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Abstract

With rapid advances in information technology, e datasets are collected in
all fields of science, such as biology, che cial science. Useful or
meaningful information is extracted from t often through statistical
learning or model fitting. In massive d h sample size and number of
predictors can be large, in which case c ional methods face computational
challenges. Recently, an innovativedand e
leverage scores via singular valug
rows of a design matrixas a s gate) pf the full data in linear regression.

matrix. However, effective
elusive. In this article, we ¢ this gap to propose a weighted leverage variable
screening method by g both the left and right singular vectors of the

design matrix. We 3

computatighal icient and effective. We also demonstrate its success in
i i noma related genes using spatial transcriptome data.

Keywords; General index model; Variable screening; Leverage score; Singular

value decomposition; Bayesian information criteria
1 Introduction

Among all statistical learning tools, regression analysis is one of the most popular

methods and is widely used for modeling the relationship between a response y


http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2021.1918554&domain=pdf

and a series of predictors x,, -+, X, . Various models and methods have been
developed for regression analysis in the literature, ranging from classic linear
regression to nonparametric regression. Nevertheless, most regression models
and methods can be seriously compromised if the dimensionality pis large. It is
ideal to select a subset of predictors to ensure the success of regression

analysis.

A wide range of variable selection methods have been proposed to fa
dimension reduction in the literature, which can be mainly classified0
si

approaches: the subset selection approach including stepwise r

(Efroymson, 1960), forward selection, backward selection, €
likelihood approach including LASSO (Tibshirani, 1996),
(Breiman, 1995; Yuan and Lin, 2007), SCAD (Fan a '

and Hastie, 2005), penalized one-step estimator

d the penalized

ative garrotte

1), elastic net (Zou
Li, 2008), and etc.

Both of the two approaches can effectivel \>n a selected subset of

a

x= (x],...,xp)T when xis of a moderate4 ality. However, the

aforementioned methods fail wherQgis latggr than the sample size n (Fan and
Lv, 2010).

For p>>n, an initial and tic screening step, which decreases the
number of predictors f g where g << p, can greatly improve
computational effici \gany applications, we expect g to be a rather crude
upper bound to(the f\amber of “true” or “predictive” variables. Follow this line of

thinking, a t\ko-sfep screening strategy for linear regression was proposed by

Fan ang| 08) to first screen out surely redundant variables and then refine

the modg&) using sophisticated variable selection methods. In Fan and Lv (2008)

and Fan et al. (2009), they developed a marginal correlation ranking method and

showed P(7 < 4,) —1 under some conditions, where 7 is the subset of true

variables and Ay is selected subset of g variables. The asymptotic performance

of the screening methods was further studied in Huang et al. (2008), Hall

et al. (2009), and Hall and Miller (2009) under various settings. Despite the large




number of available theoretical results, correlation ranking methods are only
feasible when different variables are nearly independent. When the
independence is not the case, the question that arises is how to screen
predictors with moderate dependency structures. A simple solution has been
proposed in Wang (2009) for linear models, showing that the forward selection
procedure has screening consistency even when p is substantially larger than n.
However, the drawback of the forward selection method is its high compu%@l

cost. In addition, the aforementioned methods become ineffective vgue

underlying model is beyond linear. To address these issues, Zhu e
extended the feature screening framework to semiparametric n@

proposed procedure was demonstrated to possess ranking cy, which

leads to consistency in variable screening. Li et al. (20@ ped a screening
id

procedure based on distance correlation. Both met er the marginal

relationship between each predictor and the re variable. Zhou
et al. (2020) proposed cumulative diverge @acterize the functional

dependence between predictors and t e variable, taking into account
the joint effects among covariates R ing the screening process. These model-
free methods are more robust b ten computationally intensive.

Heuristically, the screenip -}S

&
e “importance score” to evaluate a column’s
emout the insignificant columns with a probability that is

=SS can be cast as a selection of columns of a

data matrix. If we can

significance, we

rse matrix surrogate for a given matrix (Mahoney

; Drineas et al., 2008; Mahoney and Drineas, 2009). A leverage

sampling method, in which rows and columns are sampled based on the
leverage scores of data matrix X eR"”” and X', has demonstrated much
promise (Mahoney and Drineas, 2009; Ma et al., 2014; Ma and Sun, 2015) and is

becoming the new research theme for matrix approximation. This method has

recently been applied to linear regression problem to select a subsample, i.e.,



select a set of rows of a data matrix. Given (x/,y,)’, where x, eR”, the linear

i=1

regression model is of the form
v =x/B+e, (1)

where S eR?” is the regression coefficient that needs to be estimated, and €;is
the stochastic error that quantifies the measurement error. Let X=(x,,---,x,)" .
Without loss of generality, we assume X is centralized throughout this pap@
has a rank dsingular value decomposition, i.e., X~ UAV’, where >

XS

matrix. Then, the importance of the th observation or the th roffof

U eR™,V eR” are column orthonormal matrices and A e R“*¢

regression model is evaluated by its leverage score that is

10, I>, where ||-||, denotes the L> norm), where U, 4&n e th row of U.

Leverage scores are extensively used to measure@ ential or important the

rows of X are in a linear regression model. r@ Uy I5,i=1,...,n} were
o]

used to select rows or subsample of X i

n analysis such that the
regression line obtained by the suhsam nicely approximate the regression
line obtained by the full data (Ma 2014; Ma and Sun, 2015). In other words,

the rows with large leverage s the rows that can be used to nicely

approximate the regressio

Now returning to th | screening problem, recall that selecting the
columns of X ¢ e\Czgt as selecting the rows of X' . Moreover, the leverage
score of th W0t X' is defined by ||V, |3, where V,,, denotes the jth row of
V.ltc idered as the influence of the th column of X on the regression
analysis\\We thus intuitively use || V > as an “importance score” to sample the
columns of X or the predictors. From this point on, we refer to || U, I as the left
leverage score and ||V, |; as the right leverage score. Analogous to left
leverage score for selecting data points, right leverage scores might be used to

select variables (Stewart, 1998; Drineas et al., 2006; Dasgupta et al., 2007) when

the regression model is linear. However, their performances are not as good as



one may expect from this line of heuristic reasoning. The primary reason for the
success of using the left leverage score for selecting the rows of X is that there is
a theoretical link between the left leverage score and response, i.e,

oy,
=10, I,
Vi

where j, is the #h fitted value of least squares. That is, the left leverage sQoge
measures the changes of the fitted value of the response with respect t

change of the response. It remains elusive whether there exists sc@ tical

underpinning for linking the right leverage score and response. Mnportantly,
in practice, the relationship between the response variable ctors is
usually more complicated than a linear model, which a@ er layer of

complications in developing the leverage screenin . Itis conceivable
@id s€lection methods based

criterion that is d grating both the right leverage score ||V, > and

To surmount these c s, in this article, we propose a variable screening
@)

left leverage o ||; together to evaluate columns’ or predictors’

impo e ression analysis. More specifically, we assume that given &

linear c inations of predictors x, response variable y and predictors x are

indepenaént. Our method is “model-free” in the sense that there is no explicit link

function between yand x. We develop a weighted leverage score to measure the

“importance” of each variable in the model. Based on the score, we design a

one-pass variable screening algorithm. More importantly, we develop a BIC-type

criterion to decide the number of selected predictors. We show empirically and



theoretically that our proposed method can consistently select the non-redundant

predictors.

Our main methodological contribution is to develop a variable screening method
in high dimensional model-free setting. Compared with the variable screening
methods for parametric models, our method avoids the model mis-specification

error. Compared with the variable selection in more flexible nonparametri

models (Ravikumar et al., 2009; Fan et al., 2011), our method does not

the unknown link function between response and predictors and ha¥,
analytical and computational advantages. The proposed weighte x
r(ée i})

is calculated using the singular value decomposition, which und in most
computing software. To the best of our knowledge, our w, e first to relate
the leverage score with variable selection in semi-pa tripmodels. The

screening algorithm is a one-pass algorithm, whic ssalable to high

dimensional settings. We also develop Bl ia to select the number of

variables. Our main theoretical contri stablish screening consistency

under very general regularity condii icular, we show that the weighted

leverage scores of the true predic o@- e larger than those of the redundant

predictors. Moreover, the BIC Z
)

eria we develop are consistent for variable

screening.

The rest of the pap St ized as follows. In Section 2, we briefly review the

odel and introduce the motivation of using weighted

leverage scf(e ( ) for variable screening. Section 3 illustrates the asymptotic

example are reported in Section 5 and Section 6. Section 7 concludes the paper

with a discussion. All proofs are provided in Supplementary Material.

2 Model-free variable screening using weighted leverage score

2.1 Model-free regression and sufficient dimension reduction



Without loss of generality, we assume from this point on that xis a p-dimensional
random vector with mean zero and variance-covariance Z, and y R is the
response variable. Let S be a subspace of R”, and P; be the projection

operator from R?” to S in an inner product space. If
yLx|Px, (2)

where 1 means “independent of”, it is said that P,x is sufficient for the

dependence of yon x(Cook, 1995, 1996, 1998). In other words, th%p u@@h
O

hieved if

P;x captures all the information contained in xregarding y. Regreg& X

thus is equivalent to regressing yon P;x. A dimension reducti

the dimensionality of S is smaller than p.

Expression (2) does not spell out any model, i.e., “ ’, in the sense of

classical regression settings, where the conditi tr bution of y given xis
explicitly stated. However, it is equivalent t ¢ | index model proposed in
Li (1991),

y=LB %, fx,€), 3) @
where f(+) is an unknowrﬁf/&@ B...., 5, are p-dimensional vectors, kis an

€ is a stochastic error. It is easy to show that y

.@o endent if {8/ x|m=1,---,k} are given. Therefore, the
DY £x|m =1,---,k} can serve as the subspace in model (2).

Conversely olds, there exist f(-) and € such that (3) holds. A brief proof of

the eq etween the two models can be found in Zeng and Zhu (2010).

Model (2Yand (3) are referred to as the sufficient dimension reduction (SDR)
regression model, and S is referred to as a dimension reduction subspace.
Dimension reduction subspace may not be unique. Cook (1996) introduced an
important concept called central subspace, which is defined as the intersection of
all dimension reduction subspaces when it is a dimension reduction subspace

itself. The central subspace is denoted by S, , and the dimension of S, is called



the structural dimension of regressing yon x. Under mild conditions, it can be

shown that S, exists (see Cook (1995) for details). Throughout this paper, we

assume the existence of S, .

The dimension reduction regression model is unarguably the most general
formulation and covers a wide range of parametric and semi-parametric models.

For example, if yis a discrete variable taking values in {1, 2, ---, K}, the
dimension reduction regression model covers logistic regression and m %&

classification models. If yis a continuous variable taking values in
regression model, partial linear model, and single index model &m
cases. Comparing to existing models, the dimension reductios @sion models
not only provide a much flexible model structure to addr onlinear
dependency but also keep the model simplicity. Thus en extensively
used to analyze the complicated high-dimensional¥gta\Despite the popularity of

s hown in Zhu et al. (2006)

del deteriorates when one

the SDR in high-dimensional regression, i

that the efficiency of the estimates in t
includes more and more irrelevantdgatur
identifying the low dimensional pr
redundant predictors is m @ especially when p>>n.

2.2 Weighted Ieverag@ r model-free regression

Given (x!,y,) fo @n otice that x, can be approximated by VAU(Ti).
Recall that @;@es the th row of left singular matrix U, and it has a natural

conn e response variable y;as it contains the sample information of

covariates). Thus, instead of

s, simultaneously detecting the non-

the datad YA o reflect such connection when constructing the weighted leverage
score, we integrate both U, and y;together by utilizing the slicing scheme and
inverse regression idea. We first divide the range of the response variable into A
intervals or slices S,,--+,S, and then group the U, accordingly if its

corresponding y;falls into the same slice. For each slice, we calculate its slice

mean by taking its group mean U = iZUmI(yi €S,), where () is the
n

¢ i=1



indicator function, and », = Zl(yl. eS,) for (=1,...,h. Finally, we calculate the
i=1

sample variance of the slice means to obtain an estimate of var[E(U, |y,)] as
h

Zﬂﬁ?ﬁ(. The matrix var[E(U, | y;)] captures the information contained in the
=1 1

link function fof model (3). Further, V, , as the th row of the right singular matrix

e
V, reflects the predictor information. Thus, to evaluate how influential a predictor

is to the regression model (3), we propose the weighted leverage score of
predictor @, as the right leverage score ||V, ||, weighted by a mat @ted
based on the left singular matrix U, &
A A " n,=r— @
@, =2V, (2, ;Uf UV @) 2

(=1

The weighted leverage score is constructed on tha@g scheme and is closely
0

related to the slice inverse regression (S| posed in Li (1991). It has

been shown in Li (1991) that when theiear} dition is satisfied, the inverse
regression curve E(x, | y,) residesq the that is spanned by g%, ---, 5.
Thus P, =(B%,---,B.X) is the basi e space that contains E(x, | y,). Based

on this fact, Li (1991) propose@ ate f,..., 5, by conducting eigenvalue
1.

decomposition on var[E Now the key to the success of dimension

reduction is how to var[E(Zfixl. | v,)]. Notice that the inverse regression

curve E(x,| ) | lon of a one dimensional response variable y; it thus can

be easily a
1

E(Z ?

ed by a step function. More specifically, we can estimate

n 1 R
Ry 7 "> % 2xI(y, €S,), where X is an estimator of . Further, with
i=l1
1 1

3 =VA’V", we can write £ 2x, as VUJ,. Then var[E(Z 2x, | y,)] is estimated by

V(Zh:ﬂﬁfﬁ[)vi (5)

(=1



of which the diagonal elements are the weighted leverage scores. In the next
Section, we show that the weighted leverage scores can consistently select the

true predictors for fixed S,,---,S,.

Intuitively, the @, can be cast as a weighted right leverage score (|| V,,, |, ),
where the weights are constructed by the left singular matrix U. We thus refer to

o, as the weighted leverage score. Notice that the weight matrix, formulaged by

Uand {y,}.,, captures the nonparametric information 7 It is the same fq
predictors when constructing @,’s. While V| captures the predictoox
information. Thus the weighted leverage score can be naturally@ o &valuate

a predictor’s significance in model (3). Using the weighted | core, we
propose a simple variable screening algorithm that is sk Algorithm 1.
Algorithm 1 The weighted leverage score screen@prithm

Step 1. For j=1,..., p, calculate the weigh ge score of th variable, @,

by equation (4).

Step 2. Sort the weighted Ieverags in decreasing order and denote them

as @, >...>a,, - Output tors that with the highest p weighted

leverage scores. The fif@&ed predictor set is
A={j: ©, 20, 1

3 Theorefic stification

In this lorY, we show that the minimum weighted leverage score of true
predictoryis larger than the maximum weighted leverage score of redundant
predictors. Consequently, the true predictors are first selected if we rank the
predictors according to their weighted leverage scores. We demonstrate that this
ranking property holds for both the population and sample weighted leverage

scores.



Let us first consider the ranking property of the population weighted leverage

h
score, denoted as w; Clearly, wis the jth diagonal element of V(3_ pu,ul)v’,
(=1

where V and u, = E(u, | y, €S,) are the population version of V and U,
respectively, and a rigorous definition of u, can be found in condition 3.6. For a

fixed slicing scheme {S,}!_,, we have p, = P(y €S,). Under certain regularity

conditions, we first show that the minimum {w, | j €7} is larger than the
maximum {w, | j €7}, where 7T is the collection of p true predictors

model (2) and (3), and {-}° denotes the complement of a given set.o\

To ease the description, we introduce the following notations. @-) and
A...(-) denote the functions that take the maximum and Qi
eigenvalues/singular values of a matrix respectively. L@

h
V,=> pE(x|yeS)E(x|yeS,) and M, =B Ehere B=(f,:,f3,) in

(=1

model (3). Clearly V4 is an estimate of var| nd Mk is an estimate of

var[E(B" x| )] when E(x)=0, where 7 etized y. To prove the ranking
property of wj, we require the follo contitions on the random vectors x, from

which the left and right singulag-ye are derived.

distribution.

Condition 3.2. @exist two positive constants r_. and r__, such that

n max ?
SALE)S7 .-

ConditioQ\3.3. For fixed slicing scheme, S,,---,S,, there exist two positive

constants ¢/ and 7' suchthat A (V,)<7' and A_ (M, )>7"

max max in

Condition 3.4. There exists a positive constant ¢, >0 such that for j €7,

//{“max [COV(XT( > x’T )]

Aumin COV(X 7, X7 )] ’

min, . [| B, [l,> G



where B, is the th row of the p x & coefficient matrix B.

Condition 3.1 is also called the design condition and was first proposed in Duan
and Li (1991) to ensure that g,---, 5, in model (3) are the eigenvectors of
var[E(x| y)]. It is slightly stronger than the linearity condition that was required in
Li (1991). If condition 3.1 holds, we have E(x|B’x)=cov(x,B" x)B"x. The

conditional expectation of x given B7xis linear in B™*. The design condition\was

Condition 3.3 ensures that no E(x; | ) or E(ﬂnflx|y) minate variance or
is linearly dependent on E(x, |y) or E(ﬂ;2x|y) @Iy for j, # j, and

m, # m,. This condition is slightly stronger @-called coverage condition
(Cook et al., 2004) that ensures V,to the SDR directions. Condition

3.2 and 3.3 are necessary conditioRs, WithQut the two conditions, neither S is

well defined nor V}, can be used ta @v» model (2) and (3). Similar conditions
were also required in Li (1831 Zhong et al. (2012) to ensure the consistency
of B. Condition 3.4 is a

i condition for the success of Theorem 3.5
(Supplementary Ma /1). It requires that the coefficients of true predictors
are large enoug @te table. Intuitively, the projection of the redundant
variables on e that spanned by the true predictors must be smaller than
the pr ic@he response yon the space that is spanned by the true
predictopg” It is easy to see that condition 3.4 always holds when x; and x_. are

independent.

Theorem 3.5. Given conditions 3.1-3.4 are satisfied, we have

mll’leT a)j > maneTL, C()j .



Theorem 3.5 implies that the weighted leverage score of any true predictor is
larger than that of any redundant predictors. The proof of this theorem is

collected in Supplementary Material S.1.1. If max; | @, — o, | is smaller than
o=min;_; o, —max . o;, We thus have that @, possesses the ranking

consistency.

If we further assume that the following conditions are satisfied, we showe%

, still has the ranking property when p>>n as both nand p go to infip

Condition 3.6. Assume x,,...,x, are i.i.d. p-dimensional random y. %«

representation

x, = VYu, (6) ©%
where V=(v,,...,v,) eR”” with v, being the Ah ctor of Z,
Ea,o

Y =diag (4,,...,4,) eR”"" with A;being the t of th eigenvalue of %, and

the

O
u, = (u,,...,u,)" with each element be % ~&aussian random variable with

zero mean and unit variance.

Condition 3.7. Assume thes @1 el such that

A> > >N, 2.2 e spiked eigenvalues are well separated and
ﬂf /A= c;; for i, j ey and i # j, where ¢jis a positive constant. The non-
spiked eigenval@ epourded by some positive constants.

Conditjon 3@5ume p > n. For spiked eigenvalues {17}, p/(\/z/’tf) —0. For

envalues {1’}" , |, there exists a positive constant ¢ such that

2= -1/2
A;=c+o(n 7).

Condition 3.9. Given any slice {S,};_,,E(u, |y, €S,)=0 for j=d+1,...,p, and
E(|u, ['| y, €S,) <o for j=1,....d.



In condition 3.6, we assume u,,,...,u, are i.i.d. sub-Gaussian random variables.
Given the variance-covariance matrix Z, then x; having the representation is also
sub-Gaussian distributed with strong tail decay. Compared with condition 3.1 that
requires a symmetric distribution, this condition emphasizes on the tail behavior
of the distribution of x,. This class of distributions is sufficiently wide enough to

contain all bounded distributions.

Condition 3.7 assumes the spike covariance model introduced by %&
Johnstone (2001). The eigenvalues of covariance matrix are divideg' Q
distinguishable spiked ones and bounded non-spiked ones. A si &dl bn
can be found in Shen et al. (2014, 2016) and Fan and Wang2W5),)The well

separated spiked eigenvalues satisfy min _,(1; -17 )/ 4 some ¢, >0.

The non-spiked ones are bounded by two positive ¢ ¢ and ¢, such that

¢ <A <c, forj> d

The spiked covariance model typically gssu @atseveral large eigenvalues
are well-separated from the remaiging. IPNKIS“paper, we are particularly
interested in the spiked part since rresponding directions explain most of
the variations in the data, whil aining directions contain noise. Since the
weighted leverage score | @ed based on both the left and right singular
matrices, to control the and noise contained in the data, we assume in

condition 3.7 that t irections explain a large proportion of the

d p
a, represented by (D' 47)/(D_A?). Here we consider das a

= J=

information

d is independent of nand p, which means that d <<n as n— «.

re, dis also independent of the number of true predictors po.

Condition 3.8 allows p/n— o in a way such that {/Ij}j?zl also grows fast enough
to ensure p/(\/ﬁf) goes to zero. The same condition was required in Fan and
Wang (2015) to guarantee a clear separation of the signal from the noise.

Together with conditions 3.7 and 3.8, we may establish the asymptotic behaviors



of the spiked eigenvalues and corresponding eigenvectors. An example of such
spiked model could have eigenvalues A’ >...> 1> >1=...=1, where A’,...,1, are
spiked eigenvalues, and the rest are non-spiked eigenvalues. Condition 3.9
requires that the conditional expectation E(x, |y, €S,) is contained in the space

spanned by v,,...,v, with A E(, |y, €S,),...,4,E(u, |y, €S,) as coefficients.

Theorem 3.10. Assume conditions 3.1-3.4 and 3.6-3.9 are satisfied. Denote

ge(coﬁ,a/z),
) ©

|6, —w, <& —>1. 7)

§=min,, o, —max__. o,. There exists a positive constant G, and ¢such

P(max, <j<p

In addition, @
P(min , _, é)j >max . c?)j) —1. (8 @@

The proof of Theorem 3.10 is collecte mentary Material S.1.2.

4 Implementation Issues @

There are two challenges 1)

4 enting the WLS algorithm: 1) The

specification of the num @o spiked eigenvalues dis crucial for detecting the
ecification of the number of selected predictors

alse selection and false rejection and consequently is

amount of signals;

another critigari in practice. In the following, we discuss how to deal with

4.1 Deciwte the number of spiked eigenvalues d

By analyzing the eigenvalues of the covariance matrix, we suggest a BIC-type of
criterion for determining the number of spiked eigenvalues d. Let 8 = 17/ A} +1
and 6 = 1%/ A>+1, where 1> and > are th eigenvalues of = and £ respectively

for i=1,...,min(n, p). It is clear that 6?1 >...> é?d >...>0 Let rbe the number

min(, p) *



of current selected spiked eigenvalues, we define a criterion of BIC-type as
follows.

min(n,p) R R 1
D(r)=—- Y (logh+1-6)+c,r/n?, 9)

i=r+l

where ¢, is a positive constant. The estimator of dis defined as the minimizer d
of DXr) over r=1,...,min(n, p) . Notice that the first term of (9) indicates the@@)f
information. It decreases as we include more eigenvalues. When r0>
decrease in the loss of information becomes smaller than the penalty) n

starts to increase. The following theorem states the consistenc

Theorem 4.1. Assume conditions 3.6-3.9 are satisfied.@%gr min D(r) , we

have P(d =d)—1.

=>! f calculating singular values, we consider
ssw on (SVD) in the p > nscenario in this
paper. The nlargest singu
spiked eigenvalues d i etermined using this criterion. We calculate the
weighted leverage sed on the first d singular vectors. For ultra-high
dimensional da@ ecommend using fast algorithms for SVD, such as the

randomized blo rylov method (Musco and Musco, 2015), the fast stochastic

k-SVD ithm (Shamir, 2016), and the LazySVD (Allen-Zhu and Li, 2016).

4.2 Decide the number of predictors

Theorem 3.10 ensures that the weighted leverage scores preserve the ranking
consistency under certain conditions. To achieve the screening consistency, we
rank each predictor's WLS and keep o predictors with the largest WLS. A good

estimate of pp thus is critical for screening consistency. When p, is too large, we



keep too many redundant predictors, and if p, is too small, we miss a lot of true
predictors. In literature, a common criterion to decide p, is the BIC-type criterion
that was used in Chen and Chen (2008) and Wang (2009). In this article, we

propose a modified version of BIC-type criterion. Under some conditions, we

show that the subset of predictors that minimizes the modified BIC-type criterion
consistently includes the true predictors. Next, we introduce the modified BIC-

type criterion.

Arrange the predictors such that @, >...> @, is satisfied. Let rbe th

currently selected predictors. Similar as BIC, we define @
G(r)=—log(Q_®,)+r(logn+c, log p)/ max(n, p), @
J=1
Qh&

ax(n, p) . The less significant

where ¢, is a pre-specified positive constant.

r—1
G(r-1)-G(r)=log(l+ @, /Y @,)—(logn+c,

J=1

the nth predictor is, the smaller thex evalue of G(r—1)-G(r) thus is

smaller when adding the th predi
have positive G(r—1)—G(

til to some point that @, is too small to
arts to increase. We show in Theorem 4.2

ut the redundant predictors.

that G(r) can consistentlys
Theorem 4.2. Assu ;nditions 3.1 - 3.4 hold. If we further assume that

conditions 3.6 -(8.9 satisfied, we have

P(T @ (11)

where 7\)s the subset of true predictors and A is the subset of selected

predictors that minimizes G(1).

The proof of Theorem 4.2 is collected in Supplementary Material S.1.4. Theorem

4.2 ensures that G(7) is consistent for predictor screening. In Section 5, we use



comprehensive simulation studies to justify the empirical performance of G(-) in

determining the model size.
5 Simulation Study

We have conducted extensive simulation studies to compare the performance of

WLS screening method with that of existing variable screening methods,

predictors falsely selected as true predictors (denoted by FP;

number of true predictors falsely excluded (denoted b@
y M), and CPU

minimum model size to include all true predictors (
time charged for the execution of the correspo thod. We used [n/log(n)]
as the cutoff for SIRS and DC-SIS, and G rmine the number of selected

predictors for WLS. The FP and FN we examine the accuracy of
variable screening procedures. Th! is 3 indicator of the ranking property
with a smaller value indicating creening process. The computation time
was also recorded here fo ation of efficiency.

Throughout this sectj sed the following two settings to generate i.i.d.

=;xl,...,xp)T and let the index set of the true predictors

copies of x. (1) e
be Z, ={¢, :@ t, =15,t, =20,t, = 25,t, = 30}. We generated i.i.d. copies of x
ui

=1,...,n, where V is a p-by-p orthonormal matrix,

A A0, 1) has d spiked values, and u, follows a multivariate
normal diStribution with E(u;)=0 and var(u,) = /,. (2) We further studied the
performance of WLS when the covariance matrix £ does not have spiked
eigenvalues. Assume that x = (xl,...,xp)r follows a multivariate normal
distribution with mean zero and covariance Cov(x,,x,) = 0"/ and let the index set

of true predictors be Z, = {t, =1,¢, =10,t, = 20,¢, = 30,¢, = 40,2, = 50} . Let



d = min(n, p) if there is no spiked eigenvalue, and the implementation issue

regarding ¢, and ¢, is provided in Supplementary Material S.2.

Example 1. In this example, we consider the classic linear model.

Y=X +X_+X_+X +X_+X_+0€, (12)

where € is the stochastic error that follows a standard normal distribution.
setting (1) we let Y =diag(80+ p/\/n |.79+[ p/n|....| p/n |1 %9
(p/\/;—l denotes the minimum integer that is larger than p/\/;. T % are
81 spiked eigenvalues for model (12). By specifying n, pand o(@t diferent

values, we have the following five scenarios.

Scenario 1.1: n =500, p=700,c0=1; Scenario 1.2:n @15000 I;

Scenario 1.3: n =500, p =1500,0=1.5; Sec @ 500, p=2000,0=1;

Scenario 1.5: n =300, p =1000,0 = 1

For setting (2), we let n, p, p and & o e following values.

Scenario 1.6: n=500, p = l%g o=1; Scenario 1.7: n=500, p =1000,0=0.5,0=1;
Scenario 1.8: n @; : ,p=0.5,0=1.5; Scenario 1.9: n =500, p =1500,p=0.5,0=1;

Scena n 300, p=1000,p=0.3,0=1.

For each scenario, we generated 100 datasets and applied SIRS, DC-SIS and
WLS to each dataset. The means and standard deviations of the resulting FP,
FN, M values and CPU time are reported in Table 1. Since there exist 6 true

predictors and (p—6) irrelevant variables, the FP and FN range from 0 to (p—6)



and 0 to 6 respectively, with smaller values indicating better performances in

variable screening.

In setting (1), WLS outperforms other methods in terms of FN and minimum
model size M in all scenarios even when the variance of noise increases
(scenario 1.3) and the sample size becomes smaller (scenario 1.5), and its
performance keeps up with diverging p (scenarios 1.1-1.4). DC-SIS and S§|RS
tend to miss one to three predictors on average and have larger M val
diverges or as n gets smaller (scenarios 1.4-1.5). Moreover, it onlyfx
seconds to perform variable screening, much efficient than the @tw

methods.
i>élctors (FN =

able size. SIRS has

In setting (2), WLS and DC-SIS successfully select all
0.00), while keeping falsely selected predictors to
slightly larger FN values when there exist od@> relations between

predictors in the p > nscenarios. The ave imum model size M of WLS

and DC-SIS are around 6, indicating th ue predictors have higher rankings

ariance of the noise and the number of

predictors gets larger or the sayApy
(/.
N4

than redundant predictors. When

gets smaller, the M values of WLS is

t is expected since there are no spiked

‘ Bdel, and thus the signals are not large enough to

~Re computation time of WLS also increases. Since

the number of ectors used to calculate WLS can be as large as n, it

takes extra f{me erform the calculation.

Examplg® 2. In this example, we consider the multiple index model with the

following Torm.

x, +x, +1.5x +1.2x,
0.5+ (x, +1.2x, +1)

y + Ok, (13)



where € is the stochastic error that follows a standard normal distribution. For
setting (1) we let Y:diag(50+[p/\/ﬂ,49+{p/\/ﬂ,...,(p/\/ﬂ,l,...,l) and V be
identity matrix. Thus, there are 51 spiked eigenvalues for model (13). By

specifying n, p and o at different values, we have the following five scenarios.
Scenario 2.1: n=1000, p =1200,0=1; Scenario 2.2: n=1000, p =1500,0=1;
Scenario 2.3: n=1000, p =1500,0=1.5; Scenario 2.4: n=1000, p = 2000, 0

Scenario 2.5: n =300, p =2000,0=1. &\

For setting (2), we let n, p, p and obe the following values.
4%10

Scenario 2.6: n=1000, p =200,p=0.5,0=1; Scenaﬁo@y
: @naria 2.9: n=1000, p = 2500, p=0.5,0=1;

00, p=2000,p=0.5,0=1;
Scenario 2.8: n=1000, p =2000, p=0.5,0=

Scenario 2.10: z = 500, p = 2000, p® I;
In each scenario, we gen datasets and applied SIRS, DC-SIS and

WLS to each dataset. T s and standard deviations of the resulting FP,

FN, M values and are reported in Table 2.

In setting (1) rks better in screening redundant predictors (FP, scenarios
21- C d with SIRS, especially when the number of redundant

predict errors of the model increase. DC-SIS misses two to four

predictor® on average. Notice that in this setting, V is an identity matrix and the
p candidate predictors are nearly independent. This model setting favors SIRS
since SIRS requires that there is not strong collinearity between the true and
redundant predictors or among the true predictors themselves. Regarding the
minimum model size M, WLS ranks first, indicating that WLS is able to find all

true predictors with the smallest model size.



In setting (2), predictors are assumed to have moderate correlations. WLS has
better performances regarding FP and FN values especially when p diverges. It
implies that WLS is able to include all true predictors while keeping FP value to a
manageable size. SIRS on average misses two predictors when there exist
moderate correlations between predictors in the p > nscenarios (scenarios 2.7-

2.10). WLS ranks first concerning the minimum model size M.

Example 3. In previous examples, the true predictors affect the mean re €

In this example, we consider the heteroscedastic model of the folloW,

oc &
= , (14)
1+1.2x, +x, +x, +1.5x, +x_+x,

where € is the stochastic error that follows a standard

&
setting (1) we let Y:diag(50+(p/\/ﬂ,49+(p/ /\/ﬂ,l,...,l) and V be

identity matrix. By specifying n, pand o at

scenarios.

Scenario 3.1: n=1000, p =1200,0 cenario 3.2: n=1000, p =1500,0=1;

Scenario 3.3: n=1000, p =; Scenario 3.4: n =300, p =2000,0=1.

For setting (2), we | nd obe the following values.

Scenario 3.5: n @ 200,p=0.3,0=1; Scenario 3.6: n=1000, p =2000,p=0.1,0=1;

O

Scenarly37>7 = 1000, p = 2500, p=0.1,c=1;  Scenario 3.8: n =500, p = 2000, p=0.L,c=1.

In each scenario, we generated 100 datasets and applied SIRS, DC-SIS and
WLS to each dataset. The means and standard deviations of the resulting FP,
FN, M values and CPU time are reported in Table 3.



In setting (1), by investigating FP and FN values, we find that both WLS and
SIRS enjoy good performance for this model and correctly recover all true
predictors with large probabilities. This model setting also favors SIRS and thus it
works reasonably well. DC-SIS misses five predictors on average, as the
minimum distance correlation of active predictors are too small to be detected.
Regarding the minimum model size M, WLS and SIRS have comparable

performance and are stable under various scenarios.

In setting (2), WLS still enjoys good performance in heteroscedastié} @%
there is no spiked eigenvalues. As p diverges (scenarios 3.6 and-3 %}_
attains the lowest FP and FN values, while DC-SIS and SIR avgrage miss
two to five predictors. Regarding the average minimum@ e M, WLS

outperforms SIRS and DC-SIS in all scenarios.

To conclude, SIRS and DC-SIS, as extension @n be applied to a wide
range of parametric and semi-parametric d are particularly appealing
for variable screening when the numbe didate predictors exceeds the
sample size. However, SIRS requj hereto be no strong collinearity between
the true and redundant predic ong the true predictors themselves. SIRS
thus may fail to identify th% ictor that is correlated with redundant

on average wit erging p. While DC-SIS may also fail to identify some
important pf€dicfors that have small marginal distance correlations with the
respo %{m}; nple 2-3 setting (1)). For WLS screening method, simulation
studies s\ow that it is a robust variable screening method under various

scenarios, even when the covariance of the predictors does not have spiked

eigenvalues (example 1-3 setting (2)).

6 Weighted leverage score for cancer biomarker detection



Cancer, characterized by uncontrolled abnormal cell growth and invasion, has
gradually become the primary cause of death across the world. According to the
National Cancer Institute, more than 1.68 million new cases of cancer will be
diagnosed in the United States, and nearly 0.6 million people would die from the
disease. Although national expenditures for cancer care and cancer research are
tremendous, cancer survival rates still tend to be poor due to late diagnosis.

Therefore, an early and accurate detection of cancer is of primary import .

With the recent advancement in next generation sequencing technd Q
accurate detection of cancer becomes possible and holds treme &o ise. It
has been shown that many cancers have altered messenger% NA)

metabolism (Wu and Qu, 2015). In tumor cells, there exi ant mRNA

o the loss of

processing, nuclear export, and translations, which

S

Ce thus is to find the tumor-

function of some tumor suppressors (Pandolfi, 20
Borden, 2012; Wu and Qu, 2015). One typ{

related marker genes that can discrimi

iqui and

I patients from normal and
early-stage cancer from late-stageqJ his e achieved using the variable
selection approach under the clas {on or regression model. However, in a
typical biomarker detectio r of identified non-invasive/invasive cancer

subjects is only in the hu ile the number of candidate marker genes is

usually in the tens of
inapplicable in thj

layer of compliga{ions when there exists a nonlinear relationship between gene

ds. Most existing statistical methods are

“small n, ultra-large p’ setting. There is a further

expressi el and cell types within tissue sections, because the nonlinear

on
model re susceptible to the curse of dimensionality. Effective variable
selectionwnethods for nonlinear models thus are even more critical than that for

linear models in identifying marker genes for the early cancer detection.

To identify marker genes, we applied the WLS screening approach to analyze

the breast cancer spatial transcriptomics data (Stahl et al., 2016). Spatial

transcriptomics is a recent sequencing strategy that allows the quantification of



gene expression with spatial resolution in individual tissue sections. Standard
RNA-seq technique produces an averaged transcriptome, while spatial
transcriptomics simultaneously sequences different locations of a breast cancer
tissue section, including normal, cancer, and invasive cancer areas. This strategy
provides gene expression data with less noise. In this experiment, 518 locations
on two histological sections that from a breast cancer biopsy were sequenced,
among which 64 were identified as invasive cancer areas, 73 were identifdd as
non-invasive cancer areas, and 381 were identified as non-cancer area
locations were identified based on morphological criteria (Stahl et 0Q@In
each location, expressions of 3572 genes were quantified. To redictive
model as illustrated in (3), we treat location labels as the re riable and
the expression values of 3572 genes as predictors. More\R«egigely, the response

is a vector with 518 entries and the data matrix is a 72 matrix with (4
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We applied WLS to this data set and id
expressed between invasive, nonig iveand normal areas. The revealed
expression patterns show a rema
profiles between areas of ¢an igdre 1 (B) and (C)). For example, genes
PRSS23 and SCD were higRY
(B)), and genes FGB, Q
areas (Figure 1 ojiinderstand the biological processes that those genes
were involv@ a)Jgo annotated the functions of them using Gene Ontology
h

Consagdjium)

expressed in non-invasive cancer areas (Figure 1

I

nd FN7 were highly expressed in invasive cancer

225 genes were enriched in 47 functional classes. In particular,
41 gen involved in regulation of cell death, and 38 of them were involved
in regulaon of apoptotic process, one of the most important cancer hallmarks. It
was also of interest to note that the three genes: FGB (fibrinogen beta chain),
TGM_Z2 (transglutaminase 2), and FN/ (fibronectin 1) that were over-expressed in
invasive cancer areas were involved in apoptotic process. The increased
expression and activation of tissue transglutaminase ( 7GMZ2) often occurred in

response to the stimuli that promote cell differentiation and apoptosis, which



further contributes to its oncogenic potential in breast cancer cells (Antonyak
et al., 2004). The expression of FN7 was regulated by micro (mi)RNA-206 who
was demonstrated to be associated with metastatic cancer types, including
breast cancer (Liu et al., 2015; Kondo et al., 2008; Adams et al., 2009). FN7

gene itself was also found to be a key regulator in breast cancer development

(Liu et al., 2015) and be correlated with the drug resistance of cancer cells (Mutlu
et al., 2012). Other genes were involved in pathways that may contribute %
cancer development such as blood vessel development, and pathwgy@

related to immune system such as neutrophil mediated immunity a

ifferential

expression analysis on this dataset using the DESeqg2 tool % l., 2014), a

negative binomial model-based hypothesis testing metho ral genes

activation during immune response. Stahl et al. (2016) perform

(IGFBPS, MUCL1, PIP, FN1, POSTN, SPARC, MM,

paper and were overlapped with the feature ge
Moreover, WLS identified other genes that @

e highlighted in the
ntified by the WLS method.
hed in the apoptotic

process and were in need for further i {ivh. Since WLS is a model-free

variable screening method, it is ableNo detekt predictors when the relationship
between them and the response it @ d linear.
We also applied the methay E S and DC-SIS to this dataset. The SIRS

method detected 82 f !!‘enes, among which 17 were enriched in the
regulation of cell g;j d\the regulation of apoptotic process. The DC-SIS
ct

method also 82 feature genes involved in the regulation of cell growth
and p Wa@t may contribute to cell development. To evaluate the prediction
accura WLS method, we further trained random forests to predict
sample’smwdentity using the identified feature genes. The 10-fold cross-validation
results were reported in Table 4. In terms of the prediction accuracy, the WLS

method outperformed other methods.

7 Discussion



Leverage score has long been used for model diagnostics in linear regression.
Recently, leverage score has been shown to be a powerful tool for big data
analytics. Subsamples that randomly selected according to the leverage scores
are good surrogates of the full sample in estimating linear regression models.
Thus it is extensively used to overcome the computational challenges that arise
from analyzing a massive number of samples. Despite the promising results of
leverage score sampling in reducing big sample size n, it remains elusive%

can be used to reduce the dimensionality when pis large. o Q

The WLS screening method generalizes the recent work (Ma et @ W5

and Sun, 2015) on leverage score based sampling to predic crigening. The
@I

proposed screening procedure has a novel contribution t rature of

under the SDR framework and does not impose aff\aassdimption on the

variable screening for high-dimensional regression ai iN-irst, it is developed

relationship between the response and pr: ond, compared with

existing variable screening methods u framework, it is a more

in linear models for s b ling to variable screening in nonparametric models.
It is derived base @h Die right and left leverage scores and consistently
evaluates theithrornance of predictors. Thus it enjoys an excellent computational

and thegqretidal aglvantage.

As a tradg-off, the WLS screening procedure imposes a few assumptions on the
distribution of the predictors, of which the design condition is fundamental and
crucial. It requires that the predictors are from a non-degenerate elliptically
symmetric distribution. For a consistent estimate of wjin the scenario of
p/(«/;ﬂj) — 0 when n, p and Aqgo to infinity, the sub-Gaussian distribution is

imposed to predictors. These assumptions ensure the ranking consistency of



WLS for variable screening in high-dimensional data. The WLS also depends on
a fixed slicing scheme, which is more of a technical issue. For the slicing
scheme, the allowed number of observations within each slice is as close to each
other as possible, while the range of each slice may vary. When choosing the
number of slices A, we recommend to have at least 10 observations within each
slice, and a larger number of slices is preferred to ensure selection consistency
(Zhong et al., 2012). As discussed in Li (1991), inappropriate choices of y
result in a slower convergence rate but would not lead to a significant dj %
in the behaviors of the output. Thus, instead of making the mathem0 @
formulation of the WLS method more complicated, we choose t @ the
fixed slicing scheme for practical considerations. %@9

the curse of dimensionality in regression. We beli the results from this

@t@gical contributions to the

ning algorithms, and have a

The WLS screening approach provides a rich and fle fm\.@nework to address
éi{g t}%

project will make significant theoretical an

study of general index models and varg
broad and important impact on apglicatio many areas. To facilitate the

method development in this direc implemented the WLS screening
algorithm using programmjn @ € R, and the source code can be
downloaded from Github &9
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Fig. 1 (A) is one histologj &tion from breast cancer biopsy with two areas of

invasive ductal can line) and four areas of ductal cancer in situ (white

line). Other are -cancer areas. The image is obtained from Stahl
@vs the areas where genes PRSS23and SCD were highly

et al. (2016)
expre ows the areas where genes FGB, TGMZ2and FN7 were highly
expressgd. (D) is a heatmap of expressions of genes selected by WLS. For the

ease of pfesentation, we only showed the first 20 genes.



Table 1 Performance comparison in example 1.

Setting (1)

Method

FP

FN

M

Time (s)

Scenario 1.1

SIRS

74.00 (0.00)

0.00 (0.00)

58.65 (0.89)

7.53 (0.56)

DC-SIS

74.00 (0.00)

0.00 (0.00)

14.58 (0.50)

23.98 (1.29)

WLS

28.95 (0.72)

0.00 (0.00)

12.60 (0.57)

0.26 (0.02)

Scenario 1.2

SIRS

74.00 (0.00)

0.00 (0.00)

31.34 (0.57)

16.44 17)}4\

DC-SIS

74.00 (0.00)

0.00 (0.00)

27.53 (0.83)

410?%\)

. ~—

WLS

72.87 (0.84)

0.00 (0.00)

8.16 (0.58)

0FRGY

Scenario 1.3

SIRS

74.00 (0.00)

0.00 (0.00)

31.63 (0.8

5,1%3:{/(0.17)

DC-SIS

74.00 (0.00)

0.00 (0.00)

7432 (1.42)

—~—

WLS

72.90 (0.89)

0.00 (0.00)||8

27.35 \§b
8.8 (O%)

1.49 (0.02)

Scenario 1.4

SIRS

75.75 (0.44)

1.75 (44}

S e

21.73 (2.13)

DC-SIS

75.00 (0.00)

867 (1.35)

54.64 (3.82)

WLS

97.33 (0.85)

DNY>

31.28 (2.69)

0.54 (0.06)

Scenario 1.5

SIRS

\

49.00

252.70 (3.11)

3.37 (0.08)

AL

DC-SIS|47

INZ

1.00 (0.00)

89.21 (1.39)

9.32 (0.25)

WLS

\
/f

A

AN
&@(1 06)

0.74 (0.66)

64.65 (12.61)

0.43 (0.01)

Setting (2)

dgp >

At

FN

M

Time (s)

Scenario 1.@’

o

74.00 (0.00)

0.00 (0.00)

9.89 (1.44)

3.00 (0.26)

P

%—SIS

74.00 (0.00)

0.00 (0.00)

6.00 (0.00)

7.82 (0.67)

)\

WLS

14.47 (1.27)

0.00 (0.00)

6.00 (0.00)

0.30 (0.03)

Scenario 1.7

SIRS

74.01 (0.10)

0.01 (0.10)

43.95 (12.35)

29.75 (2.51)

DC-SIS

74.00 (0.00)

0.00 (0.00)

6.00 (0.00)

78.63 (7.26)

WLS

45.89 (1.29)

0.00 (0.00)

6.01 (0.10)

53.74 (3.72)

Scenario 1.8

SIRS

74.29 (0.46)

0.29 (0.46)

68.52 (30.06)

29.84 (2.49)




Setting (1)

Method

FP

FN

M

Time (s)

DC-SIS

74.00 (0.00)

0.00 (0.00)

6.07 (0.29)

79.12 (7.48)

WLS

48.16 (1.29)

0.00 (0.00)

6.11 (0.40)

53.91 (3.98)

Scenario 1.9

SIRS

74.03 (0.17)

0.03 (0.17)

41.65 (17.53)

44.83 (3.97)

DC-SIS

74.00 (0.00)

0.00 (0.00)

6.00 (0.00)

118.20 (10.71)

WLS

71.06 (1.37)

0.00 (0.00)

6.01 (0.10)

80.21 (6.01

NG

Scenario 1.10

SIRS

46.41 (0.53)

0.41 (0.53)

53.64 (18.16)

3.49 9.0

DC-SIS

46.00 (0.00)

0.00 (0.00)

6.01 (0.10)

10260

WLS

32.78 (1.05)

0.00 (0.00)

7.89 (2.20) |
€

/¢

(@
D)




Table 2 Performance comparison in example 2.

Setting (1) |Method FP FN M Time (s)
138.00 0.00 111.21
Scenario 2.1 |SIRS |/(0.00) (0.00) 38.98 (8.44) (10.29)
140.26 2.26 386.04
DC-SIS||(0.48) (0.48) 664.63 (100.18) (41.13%
0.04 > Q\v
WLS |42.94 (1.29) ||(0.20) 36.01 (10.56) <:Q9§% )
138.00 0.00 Q \‘?.89
Scenario 2.2 ||SIRS |(0.00) (0.00) 44.22 (5{{% :(12.00)
140.17 2.17 11 w ] 476.11
DC-SIS|(0.43) (043)  H&N&Y (45.02)
0.03 U('iO})v
WLS |44.13 (0.87) (@’36.21 (10.36) 11.29 (1.61)
138.00 ) .O(‘)%V
Scenario 2.3 |SIRS {/(0.00) ”/&E:&?O) 44.57 (5.06) 36.41 (0.55)
14%)) 2.39 1190.12
DC-SIS<@ (0.65) (246.29) 210.17 (7.13)
@ 9‘% 0.00
/_@ 44.21 (0.83) |/(0.00) 36.20 (9.98) 5.59 (0.10)
Q::jv’ 138.00 0.00 184.18
Scena%’SlRS (0.00) (0.00) 40.44 (8.20) (16.60)
v 140.76 2.76 1490.83 636.14
DC-SIS|/(0.43) (0.43) (196.61) (64.02)
0.03
WLS |44.73 (0.51) ||(0.17) 38.20 (10.32) 16.69 (2.74)
Scenario 2.5 ||SIRS |46.00 (0.00) ||0.00 46.97 (3.67) 7.03 (0.22)




Setting (1) |Method FP FN M Time (s)
(0.00)
4.86 1876.98
DC-SIS||50.86 (0.35) ||[(0.35)  [(125.51) 20.18 (0.37)
0.00
WLS  [44.92 (0.27) [(0.00)  [42.39(7.49)  ||0.66 (Q04)
Setting (2) Method|FP FN M Iim 9\9
138.00 0.00 v\\\{
Scenario 2.6 [SIRS (0.00) (0.00)  ||30.36 (7.08) f%&o (1.64)
138.00 0.00 NS~
DC-SIS||(0.00) (0.00)  [12.77%(: 62.92 (5.38)
0.00 N
WLS  ||31.83 (1.98) (0.00&@@0.78) 2.10 (0.16)
139.96 N,‘\y 193.92
Scenario 2.7 |SIRS  [[(0.20) Q}% 483.44 (136.12) [(16.40)
138.00 Cyo 627.38
DC-SIS|(0.80) (OZ') [0.00)  [14.33(1.60)  [(53.86)
! N 0.0 427.98
WLS@:@(L?G) (0.00)  ||7.04 (1.34) (30.26)
N40.00 2.00 193.23
Scenario 2.{%@ (0.00) (0.00)  [806.54 (225.90) (15.74)
‘v\y 138.00 0.00 621.74
DC-SIS||(0.00) (0.00)  [28.48 (15.11)  [(50.78)
0.01 429.94
WLS |94.83 (1.80) (0.10)  [19.45 (16.68) ||(31.38)
139.98 1.98 242.22
Scenario 2.9 |SIRS [[(0.14) (0.14)  [575.28 (183.56) [(20.61)




Setting (1) |Method FP FN M Time (s)
138.00 0.00 787.96
DC-SIS||(0.00) (0.00) 14.98 (2.59) (66.91)
115.94 0.00 536.32
WLS |/(1.85) (0.00) 11.17 (8.93) (38.58)
Scenario 2.53
2.10 SIRS |[76.53 (0.50) ((0.50) 988.85 (250.46) 16.69&&
0.05 > M\\%
DC-SIS||74.05 (0.22) ||(0.22) 31.42 (22.88) fj@@. 8)
0.05 &y v
WLS |65.18 (1.28) ||(0.22) 27.72&\2@‘\({@ 8.31 (0.39)
N

N

©

%&@
@@Q
©

<




Table 3 Performance comparison in example 3.

Setting (1) (Method FP FN M Time (s)
Scenario 3.1|SIRS  (|138.00 (0.00)(0.00 (0.00)|40.45 (6.87) 110.27 (9.71)
DC-SIS||143.81 (0.51)|5.81 (0.51)(|1015.60 (149.40)||379.41 (38.36)
WLS |43.66 (1.10) ||0.22 (0.42)(145.23 (5.22) 8.95 (1.32)
Scenario 3.2||SIRS  (|138.00 (0.00)(0.00 (0.00)|45.19 (4.91) 137.50: \90)
DC-SIS|[143.39 (0.85)(5.39 (0.85)||1303.80 (198.85) 4‘2&\@08)
WLS |44.32 (0.82) ||0.07 (0.26)(44.73 (5.64) f3§1§?>2\?1>7>3)
Scenario 3.3|SIRS |1138.00 (0.00)(/0.00 (0.00)||43.67 (6. 52(@; 3%3 81 (14.85)
DC-SIS|143.34 (0.54)(5.34 (0.54)||1734. @\&;g'% 627.75 (54.28)
WLS |44.73 (0.69) |0.03 (0.17)||4 3’@‘\@8\‘\5 16.16 (2.20)
Scenario 3.4|SIRS |146.00 (0.00) (0.00 (({’9\ ‘%@9‘(4.38) 7.03 (0.23)
DC-SIS|51.86 (0.35) |5 M :3I7é4.04 (251.56)|[20.17 (0.39)
WLS |44.95 (0.22)Q§B\04‘(\ 0 0)(/45.17 (6.76) 0.66 (0.04)
Setting (2) |Method|FP AQP M Time (s)
Scenario 3.5SIRS 13§:\ v 0.00 (0.00)|[71.22 (16.63) 19.51 (1.61)
DC-SI%@@%KZZ) 0.05 (0.22)||65.98 (39.43) 63.30 (5.94)
W}&&@3&202) 0.25 (0.44)||46.02 (40.60) 2.11 (0.17)
Scenario 3@’§M 141.94 (0.65)|/3.94 (0.65)||902.59 (183.33) (|194.20 (15.59)

N

141.38 (1.15)

3.38 (1.15)

728.99 (306.22)

631.71 (54.10)

b/\:

110.18 (1.78)

1.28 (0.96)

310.62 (251.74)

429.31 (29.71)

Scenario 3.7|SIRS  ||143.22 (0.73)|/5.22 (0.73)|1134.49 (275.10)(243.07 (20.39)
DC-SIS|139.71 (0.71)[1.71 (0.71)[897.10 (519.68) [782.91 (68.00)
WLS  [|138.29 (1.91)[|1.31 (0.85)|679.12 (548.77) |536.98 (38.92)

Scenario 3.8SIRS  {|79.58 (0.55) [5.58 (0.55)(1144.52 (236.43)(16.50 (0.28)




Setting (1) |Method FP FN M Time (s)

DC-SIS|78.41 (0.71) |4.41 (0.71)/1345.58 (356.08)(68.58 (4.02)

WLS [70.68 (1.61) ||2.91 (0.75)(965.09 (500.01) ||8.58 (0.78)




Table 4 Prediction Accuracy

Method||Invasive Group|Noninvasive Group|Normal Group|Overall
SIRS |0.4622 0.7879 0.9609 0.8687
DC-SIS|0.4288 0.8137 0.9659 0.8745
WLS |0.4622 0.8303 0.9717 0.8842




