝑁𝑃 ) |
and 𝑟edge =

|𝐸M ∩ 𝐸𝑃 |
|𝐸𝑃 |

.

For ranked predictions we index precision and recall to a rank 𝑖
such that, for instance, 𝑝edge (𝑖) is the precision for the top 𝑖 predic-
tions. Thus the precision and recall for ranked methods (such as
PL and RWR) comprise many points. Node (protein) precision and
recall equations are the same mutatis mutandis.

We assessed the performance of reconstruction methods by way
of their maximum 𝐹1 score. Given a precision 𝑝 and a recall 𝑟 ,

𝐹1 = 2 · 𝑝 · 𝑟
𝑝 + 𝑟

The 𝐹max is defined as the maximum 𝐹1 for a method on a path-
way. For unranked methods this is just the 𝐹1 score of their single
precision-recall point.

2.4.2 Negative Set. Because our task is not only to reconstruct
known pathway interactions, but also to discover unknown interac-
tions, we construct negatives 𝑁𝑃 by sub-sampling interactions from
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Figure 2: 𝐹max scores for each method across 50 distinct sub-

sampled negative sets for the Wnt pathway. Inset shows ex-

ample precision-recall curves for PathLinker that are used

to compute the 𝐹max distribution.

𝐸 that are not in pathway 𝑃 . Following [22] we generate negative
sets for each pathway by randomly selecting interactions which are
not in the ground truth pathway at a rate of fifty negatives for every
known interaction. However, the choice of sub-sampled negatives
can affect a method’s performance in terms of precision. We de-
signed a procedure to select a set of negatives for each pathway that
is used for all precision-recall calculations for all reconstruction
methods. For each pathway 𝑃 , we compute the 𝐹max for each of
the six original methods (M) using 50 distinct randomly sampled
negative sets and place them in a 6𝑥50 matrix𝑀 . Each column of
𝑀 has the 𝐹max scores for a given method across all 50 negative
sets. The 𝐹max variance for the 50 sets is relatively small for each
method (Figure 2). We then create a new 6𝑥50 matrix 𝑁 such that

𝑁𝑖 𝑗 = |𝑀𝑖 𝑗 −med(𝑀𝑖 ) |,

where med(x) is the median of a vector. Intuitively, the rows of 𝑁
represent the differences from the median 𝐹max for a given negative
set for all methods. We sum the rows of 𝑁 to get the aggregated
difference from the median 𝐹max for each negative set, and select
the negative set𝑁𝑃 that has the minimum of these values (reflecting
the negative set that is the closest to the median across all methods).
We do this for each pathway 𝑃 in order to get reasonable negative
sets across all pathways that do not advantage a particular method
M.

2.4.3 Composites. In order to evaluate the overall performance
of each prediction method across all pathways, we construct com-
posite predictions and negative sets. Given a collection of negative
sets specific to each pathway 𝑃 , we create a composite negative set
𝑁comp by taking a union over these edge sets, keeping track of the
pathway for each negative edge:

𝑁comp =
⋃
𝑃

{
(𝑒, 𝑃) | 𝑒 ∈ 𝑁𝑃

}
.

Likewise for a methodM with predictions 𝐻 = (𝑉𝑃,M , 𝐸𝑃,M ) for
a pathway 𝑃 , let 𝐻comp be the union over these edges:

𝐻comp =
⋃
𝑃

{
(𝑒, 𝑃) | 𝑒 ∈ 𝐸𝑃,M

}
.
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In the case of ranked predictions the edges of 𝐻comp are then
sorted such that a partial ordering is restored. The set of positives
𝑃comp are constructed in a similar way from the ground truth path-
ways 𝑃 = (𝑉𝑃 , 𝐸𝑃 ):

𝑃comp =
⋃
𝑃

{
(𝑒, 𝑃) | 𝑒 ∈ 𝐸𝑃

}
.

Precision, recall, and 𝐹max can be calculated as described in Sec-
tion 2.4.1, providing a general overall view of the performance
of each method, though it privileges the performance of methods
on larger pathways and obscures the heterogeneity of the perfor-
mances on individual pathways.

3 RESULTS

3.1 Reconstruction Methods Successfully

Recover Proteins in Pathways

The Pathway Reconstruction Problem is solved by recovering both
proteins and interactions that connect receptors to transcriptional
regulators, and previous work has shown that recovering interac-
tions is a challenging task [22]. However, current pathway recon-
struction methods are relatively successful at recovering pathway
involved proteins. We evaluated the six original pathway recon-
struction methodsM on their ability to recover the nodes in the
Wnt pathway, subsampling negative nodes at a rate of 50 negatives
to every positive (Figure 3). As has been previously shown [22], the
methods maintain relatively high precision at larger values of re-
call — especially PL and RWR which offer ranked lists of candidate
nodes (rather than a node set). Strikingly, if we ignore negative
nodes that share an edge with a positive node, all methods jump
to nearly perfect precision (asterisked methods in Figure 3). For in-
stance when reconstructing the Wnt pathway, almost all predicted
nodes for all methods are either in Wnt or one edge away from
Wnt in𝐺 . These results indicate that predicted nodes from existing
pathway reconstruction methods may be able to provide reliable
information for predicting protein interactions.
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Figure 4: Jaccard overlap of nodes predicted by pathway re-

construction methods, normalized by the columns. Number

of predicted interactions given below x-axis labels.

In order to assess the similarity of different reconstruction meth-
ods we computed the Jaccard overlap of the proteins they predicted
across all pathways using default parameters. Given the interac-
tome 𝐺 = (𝑉 , 𝐸), let 𝐴 ⊆ 𝑉 , 𝐵 ⊆ 𝑉 , be two sets of nodes. The
asymmetric Jaccard overlap of 𝐴 with 𝐵 is the percentage of ele-
ments of𝐴 which are also in 𝐵. We computed the Jaccard overlap of
composite predictions 𝐻comp for the six methods across all 29 path-
ways (Figure 4). The algorithms, which are quite heterogeneous,
have a considerable amount of agreement in their reconstructed
proteins, ranging from Jaccard indices of 0.18 (PCSF with RWR) to
0.95 (BTB with SP).

3.2 PRAUG Improves Upon Reconstruction

Methods

We have shown that reconstruction methods can recover the pro-
teins in a pathway; however recovering the interactions is more
challenging. We compared each reconstruction method to PRAUG
in terms of composite precision and recall across all 29 signaling
pathways (Figure 5). Each panel compares the performance of a
pathway reconstruction methodM from Section 2.2 to M̃, using
default values and taking care to keep the negative set consistent
for each pathway (Section 2.4.2). While we note that there are dif-
ferences among reconstruction methods, we did not optimize the
parameters for each method with respect to the Pathway Recon-
struction Problem, so we do not compare un-augmented methods
against one another.

In every case, the PRAUG method M̃’s 𝐹max value is larger than
the original methodM’s 𝐹max in terms of recovering the interac-
tions, outperformingM by an average of 89% (Figure 5). PRAUG
gains this large improvement in 𝐹max by improving recall while
sacrificing sparingly with respect to precision. While precision at
maximum recall is lower across the board for augmented methods
as compared to their counterparts, precision for M̃ is equal to or
greater than the precision ofM at the top recall ofM.

The methods M that produce unranked predictions (BTB, PCSF,
RN, and SP) are single points in Figure 5, and the PRAUG-augmented
counterparts of these methods maintain the precision of M for
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Composite Interaction Performance across 29 Pathways

Figure 5: Performance of methodM and PRAUG-transformed M̂ across all 29 pathways.

larger values of recall. However, many exhibit a plateau of preci-
sion after which precision drops off rapidly with increased recall
(for example, precision remains nearly constant for PRAUG-BTB
from recall values of 0.0125 to 0.08). The PRAUG counterparts of
the ranked methods (PL and RWR) do not exhibit this behavior.
Despite the differences between the unranked and ranked methods,
the key result is that the PRAUG counterparts M̃ of each pathway
reconstruction method outperformsM in 𝐹max , recall, and often
precision.

3.3 Robustness Analysis and Benchmarking

PRAUG is a straightforward traversal-based algorithm, and it may
not be immediately clear why this approach can be so successful.
In this section we justify PRAUG’s depth-first traversal, provide
empirical upper bounds on the Pathway Reconstruction Problem
given methods which assume a traversal paradigm, and illustrate
the effect of parameter selection on PRAUG methods compared to
their original counterparts.

3.3.1 Choice of Traversal. Step 4 of a PRAUG-augmented pathway
reconstruction method is to perform a depth first traversal from
the sources of a pathway ignoring edge weights (Section 2.1). We
considered three alternatives to PRAUG’s unweighted depth-first
traversal:
PRAUG-BFS: Perform an unweighted breadth-first traversal on𝐺
starting from 𝜎 , taking only nodes in 𝑋 .
PRAUG-WEIGHTED: Perform a weighted depth-first traversal
on 𝐺 starting from 𝜎 , taking only nodes in 𝑋 .
PRAUG-BFS-WEIGHTED: Perform a weighted breadth-first tra-
versal on 𝐺 starting from 𝜎 , taking only nodes in 𝑋 .

In all cases, the method terminates when no new edge can be tra-
versed from 𝜎 to nodes in 𝑋 . Thus, all of these methods recover
the exact same interactions but traverse them in a different order.
The choice of traversal or edge weighting has little effect on the
precision and recall, as is illustrated for PL and RWR on the Wnt
pathway (Figure 6A,B). When there is a difference, using breadth
first traversal performs worse than using depth first traversal, and
weighting has a negligible effect on the performance of the aug-
mented methods.

3.3.2 Ground Truth as Upper Bounds. We also investigated how
well PRAUG could recover the pathways when given the ground
truth nodes and interactions, which serve as an upper bound on
a traversal-like performance. We first define an oracle pathway
reconstruction method GT which, given an interactome𝐺 , a source
set 𝑆 , and a target set𝑇 , produces the unique ground truth signaling
pathway 𝑃 = (𝑉𝑃 , 𝐸𝑃 ) such that 𝑆 ⊆ 𝑉𝑃 and 𝑇 ⊆ 𝑉𝑃 .1 Of course,
just because we can define something doesn’t mean we can build it.
If we knew how to realize GT — an algorithm which produces the
ground truth pathway by definition — then wewould doubtlessly be
publishing a paper on that instead. In lieu of such good fortune we
provide our implementation of GT with the actual pathway 𝑃 to be
produced. Thus, our implementation of GT does not meaningfully
solve the pathway reconstruction problem. However, GT provides
the complete set of ground truth nodes to its PRAUG-augmented
counterpart:
PRAUG-GT-NODES: Perform an unweighted depth-first traversal
on 𝐺 starting from 𝜎 , taking only nodes in 𝑉𝑃 .

1The oracle GT is an element of the set of all pathway reconstruction methods𝕄.
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PRAUG-GT-NODES informs us how well a PRAUG-augmented
method could perform if a pathway reconstruction method M
perfectly reconstructed the proteins involved in a given pathway. In
this first upper-bound, PRAUG-GT-NODES provides the precision
and recall of interactions assuming (a) perfect node precision and
recall and (b) we begin the traversal from the sources.

We can ask a similar question about PRAUG’s performance when
we have the ground truth interactions available for traversal. This
requires augmenting the definition of Step 4 of PRAUG as follows:

PRAUG-GT-EDGES: Perform an unweighted depth-first traversal
on 𝐺 starting from 𝜎 , taking only edges from 𝐸𝑃 .

PRAUG-GT-EDGES differs from PRAUG because it traverses edges
rather than nodes. PRAUG-GT-EDGES is guaranteed to maintain
perfect precision and marks the upper bound on recall for a tra-
versal based method starting from the sources which only makes
predictions from the annotated ground truth.

In Figure 6A and 6B, PRAUG-GT-NODES are shown in black and
PRAUG-GT-EDGES are shown in brown. The ground truth Wnt
pathway is the same in both panels A and B, and the only difference
between panels is the subsampled negative set involved in the calcu-
lation. PRAUG-GT-NODES achieves nearly total recall while main-
taining nearly perfect precision for Wnt, which is representative
of PRAUG-GT-NODES generally. As expected, PRAUG-GT-EDGES
maintains perfect precision up to much larger values of recall than
any other pathway reconstruction method. Interestingly, PRAUG-
GT-NODES achieves higher recall than PRAUG-GT-EDGES, be-
cause there are some incorrect interactions that allow the traversal
to reach more positive interactions when only considering nodes.

3.3.3 Parameter Sweeps. Several of the reconstruction methods
considered in this paper take additional inputs beyond an interac-
tome, source nodes, and target nodes (Table 1). These additional
parameters substantially affect the behavior of the methods. In or-
der to assess how additional parameters affected the performance
of both original methods M as well as their corresponding aug-
mented methods M̃, we performed parameter sweeps for both
PRAUG-PL and PRAUG-RWR (Figure 6C and 6D). PL and RWR
both have parameters which determine the number of edges in the
reconstructed pathway. In the case of PL, 𝑘 denotes the number
of paths returned.2 In the case of RWR, 𝜏 marks the percentage
of total edge flux in the interactome to return. Thus for PL (resp.
RWR) lower 𝑘 (resp. 𝜏) values produce truncated precision recall
curves of higher 𝑘 (resp. 𝜏) values.

The same does not hold for the PRAUG-augmented counter-
parts to PL and RWR. Because the ranking of edges in a PRAUG-
augmented method is given by their order in the traversal, the
introduction of new nodes (by way of parameter change) to the
traversal leads to markedly different precision recall curves (Fig-
ure 6C and 6D). Further, PRAUG-augmented methods are highly
sensitive to parameter changes. In general large parameters lead
to degraded precision at low values of recall, but recover a large
portion of positive interactions. This can be seen for instance in
PRAUG-RWR 𝜏 = 0.75 in Figure 6D. Thus, optimal parameters

2Though note that new paths may use no new edges. Thus 𝑘 neither fully nor uniquely
determines the number of edges in the reconstructed pathway.
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Figure 6: (A,B) PRAUG compared to breadth-first search, us-
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PL (blue) and RWR (magenta) are shown for the largest pa-

rameter, since all smaller parameters simply truncate this

curve.

for an unaugmented method may deviate significantly from the
optimal parameters for its PRAUG-augmented counterpart.

3.4 Case Studies

To illustrate the benefits of pathway reconstructions augmented by
PRAUG, we focus on two well-studied signaling pathways: Wnt and
Notch. For each pathway, we show the single-pathway precision
and recall curves for all methods M and M̂, as well as PRAUG-
GT-NODES and PRAUG-GT-EDGES. We also consider the first
500 edges predicted by each of the six PRAUG methods, and we
visualize the interactions that are supported by all six methods. It
is important to note that PRAUG ranks interactions according to
the order in which edges are traversed, which does not necessarily
imply confidence in the interaction. While the choice of using the
first 500 interactions is arbitrary, they provide a representative
set of interactions from the traversal and produce a network that
connects most of the receptors to transcriptional regulators.

3.4.1 The Wnt Signaling Pathway. The canonical Wnt signaling
pathway regulates a variety of developmental events during em-
bryogenesis and helps maintain tissue homeostasis [18]. The non-
canonical Wnt signaling pathway, which is not mediated through
the canonical Frizzled receptors or 𝛽-catenin, also regulates cell
movement and tissue polarity [13]. The combination of canonical
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and non-canonical Wnt signaling makes this a good case study
for PRAUG reconstructions. Pathway reconstruction methods that
return a single subgraph tend to have high precision but quite low
recall (Figure 7A). PL and RWR extend this recall while maintaining
relatively high precision. which has been previously shown [22]).
The PRAUG methods are able to improve both precision and recall
for all methods except for PL, in which it only improves recall (Fig-
ure 7A). PRAUG-GT-EDGES and PRAUG-GT-NODES are described
in Section 3.3.2 and are provided here for benchmark purposes.

The interactions that appear in the first 500 interactions of
all PRAUG methods (Figure 7B) are largely consistent with the
pathway reconstruction reported by the first 200 paths from Path-
Linker [22]. The Wnt network includes CFTR, a chloride ion trans-
porter that interacts with non-canonical RYK receptor, which has
been shown to be involved in Wnt signaling via a subset of the
Wnt ligands [22]. Many of the 22 intermediate gray nodes have
previously been implicated in Wnt pathway crosstalk, including
the MAP Kinases, SRC, EGFR, PII3KR1, and SMAD9 [22, 27]. There
are also known ubiquitination proteins (UBQLN1, UBQLN4, and
TRIM21) which are general proteins and may not be specific to Wnt
signaling [8]. Other non-positives have documented roles in Wnt
signaling despite not being present in NetPath: for example, DACT1
interacts through Disheveled (DVL) family proteins and MDFI regu-
lates TCF family transcription factors [8]. Further, proteins such as
DLG4 and DAZAP2 are not directly associated with Wnt signaling,
and may offer new hypotheses for follow-up investigation. DLG4,
for example, is involved in cell-cell adhesion (a classic role for Wnt)
but is known to interact with the NMDA receptor in the brain [8].

In addition to the nodes within the Wnt network, the interac-
tions themselves also help put the reconstructions in context. Only
a handful of the interactions in the Wnt network appear in the Net-
Path Wnt pathway (black edges in Figure 7B). The remaining edges
are either negatives or ignored due to subsampling in the precision-
recall plots. However, 66% of these edges appear as interactions
in some KEGG signaling pathway (shown in pink), indicating that
they are signaling interactions. Further, some of the edges that do
not appear in NetPath or KEGG (red edges) connect proteins in Net-
Path’s Wnt signaling (e.g. DVL1-DVL2 and LRP6-GSK3B), which
may be known interactions that have been missed by signaling
pathways. In this way, pathway reconstruction methods that focus
on recovering interactions have the potential for generating more
mechanistic-driven hypotheses.

3.4.2 The Notch Signaling Pathway. The Notch signaling pathway
regulates fundamental processes such as morphogenesis, cell differ-
entiation and cell-fate determination, proliferation, and cell death,
and is highly conserved across metazoans [13, 16]. Notch is a unique
case study for the Pathway Reconstruction Problem because its pri-
mary receptors function both as cell surface receptors and nuclear
transcription factors, seemingly contradicting our assumptions that
a signaling pathway’s receptors and TRs are mutually exclusive.
However, most pathway reconstruction methods recover Notch
signaling with high precision at low recall, and PRAUG methods
typically improve recall while remaining close the original method’s
precision (Figure 8A). Unlike Wnt, PRAUG-GT-EDGES for Notch
only recovers about half of the positive interactions, but PRAUG-
GT-NODES boasts a recall greater than 0.8.
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Figure 7: Precision recall curve for the Wnt signaling path-
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predicted by the PRAUG reconstructions (B). Blue diamonds

are receptors and orange rectangles are transcriptional reg-

ulators. Black nodes and edges appear in the Wnt NetPath

pathway; pink edges appear in someKEGGpathway, and red

edges do not appear in NetPath or KEGG databases.

When we examine the interactions recovered in the first 500
interactions of all six PRAUG methods, we see that the majority of
the interactions connect receptors to TRs, highlighting the nuclear
role of Notch family proteins (Figure 8B). One of the six intermedi-
ate proteins is a member of the MAML transcriptional coactivator,
and two are SMAD proteins, which along with NF𝜅B are known
to associate with the Notch intracellular domain [16]. Five of the
53 non-positive interactions appear in NetPath’s TGF-𝛽 Receptor
pathway [13], and another twelve interactions appear in KEGG as
members of Notch signaling (e.g. edges from MAML proteins to
EP300) or Th1 and Th2 cell differentiation (e.g. edges from Notch3
to RELA and NF𝜅B1, which co-complex to form NF𝜅B), of which
Notch is known to initiate [28]. While two thirds of non-positive
interactions do not appear in NetPath or KEGG (shown in red), they
connect proteins that are in the NetPath Notch pathway, suggesting
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that these may be missed interactions in NetPath. Further, the con-
nection from Notch3 to NCK1, an adaptor protein which associates
with certain growth factor receptors, has recently been shown to
maintain Notch signaling by preventing processes induced byNotch
inhibition, and provides a promising testable hypothesis [10].

4 DISCUSSION

We present PRAUG, a higher-order algorithm for augmenting path-
way reconstruction methods which consistently recovers interac-
tions from ground truth pathways better than the original methods.
We have shown that this framework is highly generalizable, improv-
ing reconstructions for six pathway reconstruction algorithms that
include shortest-paths (PL, BTB, SP), network flow (RN), random
walk (RWR), and Steiner tree (PCSF) approaches. We demonstrate

an improved 𝐹max when PRAUG is applied to all of these meth-
ods across 29 signaling pathways (Figure 5), which cover diverse
pathways with respect to both size (e.g. number of nodes and inter-
actions in Table 2) as well as mechanism (immune signaling path-
ways, cancer hallmark pathways, and hormone signaling pathways).
We illustrate PRAUG’s power in generating plausible hypotheses
for follow-up validation by analyzing interactions predicted by all
PRAUG method predictions for Wnt and Notch (Figures 7 and 8).

PRAUG does not present a new pathway reconstruction al-
gorithm, but rather a paradigm for improving other algorithms
designed to reconstruct pathways. The foundational observation
of our method is that reconstructing the nodes in a pathway is
a relatively easy task at which many existing algorithms excel
(Figure 3). In particular, The performance of PRAUG-GT-NODES
demonstrates that PRAUG can produce substantially better path-
way reconstruction methods if it is provided with a method which
reliably produces correct node sets. Even when limiting the inputs
to ground truth edges, PRAUG-GT-EDGES achieves recall much
higher than current algorithms. Every algorithm that we used for
this paper attempts to explicitly reconstruct the interactions of a
pathway; further work to improve protein reconstructions may
lead us closer to these empirical upper bounds.

There are variants of the Pathway Reconstruction Problem, such
as a “curation-aware” pathway reconstruction that uses all pro-
teins and interactions from pathway databases as input [31], and
pathway reconstructions that involve changing the underlying in-
teractome [3]. Considering a traversal-based approach for these
formulations may prove similarly useful. Further, PRAUG offers a
multitude of opportunities for defining a “pathway reconstruction
method” M – for example, we could focus on gene ontology node
sets or experimentally-derived genes as the node set 𝑋 for PRAUG
traversal. In this way, PRAUG may be able to recover interactions
from methods which explicitly produce node reconstructions.

Of the two pathway reconstruction methods with ranked inter-
actions, we were surprised by the dramatic performance of RWR.
For large values of 𝜏 , RWR achieves precision of 0.8 at a recall of
0.4, blowing away all other non-PRAUG methods (magenta curve
in Figure 6D). This method, which was inspired by TieDIE [21],
performs a random walk from sources, then another random walk
on a reversed graph from targets, and combines the edge flux scores
for every edge. This random walk was different than the one pre-
sented in the PathLinker paper [22], which performed a random
walk with restarts only from the sources. Here, RWR shows signif-
icant promise for improving pathway reconstructions, and is an
improvement over prior algorithms in its own right.

One feature of PRAUG-augmented methods is that they tend to
produce more edges than their unaugmented counterparts. While
the 𝐹max values are higher for PRAUG-augmented methods, the
topology of the produced networks may differ significantly from the
ground truth. Combining the results of several PRAUG-augmented
methods through some sort of voting system as done in Section 3.4
can highlight biologically meaningful interactions. However, we
acknowledge that the returned subnetworks are optimized for our
ground truth measures and may not accurately reflect the real
underlying pathways, the topology of which is unknown.

Despite its simplicity, we described some subtleties to PRAUG.
For example, an optimal choice of parameters for a methodM may
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not be optimal for the PRAUG version M̃ (Figure 6C,D). In general,
we found that the larger the reconstruction returned by M, the
worse the PRAUG augmented method performed. In essence, if
the pathway reconstruction returned a large subset of the nodes in
𝐺 , then PRAUG would return an induced subgraph of the nodes,
which is bound to have many negative interactions. We do not
explicitly compare pathway reconstruction methods to each other,
as more careful selection of parameters for each method M and
PRAUG method M̂ would be necessary.

PRAUG shows great potential for improving upon existing path-
way reconstruction methods. We have shown six applications of
PRAUG using extant reconstruction methods, and demonstrated
promise for improving untested algorithms. PRAUG brings us one
step closer to practical pathway predictions for emerging and under-
studied signaling pathways.
Data Availability. All code and datasets are available on https://
github.com/TobiasRubel/Pathway-Reconstruction-Tools. Users can
use GraphSpace to explore Wnt (http://graphspace.org/graphs/
28928) and Notch (http://graphspace.org/graphs/28927) networks.
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