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Abstract—The continuum deformation leader-follower cooper-
ative control strategy models vehicles in a multi-agent system as
particles of a deformable body. A desired continuum deformation
is defined based on leaders’ trajectories and acquired by followers
in real-time through local communication. The existing contin-
uum deformation theory requires followers to be placed inside
the convex simplex defined by leaders. This constraint is relaxed
in this paper. We prove that, under suitable assumptions, any
n+1 (n=1,2,3) vehicles forming an n-D simplex can be selected
as leaders while followers, arbitrarily positioned inside or outside
the leading simplex, can acquire a desired continuum deformation
in a decentralized fashion. The paper’s second contribution is to
assign a one-to-one mapping between leaders’ smooth trajectories
and homogeneous deformation features obtained by continuum
deformation eigen-decomposition. Therefore, a safe and smooth
continuum deformation coordination can be planned either by
shaping homogeneous transformation features or by choosing
appropriate leader trajectories. This is beneficial to efficiently
plan and guarantee collision avoidance in a large-scale group.
A simulation case study is reported in which a virtual convex
simplex contains a quadcopter vehicle team at any time ¢;
A* search is applied to optimize quadcopter team continuum
deformation in an obstacle-laden environment.

Keywords—Path Planning, Collision Avoidance, Multi-vehicle
System (MVS), Eigen Decomposition, Local Communication

I. INTRODUCTION

Formation and cooperative control algorithms [1] have been
applied to problems in biology [2], computer science [3],
aerospace engineering [4], and elsewhere. Virtual structure [5],
[6], consensus [7]-[9], containment [10]-[12], and continuum
deformation [13] are some of the existing multi-agent system
(MAS) coordination methods. While the virtual structure (VS)
method is commonly exploited for centralized coordination,
the other three methods provide decentralized solutions. The
VS method treats MAS as particles of a virtual rigid body;
rigid body translation and rotation prescribe agents’ trajectories
in a 3-D motion space. Consensus algorithm stability has been
analyzed under fixed and switching communication topologies
[14], [15] and in the presence of fixed and time-varying delays
[16]-[18]. Finite-time consensus under fixed and switching
communication topologies is developed in Refs. [19], [20],
while leader-follower consensus is investigated in Refs. [8],
[9].

In containment control, leaders independently guide collec-
tive motion, and followers acquire the desired coordination
via local communication. Containment control stability and
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convergence [21] with fixed [10] and switching [22] com-
munication topologies have been analyzed in the existing
literature. Retarded containment with fixed [10] and time-
varying [11] time-delays and finite-time containment control
and coordination [23] have also been investigated. Similar to
containment control, continuum deformation is a decentralized
leader-follower approach [13], [24], where followers’ commu-
nications are weighted and consistent with agents’ reference
positions. Furthermore, continuum deformation formally spec-
ifies and rigorously ensures safety of the formation.

Our manuscript offers new contributions compared to the
existing literature as well as the authors’ previous work.
One of the key contributions of our paper is that it relaxes
the containment requirement condition needed in the pre-
vious work on continuum deformation based coordination.
In particular, we prove that any n+ 1 vehicles forming an
n—D simplex can be selected as the leader vehicles while
followers can be either inside or outside the leading simplex.
This greatly enhances scalability and flexibility of our MVS
continuum deformation approach which in turn implies that a
large number of agents with an arbitrary distribution can be
safely coordinated in a geometrically-constrained environment.
Furthermore, this paper uses eigen-decomposition to provide
a significantly less conservative condition for ensuring safety
and inter-agent collision avoidance in a large-scale continuum
deformation coordination. While the existing continuum de-
formation coordination method ensures inter-agent collision
avoidance by assigning a single lower-limit for all deformation
eigenvalues, this paper guarantees inter-agent collision avoid-
ance by assigning a lower-limit on one of the eigenvalues of
the pure deformation matrix that is characterized based on the
minimum separation distance in the reference configuration of
the vehicles.

This paper is organized as follows. Preliminaries presented
in Section II are followed by inter-agent communication
topology and graph theory definitions in Section III. Section
IV presents the formulations and statements of the problems
considered in this paper. MVS collective dynamics is obtained
in Section V. Safety requirements of MVS continuum defor-
mation are obtained in Section VI. Continuum deformation
planning is formulated in Section VII. Case study results in
Section VIII are followed by a conclusion in Section IX.

II. PRELIMINARIES
A. Position Notations

Agent positions are expressed with respect to a Carte-
sian frame with unit basis vectors & =[1 0 0]7, & =
[0 1 0]7, and & = [0 O 1]7. For agent i, r; =
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[x; vi zi]"s Tis = [xis Vi Zi,s]T, rio = [xi0 vio Zi,o]T,
TiHT = [xi,HT Yi,HT Zi,HT]T, and rg; = [Xd,i Yd.i Zd,i]
denote actual, initial, reference, global desired, and local
desired positions, respectively. For continuum deformation
coordination, r; = [x; y; z]7 is considered as the output of
the control system of every vehicle i € V. Global and local
desired positions of agent i are defined in Sections II-C and
III, respectively. For n = 1, reference position components
vio = zio = 0 for every agent i € V and agents are all
distributed along the &; axis. For n =2, z; o =0 for every agent
i €V and agents lie in the plane defined by €; and &,.

B. Motion Space Discretization

Let p; e R™!, .-, p,s1 € R and ¢ be position vectors of
n+2 points on an n-D hyperplane. Defining a scalar function

Y, (P1.-+Pas1) =rank ([p2—pi Pt —p1]). (D)

-+, Pns1 € R™! agssign positions of
’pn+1) =n. If

vectors p; € R™!
vertices of an n-D simplex, if ¥, (pi,---

Y, (p1,--*,Pn+1) =N, we can define a vector function
-1
oo n c
©, (P, Pns1,€) = ["1‘ pf‘] [1 RNC)

Per Eq. (2), the sum of the entries of @, is 1, i.e. 1ix(n+1)On =
1, where 1ix(ns1) € R+ s a vector with all components
equal to 1. If @, (p1,- -+, Pn+1.€) > 0, then, the point c is inside
the simplex defined by pi, -+, pn+1. Otherwise ¢ is outside
this simplex.

C. MVS Homogeneous Deformation Coordination

We consider collective motion of an MVS consisting of N
vehicles and treat them as particles of a deformable body. The
global desired position of vehicle i is defined by

t>tg,  ripr(t)=Q(N)rio+d(?), 3)
where ¢ is the current time, #, is the initial time, Q € R¥3
is the Jacobian matrix, and d = [d; d> d3]7 € R**! is a rigid
body displacement vector. The matrix Q(z) is nonsingular for
all 1 > t,.

Leader-Follower Homogeneous Deformation: Because (3)
is a linear transformation, global desired position of vehicle
i € Vg can be expressed as follows [13]:

n+l

i€V, t2t,, v g7 (1) = Za’i,jrj,HT(t)a “4)
J=1
where leaders form an n-D simplex in the reference configu-
ration and

[i1 ai,n+1]T =0, (ri0,-,Tns1,0.Ti0) . (5)

Homogeneous Deformation Decomposition: Let angles
B1, B2, and B3 define a rotation matrix

Cﬁz Cﬁs Cﬁz Sﬁa _Sﬁz
R(B1.82:.83) = | S SpCps = CpiSps SpiSpaSps +CpiCpy  SpiCa |
Cp SpCy +5p,Spy CpiSp.Sps =S Cpy Cp Cp,

where C(.) and S(.) abbreviate cos () and sin(-), respectively.
The rotation matrix R (81,82, 83) is orthogonal. Using the form
of rotation matrix given in (6), matrix Q(¢) in (3) can be
decomposed as

Q) =Rp()Up (1), @)

where Rp (1) =R (¢, (1), 6, (1), 0, (1)),

3

Up (1) = Z/liﬁi (B0 (1), 0 (1), Y (D) 8] (0 (1), 00 (1), (1))
i=1

(8a)

i=1,23, @ =R"(¢,(1).0,(1),¥u(1)&. (8b)

Note that @, @i, and @i3 are the eigenvectors of Up while
€1, €, and &3 are the base vectors of the inertial coordi-
nate system defined in Section II-A. A desired homogeneous
transformation (3) can thus be uniquely expressed by the
following features: (i) Rotation angles ¢, (1), 0,(t), ¥, (1),
(ii) Deformation eigenvalues A;(t), A2(¢), A3(¢), (iii) Defor-
mation angles ¢, (1), 6,(t), and ¢, (¢), and (iv) Rigid body
displacement components d;(t), da(t), and d3(t). For n =1,
Gu(t) = 0u(1) =y (1) = ¢ (1) =0 and A»(1) = A3(r) = 1 but
A1(1), 0,(t), ¥, (1), di(2), da(t), and d3 can be designed to
shape a desired homogeneous deformation coordination. For
n=2, A13(t) =1, ¢,(t) =6,(¢t) =0 at any time ¢ and the re-
maining features can be used to specify a desired homogeneous
transformation coordination. For n = 3, all 12 features can be
used to plan a continuum deformation coordination.

We include the following result for n = 2:

Theorem 1. Consider a 2-D continuum deformation coordi-
nation in a 3-D motion space where vehicles are distributed
on the plane normal to G3(t) at any time t. Given reference
positions of three leaders (v, Y20, and r30) and leaders’
global desired positions at a time t (v1 pr(t), ropr(t),
and r3 ur (1)), eigenvalues A1(t) and A»(t) of Up(t) and
deformation angle ,,(t) are obtained by

A1 :\/aTH+\l[%(a—c)]2+b2
/12=\/aT+C—\/[%(a—c)]2+b2 ) ©)

]tan‘1 2b
Vu =3

a—c

where the dependence on t is omitted to simplify the notation
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and

[a (xz,o—x1,o)2 (xzo X1 0) ()’2,0—)’1,0) (yz,o—y1,0)2
_ 2

b|=|(x30-x20)" 2(x3.0-x20) (y3.0 = ¥20) (v3.0-y2.0)

c 2 2

- (Xl,o—x3,o) (x10 X3 0) (y1,o—y3,0) (yl,o—y3,o)

-(XZ,HT —Xl,HT)§+ (yz,HT _yl,HT)2+ (Zz,HT —Z1,HT)2
(x3,HT —Xz,HT) + (Y3,HT _y2,HT) + (Z3,HT —Zz,HT)
_(xl,HT —X3,HT) + (yl,HT —y3,HT) + (Zl,HT —Z3,HT)

10)

Proof: Substituting A3 =1 and ¢, =6, =0 into Eq. (8a),

it follows that

a b 0
U= ¢ of, (11)
0 0 1
where
/l%coszwu+/l§sin2¢/u=a,
(2% =A%) siny, cosy, = b, (12)

Asin? g, + A3 cos? Yy, = c.
By solving (12), 41, 42, and ¥, are related to a, b, ¢ by Eq.
(9). For every two different leaders i and j with global desired
trajectories defined by (3), the following relation holds:
(tinr —vjmr)’ (Comr —vjmr) = (viar —tinr) QTQ(rio—r,0)

where Q7 Q = U2,. This implies that

(1‘2,HT - l‘l,HT)T (rZ,HT - I‘1,HT) = (1‘2,0 - rl,o)T Ué (I‘z,HT - 1'1,HT) s

(13a)

(r3,m7 — l‘z,HT)T (r3,a7 —*2,uT) = (30— l‘z,o)T U3, (r3.n7 —T2.17) s
(13b)

(I'l,HT - rs,HT)T (l'l,HT - 1‘3,HT) = (1‘1,0 - rs,o)T U%) (I'l,HT - I‘3,HT) .
(13¢)

Now, U%) can be replaced by Eq. (11) and Eq. (13) reduces to
a set of three linear algebraic equations with three unknowns
a, b, and c. By solving Eq. (13), a, b, and ¢ are obtained as
given in (10). |

II1. INTER-AGENT COMMUNICATION

Suppose an MVS consists of N vehicles moving in a 3-D
motion space. The set Vg ={1,2,---, N} defining identification
(index) numbers of the vehicles is expressed as Vg =V |J V¢
where V; and Vg define index numbers of leaders and
followers, respectively. The paper considers cases in which
vehicles are distributed in an n-D (n=1,2,3) Euclidean space
in R3. The MVS is guided by n+ 1 leaders with index numbers
Vi ={1,2,--- ,n+1}. Followers’ index numbers are defined by
the set Vg ={n+2,---,N}.

Let Q. be an arbitrary closed domain enclosing all real
vehicles at a reference configuration, where N, auxiliary nodes
are arbitrarily distributed on the boundary Q. and identified
by the set Vyux ={N+1,N+2,--- ,N+N,}.

Remark 1. Auxiliary nodes do not represent real agents and
they are introduced only to ensure MVS coordination stability.
Note that followers only communicate with real in-neighbors
at any time ¢ during continuum deformation coordination. This
is further described in Section III-B below.

":‘lAuiniary Node|
e Follower
e Leader

Aux: 20 /%,
2

1
1
1
1
1
|
|
\
\

Fig. 1: Schematic of a communication graph with real and
auxiliary nodes used in a 2-D continuum deformation.

A. Reference Communication Weights and Weight Matrix

Inter-agent communication is defined by the graph G, =
Gw (V,8E,,) with node set V and edge set &, € VXV. V
defines real and auxiliary (virtual) agents, e.g. V = Vr U Vaux
where Vg and V,,, correspond to real and auxiliary vehicle
index numbers, respectively. For every node i € V, reference
in-neighbor set N; = {j € (Vi(j,i) € &, } defines the in-
neighbor nodes in the reference configuration. Every follower
communicates with n+ 1 in-neighbors and is inside of an n-
D communication simplex with n+ 1 vertices occupied by the
in-neighbors.

An example communication graph G, for a 2-D MVS
coordination is shown in Fig. 1. Real nodes are defined by
Vg ={1,---,13}, where V;, ={1,2,3} and Vg ={4,---,13}
define leaders and followers, respectively. V,,, = {14,---,23}
defines auxiliary nodes. The set of all nodes is given by
V ={1,---,23}. Each auxiliary node communicates with all
three leaders, and communication between auxiliary nodes and
leaders is not shown in Fig. 1. An auxiliary node may or may
not be coincident with a real node positioned at boundary 9Q,
at reference time t.

Defining reference in-neighbor set of follower i €
(Ve UVaux) as Ny ={i1,- - ,in+1}, the communication weight
between i € (Vg |JV,4ux) and in-neighbor vehicle iy € V
(k=1,2,---,n+1) is denoted by w; ;, and obtained as follows:

T
[Wi.i, Wisinn | = On (Xi 0.0+ Tip0.F00), (14)
where n =1,2,3 is the dimension of the homogeneous de-
formation coordination and @, is defined by (2). Because
every follower is inside the communication simplex, followers’
communication weights are all positive. We define the weight

matrix W = [W,-]-] € RIN+Na)x(N+Na) 44 follows:

-1 i=j
Wi, j > 0 i€ (VrlUVaux),
0 otherwise.

W;; = JEN; (15)
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The matrix W can be partitioned as follows:

-0 0
W=|Wr, A W, (16)
Wo, 0 I

where Wy € RO -n=Dx(n+l) 404 W, € RN-n=1)xNq

are non-negative matrices, A € RN--Dx(N-n=1) = apq
Wa € RNS. Let 24,0 = [q10 dne10l”, Zg 0 =
[gns2,0 - an.01T . and Zg aux,0 = [gn+1.0 =+ gN+Na0]T de-
fine component g € {x,y, z} of leaders, followers, and auxiliary
nodes, respectively. If followers’ communication weights are
consistent with agents’ reference positions and defined by (14),
Z4, 1.0 is related to z, ;0 by

=L 0 Zgi10 | _|—2Zq.1,0 (17
Wf,l+Wf’aWa,1 A Zg.f.0 - 0 ’
Theorem 2. ( [24]) Assume leaders form an n-D simplex in the
reference configuration, in-neighbors of follower i form an n-
D simplex enclosing follower i in the reference configurations,
followers’ communication weights are consistent with vehicles’
reference positions, and graph G,, is defined such there exists

at least one directed path from every node i € ‘V, to every node
Jj € V. Then the matrix A € RWN=-n=Dx(N=-n=1) ¢ Hyrwit; and

W, = A_l (Wf,l +Wf,aWa,l) € R(N—n—l)X(I’Hl) (18)

is one-sum row. for an arbitrary placement of the auxiliary
agents on 0€Q, i.e. the sum of the row-elements is one for
every row of matrix Wy, where Q. is an arbitrary closed
domain enclosing MVS reference configuration (Qy C Q).

Remark 2. Let Z4,1 HT (l) = [QI,HT qn+1’HT]T € Rn+] and
2g.r . HT (1) (1) = [gns2,HT "+ gN.HT] € RN-""1 denote the
vector form component ¢ (g € {x,y,z}) of the global desired
positions of leaders and real vehicles. Then,

J=0,1,---,p4, 2q.5.HT = WLZg 1 HT .

B. Coordination Graph and Real Communication Weights

When the MVS is moving, follower vehicles only commu-
nicate with real in-neighbor where inter-agent communication
is defined by coordination graph G.(Vg,E.) with edge set
Ee € Vg X Vg. Real in-neighbors of follower i € Vg are
defined by time-invariant set 7; = {j \( j,i) € E.} which is called
real in-neighbor set. We define the local desired position of
vehicle i € Vg by

rg;= {ri,HT ieV
i= . )
Zje]iwi,jrj— ZE(VF

19)

where @; ; > 0 is the real communication weight between
follower i € Vr and vehicle j € I; C Vg and X jez, @i j=1. If
N; N Vaux =0, then, I; = N; and @; ; =w; ; for every vehicle
i € Vr with every in-neighbor j € 7; = N;. If N;(\Vaux # 0,
then, 7; # N; and w; ; is defined as follows:

o .:{wi,j Jj € (LNN;)
Y S he(N Vi) Wih@h,j - Otherwise

IV. PROBLEM STATEMENT

This paper studies the properties of the homogeneous de-
formation approach for an N-vehicle MVS where vehicles are
treated as particles of an n-D deformable body (n = 1,2,3).
The desired MVS vehicle positions are guided by n+ 1 leaders
and acquired by the remaining followers through local com-
munication, where followers are arbitrarily distributed in a 3D
motion space. Dynamics of the vehicle i € Vg is represented
by a nonlinear model

{Xi =1 (x;) +g (x;) w;, 20)
r; =1; (X;),
where x; € R™*! and u; € R™*! are state and control input, re-
spectively, the actual position r; € R**! is the output of vehicle
dynamics (20), and f; : R"™ — R” and g; : R"> — R"™*" gre
smooth. We assume the dynamics of every vehicle i € Vi | Vr
is input-output linearizable and study the following problems:
Problem 1 (MVS Continuum Deformation Coordinated
Control): Determine U;(¢) such that

Ir;(t) =ximr (D2 <06,  (21)

where ¢ > 0 is constant. Every agent only accesses the local de-
sired trajectory r, ;(¢) defined in Section II-A as the reference
input for every vehicle i € Vi | Vf. Follower i € Vg does not
know r; g but acquires it through local communication. We
investigate stability and convergence of the MVS collective
dynamics in Sections V and VI.

Problem 2 (Guaranteeing Continuum Deformation Safety
Specification): Ensure inter-agent collision avoidance, defined
by

Vi€ [t5,t5], VieV,

Vielts,tpl, Vi,jeV,i#j,  ri@)-ri(1)|2 = 2¢, (22)

and a follower containment condition defined by

0, (hi (1), -, hpt1(2),1i(2)) > 0,

(23)
with low computation cost, where € is the radius of the smallest
ball enclosing every vehicle i and ®,, was previously defined
by Eq. (2). Specifically, we show how inter-agent collisions
can be avoided only by constraining one of the eigenvalues of
the deformation matrix if the shear-deformation angles remain
constant at all times f¢. This can significantly improve the
flexibility and maneuverability of the large-scale continuum
deformation coordination.

Problem 3 (MVS Continuum Deformation Coordination
Planning): To plan a continuum deformation coordination,
eigen-decomposition and A* search methods are applied to
determine the global desired trajectories of team leaders in
obstacle-free and obstacle-laden environments, respectively.
The third problem is how to enforce continuum deformation
safety conditions for all instants, ¢ € [f,77].

te[tstr], YieV,

V. PROBLEM 1: MVS CONTINUUM DEFORMATION
COORDINATED CONTROL
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We define state transformation x; — (r;,--- ,rf _l,wi) such
that (20) is decomposed into external dynamics

dPg;
dra

q €1{x,y,z},

and internal dynamics

. -1 —1 -1
Wi =fing i (wi,xi,'" LLe P X, yis - LeP T iz, o, LR Zi)

25)
where v ; is assigned as
Pq=E~1 Pq
Vai =" Z yixLeP 1 g+ Z YirLe 1™ (qai—qi).,
k=1 k=pg—E
(26)

and where Ly.q; = (inqi)T f; is the Lie derivative of a smooth
function ¢; with respect to a vector field f;, g4; is the
component g € {x,y,z} of local desired position ry; defined
by Eq. (19). Control gains y;; through v, ,, are assigned
such that the MVS collective dynamics is stable. In Eq. (24),
pq (q € {x,y,z}) is the relative degree, p = px+py +p; < ny
is the total relative degree, E < p, is constant, and

px_l
Vi Lgi Lfi Xi Lg_xxi
: - !
Vyi| = |Lg Ly yi|wit|Lg'vi
N T N U
P P
Define Xsys 4 = [cn qn Ly'q1 Leidan
and
Pa L¢P g1 mr
Usvsg= ), Tj : : @7)

J=pa=E Lg1™ quir, 51
where ¢g; and g; gr denote component ¢ € {x,y,z} of actual
and global desired positions of vehicle i. The MVS collective

dynamics can be expressed by the following normal form:

Xsysx| [Asysx 0 0 ][Xsysx] [Bsysx 0 0 1[Usys,x
Xsys,y|=| O Asys,y 0 Xsys.y|+| O Bsys.y 0 Usys.y
Xsvs.z 0 0 Asys o | [Xsys ¢ 0 0 Bsys, 2| [Usys,z
(28a)
dw
— =Fint (0, Xsys) (28b)
dt
_[,,T T 17 _ [¢T T 1T
where w = [wl a)N] » Finr = (£ fim,N] ,

J =pg -=2+1,--- \Pqs r_/',l = diag(y_,-,l,~ .. s'}’j,n+l) e R(n+l)><(n+1)’

J=1-pg I, =diag(y; 1, - ,yj.n) € RV,

T
ge{xy.zh,  Bsvsg=[Omnx(pog-1)n  Tnst Oenx(N-n-1)]",

(UN Iy On
q € {x,y,z}, Asys,q = : : :.
! (UM (UM Iy
quHpq,q rpq—alq—l,q I'Hi 4

Note that Iy € RV*N and 0y € RV*V are the identity and
zero-entry matrices. Matrix H; , € RVXN (G =1,--- ,Pg) 1s
defined as follows:

~Iy

q € {x,y,z}, H 4= {
q L Pq
We choose control gains, y;; through Ypg.i such that
eigenvalues of the characteristic equation of external dynamics

(28a), ‘sI—ASYs,q' =0 (q € {x,y,z}), are all located in the

open left-half s-plane. Also, zero dynamics of the MVS
internal dynamics (28b) is locally asymptotically stable and

Fio= ‘gg% is Hurwitz.

VI. PROBLEM 2: CONTINUUM DEFORMATION SAFETY
SPECIFICATION

For continuum deformation coordination in an obstacle-
laden environment, the MVS needs to be contained by a virtual
n-D simplex, called virtual containment simplex (VCS), at
any time ¢. Let hi,() = hx,i,Oél +hy,i,()éz +hz,,‘7oé3 and h; (l) =
hy,i€ +hy € +h; ;€3 (i=1,---,n+1) denote positions of
vertex i of the VCS in the reference and current configurations,
respectively. VCS evolution is defined by a homogeneous
transformation, therefore, h; o and h; (7) are related by
h; (1) =Q(H)h;o+d(r),  (29)
where Q and d are computed based on leaders’ positions in the
reference configuration and the current configuration at current
time ¢ per Section II-C. The MVS containment condition is
mathematically specified by

G)n (hl (t)9"' 7hn+1 (t)’ri(t)) > 0»
(30)

tE [ts,tr], YieV,

where @,, was previously defined by Eq. (2).

Theorem 3. ( [24]) Assume each vehicle is enclosed by a
ball with radius €. Given deviation upper-bound 6 (Eq. (21)),
we define Smax = min{(a’b —€), % (dg —2e) } where d is the
minimum separation distance and dj, is the minimum distance
from the boundary of the leading simplex in the reference
configuration (See Fig. 2 (a)). The vehicle containment and
inter-agent collision avoidance are guaranteed at time instant
t if eigenvalues A1, Ay, A3 of Up(t) satisfy the following
inequality constraint [25]:

o+e€

i=1,2,3, _—.
J Omax + €

;2 (€20)

Relaxation of the Collision Avoidance Condition Theo-
rem 3 provides a conservative collision avoidance guarantee
independent of the total number of agents (N). However, the
conditions (31) can be overly restrictive when agents are not
uniformly distributed in the reference configuration (See Fig.
2 (b)). This issue can be dealt with, if we only constrain the
eigenvalue A; of matrix Up(f) and assign the direction of
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Fig. 2: (a) Schematic for MVS reference configuration and the
VCS containing all vehicles. (b) Schematic of a non-uniform
MVS reference configuration where 6 = dmax.

eigenvector @ by solving the following max-min optimization
problem:

((rio—r;j,0) -t (O,HM,wu))}.

(32)
Since we use the 3—2—1 Euler angles to define a rigid-body
rotation, the eigenvector i1} of Up(¢) only depends on 6,, and
¥, at any time ¢ (see Eq. (8b)). Thus, the reference deformation
angles 0, o and y, ¢ are obtained by

(¥u,0,0u0) = argmax{i ‘min_
Yu,Ou iL,jE€VR,i#]

0,0 =—sin"! (@10 &3), (33a)
G 0-6

Yo =tan™" (—f’o Az). (33b)
up0-€;

Suppose now that the desired continuum deformation is de-
signed such that deformation angles ¢, (#) = @y,.0, 6. () =60u0
and (1) = ¢, 0 remain constant for ¢ € [ts,17], where ¢, 0
takes an arbitrary value between 0 and 2.

Lemma 1. If ¢,(t) = Du0 0u(t) = 0u.0 and Y, (t) = Yu,0 are
constant for t € [tg,ty] and v; gr and rvj gt are defined by
the homogeneous transformation given in (3) (Vi, j € V), then,
the following relation holds for all i, j € Vg:

= (1) (rio— l’j,o)T 1700
(34)

Proof: Given global desired positions of vehicles i, j € Vg
defined by Eq. (3), we can express r; gt —T; gT as

(ri,mr (1) —xj HT (l))T (Rp (1)ty0)

r;, HT(T) riar (1) =Q) (rio—rj0) =
3

RD(’)Zﬂh(f)uh 0l o (ri0—rj.0) Z/lh(t)[ r; o—l‘_f,o)T ﬁh,o] Rp ()lis,0.
h=1 h=1

Up (1)

(35)

Note that A(¢) [(ri,o—rj,o)T ﬁh,O] €R at any time t (h =

1,2,3). Thus, pre-multiplying both sides of Eq. (35) by

] \R7,(7) and noting that @/ (R}, (NRp ()i is 1 if h=1
and 0 otherwise, Eq. (34) follows.

|

Theorem 4. Assume every vehicle is enclosed by a ball of
radius €. MVS inter-agent collision avoidance is guaranteed if

o+e€
A1(t) =2 1

N

Vi€ [15,17], (36)
where A1(t) is the first eigenvalue of Up(t) and ds is the
minimum separation distance in the reference configuration.

Proof: Vectors Rp (1)1 9, Rp (#)li2,0, Rp (¢)li3 ¢ are par-
allel to d;(¢), G2(z), G3(z), respectively. Because the lowest
minimum separation distance is along the unit vector 0, (¢) =
Rp ()l 0, inter-agent collision is avoided if

(rimr (1) —*j BT (t))T (Rp(H)uip) >2(5+e€).
(37)

Vi,j € Vg,
By Lemma 1, it follows that

T_ni(l‘l/ {(ri,HT (t)—r; mr (f))T (RD(l)ul,o)} =

i,j€Vr

A1(¢) min {(ri,O —l’j,o)T ﬁl,O} = A1 (t)ds,
i,jeVRr

Thus the inter-agent collision is avoided if A;(¢)ds; >2(5+¢€)

at any time f € [t4,17]. This is ensured if (36) is satisfied. W

Remark 3. Eigenvalues A;(¢) and A3(¢) of matrix Up must be
positive at any time 7 as is required for continuum deformation
coordination. Furthermore, shear deformation angle ¢; , can
be arbitrarily selected. Without loss of generality, this paper
chooses ¢, (1) = ¢)u’ =0 at any time ?.

VII. PROBLEM 3: CONTINUUM DEFORMATION PLANNING
We define the desired trajectory of every leader i € V. by

riar (1) =TiHT (SZ (l)) ; (38)

where sf, (t) is the generalized coordinate vector and n €
{1,2,3} is the dimension of the homogeneous deformation
coordination.

The generalized coordination vector sf,(7) is given by
$2(0)=8) (1= BT +BU.TOS,, .
39)

where k = 1,---,n;, o0 € {OL,OF}. OF and OL denote
obstacle-free and obstacle-laden, respectively. Conditions #; =
ts, tho4l =17, 57 o s determine intermediate con-

X ne+lo .
figurations for the generalized coordinate, Ty = fr4+1 —fx, and

1€ [ty tra1],

B(t,Ty) is defined by the following fifth order polynomial:

te [ty trs],

5 S
ﬁ(r,Tk)=Z§j,k(%), (40)
=0

where B(#,Tx) € [0,1] is an increasing function of ¢ over
[tk tee1]ls B(tk,Ti) = 0, B(tes1,Tx) = 1, o,k through 5 are
constant and determined based on boundary conditions at
times t; and #i4. Note that 7 through 7, are the design
parameters determined such that the continuum deformation
safety conditions are all satisfied.
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Path Planning: For continuum deformation coordination in
an obstacle-free environment, n, = 1 generalized coordinate

vector s, is defined as follows:
SOF [/l] 0, ¥, d d» d;]T . n=1
SOF (W 2 ¢ 00 ¢ Yo di dr di] ., n=2
SOF [Al A A3 ¢ O Yy Sy 04 Yu di da d’i] n=3
41)
where s is defined by quintic polynomial (39) with #; =1

and tp =t f-
For motion planning

in obstacle-laden environments,
T HT (S'E';(t)) = s (t), where

SZ(I) =V6C([l‘1’HT(l) l'n+1,HT(t)]T) . (42)

This paper uses A* search such that the leaders’ travel distance
is minimized.
Trajectory Planning and Planning of Travel Time:
Assume consecutive generalized coordinate vectors sk and
Sy 41,0 ArC known for o € {OF,OL} and k =1,- Then
the travel time planning problem is defined as follows Choose
Ty > T}, where minimum travel time 7} is assigned by solving
the following optimization problem:

T¢ =min Ty “43)
subject to Egs. (21), (40), and

Sp(1) =8 (1 =BT +BLTEISE, 50 1€
w(t)elU, Vt € [ti,trs1],VieV,

[k, tk+1]s

(44)

where 1y =11, ty =t,,41, tge1 =t + T, and fo i through s i
are specified coefficients satisfying assumptions discussed after
(40). Because B(t,Ty) is assigned by Eq. (40) for 1 € [#x,tx+1],
&/ B(1,Ty)
dti

the term is a decreasing function with respect to T

at any time te [tk tk41] for j € {pg =B, - pg} (q € {x,y,2}).
Consequently, there exists a minimum travel time 7}’ such that
the safety conditions (21), (40), and (44) are all satisfied.

VIII. SIMULATION RESULTS

Case studies of 2-D, and 3-D continuum deformation are
presented below with and without obstacles. We assume each
vehicle is a quadcopter with the input-output linearizable
dynamics presented in [24].

For the 2-D example, we consider continuum deformation
coordination of N =27 quadcopters with reference (initial)
configuration shown in Fig. 3 (a), where V. = {1,2,3},
Ve ={4,---,27} and Vi, = {28,29,---,38}. Leaders move
independently and every follower communicates with three
in-neighbor nodes where followers’ reference communication
weights are determined by Eq. (14). As shown in Fig. 3 (a),
reference VCS is a containing triangle with vertices positioned
at hy o = (0,40), hy o = (60,100), and h3 o = (0,140). Given
the reference configuration and final formation shown in Fig.
3 (d), the optimal leaders’ paths are determined using A*
search and shown in Fig. 3 (b-d). Given leaders’ optimal paths,
eigenvalues 1, and A, are plotted versus time in Fig. 3 (e).

100 150 150
X(m) X(m)

(c) t =650s (d) t=812s

(e) Eigenvalues of matrix Up ver- (f) Deviation of quadcopters from
sus time. their global desired trajectories

Fig. 3: (a-d) MVS at sample times Os, 500s, and 812s. (e)

Up eigenvalues 4; and A, versus time. (f) Deviation of each

follower i € Vp versus time. Note that sup||r; —r; gr| <6 =
t

0.3940m, Vi € Vf.

Assuming every quadcopter is enclosed by a ball with radius
€ =0.5m and § = 0.3940m, leaders’ travel times are assigned
such that safety requirements are all satisfied. Fig. 3 (f) shows
that ||r; () —r; g7 (?)|| <6 at any time ¢ € [0,812].

For the 3-D example, we simulate collective takeoff with
a N =16 quadcopter MVS where V; = {1,2,3,4}), Vg =
{5, cee, 16}, and V. ={17,18, 19} with Ii4,0 =T17,0, 15,0 =
rig0, and rigo =ri9,0. The MVS initial formation is shown
in Fig. 4 (a) where leaders are illustrated by red, followers 5
through 13 are shown by black. In addition, followers 14, 15,
and 16 are shown in green in Fig. 4 (b).

Given quadcopter initial reference positions, the shear de-
formation angles 6,0 =0.3770 rad and ¢, 0 =1.0053 rad are
obtained using Eq. (33). Furthermore, we choose ¢, 0 =0 at
any time ¢, per Remark 3). We consider MVS collective motion
over the time interval [0,600s] (t; =0s and t; = 600) where
¢r (ty)=0rad, 0, (17) =0.0713 rad, ¢, (17 ) =5 rad di(ty)=
100m, d; (ty) = 165m, and ds (1) = 200m. Given s (0) and
S%F (600), a homogeneous transformation is defined by Eq. 3)
and acquired by followers through local communication. MVS
formations at sample times 74 = 0,250,400,600s are shown in
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t = 600s -—4/

e

(b) MVS evolution

) 100 200 300 400 500 600
Time (s)

(c) Transient error

Fig. 4: (a) MVS initial formation and inter-agent communica-
tion. (b) MVS at times 0Os, 250s, 400s, 250s. Leader 1, 2, 3,
4 paths are shown by black, green, red, and pink curves. (c)
Deviation of each follower i € Vg versus time.

Fig. 4 (b). Assuming € = 0.18m and obtaining 6 = 0.6652m,
deviation of every follower i from r; g7 is plotted versus time
in Fig. 4 (c). Because sup||r; (#) —x; g7 (£)]] < 0.6652 (Vi € VF)

t
collision avoidance is gauranteed.
IX. CONCLUSION

This paper advanced continuum deformation coordination
by relaxing existing containment constraints. We showed that
any n+ 1 agents forming an n-D simplex can be considered as
leaders; followers can be placed inside or outside the leading
simplex in an n-D homogeneous transformation (n = 1,2,3).
This paper also formulated continuum deformation coordina-
tion eigen-decomposition to determine a nonsingular mapping
between leader position components and homogeneous trans-
formation features assigned by continuum deformation eigen-
decomposition. With this approach, leader trajectories ensur-
ing collision avoidance and quadcopter containment can be
safely planned. Furthermore, this paper advances the existing
condition for inter-agent collision avoidance in a large-scale
continuum deformation. This new safety condition is much
less restrictive and significantly advances the maneuverability
and flexibility of the continuum deformation coordination.
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