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Abstract—The continuum deformation leader-follower cooper-
ative control strategy models vehicles in a multi-agent system as
particles of a deformable body. A desired continuum deformation
is defined based on leaders’ trajectories and acquired by followers
in real-time through local communication. The existing contin-
uum deformation theory requires followers to be placed inside
the convex simplex defined by leaders. This constraint is relaxed
in this paper. We prove that, under suitable assumptions, any
=+1 (= = 1,2,3) vehicles forming an =-D simplex can be selected
as leaders while followers, arbitrarily positioned inside or outside
the leading simplex, can acquire a desired continuum deformation
in a decentralized fashion. The paper’s second contribution is to
assign a one-to-one mapping between leaders’ smooth trajectories
and homogeneous deformation features obtained by continuum
deformation eigen-decomposition. Therefore, a safe and smooth
continuum deformation coordination can be planned either by
shaping homogeneous transformation features or by choosing
appropriate leader trajectories. This is beneficial to efficiently
plan and guarantee collision avoidance in a large-scale group.
A simulation case study is reported in which a virtual convex
simplex contains a quadcopter vehicle team at any time C;
A* search is applied to optimize quadcopter team continuum
deformation in an obstacle-laden environment.

Keywords—Path Planning, Collision Avoidance, Multi-vehicle
System (MVS), Eigen Decomposition, Local Communication

I. INTRODUCTION

Formation and cooperative control algorithms [1] have been
applied to problems in biology [2], computer science [3],
aerospace engineering [4], and elsewhere. Virtual structure [5],
[6], consensus [7]–[9], containment [10]–[12], and continuum
deformation [13] are some of the existing multi-agent system
(MAS) coordination methods. While the virtual structure (VS)
method is commonly exploited for centralized coordination,
the other three methods provide decentralized solutions. The
VS method treats MAS as particles of a virtual rigid body;
rigid body translation and rotation prescribe agents’ trajectories
in a 3-D motion space. Consensus algorithm stability has been
analyzed under fixed and switching communication topologies
[14], [15] and in the presence of fixed and time-varying delays
[16]–[18]. Finite-time consensus under fixed and switching
communication topologies is developed in Refs. [19], [20],
while leader-follower consensus is investigated in Refs. [8],
[9].

In containment control, leaders independently guide collec-
tive motion, and followers acquire the desired coordination
via local communication. Containment control stability and
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convergence [21] with fixed [10] and switching [22] com-
munication topologies have been analyzed in the existing
literature. Retarded containment with fixed [10] and time-
varying [11] time-delays and finite-time containment control
and coordination [23] have also been investigated. Similar to
containment control, continuum deformation is a decentralized
leader-follower approach [13], [24], where followers’ commu-
nications are weighted and consistent with agents’ reference
positions. Furthermore, continuum deformation formally spec-
ifies and rigorously ensures safety of the formation.

Our manuscript offers new contributions compared to the
existing literature as well as the authors’ previous work.
One of the key contributions of our paper is that it relaxes
the containment requirement condition needed in the pre-
vious work on continuum deformation based coordination.
In particular, we prove that any = + 1 vehicles forming an
= − � simplex can be selected as the leader vehicles while
followers can be either inside or outside the leading simplex.
This greatly enhances scalability and flexibility of our MVS
continuum deformation approach which in turn implies that a
large number of agents with an arbitrary distribution can be
safely coordinated in a geometrically-constrained environment.
Furthermore, this paper uses eigen-decomposition to provide
a significantly less conservative condition for ensuring safety
and inter-agent collision avoidance in a large-scale continuum
deformation coordination. While the existing continuum de-
formation coordination method ensures inter-agent collision
avoidance by assigning a single lower-limit for all deformation
eigenvalues, this paper guarantees inter-agent collision avoid-
ance by assigning a lower-limit on one of the eigenvalues of
the pure deformation matrix that is characterized based on the
minimum separation distance in the reference configuration of
the vehicles.

This paper is organized as follows. Preliminaries presented
in Section II are followed by inter-agent communication
topology and graph theory definitions in Section III. Section
IV presents the formulations and statements of the problems
considered in this paper. MVS collective dynamics is obtained
in Section V. Safety requirements of MVS continuum defor-
mation are obtained in Section VI. Continuum deformation
planning is formulated in Section VII. Case study results in
Section VIII are followed by a conclusion in Section IX.

II. PRELIMINARIES

A. Position Notations
Agent positions are expressed with respect to a Carte-

sian frame with unit basis vectors ê1 = [1 0 0]) , ê2 =
[0 1 0]) , and ê3 = [0 0 1]) . For agent 8, r8 =
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[G8 H8 I8]) , r8,B =
[
G8,B H8,B I8,B

]) , r8,0 =
[
G8,0 H8,0 I8,0

]) ,
r8,�) =

[
G8,�) H8,�) I8,�)

]) , and r3,8 =
[
G3,8 H3,8 I3,8

])
denote actual, initial, reference, global desired, and local
desired positions, respectively. For continuum deformation
coordination, r8 = [G8 H8 I8]) is considered as the output of
the control system of every vehicle 8 ∈ V. Global and local
desired positions of agent 8 are defined in Sections II-C and
III, respectively. For = = 1, reference position components
H8,0 = I8,0 = 0 for every agent 8 ∈ V and agents are all
distributed along the ê1 axis. For = = 2, I8,0 = 0 for every agent
8 ∈ V and agents lie in the plane defined by ê1 and ê2.

B. Motion Space Discretization

Let p1 ∈ R=+1, · · · , p=+1 ∈ R=+1, and c be position vectors of
=+2 points on an =-D hyperplane. Defining a scalar function

Ψ= (p1, · · · ,p=+1) = rank
( [

p2−p1 · · · p=+1−p1
] )
, (1)

vectors p1 ∈ R=+1, · · · , p=+1 ∈ R=+1 assign positions of
vertices of an =-D simplex, if Ψ= (p1, · · · ,p=+1) = =. If
Ψ= (p1, · · · ,p=+1) = =, we can define a vector function

�= (p1, · · · ,p=+1,c) =
[
p1 · · · p=+1
1 · · · 1

]−1 [
c
1

]
. (2)

Per Eq. (2), the sum of the entries of �= is 1, i.e. 11×(=+1)�= =
1, where 11×(=+1) ∈ R1×(=+1) is a vector with all components
equal to 1. If �= (p1, · · · ,p=+1,c) > 0, then, the point c is inside
the simplex defined by p1, · · · , p=+1. Otherwise c is outside
this simplex.

C. MVS Homogeneous Deformation Coordination

We consider collective motion of an MVS consisting of #
vehicles and treat them as particles of a deformable body. The
global desired position of vehicle 8 is defined by

C ≥ CB , r8,�) (C) =Q(C)r8,0 +d(C), (3)

where C is the current time, CB is the initial time, Q ∈ R3×3

is the Jacobian matrix, and d = [31 32 33]) ∈ R3×1 is a rigid
body displacement vector. The matrix Q(C) is nonsingular for
all C ≥ CB .

Leader-Follower Homogeneous Deformation: Because (3)
is a linear transformation, global desired position of vehicle
8 ∈ V' can be expressed as follows [13]:

8 ∈ V', C ≥ CB , r8,�) (C) =
=+1∑
9=1
U8, 9r 9 ,�) (C), (4)

where leaders form an =-D simplex in the reference configu-
ration and[

U8,1 · · · U8,=+1
])
=�=

(
r1,0, · · · ,r=+1,0,r8,0

)
. (5)

Homogeneous Deformation Decomposition: Let angles
V1, V2, and V3 define a rotation matrix

R (V1, V2, V3) =
[

�V2�V3 �V2(V3 −(V2
(V1(V2�V3 −�V1(V3 (V1(V2(V3 +�V1�V3 (V1�V2
�V1(V2�V3 + (V1(V3 �V1(V2(V3 − (V1�V3 �V1�V2

]
,

(6)
where �( ·) and ( ( ·) abbreviate cos (·) and sin (·), respectively.
The rotation matrix R (V1, V2, V3) is orthogonal. Using the form
of rotation matrix given in (6), matrix Q(C) in (3) can be
decomposed as

Q(C) = R� (C)U� (C), (7)

where R� (C) = R (qA (C), \A (C),kA (C)),

U� (C) =
3∑
8=1
_8û8 (qD (C), \D (C),kD (C)) û)8 (qD (C), \D (C),kD (C)) ,

(8a)

8 = 1,2,3, û8 = R) (qD (C), \D (C),kD (C)) ê8 . (8b)

Note that û1, û2, and û3 are the eigenvectors of U� while
ê1, ê2, and ê3 are the base vectors of the inertial coordi-
nate system defined in Section II-A. A desired homogeneous
transformation (3) can thus be uniquely expressed by the
following features: (i) Rotation angles qA (C), \A (C), kA (C),
(ii) Deformation eigenvalues _1 (C), _2 (C), _3 (C), (iii) Defor-
mation angles qD (C), \D (C), and kD (C), and (iv) Rigid body
displacement components 31 (C), 32 (C), and 33 (C). For = = 1,
qD (C) = \D (C) = kD (C) = qA (C) = 0 and _2 (C) = _3 (C) = 1 but
_1 (C), \A (C), kA (C), 31 (C), 32 (C), and 33 can be designed to
shape a desired homogeneous deformation coordination. For
= = 2, _3 (C) = 1, qD (C) = \D (C) = 0 at any time C and the re-
maining features can be used to specify a desired homogeneous
transformation coordination. For = = 3, all 12 features can be
used to plan a continuum deformation coordination.

We include the following result for = = 2:

Theorem 1. Consider a 2-D continuum deformation coordi-
nation in a 3-D motion space where vehicles are distributed
on the plane normal to û3 (C) at any time C. Given reference
positions of three leaders (r1,0, r2,0, and r3,0) and leaders’
global desired positions at a time C (r1,�) (C), r2,�) (C),
and r3,�) (C)), eigenvalues _1 (C) and _2 (C) of U� (C) and
deformation angle kD (C) are obtained by



_1 =

√
0 + 2

2
+
√[ 1

2 (0− 2)
]2 + 12

_2 =

√
0 + 2

2
−

√[ 1
2 (0− 2)

]2 + 12

kD =
1
2

tan−1
(

21
0− 2

) , (9)

where the dependence on t is omitted to simplify the notation

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on May 20,2021 at 23:11:11 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3079208, IEEE
Transactions on Automatic Control

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 3

and[
0

1

2

]
=


(
G2,0− G1,0

)2 2
(
G2,0− G1,0

) (
H2,0− H1,0

) (
H2,0− H1,0

)2(
G3,0− G2,0

)2 2
(
G3,0− G2,0

) (
H3,0− H2,0

) (
H3,0− H2,0

)2(
G1,0− G3,0

)2 2
(
G1,0− G3,0

) (
H1,0− H3,0

) (
H1,0− H3,0

)2


−1


(
G2,�) − G1,�)

)2 +
(
H2,�) − H1,�)

)2 +
(
I2,�) − I1,�)

)2(
G3,�) − G2,�)

)2 +
(
H3,�) − H2,�)

)2 +
(
I3,�) − I2,�)

)2(
G1,�) − G3,�)

)2 +
(
H1,�) − H3,�)

)2 +
(
I1,�) − I3,�)

)2

 .
(10)

Proof: Substituting _3 = 1 and qD = \D = 0 into Eq. (8a),
it follows that

U2
� =

[
0 1 0
1 2 0
0 0 1

]
, (11)

where 
_2

1 cos2kD +_2
2 sin2kD = 0,(

_2
1−_

2
2
)
sinkD coskD = 1,

_2
1 sin2kD +_2

2 cos2kD = 2.

(12)

By solving (12), _1, _2, and kD are related to 0, 1, 2 by Eq.
(9). For every two different leaders 8 and 9 with global desired
trajectories defined by (3), the following relation holds:(
r8,�) − r 9 ,�)

)) (
r8,�) − r 9 ,�)

)
=

(
r8,�) − r 9 ,�)

)) Q)Q
(
r8,0− r 9 ,0

)
where Q)Q = U2

�
. This implies that(

r2,�) − r1,�)
)) (

r2,�) − r1,�)
)
=

(
r2,0− r1,0

)) U2
�

(
r2,�) − r1,�)

)
,

(13a)(
r3,�) − r2,�)

)) (
r3,�) − r2,�)

)
=

(
r3,0− r2,0

)) U2
�

(
r3,�) − r2,�)

)
,

(13b)(
r1,�) − r3,�)

)) (
r1,�) − r3,�)

)
=

(
r1,0− r3,0

)) U2
�

(
r1,�) − r3,�)

)
.

(13c)
Now, U2

�
can be replaced by Eq. (11) and Eq. (13) reduces to

a set of three linear algebraic equations with three unknowns
0, 1, and 2. By solving Eq. (13), 0, 1, and 2 are obtained as
given in (10).

III. INTER-AGENT COMMUNICATION

Suppose an MVS consists of # vehicles moving in a 3-D
motion space. The setV' = {1,2, · · · , #} defining identification
(index) numbers of the vehicles is expressed asV' =V!

⋃V�
where V! and V� define index numbers of leaders and
followers, respectively. The paper considers cases in which
vehicles are distributed in an =-D (= = 1,2,3) Euclidean space
in R3. The MVS is guided by =+1 leaders with index numbers
V! = {1,2, · · · , =+1}. Followers’ index numbers are defined by
the set V� = {=+2, · · · , #}.

Let Ω2 be an arbitrary closed domain enclosing all real
vehicles at a reference configuration, where #0 auxiliary nodes
are arbitrarily distributed on the boundary mΩ2 and identified
by the set V0DG = {# +1, # +2, · · · , # +#0}.
Remark 1. Auxiliary nodes do not represent real agents and
they are introduced only to ensure MVS coordination stability.
Note that followers only communicate with real in-neighbors
at any time C during continuum deformation coordination. This
is further described in Section III-B below.

Fig. 1: Schematic of a communication graph with real and
auxiliary nodes used in a 2-D continuum deformation.

A. Reference Communication Weights and Weight Matrix

Inter-agent communication is defined by the graph GF =
GF (V,EF ) with node set V and edge set EF ∈ V ×V. V
defines real and auxiliary (virtual) agents, e.g. V =V'

⋃V0DG
where V' and V0DG correspond to real and auxiliary vehicle
index numbers, respectively. For every node 8 ∈ V, reference
in-neighbor set N8 = { 9 ∈ V

��( 9 , 8) ∈ EF } defines the in-
neighbor nodes in the reference configuration. Every follower
communicates with = + 1 in-neighbors and is inside of an =-
D communication simplex with =+1 vertices occupied by the
in-neighbors.

An example communication graph GF for a 2-D MVS
coordination is shown in Fig. 1. Real nodes are defined by
V' = {1, · · · ,13}, where V! = {1,2,3} and V� = {4, · · · ,13}
define leaders and followers, respectively. V0DG = {14, · · · ,23}
defines auxiliary nodes. The set of all nodes is given by
V = {1, · · · ,23}. Each auxiliary node communicates with all
three leaders, and communication between auxiliary nodes and
leaders is not shown in Fig. 1. An auxiliary node may or may
not be coincident with a real node positioned at boundary mΩ2
at reference time C0.

Defining reference in-neighbor set of follower 8 ∈
(V�

⋃V0DG) as N8 = {81, · · · , 8=+1}, the communication weight
between 8 ∈ (V�

⋃V0DG) and in-neighbor vehicle 8: ∈ V
(: = 1,2, · · · , =+1) is denoted by F8,8: and obtained as follows:

[
F8,81 · · · F8,8=+1

])
=�=

(
r81 ,0, · · · ,r8=+1 ,0,r8,0

)
, (14)

where = = 1,2,3 is the dimension of the homogeneous de-
formation coordination and �= is defined by (2). Because
every follower is inside the communication simplex, followers’
communication weights are all positive. We define the weight
matrix W =

[
,8 9

]
∈ R(#+#0)×(#+#0) as follows:

W8 9 =


−1 8 = 9

F8, 9 > 0 8 ∈ (V�
⋃V0DG) , 9 ∈ N8

0 otherwise.
(15)
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The matrix W can be partitioned as follows:

W =

[ −I 0 0
W 5 ,; A W 5 ,0

W0,; 0 −I

]
, (16)

where W 5 ,; ∈ R(#−=−1)×(=+1) and W 5 ,0 ∈ R(#−=−1)×#0

are non-negative matrices, A ∈ R(#−=−1)×(#−=−1) , and
W0,; ∈ R#0×3. Let z@,;,0 = [@1,0 · · · @=+1,0]) , z@, 5 ,0 =
[@=+2,0 · · · @# ,0]) , and z@,0DG,0 = [@#+1,0 · · · @#+#0 ,0]) de-
fine component @ ∈ {G, H, I} of leaders, followers, and auxiliary
nodes, respectively. If followers’ communication weights are
consistent with agents’ reference positions and defined by (14),
z@, 5 ,0 is related to z@,;,0 by[

−I=+1 0
W 5 ,; +W 5 ,0W0,; A

] [
z@,;,0
z@, 5 ,0

]
=

[
−z@,;,0

0

]
. (17)

Theorem 2. ( [24]) Assume leaders form an =-D simplex in the
reference configuration, in-neighbors of follower 8 form an =-
D simplex enclosing follower 8 in the reference configurations,
followers’ communication weights are consistent with vehicles’
reference positions, and graph GF is defined such there exists
at least one directed path from every node 8 ∈V! to every node
9 ∈V� . Then the matrix A ∈ R(#−=−1)×(#−=−1) is Hurwitz and

W! = A−1 (
W 5 ,; +W 5 ,0W0,;

)
∈ R(#−=−1)×(=+1) (18)

is one-sum row. for an arbitrary placement of the auxiliary
agents on mΩ2 , i.e. the sum of the row-elements is one for
every row of matrix W! , where Ω2 is an arbitrary closed
domain enclosing MVS reference configuration (Ω0 ⊂ Ω2).

Remark 2. Let z@,;,�) (C) = [@1,�) · · · @=+1,�) ]) ∈ R=+1 and
z@, 5 ,�) (C) (C) = [@=+2,�) · · · @# ,�) ]) ∈ R#−=−1 denote the
vector form component @ (@ ∈ {G, H, I}) of the global desired
positions of leaders and real vehicles. Then,

9 = 0,1, · · · , d@ , z@, 5 ,�) =W!z@,;,�) .

B. Coordination Graph and Real Communication Weights
When the MVS is moving, follower vehicles only commu-

nicate with real in-neighbor where inter-agent communication
is defined by coordination graph G2 (V',E2) with edge set
E2 ⊂ V' ×V'. Real in-neighbors of follower 8 ∈ V� are
defined by time-invariant set I8 = { 9

��( 9 , 8) ∈ E2} which is called
real in-neighbor set. We define the local desired position of
vehicle 8 ∈ V' by

r3,8 =
{
r8,�) 8 ∈ V!∑
9∈I8s8, 9r 9 = 8 ∈ V�

, (19)

where s8, 9 > 0 is the real communication weight between
follower 8 ∈ V� and vehicle 9 ∈ I8 ⊂V' and

∑
9∈I8s8, 9 = 1. If

N8
⋂V0DG = ∅, then, I8 =N8 and s8, 9 = F8, 9 for every vehicle

8 ∈ V� with every in-neighbor 9 ∈ I8 =N8 . If N8
⋂V0DG ≠ ∅,

then, I8 ≠N8 and s8, 9 is defined as follows:

s8, 9 =

{
F8, 9 9 ∈ (I8

⋂N8)∑
ℎ∈(N8

⋂V0DG ) F8,ℎUℎ, 9 otherwise
.

IV. PROBLEM STATEMENT

This paper studies the properties of the homogeneous de-
formation approach for an #-vehicle MVS where vehicles are
treated as particles of an =-D deformable body (= = 1,2,3).
The desired MVS vehicle positions are guided by =+1 leaders
and acquired by the remaining followers through local com-
munication, where followers are arbitrarily distributed in a 3�
motion space. Dynamics of the vehicle 8 ∈ V' is represented
by a nonlinear model{

¤x8 = f8 (x8) +g8 (x8)u8 ,
r8 = r8 (x8) ,

(20)

where x8 ∈R=G×1 and u8 ∈R=D×1 are state and control input, re-
spectively, the actual position r8 ∈ R3×1 is the output of vehicle
dynamics (20), and f8 : R=G → R=G and g8 : R=G → R=G×=D are
smooth. We assume the dynamics of every vehicle 8 ∈V!

⋃V�
is input-output linearizable and study the following problems:

Problem 1 (MVS Continuum Deformation Coordinated
Control): Determine U8 (C) such that

∀C ∈ [CB , C 5 ], ∀8 ∈ V, ‖r8 (C) − r8,�) (C)‖2 ≤ X, (21)

where X > 0 is constant. Every agent only accesses the local de-
sired trajectory r3,8 (C) defined in Section II-A as the reference
input for every vehicle 8 ∈V!

⋃V� . Follower 8 ∈V� does not
know r8,�) but acquires it through local communication. We
investigate stability and convergence of the MVS collective
dynamics in Sections V and VI.

Problem 2 (Guaranteeing Continuum Deformation Safety
Specification): Ensure inter-agent collision avoidance, defined
by

∀C ∈ [CB , C 5 ], ∀8, 9 ∈ V, 8 ≠ 9 , ‖r8 (C) − r8 (C)‖2 ≥ 2n, (22)

and a follower containment condition defined by

C ∈ [CB , C 5 ], ∀8 ∈ V, �= (h1 (C) , · · · ,h=+1 (C),r8 (C)) > 0,
(23)

with low computation cost, where n is the radius of the smallest
ball enclosing every vehicle 8 and �= was previously defined
by Eq. (2). Specifically, we show how inter-agent collisions
can be avoided only by constraining one of the eigenvalues of
the deformation matrix if the shear-deformation angles remain
constant at all times C. This can significantly improve the
flexibility and maneuverability of the large-scale continuum
deformation coordination.

Problem 3 (MVS Continuum Deformation Coordination
Planning): To plan a continuum deformation coordination,
eigen-decomposition and A* search methods are applied to
determine the global desired trajectories of team leaders in
obstacle-free and obstacle-laden environments, respectively.
The third problem is how to enforce continuum deformation
safety conditions for all instants, C ∈ [CB , C 5 ].

V. PROBLEM 1: MVS CONTINUUM DEFORMATION
COORDINATED CONTROL
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We define state transformation x8→
(
r8 , · · · ,rd−1

8
,s8

)
such

that (20) is decomposed into external dynamics

@ ∈ {G, H, I}, 3d@@8

3Cd@
= E@,8 (24)

and internal dynamics

¤l8 = fint,8

(
l8 , G8 , · · · , !f8

dG−1G8 , H8 , · · · , !f8
dH−1H8 , I8 , · · · , !f8

dI−1I8

)
,

(25)
where E@,8 is assigned as

E@,8 = −
d@−Ξ−1∑
:=1

W8,:!f8
d@−:@8 +

d@∑
:=d@−Ξ

W8,:!f8
d@−: (

@3,8 − @8
)
,

(26)
and where !f8@8 =

(
5x8@8

)) f8 is the Lie derivative of a smooth
function @8 with respect to a vector field f8 , @3,8 is the
component @ ∈ {G, H, I} of local desired position r3,8 defined
by Eq. (19). Control gains W8,1 through W8,d@ are assigned
such that the MVS collective dynamics is stable. In Eq. (24),
d@ (@ ∈ {G, H, I}) is the relative degree, d = dG + dH + dI ≤ =G
is the total relative degree, Ξ < d@ is constant, and[

EG,8
EH,8
EI,8

]
=


!g8 !

dG−1
f8 G8

!g8 !
dH−1
f8 H8

!g8 !
dI−1
f8 I8

 u8 +

!
dG
f8 G8

!
dH

f8 H8
!
dI
f8 I8

 .
Define XSYS,@ =

[
@1 · · · @# · · · !

d@

f1
@1 · · · !

d@

f# @#
])

and

USYS,@ =

d@∑
9=d@−Ξ

� 9 ,;


!f8

d@− 9@1,�)
...

!f8
d@− 9@=+1,�)

 , (27)

where @8 and @8,�) denote component @ ∈ {G, H, I} of actual
and global desired positions of vehicle 8. The MVS collective
dynamics can be expressed by the following normal form:
¤XSYS,G
¤XSYS,H
¤XSYS,I

 =
[ASYS,G 0 0

0 ASYS,H 0
0 0 ASYS,I

] [XSYS,G
XSYS,H
XSYS,I

]
+

[BSYS,G 0 0
0 BSYS,H 0
0 0 BSYS,I

] [USYS,G
USYS,H
USYS,I

]
(28a)

3l

3C
= FINT (l,XSYS) , (28b)

where l =
[
l)1 · · · l)

#

])
, FINT =

[
f)int,1 · · · f)int,#

])
,

9 = d@ −Ξ+1, · · · , d@ , � 9 ,; = diag(W 9 ,1, · · · , W 9 ,=+1) ∈ R(=+1)×(=+1) ,

9 = 1, · · · , d@ � 9 = diag(W 9 ,1, · · · , W 9 ,# ) ∈ R#×# ,

@ ∈ {G, H, I}, BSYS,@ =
[0(=+1)×(d@−1)# I=+1 0(=+1)×(#−=−1)

])
,

@ ∈ {G, H, I}, ASYS,@ =


0# I# · · · 0#
...

...
. . .

...
. . .

0# 0# · · · I#
�d@Hd@ ,@ �d@−1Hd@−1,@ · · · �1H1,@

 .

Note that I# ∈ R#×# and 0# ∈ R#×# are the identity and
zero-entry matrices. Matrix H8,@ ∈ R#×# (8 = 1, · · · , d@) is
defined as follows:

@ ∈ {G, H, I}, H8,@ =

{
−I# 1 ≤ 8 ≤ d@ −Ξ−1
L d@ −Ξ ≤ 8 ≤ d@

.

We choose control gains, W1,8 through Wd@ ,8 such that
eigenvalues of the characteristic equation of external dynamics

(28a),
����BI−ASYS,@

���� = 0 (@ ∈ {G, H, I}), are all located in the

open left-half B-plane. Also, zero dynamics of the MVS
internal dynamics (28b) is locally asymptotically stable and
FI,l =

mFINT
ml

is Hurwitz.

VI. PROBLEM 2: CONTINUUM DEFORMATION SAFETY
SPECIFICATION

For continuum deformation coordination in an obstacle-
laden environment, the MVS needs to be contained by a virtual
=-D simplex, called virtual containment simplex (VCS), at
any time C. Let h8,0 = ℎG,8,0ê1 + ℎH,8,0ê2 + ℎI,8,0ê3 and h8 (C) =
ℎG,8 ê1 + ℎH,8 ê2 + ℎI,8 ê3 (8 = 1, · · · , = + 1) denote positions of
vertex 8 of the VCS in the reference and current configurations,
respectively. VCS evolution is defined by a homogeneous
transformation, therefore, h8,0 and h8 (C) are related by

8 = 1, · · · , =+1, h8 (C) =Q (C)h8,0 +d (C) , (29)

where Q and d are computed based on leaders’ positions in the
reference configuration and the current configuration at current
time C per Section II-C. The MVS containment condition is
mathematically specified by

C ∈ [CB , C 5 ], ∀8 ∈ V, �= (h1 (C) , · · · ,h=+1 (C),r8 (C)) > 0,
(30)

where �= was previously defined by Eq. (2).

Theorem 3. ( [24]) Assume each vehicle is enclosed by a
ball with radius n . Given deviation upper-bound X (Eq. (21)),
we define Xmax = min

{
(31 − n) , 1

2 (3B −2n)
}
, where 3B is the

minimum separation distance and 31 is the minimum distance
from the boundary of the leading simplex in the reference
configuration (See Fig. 2 (a)). The vehicle containment and
inter-agent collision avoidance are guaranteed at time instant
C if eigenvalues _1, _2, _3 of U� (C) satisfy the following
inequality constraint [25]:

9 = 1,2,3, _ 9 ≥
X+ n
Xmax + n

. (31)

Relaxation of the Collision Avoidance Condition Theo-
rem 3 provides a conservative collision avoidance guarantee
independent of the total number of agents (#). However, the
conditions (31) can be overly restrictive when agents are not
uniformly distributed in the reference configuration (See Fig.
2 (b)). This issue can be dealt with, if we only constrain the
eigenvalue _1 of matrix U� (C) and assign the direction of
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(a) (b)

Fig. 2: (a) Schematic for MVS reference configuration and the
VCS containing all vehicles. (b) Schematic of a non-uniform
MVS reference configuration where X = Xmax.

eigenvector û1 by solving the following max-min optimization
problem:(
kD,0, \D,0

)
= argmax

kD , \D

{
min

8, 9∈V' ,8≠ 9

( (
r8,0− r 9 ,0

)
· û1 (0, \D ,kD)

)}
.

(32)
Since we use the 3−2−1 Euler angles to define a rigid-body
rotation, the eigenvector û1 of U� (C) only depends on \D and
kD at any time C (see Eq. (8b)). Thus, the reference deformation
angles \D,0 and kD,0 are obtained by

\D,0 = −sin−1 (
û1,0 · ê3

)
, (33a)

kD,0 = tan−1
(
û1,0 · ê2

û1,0 · ê1

)
. (33b)

Suppose now that the desired continuum deformation is de-
signed such that deformation angles qD (C) = qD,0, \D (C) = \D,0
and kD (C) = kD,0 remain constant for C ∈ [CB , C 5 ], where qD,0
takes an arbitrary value between 0 and 2c.

Lemma 1. If qD (C) = qD,0 \D (C) = \D,0 and kD (C) = kD,0 are
constant for C ∈ [CB , C 5 ] and r8.�) and r 9.�) are defined by
the homogeneous transformation given in (3) (∀8, 9 ∈V'), then,
the following relation holds for all 8, 9 ∈ V':(

r8,�) (C) − r 9 ,�) (C)
)) (

R� (C)û;,0
)
= _; (C)

(
r8.0− r 9 ,0

)) û;,0
(34)

Proof: Given global desired positions of vehicles 8, 9 ∈V'
defined by Eq. (3), we can express r8,�) − r 9 ,�) as

r8,�) (C) − r 9 ,�) (C) =Q(C)
(
r8,0− r 9 ,0

)
=

R� (C)
3∑
ℎ=1

_ℎ (C)ûℎ,0û)ℎ,0︸                ︷︷                ︸
U� (C)

(
r8,0− r 9 ,0

)
=

3∑
ℎ=1

_ℎ (C)
[ (

r8,0− r 9 ,0
)) ûℎ,0

]
R� (C)ûℎ,0.

(35)
Note that _ℎ (C)

[ (
r8,0− r 9 ,0

)) ûℎ,0
]
∈ R at any time C (ℎ =

1,2,3). Thus, pre-multiplying both sides of Eq. (35) by
û)
;,0R)

�
(C) and noting that û)

;,0R)
�
(C)R� (C)ûℎ,0 is 1 if ℎ = ;

and 0 otherwise, Eq. (34) follows.

Theorem 4. Assume every vehicle is enclosed by a ball of
radius n . MVS inter-agent collision avoidance is guaranteed if

∀C ∈ [CB , C 5 ], _1 (C) ≥ 2
X+ n
3B

, (36)

where _1 (C) is the first eigenvalue of U� (C) and 3B is the
minimum separation distance in the reference configuration.

Proof: Vectors R� (C)û1,0, R� (C)û2,0, R� (C)û3,0 are par-
allel to û1 (C), û2 (C), û3 (C), respectively. Because the lowest
minimum separation distance is along the unit vector û1 (C) =
R� (C)û1,0, inter-agent collision is avoided if

∀8, 9 ∈V',
(
r8,�) (C) − r 9 ,�) (C)

)) (
R� (C)u1,0

)
≥ 2 (X+ n) .

(37)
By Lemma 1, it follows that

min
8, 9∈V'

{(
r8,�) (C) − r 9 ,�) (C)

)) (
R� (C)u1,0

)}
=

_1 (C) min
8, 9∈V'

{(
r8,0− r 9 ,0

)) û1,0

}
= _1 (C)3B ,

Thus the inter-agent collision is avoided if _1 (C)3B ≥ 2 (X+ n)
at any time C ∈ [CB , C 5 ]. This is ensured if (36) is satisfied.
Remark 3. Eigenvalues _2 (C) and _3 (C) of matrix U� must be
positive at any time C as is required for continuum deformation
coordination. Furthermore, shear deformation angle q∗

D,0 can
be arbitrarily selected. Without loss of generality, this paper
chooses qD (C) = q∗D,0 = 0 at any time C.

VII. PROBLEM 3: CONTINUUM DEFORMATION PLANNING

We define the desired trajectory of every leader 8 ∈ V! by

r8,�) (C) = r8,�)
(
s=r (C)

)
, (38)

where s=r (C) is the generalized coordinate vector and = ∈
{1,2,3} is the dimension of the homogeneous deformation
coordination.

The generalized coordination vector s=r (C) is given by

C ∈ [C: , C:+1], s=r (C) = s̄=:, r (1− V(C,): )) + V(C,): )s̄
=
:+1, r ,

(39)
where : = 1, · · · , =g , r ∈ {OL,OF}. OF and OL denote
obstacle-free and obstacle-laden, respectively. Conditions C1 =
CB , C=g+1 = C 5 , s̄=1, r , · · · , s̄=

=g+1, r determine intermediate con-
figurations for the generalized coordinate, ): = C:+1 − C: , and
V(C,): ) is defined by the following fifth order polynomial:

C ∈ [C: , C:+1], V(C,): ) =
5∑
9=0
Z 9 ,:

(
C − C:
):

)5
, (40)

where V(C: ,): ) ∈ [0,1] is an increasing function of C over
[C: , C:+1], V(C: ,): ) = 0, V(C:+1,): ) = 1, Z0,: through Z5,: are
constant and determined based on boundary conditions at
times C: and C:+1. Note that )1 through )= are the design
parameters determined such that the continuum deformation
safety conditions are all satisfied.
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Path Planning: For continuum deformation coordination in
an obstacle-free environment, =g = 1 generalized coordinate
vector s=OF is defined as follows:

s1
OF =

[
_1 \A kA 31 32 33

])
= = 1

s2
OF =

[
_1 _2 qA \A kA kD 31 32 33

])
= = 2

s3
OF =

[
_1 _2 _3 qA \A kA qD \D kD 31 32 33

])
= = 3

,

(41)
where s=OF is defined by quintic polynomial (39) with C1 = CB
and C2 = C 5 .

For motion planning in obstacle-laden environments,
r8,�)

(
s=r (C)

)
= s=r (C), where

s=r (C) = vec
( [

r1,�) (C) · · · r=+1,�) (C)
]) )

. (42)

This paper uses A* search such that the leaders’ travel distance
is minimized.

Trajectory Planning and Planning of Travel Time:
Assume consecutive generalized coordinate vectors s̄=

:, r
and

s̄=
:+1, r are known for r ∈ {OF,OL} and : = 1, · · · , =g . Then,

the travel time planning problem is defined as follows. Choose
): ≥ )∗: , where minimum travel time )∗

:
is assigned by solving

the following optimization problem:

)∗: =min ): (43)

subject to Eqs. (21), (40), and

s=r (C) = s̄=:, r (1− V(C,): )) + V(C,): )s̄
=
:+1, r , C ∈ [C: , C:+1],

u8 (C) ∈ U, ∀C ∈ [C: , C:+1],∀8 ∈ V,
(44)

where CB = C1, C 5 = C=g+1, C:+1 = C: +): , and Z0,: through Z5,:
are specified coefficients satisfying assumptions discussed after
(40). Because V(C,): ) is assigned by Eq. (40) for C ∈ [C: , C:+1],
the term

����3 9 V(C,): )3C 9

���� is a decreasing function with respect to ):
at any time C ∈ [C: , C:+1] for 9 ∈ {d@ −Ξ, · · · d@} (@ ∈ {G, H, I}).
Consequently, there exists a minimum travel time )∗

:
such that

the safety conditions (21), (40), and (44) are all satisfied.

VIII. SIMULATION RESULTS

Case studies of 2-D, and 3-D continuum deformation are
presented below with and without obstacles. We assume each
vehicle is a quadcopter with the input-output linearizable
dynamics presented in [24].

For the 2-D example, we consider continuum deformation
coordination of # = 27 quadcopters with reference (initial)
configuration shown in Fig. 3 (a), where V! = {1,2,3},
V� = {4, · · · ,27} and V0DG = {28,29, · · · ,38}. Leaders move
independently and every follower communicates with three
in-neighbor nodes where followers’ reference communication
weights are determined by Eq. (14). As shown in Fig. 3 (a),
reference VCS is a containing triangle with vertices positioned
at h1,0 = (0,40), h2,0 = (60,100), and h3,0 = (0,140). Given
the reference configuration and final formation shown in Fig.
3 (d), the optimal leaders’ paths are determined using A*
search and shown in Fig. 3 (b-d). Given leaders’ optimal paths,
eigenvalues _1 and _2 are plotted versus time in Fig. 3 (e).

(a) C = 0B (b) C = 500B

(c) C = 650B (d) C = 812B

(e) Eigenvalues of matrix U� ver-
sus time.

(f) Deviation of quadcopters from
their global desired trajectories

Fig. 3: (a-d) MVS at sample times 0B, 500B, and 812B. (e)
U� eigenvalues _1 and _2 versus time. (f) Deviation of each
follower 8 ∈ V� versus time. Note that sup

C

‖r8 − r8,�) ‖ ≤ X =
0.3940<, ∀8 ∈ V� .

Assuming every quadcopter is enclosed by a ball with radius
n = 0.5< and X = 0.3940<, leaders’ travel times are assigned
such that safety requirements are all satisfied. Fig. 3 (f) shows
that ‖r8 (C) − r8,�) (C)‖ ≤ X at any time C ∈ [0,812].

For the 3-D example, we simulate collective takeoff with
a # = 16 quadcopter MVS where V! = {1,2,3,4}), V� =
{5, · · · ,16}, and V0DG = {17,18,19} with r14,0 = r17,0, r15,0 =
r18,0, and r16,0 = r19,0. The MVS initial formation is shown
in Fig. 4 (a) where leaders are illustrated by red, followers 5
through 13 are shown by black. In addition, followers 14, 15,
and 16 are shown in green in Fig. 4 (b).

Given quadcopter initial reference positions, the shear de-
formation angles \D,0 = 0.3770 rad and kD,0 = 1.0053 rad are
obtained using Eq. (33). Furthermore, we choose qD,0 = 0 at
any time C, per Remark 3). We consider MVS collective motion
over the time interval [0,600B] (CB = 0B and C 5 = 600) where
qA

(
C 5

)
= 0 rad, \A

(
C 5

)
= 0.0713 rad, kA

(
C 5

)
= c

2 rad, 31
(
C 5

)
=

100<, 32
(
C 5

)
= 165<, and 33

(
C 5

)
= 200<. Given s3

OF (0) and
s3

OF (600), a homogeneous transformation is defined by Eq. (3)
and acquired by followers through local communication. MVS
formations at sample times CB = 0,250,400,600B are shown in
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(a) MVS initial formation (b) MVS evolution

(c) Transient error

Fig. 4: (a) MVS initial formation and inter-agent communica-
tion. (b) MVS at times 0B, 250B, 400B, 250B. Leader 1, 2, 3,
4 paths are shown by black, green, red, and pink curves. (c)
Deviation of each follower 8 ∈ V� versus time.

Fig. 4 (b). Assuming n = 0.18< and obtaining X = 0.6652<,
deviation of every follower 8 from r8,�) is plotted versus time
in Fig. 4 (c). Because sup

C

‖r8 (C)−r8,�) (C)‖ ≤ 0.6652 (∀8 ∈V� )

collision avoidance is gauranteed.
IX. CONCLUSION

This paper advanced continuum deformation coordination
by relaxing existing containment constraints. We showed that
any =+1 agents forming an =-D simplex can be considered as
leaders; followers can be placed inside or outside the leading
simplex in an =-D homogeneous transformation (= = 1,2,3).
This paper also formulated continuum deformation coordina-
tion eigen-decomposition to determine a nonsingular mapping
between leader position components and homogeneous trans-
formation features assigned by continuum deformation eigen-
decomposition. With this approach, leader trajectories ensur-
ing collision avoidance and quadcopter containment can be
safely planned. Furthermore, this paper advances the existing
condition for inter-agent collision avoidance in a large-scale
continuum deformation. This new safety condition is much
less restrictive and significantly advances the maneuverability
and flexibility of the continuum deformation coordination.
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