
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uasa20

A Model-free Variable Screening Method Based on
Leverage Score

Wenxuan Zhong, Yiwen Liu & Peng Zeng

To cite this article: Wenxuan Zhong, Yiwen Liu & Peng Zeng (2021): A Model-free Variable
Screening Method Based on Leverage Score, Journal of the American Statistical Association, DOI:
10.1080/01621459.2021.1918554

To link to this article:  https://doi.org/10.1080/01621459.2021.1918554

View supplementary material 

Accepted author version posted online: 19
Apr 2021.

Submit your article to this journal 

Article views: 150

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/loi/uasa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2021.1918554
https://doi.org/10.1080/01621459.2021.1918554
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2021.1918554
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2021.1918554
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2021.1918554
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2021.1918554
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2021.1918554&domain=pdf&date_stamp=2021-04-19
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2021.1918554&domain=pdf&date_stamp=2021-04-19


 

A Model-free Variable Screening Method Based on Leverage 
Score 

Wenxuan Zhong1*, Yiwen Liu2, and Peng Zeng3 

 

1Department of Statistics, University of Georgia, Athens, GA, 30602. 

2Department of Epidemiology and Biostatistics, University of Arizona, Tucson, 

AZ, 85724. 

3Department of Mathematics and Statistics, Auburn University, Auburn, AL, 

36849. 

*Corresponding author wenxuan@uga.edu 

 

Abstract 
With rapid advances in information technology, massive datasets are collected in 
all fields of science, such as biology, chemistry, and social science. Useful or 
meaningful information is extracted from these data often through statistical 
learning or model fitting. In massive datasets, both sample size and number of 
predictors can be large, in which case conventional methods face computational 
challenges. Recently, an innovative and effective sampling scheme based on 
leverage scores via singular value decompositions has been proposed to select 
rows of a design matrix as a surrogate of the full data in linear regression. 
Analogously, variable screening can be viewed as selecting rows of the design 
matrix. However, effective variable selection along this line of thinking remains 
elusive. In this article, we bridge this gap to propose a weighted leverage variable 
screening method by utilizing both the left and right singular vectors of the 
design matrix. We show theoretically and empirically that the predictors selected 
using our method can consistently include true predictors not only for linear 
models but also for complicated general index models. Extensive simulation 
studies show that the weighted leverage screening method is highly 
computationally efficient and effective. We also demonstrate its success in 
identifying carcinoma related genes using spatial transcriptome data.  

Keywords: General index model; Variable screening; Leverage score; Singular 

value decomposition; Bayesian information criteria  

1  Introduction 

Among all statistical learning tools, regression analysis is one of the most popular 

methods and is widely used for modeling the relationship between a response y 
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and a series of predictors 1, , px x . Various models and methods have been 

developed for regression analysis in the literature, ranging from classic linear 

regression to nonparametric regression. Nevertheless, most regression models 

and methods can be seriously compromised if the dimensionality p is large. It is 

ideal to select a subset of predictors to ensure the success of regression 

analysis.  

A wide range of variable selection methods have been proposed to facilitate 

dimension reduction in the literature, which can be mainly classified into two 

approaches: the subset selection approach including stepwise regression 

(Efroymson, 1960), forward selection, backward selection, etc; and the penalized 

likelihood approach including LASSO (Tibshirani, 1996), non-negative garrotte 

(Breiman, 1995; Yuan and Lin, 2007), SCAD (Fan and Li, 2001), elastic net (Zou 

and Hastie, 2005), penalized one-step estimator (Zou and Li, 2008), and etc. 

Both of the two approaches can effectively regress y on a selected subset of 

1( , , )T
px x x   when x is of a moderate dimensionality. However, the 

aforementioned methods fail when p is larger than the sample size n (Fan and 

Lv, 2010).  

For p n , an initial and deterministic screening step, which decreases the 

number of predictors from p to q where q p , can greatly improve 

computational efficiency. In many applications, we expect q to be a rather crude 

upper bound to the number of “true” or “predictive” variables. Follow this line of 

thinking, a two-step screening strategy for linear regression was proposed by 

Fan and Lv (2008) to first screen out surely redundant variables and then refine 

the model using sophisticated variable selection methods. In Fan and Lv (2008) 

and Fan et al. (2009), they developed a marginal correlation ranking method and 

showed ( ) 1qP A   under some conditions, where  is the subset of true 

variables and Aq is selected subset of q variables. The asymptotic performance 

of the screening methods was further studied in Huang et al. (2008), Hall 

et al. (2009), and Hall and Miller (2009) under various settings. Despite the large 
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number of available theoretical results, correlation ranking methods are only 

feasible when different variables are nearly independent. When the 

independence is not the case, the question that arises is how to screen 

predictors with moderate dependency structures. A simple solution has been 

proposed in Wang (2009) for linear models, showing that the forward selection 

procedure has screening consistency even when p is substantially larger than n. 

However, the drawback of the forward selection method is its high computational 

cost. In addition, the aforementioned methods become ineffective when the 

underlying model is beyond linear. To address these issues, Zhu et al. (2011) 

extended the feature screening framework to semiparametric models. Their 

proposed procedure was demonstrated to possess ranking consistency, which 

leads to consistency in variable screening. Li et al. (2012) developed a screening 

procedure based on distance correlation. Both methods consider the marginal 

relationship between each predictor and the response variable. Zhou 

et al. (2020) proposed cumulative divergence to characterize the functional 

dependence between predictors and the response variable, taking into account 

the joint effects among covariates during the screening process. These model-

free methods are more robust but are often computationally intensive.  

Heuristically, the screening process can be cast as a selection of columns of a 

data matrix. If we can find some “importance score” to evaluate a column’s 

significance, we can screen out the insignificant columns with a probability that is 

calculated based on the importance score (Gallant et al., 1993; Mahoney and 

Drineas, 2009). This technique has been used extensively by computer scientists 

in finding a sparse matrix surrogate for a given matrix (Mahoney 

et al., 2008; Drineas et al., 2008; Mahoney and Drineas, 2009). A leverage 

sampling method, in which rows and columns are sampled based on the 

leverage scores of data matrix n pX  and TX , has demonstrated much 

promise (Mahoney and Drineas, 2009; Ma et al., 2014; Ma and Sun, 2015) and is 

becoming the new research theme for matrix approximation. This method has 

recently been applied to linear regression problem to select a subsample, i.e., 
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select a set of rows of a data matrix. Given 1( , )T n
i i iy x  where p

i x , the linear 

regression model is of the form  

,T
i i iy  x  (1)  

where p   is the regression coefficient that needs to be estimated, and ϵi is 

the stochastic error that quantifies the measurement error. Let 1( , , )T
nX x x . 

Without loss of generality, we assume X is centralized throughout this paper and 

has a rank d singular value decomposition, i.e., TX UΛV , where 

,n d p d  U V  are column orthonormal matrices and d dΛ  is a diagonal 

matrix. Then, the importance of the ith observation or the ith row of X in a linear 

regression model is evaluated by its leverage score that is defined by ( ) ( )
T

i iU U  (or 

2
( ) 2|| ||iU , where 2||· ||  denotes the L2 norm), where ( )iU  denotes the ith row of U. 

Leverage scores are extensively used to measure how influential or important the 

rows of X are in a linear regression model. Recently, 2
( ) 2{|| || , 1, , }i i n U  were 

used to select rows or subsample of X in a regression analysis such that the 

regression line obtained by the subsample can nicely approximate the regression 

line obtained by the full data (Ma et al., 2014; Ma and Sun, 2015). In other words, 

the rows with large leverage scores are the rows that can be used to nicely 

approximate the regression line.  

Now returning to the variable screening problem, recall that selecting the 

columns of X can be cast as selecting the rows of TX . Moreover, the leverage 

score of the jth row of TX  is defined by 2
( ) 2|| ||jV , where ( )jV  denotes the jth row of 

V. It can be considered as the influence of the jth column of X on the regression 

analysis. We thus intuitively use 2
( ) 2|| ||jV  as an “importance score” to sample the 

columns of X or the predictors. From this point on, we refer to 2
( ) 2|| ||iU  as the left 

leverage score and 2
( ) 2|| ||jV  as the right leverage score. Analogous to left 

leverage score for selecting data points, right leverage scores might be used to 

select variables (Stewart, 1998; Drineas et al., 2006; Dasgupta et al., 2007) when 

the regression model is linear. However, their performances are not as good as 
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one may expect from this line of heuristic reasoning. The primary reason for the 

success of using the left leverage score for selecting the rows of X is that there is 

a theoretical link between the left leverage score and response, i.e,  

2
( ) 2

ˆ
|| || ,i

i
i

y
y





U  

where ˆiy  is the ith fitted value of least squares. That is, the left leverage score 

measures the changes of the fitted value of the response with respect to a small 

change of the response. It remains elusive whether there exists some theoretical 

underpinning for linking the right leverage score and response. More importantly, 

in practice, the relationship between the response variable and predictors is 

usually more complicated than a linear model, which adds another layer of 

complications in developing the leverage screening approach. It is conceivable 

that the development of variable screening or variable selection methods based 

on the right leverage score when the underlying models are beyond linear 

models is very challenging. Their theoretical underpinning remains unknown 

even for fixed p if there is no concrete model to associate response and 

predictors, because there is no unified likelihood function to study their statistical 

properties. The problem may be even harder for growing p or even p n .  

To surmount these challenges, in this article, we propose a variable screening 

criterion that is derived by integrating both the right leverage score 2
( ) 2|| ||jV  and 

left leverage score 2
( ) 2|| ||iU  together to evaluate columns’ or predictors’ 

importance in regression analysis. More specifically, we assume that given k 

linear combinations of predictors x, response variable y and predictors x are 

independent. Our method is “model-free” in the sense that there is no explicit link 

function between y and x. We develop a weighted leverage score to measure the 

“importance” of each variable in the model. Based on the score, we design a 

one-pass variable screening algorithm. More importantly, we develop a BIC-type 

criterion to decide the number of selected predictors. We show empirically and 
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theoretically that our proposed method can consistently select the non-redundant 

predictors.  

Our main methodological contribution is to develop a variable screening method 

in high dimensional model-free setting. Compared with the variable screening 

methods for parametric models, our method avoids the model mis-specification 

error. Compared with the variable selection in more flexible nonparametric 

models (Ravikumar et al., 2009; Fan et al., 2011), our method does not estimate 

the unknown link function between response and predictors and has substantial 

analytical and computational advantages. The proposed weighted leverage score 

is calculated using the singular value decomposition, which can be found in most 

computing software. To the best of our knowledge, our work is the first to relate 

the leverage score with variable selection in semi-parametric models. The 

screening algorithm is a one-pass algorithm, which is scalable to high 

dimensional settings. We also develop BIC-type criteria to select the number of 

variables. Our main theoretical contribution is to establish screening consistency 

under very general regularity conditions. In particular, we show that the weighted 

leverage scores of the true predictors are larger than those of the redundant 

predictors. Moreover, the BIC-type criteria we develop are consistent for variable 

screening.  

The rest of the paper is organized as follows. In Section 2, we briefly review the 

general multiple index model and introduce the motivation of using weighted 

leverage score (WLS) for variable screening. Section 3 illustrates the asymptotic 

behavior and rank consistency of WLS. Several implementation issues of the 

procedure are discussed in Section 4. Simulation studies and a real data 

example are reported in Section 5 and Section 6. Section 7 concludes the paper 

with a discussion. All proofs are provided in Supplementary Material.  

2  Model-free variable screening using weighted leverage score 

2.1  Model-free regression and sufficient dimension reduction  
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Without loss of generality, we assume from this point on that x is a p-dimensional 

random vector with mean zero and variance-covariance Σ, and y   is the 

response variable. Let  be a subspace of p , and P  be the projection 

operator from p  to  in an inner product space. If  

| ,y x P x  (2)  

where   means “independent of”, it is said that P x  is sufficient for the 

dependence of y on x (Cook, 1995, 1996, 1998). In other words, the projection 

P x  captures all the information contained in x regarding y. Regressing y on x 

thus is equivalent to regressing y on P x . A dimension reduction is achieved if 

the dimensionality of  is smaller than p.  

Expression (2) does not spell out any model, i.e., “model-free”, in the sense of 

classical regression settings, where the conditional distribution of y given x is 

explicitly stated. However, it is equivalent to a general index model proposed in 

Li (1991),  

1( , , , ),T T
ky f x x    (3)  

where (·)f  is an unknown function, 1, , k   are p-dimensional vectors, k is an 

integer much smaller than p, and ϵ is a stochastic error. It is easy to show that y 

and x in model (3) are independent if { | 1, , }T
mx m k   are given. Therefore, the 

subspace spanned by { | 1, , }T
mx m k   can serve as the subspace in model (2). 

Conversely, if (2) holds, there exist (·)f  and ϵ such that (3) holds. A brief proof of 

the equivalence between the two models can be found in Zeng and Zhu (2010).  

Model (2) and (3) are referred to as the sufficient dimension reduction (SDR) 

regression model, and  is referred to as a dimension reduction subspace. 

Dimension reduction subspace may not be unique. Cook (1996) introduced an 

important concept called central subspace, which is defined as the intersection of 

all dimension reduction subspaces when it is a dimension reduction subspace 

itself. The central subspace is denoted by |y x , and the dimension of |y x  is called 

Acc
ep

ted
 M

an
us

cri
pt



the structural dimension of regressing y on x. Under mild conditions, it can be 

shown that |y x  exists (see Cook (1995) for details). Throughout this paper, we 

assume the existence of |y x .  

The dimension reduction regression model is unarguably the most general 

formulation and covers a wide range of parametric and semi-parametric models. 

For example, if y is a discrete variable taking values in {1 , 2, , }K , the 

dimension reduction regression model covers logistic regression and many 

classification models. If y is a continuous variable taking values in , linear 

regression model, partial linear model, and single index model are its special 

cases. Comparing to existing models, the dimension reduction regression models 

not only provide a much flexible model structure to address the nonlinear 

dependency but also keep the model simplicity. Thus it has been extensively 

used to analyze the complicated high-dimensional data. Despite the popularity of 

the SDR in high-dimensional regression, it has been shown in Zhu et al. (2006) 

that the efficiency of the estimates in the SDR model deteriorates when one 

includes more and more irrelevant features (covariates). Thus, instead of 

identifying the low dimensional projections, simultaneously detecting the non-

redundant predictors is more critical especially when p n .  

2.2  Weighted leverage score for model-free regression 

Given ( , )T
i iyx  for 1, ,i n  , notice that ix  can be approximated by ( )

T
iVΛU . 

Recall that ( )iU  denotes the ith row of left singular matrix U, and it has a natural 

connection with the response variable yi as it contains the sample information of 

the data. To reflect such connection when constructing the weighted leverage 

score, we integrate both ( )iU  and yi together by utilizing the slicing scheme and 

inverse regression idea. We first divide the range of the response variable into h 

intervals or slices 1, , hS S  and then group the ( )iU  accordingly if its 

corresponding yi falls into the same slice. For each slice, we calculate its slice 

mean by taking its group mean ( )
1

1 ( )
n

i i
i

I y S
n 

 U U , where (·)I  is the 

Acc
ep

ted
 M

an
us

cri
pt



indicator function, and 
1

( )
n

i
i

n I y S


   for 1, ,h  . Finally, we calculate the 

sample variance of the slice means to obtain an estimate of ( )var[E( | )]i iyU  as 

1

h Tn
n

 U U . The matrix ( )var[E( | )]i iyU  captures the information contained in the 

link function f of model (3). Further, ( )jV , as the jth row of the right singular matrix 

V, reflects the predictor information. Thus, to evaluate how influential a predictor 

is to the regression model (3), we propose the weighted leverage score of jth 

predictor ˆ j  as the right leverage score ( ) 2|| ||jV  weighted by a matrix formulated 

based on the left singular matrix U,  

( ) ( )
1

ˆ ( ) .
h T T

j j j
n
n




V U U V  (4)  

The weighted leverage score is constructed on the slicing scheme and is closely 

related to the slice inverse regression (SIR) method proposed in Li (1991). It has 

been shown in Li (1991) that when the linearity condition is satisfied, the inverse 

regression curve E( | )i iyx  resides in the space that is spanned by 1 , , k   . 

Thus 1( , , )kP      is the basis of the space that contains E( | )i iyx . Based 

on this fact, Li (1991) proposed to estimate 1, , k   by conducting eigenvalue 

decomposition on 
1
2var[E( | )]i iy



 x . Now the key to the success of dimension 

reduction is how to estimate 
1
2var[E( | )]i iy



 x . Notice that the inverse regression 

curve E( | )i iyx  is a function of a one dimensional response variable yi, it thus can 

be easily approximated by a step function. More specifically, we can estimate 
1
2E( | )i iy



 x  by 
1

( 1) 2

1

ˆ ( )
n

i i
i

n I y S






  x , where ̂  is an estimator of Σ. Further, with 

2ˆ T  VΛ V , we can write 
1
2ˆ

i



 x  as ( )
T
iVU . Then 

1
2var[E( | )]i iy



 x  is estimated by  

1

( ) ,
h T Tn

n

V U U V   (5)  
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of which the diagonal elements are the weighted leverage scores. In the next 

Section, we show that the weighted leverage scores can consistently select the 

true predictors for fixed 1, , hS S .  

Intuitively, the ˆ j  can be cast as a weighted right leverage score ( ( ) 2|| ||jV ), 

where the weights are constructed by the left singular matrix U. We thus refer to 

ˆ j  as the weighted leverage score. Notice that the weight matrix, formulated by 

U and 1{ }n
i iy 

, captures the nonparametric information f. It is the same for all 

predictors when constructing ˆ j ’s. While ( )jV  captures the predictor-specific 

information. Thus the weighted leverage score can be naturally used to evaluate 

a predictor’s significance in model (3). Using the weighted leverage score, we 

propose a simple variable screening algorithm that is sketched in Algorithm 1.  

Algorithm 1 The weighted leverage score screening algorithm 

Step 1. For 1, ,j p  , calculate the weighted leverage score of jth variable, ˆ j , 

by equation (4).  

Step 2. Sort the weighted leverage scores in decreasing order and denote them 

as (1) ( )ˆ ˆ p  . Output the predictors that with the highest p0 weighted 

leverage scores. The final selected predictor set is  

0( )ˆ ˆ{ : }.j pj     

3  Theoretical Justification 

In this section, we show that the minimum weighted leverage score of true 

predictors is larger than the maximum weighted leverage score of redundant 

predictors. Consequently, the true predictors are first selected if we rank the 

predictors according to their weighted leverage scores. We demonstrate that this 

ranking property holds for both the population and sample weighted leverage 

scores.  
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Let us first consider the ranking property of the population weighted leverage 

score, denoted as ωj. Clearly, ωj is the jth diagonal element of 
1

( ) ,
h

T Tp


 u u  

where  and ( | )i iE y S u u  are the population version of V and U  

respectively, and a rigorous definition of iu  can be found in condition 3.6. For a 

fixed slicing scheme 1{ }hS 
, we have ( )p P y S  . Under certain regularity 

conditions, we first show that the minimum { | }j j   is larger than the 

maximum { | }c
j j  , where  is the collection of p0 true predictors under 

model (2) and (3), and {·}c  denotes the complement of a given set.  

To ease the description, we introduce the following notations. Let max (·)  and 

min (·)  denote the functions that take the maximum and minimum 

eigenvalues/singular values of a matrix respectively. Let 

1

E( | )E( | )
h

T
hV p x y S x y S



    and T
hk hM B V B , where 1( , , )kB    in 

model (3). Clearly Vh is an estimate of var[E( | )]x y  and Mhk is an estimate of 

var[E( | )]TB x y  when E( ) 0x  , where y  is discretized y. To prove the ranking 

property of ωj, we require the following conditions on the random vectors x, from 

which the left and right singular vectors are derived.  

Condition 3.1. Assume that x is from a non-degenerate elliptically symmetric 

distribution.  

Condition 3.2. There exist two positive constants min  and max , such that 

min min max max( ) ( )        .  

Condition 3.3. For fixed slicing scheme, 1, , hS S , there exist two positive 

constants min
h  and max

h  such that max max( ) h
hV   and min min( ) h

hkM  .  

Condition 3.4. There exists a positive constant 0 0  such that for j  ,  

max
( ) 2 0

min

[cov( , )]
min || || ,

[cov( , )]
c

j j

x x
B

x x



   
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where ( )jB  is the jth row of the p  ×  k coefficient matrix B.  

Condition 3.1 is also called the design condition and was first proposed in Duan 

and Li (1991) to ensure that 1, , k   in model (3) are the eigenvectors of 

var[E( | )]x y . It is slightly stronger than the linearity condition that was required in 

Li (1991). If condition 3.1 holds, we have ( | ) cov( , )T T TE x B x x B x B x . The 

conditional expectation of x given BTx is linear in BTx. The design condition was 

also required in Zhu et al. (2011) to establish variable screening consistency. It 

always holds if x follows a multivariate Gaussian distribution, a condition that is 

required by most variable selection procedures. Condition 3.2 is imposed on the 

population covariance matrix, which ensures that no predictor has a dominate 

variance or is linearly dependent on other predictors (Zhong et al., 2012). 

Condition 3.3 ensures that no 
1

E( | )jx y  or 
1

E( | )T
m x y  has a dominate variance or 

is linearly dependent on 
2

E( | )jx y  or 
2

E( | )T
m x y  respectively for 1 2j j  and 

1 2m m . This condition is slightly stronger than the so-called coverage condition 

(Cook et al., 2004) that ensures Vh to recover all the SDR directions. Condition 

3.2 and 3.3 are necessary conditions. Without the two conditions, neither  is 

well defined nor Vh can be used to recover model (2) and (3). Similar conditions 

were also required in Li (1991) and Zhong et al. (2012) to ensure the consistency 

of B. Condition 3.4 is a sufficient condition for the success of Theorem 3.5 

(Supplementary Material S.3.1). It requires that the coefficients of true predictors 

are large enough to be detectable. Intuitively, the projection of the redundant 

variables on the space that spanned by the true predictors must be smaller than 

the projection of the response y on the space that is spanned by the true 

predictors. It is easy to see that condition 3.4 always holds when x  and cx  are 

independent.  

Theorem 3.5. Given conditions 3.1-3.4 are satisfied, we have 

min max cj j jj
  

 .  
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Theorem 3.5 implies that the weighted leverage score of any true predictor is 

larger than that of any redundant predictors. The proof of this theorem is 

collected in Supplementary Material S.1.1. If ˆmax | |j j j   is smaller than 

min max cj j jj
   
  , we thus have that ˆ j  possesses the ranking 

consistency.  

If we further assume that the following conditions are satisfied, we showed that 

ˆ j  still has the ranking property when p n  as both n and p go to infinity.  

Condition 3.6. Assume 1, , nx x  are i.i.d. p-dimensional random vectors with the 

representation  

,i i x u   (6)  

where 1( , , ) p p
p

  v v  with jv  being the jth eigenvector of Σ, 

1 ( , , ) p p
pdiag        with λj being the square root of jth eigenvalue of Σ, and 

1( , , )T
i i ipu u u  with each element be i.i.d. sub-Gaussian random variable with 

zero mean and unit variance.  

Condition 3.7. Assume the spiked model such that 

1 1 0d d p       . The spiked eigenvalues are well separated and 

2 2/j i jic    for , {1, , }i j d   and i j , where cji is a positive constant. The non-

spiked eigenvalues are bounded by some positive constants.  

Condition 3.8. Assume p  >  n. For spiked eigenvalues 2 2
1{ } , / ( ) 0d

j j jp n   . For 

non-spiked eigenvalues 2
1{ }p

j j d   , there exists a positive constant c  such that 

1 2 1/2

1

( ) ( )
p

j
j d

p d c o n 

 

   .  

Condition 3.9. Given any slice 1{ } , E( | ) 0h
ij iS u y S    for 1, ,j d p   , and 

4E(| | | )ij iu y S   for 1, ,j d  .  
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In condition 3.6, we assume 1, ,i ipu u  are i.i.d. sub-Gaussian random variables. 

Given the variance-covariance matrix Σ, then ix  having the representation is also 

sub-Gaussian distributed with strong tail decay. Compared with condition 3.1 that 

requires a symmetric distribution, this condition emphasizes on the tail behavior 

of the distribution of ix . This class of distributions is sufficiently wide enough to 

contain all bounded distributions.  

Condition 3.7 assumes the spike covariance model introduced by 

Johnstone (2001). The eigenvalues of covariance matrix are divided into 

distinguishable spiked ones and bounded non-spiked ones. A similar condition 

can be found in Shen et al. (2014, 2016) and Fan and Wang (2015). The well 

separated spiked eigenvalues satisfy 2 2 2
1 0min ( ) /j d j j j c      for some 0 0c  . 

The non-spiked ones are bounded by two positive constants cl and cu such that 

2
l j uc c   for j  >  d.  

The spiked covariance model typically assumes that several large eigenvalues 

are well-separated from the remaining. In this paper, we are particularly 

interested in the spiked part since the corresponding directions explain most of 

the variations in the data, while the remaining directions contain noise. Since the 

weighted leverage score is developed based on both the left and right singular 

matrices, to control the signal and noise contained in the data, we assume in 

condition 3.7 that the first d directions explain a large proportion of the 

information of the data, represented by 2 2

1 1

( ) / ( )
pd

j j
j j

 
 

  . Here we consider d as a 

fixed number and is independent of n and p, which means that d n  as n . 

Furthermore, d is also independent of the number of true predictors p0.  

Condition 3.8 allows /p n  in a way such that 1{ }d
j j   also grows fast enough 

to ensure 2/ ( )jp n  goes to zero. The same condition was required in Fan and 

Wang (2015) to guarantee a clear separation of the signal from the noise. 

Together with conditions 3.7 and 3.8, we may establish the asymptotic behaviors 
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of the spiked eigenvalues and corresponding eigenvectors. An example of such 

spiked model could have eigenvalues 2 2
1 1 1d    , where 2 2

1 , , d   are 

spiked eigenvalues, and the rest are non-spiked eigenvalues. Condition 3.9 

requires that the conditional expectation E( | )i iy Sx  is contained in the space 

spanned by 1, , dv v  with 1 1E( | ), , E( | )i i d id iu y S u y S     as coefficients.  

Theorem 3.10. Assume conditions 3.1-3.4 and 3.6-3.9 are satisfied. Denote 

min max cj j jj
   
  . There exists a positive constant 0  and ξ such that for 

0 2
( , / 2)

d

p
n

 


 ,  

1 ˆ(max | | ) 1.j p j jP         (7)  

In addition,  

ˆ ˆ(min max ) 1.cj j jj
P   

    (8)  

The proof of Theorem 3.10 is collected in Supplementary Material S.1.2.  

4  Implementation Issues 

There are two challenges in implementing the WLS algorithm: 1) The 

specification of the number of spiked eigenvalues d is crucial for detecting the 

amount of signals; 2) The specification of the number of selected predictors 

significantly affects the false selection and false rejection and consequently is 

another critical issue in practice. In the following, we discuss how to deal with 

these two issues.  

4.1  Decide the number of spiked eigenvalues d 

By analyzing the eigenvalues of the covariance matrix, we suggest a BIC-type of 

criterion for determining the number of spiked eigenvalues d. Let 2 2
1/ 1i i     

and 2 2
1

ˆ ˆˆ / 1i i    , where 2
i  and 2ˆ

i  are ith eigenvalues of Σ and ̂  respectively 

for 1, ,min( , )i n p  . It is clear that 1 min( , )
ˆ ˆ ˆ

d n p    . Let r be the number 
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of current selected spiked eigenvalues, we define a criterion of BIC-type as 

follows.  

1

1min( , )
2

1

ˆ ˆ( ) (log 1 ) / ,
n p

i i n
i r

D r c r n 
 

       (9)  

where 
1nc  is a positive constant. The estimator of d is defined as the minimizer d̂  

of D(r) over 1, ,min( , )r n p  . Notice that the first term of (9) indicates the loss of 

information. It decreases as we include more eigenvalues. When r  >  d, the 

decrease in the loss of information becomes smaller than the penalty, and D(r) 

starts to increase. The following theorem states the consistency of d̂ .  

Theorem 4.1. Assume conditions 3.6-3.9 are satisfied. Let ˆ arg min ( )rd D r , we 

have ˆ( ) 1P d d  .  

Theorem 4.1 ensures that D(r) is consistent for specifying d. The proof of 

Theorem 4.1 is collected in Supplementary Material S.1.3. Our simulation study 

shows that the proposed criterion leads to the correct specification of d and can 

be generally used in practice. In terms of calculating singular values, we consider 

the reduced singular value decomposition (SVD) in the p  >  n scenario in this 

paper. The n largest singular values are calculated first, and the number of 

spiked eigenvalues d̂  is then determined using this criterion. We calculate the 

weighted leverage scores based on the first d̂  singular vectors. For ultra-high 

dimensional data, we recommend using fast algorithms for SVD, such as the 

randomized block Krylov method (Musco and Musco, 2015), the fast stochastic 

k-SVD algorithm (Shamir, 2016), and the LazySVD (Allen-Zhu and Li, 2016).  

4.2  Decide the number of predictors 

Theorem 3.10 ensures that the weighted leverage scores preserve the ranking 

consistency under certain conditions. To achieve the screening consistency, we 

rank each predictor’s WLS and keep p0 predictors with the largest WLS. A good 

estimate of p0 thus is critical for screening consistency. When 0p̂  is too large, we 
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keep too many redundant predictors, and if 0p̂  is too small, we miss a lot of true 

predictors. In literature, a common criterion to decide 0p̂  is the BIC-type criterion 

that was used in Chen and Chen (2008) and Wang (2009). In this article, we 

propose a modified version of BIC-type criterion. Under some conditions, we 

show that the subset of predictors that minimizes the modified BIC-type criterion 

consistently includes the true predictors. Next, we introduce the modified BIC-

type criterion.  

Arrange the predictors such that 1ˆ ˆ p   is satisfied. Let r be the number of 

currently selected predictors. Similar as BIC, we define  

2
1

ˆ( ) log( ) (log log ) / max( , ),
r

j n
j

G r r n c p n p


     (10)  

where 
2nc  is a pre-specified positive constant. Notice that 

2

1

1

ˆ ˆ( 1) ( ) log(1 / ) (log log ) / max( , )
r

r j n
j

G r G r n c p n p 




      . The less significant 

the rth predictor is, the smaller the ˆ r  is. The value of ( 1) ( )G r G r   thus is 

smaller when adding the rth predictor, until to some point that ˆ r  is too small to 

have positive ( 1) ( )G r G r  , G(r) starts to increase. We show in Theorem 4.2 

that G(r) can consistently screen out the redundant predictors.  

Theorem 4.2. Assume that conditions 3.1 - 3.4 hold. If we further assume that 

conditions 3.6 - 3.9 are satisfied, we have  

( ) 1,P     (11)  

where  is the subset of true predictors and  is the subset of selected 

predictors that minimizes G(r).  

The proof of Theorem 4.2 is collected in Supplementary Material S.1.4. Theorem 

4.2 ensures that G(r) is consistent for predictor screening. In Section 5, we use 
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comprehensive simulation studies to justify the empirical performance of (·)G  in 

determining the model size.  

5  Simulation Study 

We have conducted extensive simulation studies to compare the performance of 

WLS screening method with that of existing variable screening methods, 

including sure independence ranking and screening (SIRS) (Zhu et al., 2011) and 

sure independence screening with distance correlation (DC-SIS) (Li et al., 2012). 

The performances of the aforementioned variable screening methods were 

evaluated by the following four criteria: the average number of irrelevant 

predictors falsely selected as true predictors (denoted by FP), the average 

number of true predictors falsely excluded (denoted by FN), the average 

minimum model size to include all true predictors (denoted by ), and CPU 

time charged for the execution of the corresponding method. We used [ / log( )]n n  

as the cutoff for SIRS and DC-SIS, and (·)G  to determine the number of selected 

predictors for WLS. The FP and FN were used to examine the accuracy of 

variable screening procedures. The  is an indicator of the ranking property 

with a smaller value indicating a better screening process. The computation time 

was also recorded here for the evaluation of efficiency.  

Throughout this section, we used the following two settings to generate i.i.d. 

copies of x. (1) Assume 1( , , )T
px x x   and let the index set of the true predictors 

be 1 2 3 4 5 6{ 1, 10, 15, 20, 25, 30}t t t t t t       . We generated i.i.d. copies of x 

by i i x u  for 1, ,i n  , where  is a p-by-p orthonormal matrix, 

1 2diag( , , , ,1, ,1)d       has d spiked values, and iu  follows a multivariate 

normal distribution with E( )i u 0  and var( )i pIu . (2) We further studied the 

performance of WLS when the covariance matrix Σ does not have spiked 

eigenvalues. Assume that 1( , , )T
px x x   follows a multivariate normal 

distribution with mean zero and covariance | |Cov( , ) i j
i jx x    and let the index set 

of true predictors be 1 2 3 4 5 6{ 1, 10, 20, 30, 40, 50}t t t t t t       . Let 
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ˆ min( , )d n p  if there is no spiked eigenvalue, and the implementation issue 

regarding 
1nc  and 

2nc  is provided in Supplementary Material S.2.  

Example 1. In this example, we consider the classic linear model.  

1 2 3 4 5 6
,t t t t t ty x x x x x x          (12)  

where ϵ is the stochastic error that follows a standard normal distribution. For 

setting (1) we let diag(80 / ,79 / , , / ,1, ,1)p n p n p n          
     

, where 

/p n 
   denotes the minimum integer that is larger than /p n . Thus, there are 

81 spiked eigenvalues for model (12). By specifying n, p and σ at different 

values, we have the following five scenarios.  

. : 500, 700, 1; . : 500, 1500, 1;n p n p      Scenario 1 1 Scenario 1 2  

. : 500, 1500, 1.5; . : 500, 2000, 1;n p n p      Scenario 1 3 Scenario 1 4  

. : 300, 1000, 1.n p   Scenario 1 5  

For setting (2), we let , ,n p   and σ be the following values.  

. : 500, 100, 0.5, 1; . : 500, 1000, 0.5, 1;n p n p          Scenario 1 6 Scenario 1 7

 

. : 500, 1000, 0.5, 1.5; . : 500, 1500, 0.5, 1;n p n p          Scenario 1 8 Scenario 1 9

 

. : 300, 1000, 0.3, 1.n p     Scenario 1 10  

For each scenario, we generated 100 datasets and applied SIRS, DC-SIS and 

WLS to each dataset. The means and standard deviations of the resulting FP, 

FN,  values and CPU time are reported in Table 1. Since there exist 6 true 

predictors and ( 6)p   irrelevant variables, the FP and FN range from 0 to ( 6)p   
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and 0 to 6 respectively, with smaller values indicating better performances in 

variable screening.  

In setting (1), WLS outperforms other methods in terms of FN and minimum 

model size  in all scenarios even when the variance of noise increases 

(scenario 1.3) and the sample size becomes smaller (scenario 1.5), and its 

performance keeps up with diverging p (scenarios 1.1-1.4). DC-SIS and SIRS 

tend to miss one to three predictors on average and have larger  values as p 

diverges or as n gets smaller (scenarios 1.4-1.5). Moreover, it only takes WLS 

seconds to perform variable screening, much efficient than the other two 

methods.  

In setting (2), WLS and DC-SIS successfully select all true predictors (FN = 

0.00), while keeping falsely selected predictors to a manageable size. SIRS has 

slightly larger FN values when there exist moderate correlations between 

predictors in the p  >  n scenarios. The average minimum model size  of WLS 

and DC-SIS are around 6, indicating that the true predictors have higher rankings 

than redundant predictors. When the variance of the noise and the number of 

predictors gets larger or the sample size gets smaller, the  values of WLS is 

slightly larger than that of DC-SIS. It is expected since there are no spiked 

eigenvalues that exist in this model, and thus the signals are not large enough to 

be detected. Furthermore, the computation time of WLS also increases. Since 

the number of singular vectors used to calculate WLS can be as large as n, it 

takes extra time to perform the calculation.  

Example 2. In this example, we consider the multiple index model with the 

following form.  

1 2 3 4

5 6

2

1.5 1.2
,

0.5 ( 1.2 1)
t t t t

t t

x x x x
y

x x


  
 

  
   (13)  
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where ϵ is the stochastic error that follows a standard normal distribution. For 

setting (1) we let diag(50 / ,49 / , , / ,1, ,1)p n p n p n          
       and  be 

identity matrix. Thus, there are 51 spiked eigenvalues for model (13). By 

specifying n, p and σ at different values, we have the following five scenarios.  

. : 1000, 1200, 1; . : 1000, 1500, 1;n p n p      Scenario 2 1 Scenario 2 2  

. : 1000, 1500, 1.5; . : 1000, 2000, 1;n p n p      Scenario 2 3 Scenario 2 4  

. : 300, 2000, 1.n p   Scenario 2 5  

For setting (2), we let , ,n p   and σ be the following values.  

. : 1000, 200, 0.5, 1; . : 1000, 2000, 0.5, 1;n p n p          Scenario 2 6 Scenario 2 7

 

. : 1000, 2000, 0.5, 1.5; . : 1000, 2500, 0.5, 1;n p n p          Scenario 2 8 Scenario 2 9
 

. : 500, 2000, 0.3, 1;n p     Scenario 2 10  

In each scenario, we generated 100 datasets and applied SIRS, DC-SIS and 

WLS to each dataset. The means and standard deviations of the resulting FP, 

FN,  values and CPU time are reported in Table 2.  

In setting (1), WLS works better in screening redundant predictors (FP, scenarios 

2.1 - 2.5) compared with SIRS, especially when the number of redundant 

predictors and errors of the model increase. DC-SIS misses two to four 

predictors on average. Notice that in this setting,  is an identity matrix and the 

p candidate predictors are nearly independent. This model setting favors SIRS 

since SIRS requires that there is not strong collinearity between the true and 

redundant predictors or among the true predictors themselves. Regarding the 

minimum model size , WLS ranks first, indicating that WLS is able to find all 

true predictors with the smallest model size.  
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In setting (2), predictors are assumed to have moderate correlations. WLS has 

better performances regarding FP and FN values especially when p diverges. It 

implies that WLS is able to include all true predictors while keeping FP value to a 

manageable size. SIRS on average misses two predictors when there exist 

moderate correlations between predictors in the p  >  n scenarios (scenarios 2.7-

2.10). WLS ranks first concerning the minimum model size .  

Example 3. In previous examples, the true predictors affect the mean response. 

In this example, we consider the heteroscedastic model of the following form.  

1 2 3 4 5 6

,
1 1.2 1.5t t t t t t

y
x x x x x x




     
  (14)  

where ϵ is the stochastic error that follows a standard normal distribution. For 

setting (1) we let diag(50 / ,49 / , , / ,1, ,1)p n p n p n          
       and  be 

identity matrix. By specifying n, p and σ at different values, we have the following 

scenarios.  

. : 1000, 1200, 1; . : 1000, 1500, 1;n p n p      Scenario 3 1 Scenario 3 2  

. : 1000, 2000, 1; . : 300, 2000, 1.n p n p      Scenario 3 3 Scenario 3 4  

For setting (2), we let , ,n p   and σ be the following values.  

. : 1000, 200, 0.3, 1; . : 1000, 2000, 0.1, 1;n p n p          Scenario 3 5 Scenario 3 6

 

. : 1000, 2500, 0.1, 1; . : 500, 2000, 0.1, 1.n p n p          Scenario 3 7 Scenario 3 8

 

In each scenario, we generated 100 datasets and applied SIRS, DC-SIS and 

WLS to each dataset. The means and standard deviations of the resulting FP, 

FN,  values and CPU time are reported in Table 3.  
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In setting (1), by investigating FP and FN values, we find that both WLS and 

SIRS enjoy good performance for this model and correctly recover all true 

predictors with large probabilities. This model setting also favors SIRS and thus it 

works reasonably well. DC-SIS misses five predictors on average, as the 

minimum distance correlation of active predictors are too small to be detected. 

Regarding the minimum model size , WLS and SIRS have comparable 

performance and are stable under various scenarios.  

In setting (2), WLS still enjoys good performance in heteroscedastic model when 

there is no spiked eigenvalues. As p diverges (scenarios 3.6 and 3.7), WLS 

attains the lowest FP and FN values, while DC-SIS and SIRS on average miss 

two to five predictors. Regarding the average minimum model size , WLS 

outperforms SIRS and DC-SIS in all scenarios.  

To conclude, SIRS and DC-SIS, as extensions of SIS, can be applied to a wide 

range of parametric and semi-parametric models and are particularly appealing 

for variable screening when the number of candidate predictors exceeds the 

sample size. However, SIRS requires there to be no strong collinearity between 

the true and redundant predictors or among the true predictors themselves. SIRS 

thus may fail to identify the true predictor that is correlated with redundant 

predictors. As illustrated in example 2-3 setting (2), when there exists moderate 

correlations between predictors, SIRS fails to identify two to five true predictors 

on average with a diverging p. While DC-SIS may also fail to identify some 

important predictors that have small marginal distance correlations with the 

response (example 2-3 setting (1)). For WLS screening method, simulation 

studies show that it is a robust variable screening method under various 

scenarios, even when the covariance of the predictors does not have spiked 

eigenvalues (example 1-3 setting (2)).  

6  Weighted leverage score for cancer biomarker detection 
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Cancer, characterized by uncontrolled abnormal cell growth and invasion, has 

gradually become the primary cause of death across the world. According to the 

National Cancer Institute, more than 1.68 million new cases of cancer will be 

diagnosed in the United States, and nearly 0.6 million people would die from the 

disease. Although national expenditures for cancer care and cancer research are 

tremendous, cancer survival rates still tend to be poor due to late diagnosis. 

Therefore, an early and accurate detection of cancer is of primary importance.  

With the recent advancement in next generation sequencing technology, 

accurate detection of cancer becomes possible and holds tremendous promise. It 

has been shown that many cancers have altered messenger RNA (mRNA) 

metabolism (Wu and Qu, 2015). In tumor cells, there exists aberrant mRNA 

processing, nuclear export, and translations, which may lead to the loss of 

function of some tumor suppressors (Pandolfi, 2004; Siddiqui and 

Borden, 2012; Wu and Qu, 2015). One typical inference thus is to find the tumor-

related marker genes that can discriminate cancer patients from normal and 

early-stage cancer from late-stage. This can be achieved using the variable 

selection approach under the classification or regression model. However, in a 

typical biomarker detection, the number of identified non-invasive/invasive cancer 

subjects is only in the hundreds, while the number of candidate marker genes is 

usually in the tens of thousands. Most existing statistical methods are 

inapplicable in this notorious “small n, ultra-large p” setting. There is a further 

layer of complications when there exists a nonlinear relationship between gene 

expression levels and cell types within tissue sections, because the nonlinear 

models are more susceptible to the curse of dimensionality. Effective variable 

selection methods for nonlinear models thus are even more critical than that for 

linear models in identifying marker genes for the early cancer detection.  

To identify marker genes, we applied the WLS screening approach to analyze 

the breast cancer spatial transcriptomics data (Ståhl et al., 2016). Spatial 

transcriptomics is a recent sequencing strategy that allows the quantification of 
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gene expression with spatial resolution in individual tissue sections. Standard 

RNA-seq technique produces an averaged transcriptome, while spatial 

transcriptomics simultaneously sequences different locations of a breast cancer 

tissue section, including normal, cancer, and invasive cancer areas. This strategy 

provides gene expression data with less noise. In this experiment, 518 locations 

on two histological sections that from a breast cancer biopsy were sequenced, 

among which 64 were identified as invasive cancer areas, 73 were identified as 

non-invasive cancer areas, and 381 were identified as non-cancer areas. Those 

locations were identified based on morphological criteria (Ståhl et al., 2016). In 

each location, expressions of 3572 genes were quantified. To build a predictive 

model as illustrated in (3), we treat location labels as the response variable and 

the expression values of 3572 genes as predictors. More precisely, the response 

is a vector with 518 entries and the data matrix is a 518  ×  3572 matrix with (i, 

j)th entry representing the expression of gene j at area i.  

We applied WLS to this data set and identified 225 genes that were differentially 

expressed between invasive, noninvasive and normal areas. The revealed 

expression patterns show a remarkable spatial difference in gene expression 

profiles between areas of cancer (Figure 1 (B) and (C)). For example, genes 

PRSS23 and SCD were highly expressed in non-invasive cancer areas (Figure 1 

(B)), and genes FGB, TGM2 and FN1 were highly expressed in invasive cancer 

areas (Figure 1 (C)). To understand the biological processes that those genes 

were involved, we also annotated the functions of them using Gene Ontology 

Consortium. The 225 genes were enriched in 47 functional classes. In particular, 

41 genes were involved in regulation of cell death, and 38 of them were involved 

in regulation of apoptotic process, one of the most important cancer hallmarks. It 

was also of interest to note that the three genes: FGB (fibrinogen beta chain), 

TGM2 (transglutaminase 2), and FN1 (fibronectin 1) that were over-expressed in 

invasive cancer areas were involved in apoptotic process. The increased 

expression and activation of tissue transglutaminase (TGM2) often occurred in 

response to the stimuli that promote cell differentiation and apoptosis, which 
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further contributes to its oncogenic potential in breast cancer cells (Antonyak 

et al., 2004). The expression of FN1 was regulated by micro (mi)RNA-206 who 

was demonstrated to be associated with metastatic cancer types, including 

breast cancer (Liu et al., 2015; Kondo et al., 2008; Adams et al., 2009). FN1 

gene itself was also found to be a key regulator in breast cancer development 

(Liu et al., 2015) and be correlated with the drug resistance of cancer cells (Mutlu 

et al., 2012). Other genes were involved in pathways that may contribute to 

cancer development such as blood vessel development, and pathways that 

related to immune system such as neutrophil mediated immunity and cell 

activation during immune response. Ståhl et al. (2016) performed the differential 

expression analysis on this dataset using the DESeq2 tool (Love et al., 2014), a 

negative binomial model-based hypothesis testing method. Several genes 

(IGFBP5, MUCL1, PIP, FN1, POSTN, SPARC, MMP14) were highlighted in the 

paper and were overlapped with the feature genes identified by the WLS method. 

Moreover, WLS identified other genes that were enriched in the apoptotic 

process and were in need for further investigation. Since WLS is a model-free 

variable screening method, it is able to detect predictors when the relationship 

between them and the response is beyond linear.  

We also applied the methods SIRS and DC-SIS to this dataset. The SIRS 

method detected 82 feature genes, among which 17 were enriched in the 

regulation of cell death and the regulation of apoptotic process. The DC-SIS 

method also detected 82 feature genes involved in the regulation of cell growth 

and pathways that may contribute to cell development. To evaluate the prediction 

accuracy of the WLS method, we further trained random forests to predict 

sample’s identity using the identified feature genes. The 10-fold cross-validation 

results were reported in Table 4. In terms of the prediction accuracy, the WLS 

method outperformed other methods.  

7  Discussion 
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Leverage score has long been used for model diagnostics in linear regression. 

Recently, leverage score has been shown to be a powerful tool for big data 

analytics. Subsamples that randomly selected according to the leverage scores 

are good surrogates of the full sample in estimating linear regression models. 

Thus it is extensively used to overcome the computational challenges that arise 

from analyzing a massive number of samples. Despite the promising results of 

leverage score sampling in reducing big sample size n, it remains elusive how it 

can be used to reduce the dimensionality when p is large.  

The WLS screening method generalizes the recent work (Ma et al., 2014; Ma 

and Sun, 2015) on leverage score based sampling to predictors screening. The 

proposed screening procedure has a novel contribution to the literature of 

variable screening for high-dimensional regression analysis. First, it is developed 

under the SDR framework and does not impose any assumption on the 

relationship between the response and predictors. Second, compared with 

existing variable screening methods under the SDR framework, it is a more 

potent tool in real applications since there is no need to pre-specify the number 

of linear combinations k. Third, it can handle the data with a large number of 

candidate predictors, especially when p n , which is highly desirable for the 

high-dimensional setting. Finally, WLS generalizes the concept of leverage score 

in linear models for sub-sampling to variable screening in nonparametric models. 

It is derived based on both the right and left leverage scores and consistently 

evaluates the importance of predictors. Thus it enjoys an excellent computational 

and theoretical advantage.  

As a trade-off, the WLS screening procedure imposes a few assumptions on the 

distribution of the predictors, of which the design condition is fundamental and 

crucial. It requires that the predictors are from a non-degenerate elliptically 

symmetric distribution. For a consistent estimate of ωj in the scenario of 

2/ ( ) 0dp n   when n, p and λd go to infinity, the sub-Gaussian distribution is 

imposed to predictors. These assumptions ensure the ranking consistency of 
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WLS for variable screening in high-dimensional data. The WLS also depends on 

a fixed slicing scheme, which is more of a technical issue. For the slicing 

scheme, the allowed number of observations within each slice is as close to each 

other as possible, while the range of each slice may vary. When choosing the 

number of slices h, we recommend to have at least 10 observations within each 

slice, and a larger number of slices is preferred to ensure selection consistency 

(Zhong et al., 2012). As discussed in Li (1991), inappropriate choices of h may 

result in a slower convergence rate but would not lead to a significant differences 

in the behaviors of the output. Thus, instead of making the mathematical 

formulation of the WLS method more complicated, we choose to focus on the 

fixed slicing scheme for practical considerations.  

The WLS screening approach provides a rich and flexible framework to address 

the curse of dimensionality in regression. We believe that the results from this 

project will make significant theoretical and methodological contributions to the 

study of general index models and variable screening algorithms, and have a 

broad and important impact on applications in many areas. To facilitate the 

method development in this direction, we implemented the WLS screening 

algorithm using programming language R, and the source code can be 

downloaded from Github.  
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Fig. 1 (A) is one histological section from breast cancer biopsy with two areas of 

invasive ductal cancer (yellow line) and four areas of ductal cancer in situ (white 

line). Other areas are non-cancer areas. The image is obtained from Ståhl 

et al. (2016). (B) shows the areas where genes PRSS23 and SCD were highly 

expressed. (C) shows the areas where genes FGB, TGM2 and FN1 were highly 

expressed. (D) is a heatmap of expressions of genes selected by WLS. For the 

ease of presentation, we only showed the first 20 genes. 
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Table 1 Performance comparison in example 1. 

Setting (1)  Method FP  FN   Time (s)  

Scenario 1.1  SIRS  74.00 (0.00) 0.00 (0.00) 58.65 (0.89)  7.53 (0.56)  

 DC-SIS 74.00 (0.00) 0.00 (0.00) 14.58 (0.50)  23.98 (1.29)  

 WLS  28.95 (0.72) 0.00 (0.00) 12.60 (0.57)  0.26 (0.02)  

Scenario 1.2  SIRS  74.00 (0.00) 0.00 (0.00) 31.34 (0.57)  16.44 (1.71)  

 DC-SIS 74.00 (0.00) 0.00 (0.00) 27.53 (0.83)  41.02 (2.89)  

 WLS  72.87 (0.84) 0.00 (0.00) 8.16 (0.58)  0.43 (0.05)  

Scenario 1.3  SIRS  74.00 (0.00) 0.00 (0.00) 31.63 (0.88)  11.51 (0.17)  

 DC-SIS 74.00 (0.00) 0.00 (0.00) 27.35 (1.12)  44.32 (1.42)  

 WLS  72.90 (0.89) 0.00 (0.00) 8.33 (0.80)  1.49 (0.02)  

Scenario 1.4  SIRS  75.75 (0.44) 1.75 (0.44) 179.48 (2.46)  21.73 (2.13)  

 DC-SIS 75.00 (0.00) 1.00 (0.00) 98.67 (1.35)  54.64 (3.82)  

 WLS  97.33 (0.85) 0.00 (0.00) 31.28 (2.69)  0.54 (0.06)  

Scenario 1.5  SIRS  49.00 (0.00) 3.00 (0.00) 252.70 (3.11)  3.37 (0.08)  

 DC-SIS 47.00 (0.00) 1.00 (0.00) 89.21 (1.39)  9.32 (0.25)  

 WLS  52.27 (1.06) 0.74 (0.66) 64.65 (12.61)  0.43 (0.01)  

Setting (2)  Method FP  FN   Time (s)  

Scenario 1.6  SIRS  74.00 (0.00) 0.00 (0.00) 9.89 (1.44)  3.00 (0.26)  

 DC-SIS 74.00 (0.00) 0.00 (0.00) 6.00 (0.00)  7.82 (0.67)  

 WLS  14.47 (1.27) 0.00 (0.00) 6.00 (0.00)  0.30 (0.03)  

Scenario 1.7  SIRS  74.01 (0.10) 0.01 (0.10) 43.95 (12.35)  29.75 (2.51)  

 DC-SIS 74.00 (0.00) 0.00 (0.00) 6.00 (0.00)  78.63 (7.26)  

 WLS  45.89 (1.29) 0.00 (0.00) 6.01 (0.10)  53.74 (3.72)  

Scenario 1.8  SIRS  74.29 (0.46) 0.29 (0.46) 68.52 (30.06)  29.84 (2.49)  

Acc
ep

ted
 M

an
us

cri
pt



Setting (1)  Method FP  FN   Time (s)  

 DC-SIS 74.00 (0.00) 0.00 (0.00) 6.07 (0.29)  79.12 (7.48)  

 WLS  48.16 (1.29) 0.00 (0.00) 6.11 (0.40)  53.91 (3.98)  

Scenario 1.9  SIRS  74.03 (0.17) 0.03 (0.17) 41.65 (17.53)  44.83 (3.97)  

 DC-SIS 74.00 (0.00) 0.00 (0.00) 6.00 (0.00)  118.20 (10.71) 

 WLS  71.06 (1.37) 0.00 (0.00) 6.01 (0.10)  80.21 (6.01)  

Scenario 1.10 SIRS  46.41 (0.53) 0.41 (0.53) 53.64 (18.16)  3.49 (0.03)  

 DC-SIS 46.00 (0.00) 0.00 (0.00) 6.01 (0.10)  10.20 (0.04)  

 WLS  32.78 (1.05) 0.00 (0.00) 7.89 (2.20)  1.46 (0.01)  
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Table 2 Performance comparison in example 2. 

Setting (1)  Method FP  FN   Time (s)  

Scenario 2.1  SIRS  

138.00 

(0.00) 

0.00 

(0.00) 38.98 (8.44)  

111.21 

(10.29) 

 DC-SIS 

140.26 

(0.48) 

2.26 

(0.48) 664.63 (100.18)  

386.04 

(41.13) 

 WLS  42.94 (1.29)  

0.04 

(0.20) 36.01 (10.56)  8.94 (1.22)  

Scenario 2.2  SIRS  

138.00 

(0.00) 

0.00 

(0.00) 44.22 (5.13)  

137.89 

(12.00) 

 DC-SIS 

140.17 

(0.43) 

2.17 

(0.43) 

1190.07 

(218.93)  

476.11 

(45.02) 

 WLS  44.13 (0.87)  

0.03 

(0.17) 36.21 (10.36)  11.29 (1.61)  

Scenario 2.3  SIRS  

138.00 

(0.00) 

0.00 

(0.00) 44.57 (5.06)  36.41 (0.55)  

 DC-SIS 

140.39 

(0.65) 

2.39 

(0.65) 

1190.12 

(246.29)  210.17 (7.13)  

 WLS  44.21 (0.83)  

0.00 

(0.00) 36.20 (9.98)  5.59 (0.10)  

Scenario 2.4  SIRS  

138.00 

(0.00) 

0.00 

(0.00) 40.44 (8.20)  

184.18 

(16.60) 

 DC-SIS 

140.76 

(0.43) 

2.76 

(0.43) 

1490.83 

(196.61)  

636.14 

(64.02) 

 WLS  44.73 (0.51)  

0.03 

(0.17) 38.20 (10.32)  16.69 (2.74)  

Scenario 2.5  SIRS  46.00 (0.00)  0.00 46.97 (3.67)  7.03 (0.22)  
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Setting (1)  Method FP  FN   Time (s)  

(0.00) 

 DC-SIS 50.86 (0.35)  

4.86 

(0.35) 

1876.98 

(125.51)  20.18 (0.37)  

 WLS  44.92 (0.27)  

0.00 

(0.00) 42.39 (7.49)  0.66 (0.04)  

Setting (2)  Method FP  FN   Time (s)  

Scenario 2.6  SIRS  

138.00 

(0.00) 

0.00 

(0.00) 30.36 (7.08)  19.40 (1.64)  

 DC-SIS 

138.00 

(0.00) 

0.00 

(0.00) 12.77 (1.78)  62.92 (5.38)  

 WLS  31.83 (1.98)  

0.00 

(0.00) 6.14 (0.78)  2.10 (0.16)  

Scenario 2.7  SIRS  

139.96 

(0.20) 

1.96 

(0.20) 483.44 (136.12)  

193.92 

(16.40) 

 DC-SIS 

138.00 

(0.00) 

0.00 

(0.00) 14.33 (1.60)  

627.38 

(53.86) 

 WLS  89.48 (1.76)  

0.00 

(0.00) 7.04 (1.34)  

427.98 

(30.26) 

Scenario 2.8  SIRS  

140.00 

(0.00) 

2.00 

(0.00) 806.54 (225.90)  

193.23 

(15.74) 

 DC-SIS 

138.00 

(0.00) 

0.00 

(0.00) 28.48 (15.11)  

621.74 

(50.78) 

 WLS  94.83 (1.80)  

0.01 

(0.10) 19.45 (16.68)  

429.94 

(31.38) 

Scenario 2.9  SIRS  

139.98 

(0.14) 

1.98 

(0.14) 575.28 (183.56)  

242.22 

(20.61) 
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Setting (1)  Method FP  FN   Time (s)  

 DC-SIS 

138.00 

(0.00) 

0.00 

(0.00) 14.98 (2.59)  

787.96 

(66.91) 

 WLS  

115.94 

(1.85) 

0.00 

(0.00) 11.17 (8.93)  

536.32 

(38.58) 

Scenario 

2.10 SIRS  76.53 (0.50)  

2.53 

(0.50) 988.85 (250.46)  16.69 (1.07)  

 DC-SIS 74.05 (0.22)  

0.05 

(0.22) 31.42 (22.88)  65.89 (4.28)  

 WLS  65.18 (1.28)  

0.05 

(0.22) 27.72 (20.01)  8.31 (0.39)  
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Table 3 Performance comparison in example 3. 

Setting (1)  Method FP  FN   Time (s)  

Scenario 3.1 SIRS  138.00 (0.00) 0.00 (0.00) 40.45 (6.87)  110.27 (9.71) 

 DC-SIS 143.81 (0.51) 5.81 (0.51) 1015.60 (149.40)  379.41 (38.36) 

 WLS  43.66 (1.10)  0.22 (0.42) 45.23 (5.22)  8.95 (1.32)  

Scenario 3.2 SIRS  138.00 (0.00) 0.00 (0.00) 45.19 (4.91)  137.50 (11.90) 

 DC-SIS 143.39 (0.85) 5.39 (0.85) 1303.80 (198.85)  474.86 (46.08) 

 WLS  44.32 (0.82)  0.07 (0.26) 44.73 (5.64)  11.22 (1.53)  

Scenario 3.3 SIRS  138.00 (0.00) 0.00 (0.00) 43.67 (6.52)  183.81 (14.85) 

 DC-SIS 143.34 (0.54) 5.34 (0.54) 1734.90 (225.29)  627.75 (54.28) 

 WLS  44.73 (0.69)  0.03 (0.17) 43.93 (5.89)  16.16 (2.20)  

Scenario 3.4 SIRS  46.00 (0.00)  0.00 (0.00) 46.20 (4.38)  7.03 (0.23)  

 DC-SIS 51.86 (0.35)  5.86 (0.35) 1724.04 (251.56)  20.17 (0.39)  

 WLS  44.95 (0.22)  0.04 (0.20) 45.17 (6.76)  0.66 (0.04)  

Setting (2)  Method FP  FN   Time (s)  

Scenario 3.5 SIRS  138.00 (0.00) 0.00 (0.00) 71.22 (16.63)  19.51 (1.61)  

 DC-SIS 138.05 (0.22) 0.05 (0.22) 65.98 (39.43)  63.30 (5.94)  

 WLS  51.38 (2.02)  0.25 (0.44) 46.02 (40.60)  2.11 (0.17)  

Scenario 3.6 SIRS  141.94 (0.65) 3.94 (0.65) 902.59 (183.33)  194.20 (15.59) 

 DC-SIS 141.38 (1.15) 3.38 (1.15) 728.99 (306.22)  631.71 (54.10) 

 WLS  110.18 (1.78) 1.28 (0.96) 310.62 (251.74)  429.31 (29.71) 

Scenario 3.7 SIRS  143.22 (0.73) 5.22 (0.73) 1134.49 (275.10)  243.07 (20.39) 

 DC-SIS 139.71 (0.71) 1.71 (0.71) 897.10 (519.68)  782.91 (68.00) 

 WLS  138.29 (1.91) 1.31 (0.85) 679.12 (548.77)  536.98 (38.92) 

Scenario 3.8 SIRS  79.58 (0.55)  5.58 (0.55) 1144.52 (236.43)  16.50 (0.28)  
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Setting (1)  Method FP  FN   Time (s)  

 DC-SIS 78.41 (0.71)  4.41 (0.71) 1345.58 (356.08)  68.58 (4.02)  

 WLS  70.68 (1.61)  2.91 (0.75) 965.09 (500.01)  8.58 (0.78)  
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Table 4 Prediction Accuracy 

Method Invasive Group Noninvasive Group Normal Group Overall 

SIRS  0.4622  0.7879  0.9609  0.8687  

DC-SIS 0.4288  0.8137  0.9659  0.8745  

WLS  0.4622  0.8303  0.9717  0.8842  
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