Transforming the Language of Life: Transformer Neural
Networks for Protein Prediction Tasks

Ananthan Nambiar*
Department of Bioengineering
Carl R. Woese Inst. for Genomic Biol.
Univ. of llinois at Urbana-Champaign
Urbana, IL, USA
nambiar4@illinois.edu

Maeve Heflin"
Department of Computer Science
Carl R. Woese Inst. for Genomic Biol.
Univ. of Illinois at Urbana-Champaign
Urbana, IL, USA

Simon Liu*
Department of Computer Science
Carl R. Woese Inst. for Genomic Biol.
Univ. of Illinois at Urbana-Champaign
Urbana, IL, USA

Sergei Maslov Mark Hopkins™ Anna Ritz "
Department of Bioengineering Department of Computer Science Department of Biology
Department of Physics Reed College Reed College

Carl R. Woese Inst. for Genomic Biol.
Univ. of Illinois at Urbana-Champaign
Urbana, IL, USA

ABSTRACT

The scientific community is rapidly generating protein sequence
information, but only a fraction of these proteins can be experimen-
tally characterized. While promising deep learning approaches for
protein prediction tasks have emerged, they have computational
limitations or are designed to solve a specific task. We present a
Transformer neural network that pre-trains task-agnostic sequence
representations. This model is fine-tuned to solve two different
protein prediction tasks: protein family classification and protein
interaction prediction. Our method is comparable to existing state-
of-the-art approaches for protein family classification while being
much more general than other architectures. Further, our method
outperforms all other approaches for protein interaction predic-
tion. These results offer a promising framework for fine-tuning the
pre-trained sequence representations for other protein prediction
tasks.

CCS CONCEPTS

« Applied computing — Computational proteomics; - Com-
puting methodologies — Machine learning algorithms; Neu-
ral networks; Natural language processing.

KEYWORDS

Neural networks, protein family classification, protein-protein in-
teraction prediction

“These authors contributed equally to this research.
These authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

BCB °20, September 21-24, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7964-9/20/09. .. $15.00
https://doi.org/10.1145/3388440.3412467

Portland, OR, USA

Portland, OR, USA
aritz@reed.edu

ACM Reference Format:

Ananthan Nambiar, Maeve Heflin, Simon Liu, Sergei Maslov, Mark Hopkins,
and Anna Ritz. 2020. Transforming the Language of Life: Transformer
Neural Networks for Protein Prediction Tasks. In Proceedings of the 11th
ACM International Conference on Bioinformatics, Computational Biology and
Health Informatics (BCB °20), September 21-24, 2020, Virtual Event, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3388440.3412467

1 INTRODUCTION

The advent of new protein sequencing technologies has acceler-
ated the rate of protein discovery [29]. While protein sequence
repositories are growing exponentially, existing methods for exper-
imental characterization are not able to keep up with the present
rate of novel sequence discovery [10, 26]. Currently, less than 1%
of all amino acid sequences in the UniProtKB database have been
experimentally characterized [10]. The explosion of uncharacter-
ized proteins presents opportunities in computational approaches
for protein characterization. Harnessing protein sequence data to
identify functional characteristics is critical to understanding cellu-
lar functions as well as developing potential therapeutic applica-
tions [9]. Sequence-based methods to computationally infer protein
characteristics have been critical for inferring protein function and
other characteristics [32]. Thus, the development of computational
methods to infer protein characteristics (which we generally de-
scribe as “protein prediction tasks”) has become paramount in the
field of bioinformatics and computational biology. Here, we adapt
a Transformer neural network to establish task-agnostic represen-
tations of protein sequences, and use the Transformer network to
solve two protein prediction tasks.

1.1 Background: Deep Learning

In applying deep learning to sequence-based protein characteriza-
tion tasks, we first consider the field of natural language processing
(NLP), which aims to analyze human language through computa-
tional techniques [24]. Deep learning has recently proven to be
a critical tool for NLP, achieving state-of-the-art performance on
benchmarks for named entity recognition, sentiment analysis, ques-
tion answering, and text summarization, among others [6, 37].

https://doi.org/10.1145/3388440.3412467
https://doi.org/10.1145/3388440.3412467

BCB 20, September 21-24, 2020, Virtual Event, USA

Neural networks are functions that map one vector space to
another. Thus, in order to use them for NLP tasks, we first need to
represent words as real-valued vectors. Often referred to as word
embeddings, these vector representations are typically “pre-trained”
on an auxiliary task for which we have (or can automatically gen-
erate) a large amount of training data. The goal of this pre-training
is to learn generically useful representations that encode deep se-
mantic and syntactic information [37]. Then, these representations
can be used to train systems for NLP tasks for which we have only
a moderate amount of training data.

Google recently developed a state-of-the-art contextualized word
embedding technique called Bidirectional Encoder Representations
from Transformers, or BERT [13], to create “deeply bidirectional”
embeddings. BERT’s architecture stacks multiple Transformer en-
coder layers [35], whose architecture we explain in Section 2.2, to
train a model that generates token representations by simultane-
ously incorporating the leftward and rightward context.

1.2 Applying Deep Learning to Protein
Prediction Tasks

Because of the unprecedented success in applying deep learning
to NLP tasks, one of the recent interest areas in computational
biology has been applying NLP-inspired techniques to amino acid
sequence characterization. These techniques typically treat amino
acids as analogous to individual characters in a language alphabet.
Following the pre-training regime established in NLP, tools such
as seq2vec and ProtVec have been developed to create amino acid
sequence embeddings for protein prediction tasks. These two rep-
resentations methods are based on the ELMo model and Skip-Gram
technique, respectively, and demonstrated state-of-the-art accuracy
when applied to bioinformatics tasks [4, 19].

Given the success of BERT in NLP, we pre-train a Transformer
network on amino acid sequence representations for protein predic-
tion tasks and compare its performance to current state-of-the-art
methods. Instead of using the original BERT training procedure,
we use a more recent procedure called A Robustly Optimized BERT
Pretraining Approach (RoBERTa) [22]. The main differences lie
in the pre-training step, which we highlight later in Section 2.3.
We evaluate the performance of our sequence representations on
two protein prediction tasks, as described below: (1) protein family
classification and (2) binary protein-protein interaction prediction.

1.2.1 Task: Protein Family Classification. Protein families are groups
of evolutionarily-related proteins that typically share similar se-
quence, structural, and functional characteristics. Traditionally,
family classification has required the comparison of experimen-
tally identified characteristics. However, methods have also been
developed to computationally classify proteins based solely on se-
quence similarity. This approach enables us to infer functional and
structural characteristics of proteins in a high-throughput manner.

Current computational approaches for protein family classifica-
tion include methods such as BLASTp and profile hidden Markov
models (pHMMs) which compare sequences to a large database of

Nambiar et al.

pre-annotated sequences. However, inference using these alignment-
based methods is computationally inefficient, as they require re-
peated comparison of sequences to an exponentially growing data-
base of labeled family profiles and are limited by expensive, manually-
tuned processing pipelines [11]. With the exponential growth of
protein discovery, the development of more scalable approaches is
required to overcome traditional bottlenecks [8].

Guided by a deep learning framework, recent models based on
convolutional neural network (CNN) and recurrent neural network
(RNN) architectures have been successful in achieving state-of-
the-art accuracy on the protein family classification task [8, 19].
However, these methods still produce task-specific models that are
unable to generalize towards a broader range of protein prediction
tasks. One recent model, UDSMProt, used an RNN architecture in a
similar pre-training and fine-tuning framework to predict whether
a given protein is contained in the same superfamily or fold of a
reference protein [33]. Such an approach requires pairwise com-
parison of sequences against multiple reference proteins, which
may not be entirely representative of a protein family. Instead, we
present two variants for the protein family classification task: (1) a
multi-class classification problem of predicting a family label for a
given sequence and (2) a binary classification problem of predicting
whether a sequence is a member of a chosen family label.

1.2.2 Task: Protein-Protein Interaction (PPI) Prediction. The next
protein prediction task we highlight is protein-protein interaction
(PPI) prediction. Defined as physical contacts involving molecular
docking between proteins in a specific context, PPIs are fundamen-
tal to most cellular processes [12]. However, experimental identi-
fication of PPIs has proven to be a complex and time-consuming
process, thus creating the need for an efficient and reliable method
of computationally predicting PPIs.

We define PPI prediction as a binary classification task to pre-
dict whether two proteins will interact given their amino acid se-
quences. Traditionally, computational identification of PPIs has
relied on genomic, structural, or domain information of the in-
teracting proteins [16]. However, such knowledge is not readily
available for most proteins. More recent work has leveraged deep
learning-based architectures such as stacked autoencoders, recur-
rent neural networks (RNNs), and recurrent convolutional neural
networks (RCNNs) [9, 15, 34]. These models have achieved state-of-
the-art accuracy in the binary PPI classification task, as well as the
ability to generalize to similar PPI characterization tasks such as
interaction type prediction and binding affinity estimation [9, 15].
Despite this success, they still demonstrate an inability to transfer
learned knowledge to more general protein prediction tasks.

1.3 Contributions

We propose applying a Transformer neural network, which we
call Protein RoOBERTa (PRoBERTa) to pre-train task-agnostic vector
representations of amino acid sequences. PROBERTa modifies the
RoBERTa procedure by reducing the number of transformer layers,
using the LAMB optimizer, and training the model on amino acid
sequences tokenized using byte-pair encoding. We then fine-tune
these representations towards two protein prediction tasks: pro-
tein family classification and binary PPI prediction. We compare
PROBERTa to current state-of-the-art methods for both tasks.

Transforming the Language of Life

In the protein family classification task, we apply our model to
both the multi-class classification problem and the binary classifica-
tion problem. We show that the embeddings produced by PRoBERTa
can be used to produce models for family classification that contain
more information about protein family membership than the pre-
trained embeddings, and have comparable performance to current
methods that use specialized task-specific architectures.

Additionally, by evaluating PRoOBERTa on the binary PPI predic-
tion task, we demonstrate how our trained sequence embeddings
can generalize to other protein prediction tasks. In the PPI predic-
tion task, PROBERTa outperforms other methods in two classifica-
tion settings. To the best of our knowledge, this is the first reported
application of a Transformer network for the protein family classi-
fication and binary PPI prediction tasks.

PRoBERTa is also much more computationally efficient than
recent work that applies Transformer networks to encode protein
sequences to predict protein secondary structure. Using a BERT-
based model, Rives et. al (2019) pre-trained their model on 128
NVIDIA V100 GPUs for 4 days [30]. In comparison, we pre-train
PROBERT=a on 4 NVIDIA V100 GPUs in 18 hours using (1) a modi-
fied architecture, (2) the RoBERTa training procedure [22], and (3)
the LAMB optimizer [36]. By using this framework, we can use a
smaller pre-training corpus while obtaining state-of-the-art accura-
cies, increasing the computational efficiency for pre-training by a
factor of 170 compared to the most recently published model.

2 METHODS

We treat proteins as a “language” and draw ideas from the state-
of-the-art techniques in natural language processing to obtain a
vector representation for proteins. For a sequence of amino acids
to be treated as a sentence, the alphabet of the language is defined
to be the set of symbols

X ={A,RN,D,B,C,E,Q,Z G, HILLKMEPOSUTW,Y,V,X},

where each symbol represents one of 22 amino acids as well as three
additional symbols (B, X, and Z). Two of these are reserved for when
it is not possible to differentiate between asparagine/aspartic acid
(B) and glutamine/glutamic acid (Z). The last symbol (X) is used
for unknown amino acids. This convention is based on the official
TUPAC amino acid one-letter notation [1].

2.1 Tokenization with Byte Pair Encoding

Before amino acid sequences can be interpreted as a language,
we must first define what a word is. This is more challenging for
proteins than most natural languages because unlike the space
character in languages like English, there is no single character (or
amino acid) that is used to divide parts of an amino acid sequence
into meaningful chunks. In the past, deep learning models have
either used individual amino acids as input [9, 18] or have chosen
to group every three amino acids as a “word” [4]. However, there
has been recent interest [3] in statistically determining segments
of amino acids to be used as inputs for downstream machine learn-
ing algorithms using an NLP method called byte pair encoding
(BPE) [14]. Byte pair encoding was originally developed as a com-
pression algorithm although it has been adapted more recently as
a method for identifying subword units [31].

BCB 20, September 21-24, 2020, Virtual Event, USA

NSGPFVLVAAKM -

a4

[Tokenizer J
[CLS] NS FV LV AAK M -

Transformer
Encoder

Viels] V1 Vimask] Vs

1111111

Classification Classification
Layer Layer

$I33133

[CLS] NS GP FV LV AAK M -

Protein Family/
Interaction

Figure 1: PRoBERTa pre-training and fine-tuning.

In our application, given an amino acid sequence s = (01, ..., o)
such that o; € %, a tokenization function is a mapping 7 such that
7(s) = (t1, t2, ..., tn) and each t; is a nonempty substring of s such
thats = #1 - ... - t, The BPE algorithm iteratively merges the most
frequent pair of tokens to form a new token [14, 21].

2.2 Transformer Network Architecture

PRoBERTa uses the language representation model architecture
called Bidirectional Encoder Representations from Transformers
(BERT) [13]. Inspired by the BERT architecture, PRoOBERTa consists
of (1) an embedding layer, followed by (2) T = 5 stacked Trans-
former encoder layers, and (3) a final layer which constructs a
task-specific output (Figure 1). By stacking multiple Transformer
encoder layers, the aim is to capture complex higher-level informa-
tion and relationships from the amino acid sequence. In total, our
model has approximately 44M trainable parameters.

Model Input. A tokenized amino acid sequence (uy, Uz, ..., un) is
either truncated or padded to a fixed-length sequence of 512 tokens.
Concretely, the model input t = (t1, t2, ..., t512) is defined:

Uil if1<(i+1)<n

. _JlcLs] ifi=1
' 7] [PAD] ifn<i<512
[EOS] ifi=512

where [CLS], [PAD], and [EOS] are reserved symbols.

Embedding Layer. To prepare an input sequence ¢ = (t1, f2, ..., tn)
for the Transformer encoder layers, we train an embedding layer
which independently converts each token t; into a vector with
dimension d = 768. The choice of 768 was made after empirically
testing d € {192,384, 768}. Because the model does not contain
any convolution or recurrence, we incorporate sequence order

BCB 20, September 21-24, 2020, Virtual Event, USA

information by adding positional encodings to the input embedding
vectors [35].

Transformer Encoder Layer. Each Transformer encoder layer con-
tains two sub-layers — a multi-head self-attention mechanism and a
fully-connected feed-forward network - with residual connections
around each sub-layer followed by a layer normalization operation
[5]. Each sub-layer, and thus the entire encoder layer, takes as input
and produces a list of n vectors, each of dimension d = 768.

Given an input list of vectors x = (x1, x2, ..., Xp), each vector x;
first travels through the multi-head self-attention mechanism. This
mechanism is composed of a = 12 separate randomly initialized
attention heads, which are trained to identify and then focus on
certain subsets of positions in x based on their computed context
relevance to x;. Using this mechanism, the sub-layer encodes con-
text information from each vector x; in x, weighted by its relevance
to x;, into an output vector y;.

The initial input vector x; is then added to the output vector
y;, after which y; undergoes a layer-normalization step and passes
through a fully-connected feed-forward network which has a single
hidden layer of size h = 3072 and uses a GeLU activation [20]. The
choice of 3072 comes from multiplying 768 by 4 as suggested in
the original BERT publication [13]. Each vector y; passes indepen-
dently through the same feed-forward network to generate the
output vector z;. The vector y; is then added to z;, after which z;
undergoes another layer-normalization step. The output for the
entire Transformer layer is the list of vectors (z1, z2, ..., zn) [35]

Model Output. Without adding any task-specific heads to the
architecture, the model output is a list of [= 512 vectors, each with
length d = 768. The first vector, which corresponds to the special
[CLS] token, acts as an aggregate sequence representation which
we use for sequence classification tasks. We refer to the entire
output as the deep representation of the amino acid sequence.

2.3 Model Pre-training

Following the BERT framework, we train PRoBERTa in two stages:
pre-training and fine-tuning [13]. In the pre-training stage, our objec-
tive is to train the model to learn task-agnostic deep representations
that capture the high-level structure of amino acid sequences.

Based on the RoBERTa procedure, we pre-train PROBERTa using
only the unsupervised Masked Language Modeling (MLM) task,
which adds a Language Modeling head to the network architecture.
MLM randomly masks certain tokens and then trains the network to
predict their original value [22]. Specific training hyperparameters
and optimization are detailed in Section 2.5.

Given a tokenized input sequence (t1, t2, ..., t,), we select a ran-
dom sample of tokens in the sequence to be replaced with a special
token [MASK]. Then we use the cross-entropy loss to train the
network to predict the masked tokens. Unlike the original BERT
procedure, following the RoBERTa procedure, we generate a new
masking pattern every time we feed a sequence to the model [22].
The original BERT procedure also included a Next Sentence Pre-
diction (NSP) task. However, given that proteins are not made up
of multiple sentences, as we have defined them, NSP is not an ap-
propriate pre-training task. In addition, removing the NSP task has
been shown to improve downstream performance in NLP [22].

Nambiar et al.

Pre-training Data. We use UniProtKB/Swiss-Prot (450K unique
sequences with a mean tokenized length of 129.6 tokens), a col-
lection of experimentally annotated and reviewed amino acid se-
quences [10]. Sequences are tokenized with the BPE algorithm
described in Section 2.1. In our experiments, the maximum vocab-
ulary size was set to 10,000 because we empirically observed that
the mean token length increased very little beyond 10,000 tokens,
indicating that most of the longer tokens were detected in the first
10,000 iterations.

2.4 Model Fine-tuning

The pre-trained model can then be specialized for downstream pro-
tein prediction tasks. In the fine-tuning stage, we initialize the model
with the pre-trained parameters. We then modify the pre-trained
architecture by replacing the output layer with a task-specific layer
with dimensions tailored to the specific task. Parameters are fine-
tuned using labeled data from the prediction tasks.

Here, we fine-tune the pre-trained model for our two specific
prediction tasks: family classification and protein-protein inter-
action prediction. For our selected tasks, we feed the aggregate
sequence representation corresponding to the special [CLS] token,
as described in Section 2.2, into an output layer, which consists of
a single-layer feed-forward neural network and softmax classifier.

24.1 Task: Protein Family Classification. For this task, we perform
two modes of classification: binary family classification and multi-
class family classification. In binary family classification, we train
a separate classifier for each protein family to identify which se-
quences belongs to a given family. This classifier performs logistic
regression on the trained sequence representations from the pre-
trained model. We create a balanced training dataset for each clas-
sifier consisting of all the positive examples and the same number
of negative examples drawn uniformly at random without replace-
ment from outside the family. In multi-class family classification,
we train a single classifier that outputs a probability distribution
over the set of all protein families.

Fine-tuning Data. For the Family Classification tasks, we use
313,214 unique protein sequences from UniProtKB/Swiss-Prot whose
manually curated annotations include protein family information
and are not associated with multiple families or hierachical family
classifications [10].

2.4.2 Task: PPI Prediction. Given a pair of tokenized amino acid
sequences

(tl(l), tz(l), o tDYy and (tl(2>, tz(z)’ e t,

we pack them together into a single input sequence separated by a
special token [SEP], which in the RoBERTa procedure is composed
of two [EOS] tokens. The input representation becomes

(rewst, e, etV (sep 12 1P, i) [EOs)).

We truncate each tokenized amino acid sequence to 254 tokens
before concatenation so the maximum combined length of the input
sequence after the addition of the special tokens is [= 512 tokens.

For this problem, we use the fine-tuning procedure to add a
binary classifier layer to the existing pre-training architecture.

Transforming the Language of Life

Protein sequence embeddings: PCA plot

400 4
® FGAMS family

4 ° .
300 L) ® Bacterial ribosomal
° » ’ protein bL36 family
2004 @ °e ® ® TRNA pseudouridine
e L] synthase TruA family
o~
L) Universal ribosomal
E_) 100 f L J protein uL5 family
:. Py ® Transcriptional
0 oy regulatory Rex family
N Yy .
e o & oo oo * ® DHBP synthase family
—100 4 ’) L ® Importin beta family
~200 1 9
—300 —200 -100 0 100 200 300
PC1

Figure 2: The first two principal components of pre-trained
embeddings for 189 amino acid sequences.

Fine-tuning Data. For the PPI prediction task, we use experi-
mentally identified human PPIs from the HIPPIE database that are
confidence scored and functionally annotated [2]. Because HIPPIE
only reports interacting protein pairs, we generated two sets of pu-
tative non-interacting protein pairs to serve as negative examples.
In the “conservative” scenario, we generated 275,401 pairs using
randomly selected human proteins from UniProt [17] that are not
reported to interact in HIPPIE, resulting in a PPI dataset of 536,545
pairs. In the “aggressive” scenario, we generated 275,401 pairs us-
ing randomly selected proteins from HIPPIE that are not reported
to interact, also resulting in a PPI dataset of 536,545 pairs. This
random generation of negative examples is possible because of the
assumption that protein-protein interaction networks are sparse,
although we note the possibility that these negative examples may
include interacting protein pairs not reported in HIPPIE.

2.5 Hyperparameters and Optimization

Our two models use the same hyperparameters and optimization
values, with differences between the pre-training and fine-tuning
stages described below. We use the fairseq toolkit to train and
evaluate our model [27]. We train our model with the LAMB opti-
mizer [36], which is a layerwise adaptive large batch optimization
technique developed to increase performance and reduce training
time for attention-based models. We use the hyperparameter values
from the original LAMB implementation: 1 = 0.9, f2 = 0.999, ¢ =
le-8, and weight decay rate A = 0.01.

We use a minibatch size of 8192 examples. For the pre-training
stage, the learning rate is warmed up linearly over the first 3,125
updates to the peak value of 0.0025. For the fine-tuning stage, the
learning rate is warmed up over the first 312 updates. Afterwards,
it is adjusted using a polynomial decay policy. We selected the
learning rate and warmup period using the square root LR scaling
heuristic and linear-epoch warmup scheduling because of their
success when applied to BERT-based models [36].

Per the original RoBERTa training procedure, we use a dropout
of 0.1 on all Transformer layers and attention weights and a GeLU
activation function [13]. To avoid overfitting and balance model
performance with computational efficiency, we use early stopping
with a patience value of 3 (training stops after 3 consecutive epochs

BCB 20, September 21-24, 2020, Virtual Event, USA

with no improvement in either MLM validation loss during pre-
training or task-specific validation accuracy during fine-tuning).

3 RESULTS

We first describe the sequence features learned from the pre-trained
model. We then show PRoBERTa’s performance when the model is
fine-tuned for the Protein Family Classification and PPI Prediction
tasks. Finally, we perform a robustness analysis by limiting the
amount of labeled input data during fine-tuning.

3.1 Protein Embeddings from the Pre-Trained
Model

We pre-trained the PRoOBERTa model as described in Section 2.3 on
4 NVIDIA V100 GPUs in 18 hours. We first explored whether the
pre-trained model captured any biological meaning from the amino
acid sequences. We created protein embeddings by concatenating
the vectors of each protein’s first 128 tokens and plotted the first
two principal components of thirty proteins from seven related
protein families (Figure 2). We concatenated the vectors because
the concatenated vectors appeared to provide better visualization
results than the [CLS] token. Figure 2 shows that the pre-trained
model is already able to distinguish between these protein families.

To systematically evaluate how well the pre-trained protein
embeddings distinguish protein families, we clustered 9,151 pro-
tein embeddings from the manually-annotated human proteins in
UniProt and compared the clusters to the 3,860 annotated protein
families using Normalized Mutual Information (NMI), an entropy
based metric that measures the agreement between two sets of
labels [28]. However, because this unsupervised learning approach
is especially susceptible to the curse of dimensionality, we substi-
tuted the model described in Section 2.2 with a similar model but
with embedding dimension d = 192 instead of d = 768 [7] and
summed the output vectors. This lower-dimensional embedding is
only used for the unsupervised learning task. To cluster, we reduced
the pre-trained protein embeddings to twenty dimensions using
PCA and applied k-means clustering using Euclidean distance, set-
ting k = 4000 to approximate the number of annotated families.
The mean NMI of the k-means clusters, averaged over 20 runs, is
0.798213, which is significantly higher than the NMI of randomly
assigned clusters (Figure 3, t-test p-value: 8 x 107180),

3.2 Protein Family Classification

Given the promise of the protein embeddings, we then evaluated
the performance of the PRoBERTa model on the protein family
classification task (Section 2.4.1). Clustering the embeddings after
fine-tuning on the protein family classification task shows a higher
NMI than clustering after pre-training (Figure 3), suggesting that the
fine-tuned embeddings capture more protein family information.
For the binary classification task, we trained a separate logis-
tic regression classifier for each protein family with more than
50 proteins and measured the weighted mean accuracy as 0.98.
The classifier corresponding to the lowest scoring family, made up
of 57 proteins, had an accuracy of 0.77. To train these classifiers,
we randomly withheld 30% of the proteins from each family to
be used as the test set. We compared PRoBERTa+logistic to three
other NLP based embedding methods: ProtVec, which is a protein

BCB 20, September 21-24, 2020, Virtual Event, USA

B84 -
182
g 80 E——=
——d
7B
C——
76
Fardom Fre-trained Famiy [FPh2

Figure 3: Plot of NMI values comparing the unsupervised
clustering on three different versions of PROBERTa embed-
dings with the true protein families given by UniProt. PPI:
conservative scenario; PPIv2: aggressive scenario.

Table 1: Comparison of binary family classification (left)
and multi-class family classification (right).

Method Accurac
— y Method Accuracy
ProtVec+logistic 0.89
L DeepFam 0.95
ProtFreqVec+logistic 0.98 .
ProtDocVec+logistic 0.98 Simple CNN 0.72
& PRoBERTa 0.92

PRoBERTa-+logistic 0.98

embedding method inspired by Word2Vec; ProtDocVec, which mod-
ifies ProtVec to use Doc2Vec; and ProtFreqVec, which uses the fre-
quency of triplets of amino acids to form embedding vectors [4, 25].
PRoBERTa+logistic performs better than ProtVec+logistic and sim-
ilarly to ProtDocVec+logistic and ProtFreqVec+logistic (Table 1).
This result supports the idea that contextual embeddings do not
significantly help binary family classification [25].

In the multi-class family classification task, we used fine-tuning
to add an output layer that maps to protein family labels to the
PRoBERTa model. This was done using the dataset of 313,214
UniProt proteins with only one associated family. These proteins
were split into train/validation/test sets (0.8/0.1/0.1), and our fine-
tuned classifier achieved an accuracy of 0.92 on the test set. We then
compared this to two other multi-class family classifiers including
a simple CNN made up of four convolution layers as a baseline
and DeepFam, a CNN method that is the current state-of-the-art
method for protein family classification. In particular, DeepFam is
made up of a convolution layer with eight different kernel sizes and
250 convolution units for each kernel size [26]. PROBERTa with a
classification layer performed better than the baseline method and
had comparable accuracy to DeepFam (Table 1).

3.3 PPI Prediction

We next assessed PROBERTa on the PPI task using the conservative
and aggressive scenarios for sampling non-interacting protein pairs
(Section 2.4.2).

3.3.1 Conservative Scenario. We first evaluated how well the fine-
tuned model’s embeddings capture protein family information com-
pared to the pre-trained embeddings. In the conservative scenario,
the fine-tuned model produces embeddings that cluster with a lower

Nambiar et al.

Table 2: PPI prediction results using 20% of training data
(top) and using 100% of training data (bottom).

Conservative Aggressive

Method Acc. Prec. Rec. | Acc. Prec. Rec.
DeepFam+DI* 0.79 079 0.66 | 0.75 0.76 0.73
PIPR 0.81 075 0.77 | 0.77 077 0.77
ProtVec+DI* 0.80 0.78 0.70 | 0.73 0.72 0.76
PRoBERTa 096 095 0.97]0.79 0382 0.73
PRoBERTa 0.98 098 0.99 | 0.84 083 0.84
(100% training)

*DI: Deep Interact

NMI with protein families compared to the pre-trained embeddings
(Figure 3), indicating that the parameters of the model fine-tuned
on predicting interactions are not as tuned to protein family classifi-
cation. Evaluated on the test set, the fine-tuned PRoBERTa PPI clas-
sifier had an accuracy of 0.96 with a precision and recall of 0.95 and
0.97, respectively, (Table 2) and an ROC AUC of 0.99 (Figure 4). In
these runs, we only used 20% of the available training and validation
data from the train/validation/test (0.8/0.1/0.1) split. This was done
because some of the methods we compare against were not able to
scale up to using 80% of the data for training and thus would not be
able to make a fair comparison to the PROBERTa model trained with
the entire train set. We compare our results to PIPR, which is one
of the top PPI prediction neural networks currently available, using
a similar number of interactions from our dataset [9]. PIPR uses a
residual convolutional neural network (RCNN) architecture to ex-
tract both sequential information as well as local features relevant
for PPI prediction. We also compare our embeddings to the ProtVec
embeddings combined with a feed-forward neural network with
three hidden layers (which we call DeepInteract) that predicts PPI.
Finally, we try a biologically-motivated transfer learning approach
by first training a DeepFam network on protein family classification
and then using one of the hidden layers as the vector representa-
tions of the proteins to be used by DeepInteract. As seen in Figure 4,
PRoBERTa with a classification layer outperforms all of these meth-
ods by a large margin. Further, when using the complete dataset,
the accuracy reaches 0.98 (Table 2 and Figure 6).

3.3.2 Aggressive Scenario. Similar to the conservative scenario, the
model fine-tuned on the aggressive PPI dataset produces embed-
dings with a lower NMI with protein families than the pre-trained
embeddings (Figure 3). For this scenario, PRoOBERTa had an accu-
racy of 0.79 with a precision and recall of 0.82 and 0.73, respectively,
(Table 2) and a ROC AUC of 0.87 (Figure 5). Similar to above, we
only use 20% of the available training and validation data. As seen
in Figure 5, PRoBERTa with a classification layer still performs
better than PIPR, which performs better than the other two meth-
ods. Moreover, when the full training dataset is used, the accuracy
of our model improves to 0.84 (Table 2 and Figure 6). However,
PRoBERTa does show lower performance compared to PIPR and
over-fits (train accuracy: 0.98, test accuracy: 0.77) when trained
on smaller datasets, such as the yeast interactions dataset (11,164
interactions) on which PIPR was originally tested [9].

Transforming the Language of Life

10
0.8
b=
= 0.8
z
§ 0.4
L -
= —— PRoBERTa (area = 0.991)
021 DeepFam + Deep Interact (area = 0.867)
/ PIPR (area = 0.871)
—— ProtVec + Deep Interact (area = 0.868)
0.0

9.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 4: Receiver operating characteristic (ROC) curves for
PPI prediction in the conservative scenario.

10
0.8
&
& 0.6
2
§ 0.4
g™ -
= —— PROBERTa (area = 0.867)
02 PIPR (area = 0.848)
DeepFam + Deep Interact (area = 0.835)
—— ProtVec + Deep Interact (area = 0.806)
0.0

0.0 0.2 0.4 0.6 0.8 1.0
False PosHive Rate

Figure 5: Receiver operating characteristic (ROC) curves for
PPI prediction in the aggressive scenario.

3.4 PRoBERTa Scalability and Robustness

We also investigated the robustness of the models by varying the
amount of training data for both fine-tuning tasks. For the PPI
prediction task in Section 3.3, we used 20% of the training data in
order to compare to existing methods; here, we can use all of the
training data, improving the performance in both the conservative
and aggressive scenarios (Table 2).

To assess the robustness of PRoOBERTa on the protein prediction
tasks, we used fractions of the 0.8 and 0.1 split that made up the fine-
tuning train and validation set, respectively, for task training. For
example, if 90% of the train and validation set was used, this meant
that 90% X 0.9 or 81% of the entire dataset was seen during training.
Figure 6 shows the change in accuracy with different fractions of
the train set used. This shows that all three models were somewhat
robust to different amounts of training data. The PPI models appear
to be more robust (they have smaller slopes) than the Protein Family
model. However, it should be noted that the complete dataset for
the Protein Family model contained 313,214 proteins, while the PPI
dataset had 536,545 interactions in both scenarios. The difference

BCB 20, September 21-24, 2020, Virtual Event, USA

0.975
0.950
0.925
Z
Z p.opp —*— Family
3 PPI
2 08731 —— PPIVZ
a
 0.850
e
e
0.825 //
L

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of train set used

Figure 6: Varying amount of training data for fine-tuning.
PPI: conservative scenario; PPIv2: aggressive scenario.

in robustness could be due to the absolute difference in the number
of training data points.

4 DISCUSSION

In this paper, we propose a Transformer based neural network
architecture, called PRoBERTa, for protein characterization tasks.
This neural network is based on the BERT architecture and the
RoBERTa training procedure with a reduced number of Transformer
layers and using the LAMB optimizer. We found that the pre-trained
embeddings contain general yet biologically relevant information
regarding the proteins and fine-tuning pushes the embeddings
to have more specific information at the cost of generality. While
there are notable differences between protein sequences and natural
language corpuses [23, 33], leveraging the architecture from BERT
tuning can capture this biologically relevant information. Altering
the architecture to include prior knowledge unique to biological
sequences could further improve the embedding space.

We found that using the embeddings for Protein Family Classifi-
cation produced results that were comparable to the current best
methods. In particular, we performed two different forms of classi-
fication; a binary classification that classified a protein as “in the
family" or “not in the family" and a multi-class family classification.
The multi-class family classification was based on the simplifica-
tion that there is only one class per protein. Proteins that belong
to more than one family were excluded from this classifier but not
the binary classifiers.

Furthermore, we used embeddings from PRoBERTa for a fun-
damentally different problem, PPI prediction, using two different
datasets generated from the HIPPIE database and found that with
sufficient data, it substantially outperforms the current state-of-the-
art method in the conservative scenario and still performs better
than the other methods in the aggressive scenario. When evaluated
on the aggressive dataset, the model trained on the conservative
dataset scores an overall accuracy of 0.59, with a precision and
recall of 0.54 and 0.94, respectively. This suggests that the model in
the conservative scenario performs something closer to a protein
classification task to identify which proteins are present in HIPPIE
and are thus more likely to correspond to positive examples.

BCB 20, September 21-24, 2020, Virtual Event, USA

The efficiency of PROBERTa over existing methods (a speedup in
pre-training time by a factor of 170 compared to the similar BERT-
based model by Rives et. al (2019) [30]) provides unprecedented
opportunities for using the growing amount of sequence data in
protein prediction tasks. Further, PROBERTa’s success in these two
different protein prediction tasks alludes to the generality of the
embeddings and their potential to be used in other tasks such as
predicting protein binding affinity, protein interaction types and
identifying proteins associated with particular diseases. In light of
the COVID-19 pandemic, we are currently working on adapting
PRoBERTa for vaccine design.

5 MODEL SCRIPTS

Scripts for pre-training, fine-tuning, and evaluating models, as well
as links to datasets and trained weights can be found at:
https://github.com/annambiar/PRoBERTa

ACKNOWLEDGMENTS

This work has been supported by the National Science Foundation
(awards #1750981 and #1725729). This work has also been partially
supported by the Google Cloud Platform research credits program
(to AR, MH, and AN). AN would like to thank Mark Bedau, Nor-
man Packard and the Reed College Artificial Life Lab for insightful
discussions and Desiree Odgers for inspiring the idea of taking a
linguistic approach to a biological problem.

REFERENCES

[1] 1984. Nomenclature and Symbolism for Amino Acids and Peptides. European
Journal of Biochemistry 138, 1 (1984), 9-37. https://doi.org/10.1111/j.1432-1033.
1984.tb07877.x

Gregorio Alanis-Lobato, Miguel A. Andrade-Navarro, and Martin H. Schaefer.
2016. HIPPIE v2.0: enhancing meaningfulness and reliability of protein-protein
interaction networks. Nucleic Acids Research 45, D1 (10 2016), D408-D414.

[3] Ehsaneddin Asgari, Alice C. McHardy, and Mohammad R. K. Mofrad. 2019. Prob-
abilistic variable-length segmentation of protein sequences for discriminative
motif discovery (DiMotif) and sequence embedding (ProtVecX). Scientific Reports
9,1 (2019), 3577.

[4] Ehsaneddin Asgari and Mohammad R. K. Mofrad. 2015. Continuous Distributed
Representation of Biological Sequences for Deep Proteomics and Genomics. PLOS
ONE 10, 11 (11 2015), 1-15.

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450 (2016).

[6] Mark A.Bedau, Nicholas Gigliotti, Tobias Janssen, Alec Kosik, Ananthan Nambiar,
and Norman Packard. 2019. Open-Ended Technological Innovation. Artificial
Life 25, 1 (2019), 33-49. https://doi.org/10.1162/artl a_00279 PMID: 30933632.

[7] Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1999.
When Is “Nearest Neighbor’” Meaningful?. In Proceedings of the 7th International
Conference on Database Theory (ICDT °99). Springer-Verlag, Berlin, Heidelberg,
217-235.

[8] Maxwell L. Bileschi, David Belanger, Drew Bryant, Theo Sanderson, Brandon
Carter, D. Sculley, Mark A. DePristo, and Lucy J. Colwell. 2019. Using Deep
Learning to Annotate the Protein Universe. bioRxiv (2019).

[9] Muhao Chen, Chelsea J T Ju, Guangyu Zhou, Xuelu Chen, Tianran Zhang, Kai-
Wei Chang, Carlo Zaniolo, and Wei Wang. 2019. Multifaceted protein-protein
interaction prediction based on Siamese residual RCNN. Bioinformatics 35, 14
(07 2019), 1305-i314.

[10] The UniProt Consortium. 2018. UniProt: a worldwide hub of protein knowledge.

Nucleic Acids Research 47, D1 (11 2018), D506-D515.

[11] Sayoni Das and Christine A. Orengo. 2016. Protein function annotation using
protein domain family resources. Methods 93 (2016), 24 — 34.

Javier De Las Rivas and Celia Fontanillo. 2010. Protein-Protein Interactions
Essentials: Key Concepts to Building and Analyzing Interactome Networks. PLOS
Computational Biology 6, 6 (06 2010), 1-8.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and

[2

[12

[13

[14

[15]

[16]

(17

[18

[19

[20

[21]

[22]

[23

[24

[25

[26]

~
=

[28

[29

[30

[32

[33

[34

[35

@
2

(37]

Nambiar et al.

Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171-4186.

Philip Gage. 1994. A New Algorithm for Data Compression. C Users . 12, 2 (Feb.
1994), 23-38.

Yi Guo and Xiang Chen. 2019. A deep learning framework for improving protein
interaction prediction using sequence properties. bioRxiv (2019).

Yanzhi Guo, Lezheng Yu, Zhining Wen, and Menglong Li. 2008. Using support
vector machine combined with auto covariance to predict protein-protein interac-
tions from protein sequences. Nucleic Acids Research 36, 9 (04 2008), 3025-3030.
Tobias Hamp and Burkhard Rost. 2015. Evolutionary profiles improve protein-
protein interaction prediction from sequence. Bioinformatics 31, 12 (02 2015),
1945-1950.

Somaye Hashemifar, Behnam Neyshabur, Aly A Khan, and Jinbo Xu. 2018. Pre-
dicting protein-protein interactions through sequence-based deep learning. Bioin-
formatics 34, 17 (09 2018), i802-i810.

Michael Heinzinger, Ahmed Elnaggar, Yu Wang, Christian Dallago, Dmitrii
Nachaev, Florian Matthes, and Burkhard Rost. 2019. Modeling the Language of
Life - Deep Learning Protein Sequences. bioRxiv (2019).

Dan Hendrycks and Kevin Gimpel. 2016. Bridging Nonlinearities and Stochastic
Regularizers with Gaussian Error Linear Units. arXiv preprint arXiv:1606.08415
(2016).

Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language
independent subword tokenizer and detokenizer for Neural Text Processing. ,
66-71 pages. https://doi.org/10.18653/v1/D18-2012

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2020. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. https://openreview.net/forum?
id=SyxS0T4tvS

Yunan Luo, Lam Vo, Hantian Ding, Yufeng Su, Yang Liu, Wesley Wei Qian, Huimin
Zhao, and Jian Peng. 2020. Evolutionary context-integrated deep sequence
modeling for protein engineering. bioRxiv (2020). https://doi.org/10.1101/2020.
01.16.908509

Christopher D Manning, Christopher D Manning, and Hinrich Schiitze. 1999.
Foundations of statistical natural language processing. MIT press.

Ananthan Nambiar, Mark Hopkins, and Anna Ritz. 2019. Computing the Lan-
guage of Life: NLP Approaches to Feature Extraction for Protein Classification. In
ISMB/ECCB 2019: Poster Session. https://doi.org/10.7490/f1000research.1118014.1
Minsik Oh, Seokjun Seo, Sun Kim, and Youngjune Park. 2018. DeepFam: deep
learning based alignment-free method for protein family modeling and prediction.
Bioinformatics 34, 13 (06 2018), 1254-1262.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng,
David Grangier, and Michael Auli. 2019. fairseq: A Fast, Extensible Toolkit for
Sequence Modeling. In Proceedings of NAACL-HLT 2019: Demonstrations.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
Laura Restrepo-Pérez, Chirlmin Joo, and Cees Dekker. 2018. Paving the way to
single-molecule protein sequencing. Nature nanotechnology 13, 9 (2018), 786-796.
Alexander Rives, Siddharth Goyal, Joshua Meier, Demi Guo, Myle Ott,
C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. 2019. Biological structure and
function emerge from scaling unsupervised learning to 250 million protein se-
quences. bioRxiv (2019).

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Berlin, Germany, 1715-1725.
Temple F Smith, Michael S Waterman, et al. 1981. Identification of common
molecular subsequences. Journal of molecular biology 147, 1 (1981), 195-197.
Nils Strodthoff, Patrick Wagner, Markus Wenzel, and Wojciech Samek. 2020.
UDSMProt: universal deep sequence models for protein classification. Bioinfor-
matics (01 2020). btaa003.

Tanlin Sun, Bo Zhou, Luhua Lai, and Jianfeng Pei. 2017. Sequence-based pre-
diction of protein protein interaction using a deep-learning algorithm. BMC
Bioinformatics 18, 1 (2017), 277.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You
Need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 6000-6010.

Yang You, Jing Li, Jonathan Hseu, Xiaodan Song, James Demmel, and Cho-Jui
Hsieh. 2019. Reducing BERT Pre-Training Time from 3 Days to 76 Minutes. CoRR
abs/1904.00962 (2019).

Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. 2017.
Recent Trends in Deep Learning Based Natural Language Processing. CoRR
abs/1708.02709 (2017).

https://github.com/annambiar/PRoBERTa
https://doi.org/10.1111/j.1432-1033.1984.tb07877.x
https://doi.org/10.1111/j.1432-1033.1984.tb07877.x
https://doi.org/10.1162/artl_a_00279
https://doi.org/10.18653/v1/D18-2012
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://doi.org/10.1101/2020.01.16.908509
https://doi.org/10.1101/2020.01.16.908509
https://doi.org/10.7490/f1000research.1118014.1

	Abstract
	1 Introduction
	1.1 Background: Deep Learning
	1.2 Applying Deep Learning to Protein Prediction Tasks
	1.3 Contributions

	2 Methods
	2.1 Tokenization with Byte Pair Encoding
	2.2 Transformer Network Architecture
	2.3 Model Pre-training
	2.4 Model Fine-tuning
	2.5 Hyperparameters and Optimization

	3 Results
	3.1 Protein Embeddings from the Pre-Trained Model
	3.2 Protein Family Classification
	3.3 PPI Prediction
	3.4 PRoBERTa Scalability and Robustness

	4 Discussion
	5 Model Scripts
	Acknowledgments
	References

