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Abstract
The West Antarctic Ice Sheet (WAIS) is largely marine based 

and thus highly sensitive to both climatic and oceanographic 
changes. Therefore, the WAIS has likely had a very dynamic history 
over the last several million years. A complete collapse of the WAIS 
would result in a global sea level rise of 3.3–4.3 m, yet the world’s 
scientific community is not able to predict its future behavior. 
Moreover, knowledge about past behavior of the WAIS is poor, in 
particular during geological times with climatic conditions similar 
to those expected for the near and distant future. Reconstructions 
and quantifications of partial or complete WAIS collapses in the 
past are urgently needed for constraining and testing ice sheet mod-
els that aim to predict future WAIS behavior and the potential con-
tribution of the WAIS to global sea level rise. Large uncertainties 
exist regarding the chronology, extent, rates, and spatial and tempo-
ral variability of past advances and retreats of the WAIS across the 
continental shelves. These uncertainties largely result from the fun-
damental lack of data from drill cores recovered proximal to the 
WAIS. The continental shelf and rise of the Amundsen Sea are 
prime targets for drilling because the records are expected to yield 
archives of pure WAIS dynamics unaffected by other ice sheets and 
the WAIS sector draining into the Amundsen Sea Embayment 
(ASE) currently experiences the largest ice loss in Antarctica (Paolo 
et al., 2015).

We propose a series of drill sites for the ASE shelf where seismic 
data reveal seaward-dipping sedimentary sequences that span from 
the preglacial depositional phase to the most recent glacial periods. 
Our strategy is to drill a transect from the oldest sequences close to 
the bedrock/basin boundary at the middle–inner shelf transition to 
the youngest sequences on the outer shelf in the eastern ASE. If the 
eastern ASE is inaccessible due to sea ice cover, a similar transect of 
sites can be drilled on the western ASE. The core transect will pro-
vide a detailed history of the glacial cycles in the Amundsen Sea re-
gion and allow comparison to the glacial history from the Ross Sea 
sector. In addition, deep-water sites on the continental rise of the 
Amundsen Sea are selected for recovering continuous records of 
glacially transported sediments and detailed archives of climatic 
and oceanographic changes throughout glacial–interglacial cycles. 
We will apply a broad suite of analytical techniques, including 
multiproxy analyses, to address our objectives of reconstructing the 
onset of glaciation in the greenhouse to icehouse transition, pro-
cesses of dynamic ice sheet behavior during the Neogene and Qua-
ternary, and ocean conditions associated with the glacial cycles.

The five principal objectives of Expedition 379 are as follows:

1. To reconstruct the glacial history of West Antarctica from the
Paleogene to recent times and the dynamic behavior of the
WAIS during the Neogene and Quaternary, especially possible
partial or full WAIS collapses, and the WAIS contribution to
past sea level changes. Emphasis is placed in particular on study-
ing the response of the WAIS at times when the pCO2 in Earth’s
atmosphere exceeded 400 ppm and atmospheric and oceanic
temperatures were higher than at present.

2. To correlate the WAIS-proximal records of ice sheet dynamics
in the Amundsen Sea with global records of ice volume changes
and proxy records for air and seawater temperatures.

3. To study the relationship between incursions of warm Circum-
polar Deep Water (CDW) onto the continental shelf of the
Amundsen Sea Embayment and the stability of marine-based ice 
sheet margins under warm water conditions.

4. To reconstruct the processes of major WAIS advances onto the
middle and outer shelf that are likely to have occurred since the
middle Miocene and compare their timing and processes to
those of other Antarctic continental shelves.

5. To identify the timing of the first ice sheet expansion onto the
continental shelf of the ASE and its possible relationship to the
uplift of Marie Byrd Land.

Schedule for Expedition 379
International Ocean Discovery Program (IODP) Expedition 379 

is based on IODP drilling Proposal 839-Full and 839-Add (available at 
http://iodp.tamu.edu/scienceops/expeditions/amundsen_sea_ice
_sheet_history.html). Following evaluation by the IODP Science 
Evaluation Panel, the expedition was scheduled for the research ves-
sel (R/V) JOIDES Resolution, operating under contract with the JOI-
DES Resolution Science Operator (JRSO). At the time of publication 
of this Scientific Prospectus, the expedition is scheduled to start in 
Punta Arenas, Chile, on 18 January 2019 and to end in Punta Arenas, 
Chile, on 20 March 2019. A total of 56 days will be available for the 
transit, drilling, coring, and downhole measurements described in 
this report (for the current detailed schedule, see 
http://iodp.tamu.edu/scienceops). Further details about the facili-
ties aboard the JOIDES Resolution can be found at 
http://iodp.tamu.edu/publicinfo/drillship.html.

Introduction
For decades, the Amundsen Sea Embayment (ASE) drainage 

sector has been considered the most vulnerable part of the West 
Antarctic Ice Sheet (WAIS) because of the great water depth at the 
grounding line and the lack of substantial ice shelves (Hughes, 
1981). Glaciers in this configuration are thought to be susceptible to 
rapid or runaway retreat (Schoof, 2007). Recent models suggest that 
a threshold leading to collapse of WAIS in this sector may have been 
passed already (Joughin et al., 2014) and that much of the ice sheet 
could be lost even under relatively moderate greenhouse gas emis-
sion scenarios (DeConto and Pollard, 2016). Model projections are 
limited by lack of constraints in several areas, most notably in a lack 
of detailed reconstructions about glacial history.

Drilling in the ASE will provide tests of several key questions 
about controls on ice sheet stability. First, it will offer a direct record 
of glacial history in a drainage basin that receives ice just from the 
WAIS, allowing clear comparisons between the WAIS history and 
low-latitude records. Ice draining into the ASE is grounded below 
sea level and thus allows a test of the marine ice sheet instability 
through correlation of the ice history to sea level changes. Although 
there is currently only a very small ice shelf in front of the grounding 
line today, the embayment has had ice shelves during some points of 
its history (Kirshner et al., 2012) that will allow examination of the 
grounding line history relative to the ice-shelf history. Today, warm 
Circumpolar Deep Water (CDW) is impinging onto the Amundsen 
Sea shelf, causing melting of the underside of the ice; reconstruc-
tions of past CDW intrusions (Hillenbrand et al., 2017; Minzoni et 
al., 2017) will assess the ties between warm water and large-scale 
changes in past grounding line positions. These tests will take place 
in the drainage basin that currently has the largest negative mass 
balance of ice of anywhere in Antarctica (Paolo et al., 2015) and is 
thus of prime interest to future predictions. Finally, this expedition 
will take place as part of a suite of Antarctic IODP expeditions, al-
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lowing large-scale reconstructions and comparisons between differ-
ent drainage basins.

Background
The fourth assessment report of the Intergovernmental Panel on 

Climate Change [IPCC] (2007) highlighted the fact that the re-
sponse of continental ice sheets to climatic changes and their con-
tribution to global sea level change is the largest unknown variable 
in predicting future sea level change. The fifth and latest assessment 
report of the IPCC (2013) includes more information about the 
likely contributions to sea level change from the Antarctic, but it 
still remains one of the primary unknowns in predictions of future 
change. In addition, the 2013 IPCC assessment report emphasizes 
that if there is a substantial increase to the rate of sea level rise in the 
next century, it is likely to come from marine-based ice, like that in 
the ASE.

The WAIS rests on a continental shelf that typically deepens to-
ward the interior of the Antarctic continent. This fore-deepened 
continental shelf, and thus the base of the ice, is largely below sea 
level. Therefore, the marine-based WAIS is sensitive to global sea 
level rise and regional oceanographic and atmospheric changes, and 
its history has been highly dynamic (e.g., Joughin and Alley, 2011). 
A complete WAIS collapse would raise the global sea level by 3.3–
4.3 m (Fretwell et al., 2013), whereas the collapse of its Amundsen 
Sea drainage sector would raise the sea level by ~1.5 m (Vaughan, 
2008). Over the most recent decades, glaciers draining into the ASE 
(Figure F1) thinned at an alarming rate, their flow speed dramati-
cally increased, and their grounding lines retreated significantly, 
thereby contributing to present sea level rise at a faster rate than any 
other glacier on Earth (e.g., Joughin and Alley, 2011; Joughin et al., 
2012; Paolo et al., 2015).

The present ice loss in the ASE is mainly attributed to sub–ice 
shelf melting induced by relatively warm CDW upwelling onto the 
shelf and spreading through deep bathymetric troughs toward the 
grounding zones (e.g., Joughin et al., 2012). It is unclear, however, 
whether the current ice loss results from ongoing deglaciation since 
the Last Glacial Maximum (LGM) (e.g., Bentley, 2010), recent cli-
matic/oceanographic warming, or recent internal ice sheet dynam-
ics (Joughin and Alley, 2011; Joughin et al., 2012). If the WAIS has 
undergone similar thinning and retreat in the past, the factors driv-
ing that retreat can be compared to modern conditions.

The reconstruction and quantification of WAIS collapses during 
the Neogene and Quaternary will provide constraints for ice sheet 
models predicting future WAIS behavior and resulting sea level rise. 
Numerous modeling studies have tried to link the waxing and wan-
ing of the WAIS to various forcing mechanisms (e.g., Pollard and 
DeConto, 2009; Holden et al., 2010; DeConto and Pollard, 2016; 
Sutter et al., 2016) (Figure F2). However, large uncertainties exist re-
garding the spatial and temporal variability of past ice sheet advance 
and retreat. These uncertainties are mainly caused by the lack of 
data from cores drilled proximal to the WAIS. The only existing 
drill cores along the Pacific Antarctic margin outside the Ross Sea 
are from Deep Sea Drilling Project (DSDP) Leg 35 in the Belling-
shausen Sea (Hollister et al., 1976) and Ocean Drilling Program 
(ODP) Leg 178 on the Antarctic Peninsula margin (Barker et al., 
2002). Results of Leg 178 Site 1097, drilled on the shelf, revealed a 
major late Miocene change in sequence geometry on the outer shelf, 
which may indicate a change in the typical extent of glacial ad-
vances, the dynamic behavior of ice streams, or glacial sediment 
transport (Barker et al., 2002; Bart et al., 2005; Larter et al., 1997). 

Scheuer et al. (2006a, 2006b) used this information by correlating 
seismic horizons to Leg 178 Sites 1095 and 1096 on the continental 
rise and interpreted transitions from preglacial to intermediate and 
full glacial conditions from the eastern Bellingshausen Sea to the 
Amundsen Sea.

The most detailed results on Neogene WAIS history stem from 
the Antarctic Geological Drilling (ANDRILL) project in the western 
Ross Sea, which recovered early Miocene (~20 Ma) to Quaternary 
sequences in Cores AND-1B (Naish et al., 2009) and AND-2A 
(Passchier et al., 2011). Pliocene data from Core AND-1B indicate 
that orbitally induced oscillations of the WAIS resulted in transi-
tions from grounded ice and/or ice shelves to open-water condi-
tions (Naish et al., 2009; McKay et al., 2012). However, previous 
seismic stratigraphic work on the Ross Sea shelf beyond Site AND-
1B revealed only seven shelf-wide grounding events (Alonso et al., 
1992). Given the location of Site AND-1B, which is subject to over-
riding from both the East Antarctic Ice Sheet (EAIS) and the WAIS, 
the ANDRILL results are likely not representative of the WAIS out-
lets in the Amundsen and Weddell Seas. Sedimentary records from 
the Ross Sea and the Weddell Sea provide only an integrated archive 
of WAIS and EAIS dynamics, whereas those from the ASE will pro-
vide a unique pure WAIS signal. Although the Filchner-Ronne Ice 
Shelf extends far into the southern Weddell Sea, making grounding 
line proximal positions difficult to access, only small and narrow ice 
shelves exist in the ASE today (Figure F1).

Oceanographic setting
Pine Island Bay and the ASE are characterized by persistent sea 

ice cover (e.g., Jacobs et al., 2012) that has decreased significantly in 
recent decades (Parkinson and Cavalieri, 2012). Water mass tem-
peratures within Pine Island Bay typically range between –1.5° and 
0°C. The exception to this is warm CDW, which can reach 3.5°C, 
that impinges onto the shelf through deep glacially carved troughs 
(Walker et al., 2007; Jacobs et al., 2011, 2013) and at times reaches 
into some of the smaller bays and fjords on the inner shelf (Minzoni 
et al., 2017). Productivity in the Amundsen Sea is among the highest 
in the Southern Ocean, with phytoplankton blooms related to sea 
ice polynyas (Arrigo et al., 2008; Minzoni et al., 2017). CDW is 
widely considered to be the main external driver of contemporary 
glacier retreat in the Amundsen Sea, and recent work has shown 
that it can vary on multidecadal to centennial timescales in re-
sponse to wind stress at the continental shelf edge (Jenkins et al., 
2016).

Geological setting
Constraints on past ice sheet dynamics and the main character-

istics of the ASE continental shelf and rise (Figure F1), derived from 
geophysical and geological studies, are as follows:

• The 500–700 m deep shelf is incised by two major paleo–ice 
stream troughs (Pine Island and Dotson-Getz), whose tributar-
ies originate from ice-stream/glacier fronts on the innermost 
ultradeep (as deep as 1600 m) shelf and converge at the transi-
tion from the inner to middle shelf. Both troughs extend toward 
the outer shelf, thereby becoming shallower and wider.

• The shelf geometry consists of a large pre- and synrift basin on 
the midshelf between basement cropping out on the inner shelf 
and buried basement highs on the outer shelf. A subordinate ba-
sin within the large midshelf basin may be associated with mo-
tion along an early West Antarctic Rift System (WARS) branch.
4
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• At least 4 km of preglacial strata were eroded by ice from the 
present inner shelf and coastal hinterland. At least five major 
erosional unconformities indicate phases of significant WAIS 
advances.

• Prograding sequences and subglacial bedforms on the outer 
shelf, subglacial tills recovered in cores, and radiocarbon dates 
on calcareous microfossils and organic matter in overlying sedi-
ments indicate that ground ice expanded to the outer shelf 
during the LGM and earlier glacial periods.

• The continental rise is dominated by thick sedimentary depo-
sition centers and by sediment drifts, which indicate strong bot-
tom-current activity.

Seismic data analysis from the ASE rise reveals that sediment 
drift formation began in Eocene/Oligocene times (Uenzelmann-Ne-
ben and Gohl, 2012) (Figure F3). This observation indicates bottom 
current activity and hence a cold climate for the late Paleogene in 
the area, which today lies under the influence of Antarctic Bottom 
Water originating in the Ross Sea. The seismic records from the 
continental rise along the entire Marie Byrd Land margin mark the 
base of the sediment drifts throughout the Amundsen Sea and into 
the Ross Sea (Lindeque et al., 2016a, 2016b). These records provide 
insight into the sedimentation processes from preglacial to glacial 
times, variations in ocean-bottom circulation, early ice sheet 
growth, and intensification toward the present icehouse regime. 
However, this insight is hampered by vague stratigraphic age esti-
mates only derived from long-distance seismic correlation to the 
Bellingshausen Sea and Ross Sea.

Seismic records from the ASE shelf (examples in Figure F4) 
show dipping strata of the midshelf that are possibly of Cretaceous 
to Miocene age and buried by aggradational, less consolidated strata 
of presumed Pliocene–Pleistocene age (Lowe and Anderson, 2002; 
Gohl et al., 2013b). Since the mid-Miocene, the outer shelf and slope 
have undergone first progradational and then aggradational depo-
sition (Nitsche et al., 1997; Hochmuth and Gohl, 2013; Gohl et al., 
2013b). Several unconformities, possibly indicating phases of sub-
glacial erosion and ice advance, separate the dipping strata. Al-
though most of the inner ASE shelf is void of major sedimentary 
cover (Gohl et al., 2013a, 2013b), a few small and shallow basins can 
be observed along its eastern border (Uenzelmann-Neben et al., 
2007) and in front of Pine Island Glacier (Nitsche et al., 2013; Muto 
et al., 2016).

The eastern and western ASE shelves are separated by a bathy-
metric and structural high (Nitsche et al., 2007; Gohl et al., 2013b). 
Oceanward dipping midshelf strata north of outcropping basement 
can be observed in seismic data from the Dotson-Getz Trough 
(Wellner et al., 2001; Graham et al., 2009; Weigelt et al., 2009; Gohl 
et al., 2013b) (Figure F4) and exhibit alternating sequences of low 
and high reflectivity, which are interpreted as Miocene episodes of 
ice sheet advance and retreat. The glacial sequence stratigraphic 
model by Powell and Cooper (2002) proposes that glacial advances 
develop morainal banks consisting of unstratified diamictons, 
sands, and gravels, leading to a chaotic or semitransparent seismic 
reflection pattern. In contrast, stratified muds are deposited during 
glacial retreat, which is expressed in seismic profiles as a succession 
of closely spaced continuous reflectors. Boundaries between the 
acoustic units are sharp, but without drilling, the timing of ice sheet 
oscillations remains unconstrained. Similar seismic facies occur on 
the Ross Sea and Antarctic Peninsula shelves, where drill cores con-
firmed that the chaotic/transparent units correspond to massive 
diamictons whereas acoustically stratified seismic facies correspond 

to distal glaciomarine sediments (Anderson and Bartek, 1992; Bart 
and Anderson, 2000; Eyles et al., 2001).

The current seismostratigraphic model of the ASE shelf was de-
veloped by long-distance correlation of seismic data to those of the 
Ross Sea shelf which show striking similarities (Gohl et al., 2013b) 
(Figure F4). Adopting the ages of the seismostratigraphic units and 
unconformities on the Ross Sea shelf, which are relatively well con-
strained by DSDP Leg 28 and ANDRILL records (e.g., De Santis et 
al., 1999; McKay et al., 2009), the shelf basin formation model (Fig-
ure F5) for the ASE shows the development from a Cretaceous syn-
rift basin to glacially dominated strata in the Neogene and 
Quaternary (Gohl et al., 2013b). The seismostratigraphic record 
from the ASE shelf is consistent with records from the Ross Sea 
(Bartek et al., 1991; Chow and Bart, 2003) and James Ross Basin in 
the northwestern Weddell Sea (Smith and Anderson, 2010), indicat-
ing a Miocene intensification of glaciation (De Santis et al., 1997) in 
accordance with findings from the Core AND-2A (Warny et al., 
2009; Passchier et al., 2011) and the Shallow Scientific Drilling on 
The Antarctic Continental Margin (SHALDRIL)-II drill cores (An-
derson et al., 2011; Anderson and Wellner, 2011).

Apart from ice sheet dynamics inferred from the geometries and 
acoustic facies of seismic reflections, the ice-drainage pattern in the 
ASE at the LGM and its substrate control were investigated by the 
analysis of sub- and proglacial bedforms visible in swath bathy-
metry surveys and acoustic subbottom profiler data (e.g., Larter et 
al., 2009). The subglacial bedforms on the shelf document that 
grounded ice expanded to the outer shelf or even the shelf edge 
during the recent past (Wellner et al., 2001; Lowe and Anderson, 
2002; Graham et al., 2009, 2010; Jakobsson et al., 2012; Nitsche et 
al., 2013). The analysis of subglacial and glaciomarine sediments re-
covered in cores from the ASE shelf confirmed an LGM age for the 
last WAIS advance, allowed reconstructing its retreat history (Lowe 
and Anderson, 2002; Smith et al., 2011; Kirshner et al., 2012; Hillen-
brand et al., 2013a), and indicated dynamically evolving drainage 
systems (Ehrmann et al., 2011). Recently, studies analyzing benthic 
foraminiferal assemblages (Minzoni et al., 2017) and the chemical 
composition (i.e., stable carbon isotopes and magnesium/calcium 
ratios) of benthic and planktic foraminifer shells in ice-proximal 
marine sediments from the inner shelf (Hillenbrand et al., 2017) 
showed that variable inflow of CDW was the primary driver for 
grounding line retreat along the coast of the ASE throughout the 
Holocene and since the 1940s. Sedimentary sequences from the 
Amundsen Sea continental slope and rise spanning glacial–intergla-
cial cycles back to 1.8 Ma were investigated by multiproxy analyses 
in order to find evidence for or against a WAIS collapse during the 
Quaternary (Hillenbrand et al., 2002, 2009; Konfirst et al., 2012) as 
was previously suggested (e.g., Scherer et al., 1998; Scherer, 2003). 
One of these studies found a mid-Pleistocene depositional anomaly 
that may be indicative of a WAIS collapse between 621 and 478 ky 
ago (Hillenbrand et al., 2009). All these studies provide a strong sed-
imentological framework for interpreting drill cores.

Seismic studies/site survey data
A network of seismic lines (Lowe and Anderson, 2002; Uenzel-

mann-Neben and Gohl, 2012, 2014; Hochmuth and Gohl, 2013; Gohl 
et al., 2013b; Lindeque et al., 2016a) (Figures F1, F3, F4) together with 
multibeam bathymetry, subbottom profiler data, and samples from 
gravity and piston coring form the basis of selecting the best possible 
drill sites in order to achieve the scientific objectives. Most of the pro-
posed 22 primary and alternate drill sites were surveyed with crossing 
multichannel or single-channel seismic lines. Seven sites are covered 
5
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with single seismic lines or are located a few kilometers off the next
seismic crossing line. The supporting site survey data for Expedition
379 are archived at the IODP Site Survey Data Bank
(https://ssdb.iodp.org/SSDBquery/SSDBquery.php; select P839
for proposal number).

Scientific objectives
The scientific goals and plan for this expedition are built on five

hypotheses about WAIS dynamics and related paleoenvironmental
and paleoclimatic conditions.

1. Hypothesis H1: the WAIS responded to atmospheric and/or oce-
anic warming by major retreat from the shelf or by even partial to 
full collapse.

Ice sheet models hypothesize that past climate warming caused
major deglaciation of the WAIS (e.g., DeConto and Pollard, 2016).
For instance, during the early middle Pliocene, Earth’s climate was
~3°C warmer than the present (e.g., Haywood et al., 2009) and thus
as warm as predicted for the end of this century, although atmo-
spheric pCO2 was ~400 ppm and other climatic boundary condi-
tions were similar to the present (Pagani et al., 2010). The reasons
for such a high atmospheric temperature during a time with modest
greenhouse-gas forcing are still unknown. Results from Core AND-
1B suggest repeated WAIS collapses during warm early middle Plio-
cene and Pleistocene interglacials, for example during marine iso-
tope Stage 31 (Naish et al., 2009; Pollard and DeConto, 2009; McKay
et al., 2012; Villa et al., 2012). The hypothesis of WAIS collapses
needs confirmation with a less ambiguous record from an outlet
drainage basin exclusively affected by the WAIS. In drill cores from
the ASE margin, WAIS collapses would be recognizable by biogenic
sedimentary sequences deposited during times with permanent
open-water conditions and reduced supply of glaciogenic debris
from the West Antarctic hinterland, similar to those documented in
the AND-1B record (Naish et al., 2009). Such sediments would con-
tain abundant microfossils and probably tephra layers from the Ma-
rie Byrd Land volcanic province (e.g., Le Masurier and Rex, 1991;
Wilch et al., 1999), which are important for dating the sediments
and reconstructing paleoenvironmental conditions in the ASE.
Thus, the drill cores will help to answer the crucial question: did the
WAIS collapse during the Neogene and Quaternary as previously
suggested, and if yes, when and under which environmental condi-
tions?

2. Hypothesis H2: ice-proximal records of ice sheet dynamics in the 
ASE correlate with global records of ice-volume changes and 
proxy records for atmospheric and ocean temperatures.

The post-LGM retreat of the WAIS from the ASE shelf was epi-
sodic (e.g., Lowe and Anderson, 2002; Graham et al., 2009, 2010; Ja-
kobsson et al., 2012). The retreat episodes were likely triggered by
different processes, including sea level rise, sub–ice shelf erosion by
warm deep-water advection, destabilization of the ice sheet by sub-
glacial meltwater outbursts, and grounding line retreat into
overdeepened inner-shelf basins (Jakobsson et al., 2011; Smith et al.,
2011; Kirshner et al., 2012; Hillenbrand et al., 2013b). These obser-
vations raise questions concerning the linkage between climate and
glaciological forcing in regulating WAIS deglaciation. Throughout
the Cenozoic era, unexplained discrepancies are observed between
Earth’s temperature and global ice volume reconstructed from prox-
ies in deep-sea sediments, climate models, sea level estimates, and

ice cores for the last 800 ky. Re-examination of previously studied
cores highlights ongoing uncertainty about the timing of early ice
sheet growth (Carter et al., 2017); the results of the AND-1B record
(Naish et al., 2009) and Integrated Ocean Drilling Program Expedi-
tion 318 to the Wilkes Land margin (Cook et al., 2013) reignited the
debate as to whether the Antarctic ice sheets underwent major col-
lapses during Pliocene interglacials. Such collapses are neither di-
rectly recognizable from oxygen isotope proxies at far-field sites nor
confirmed by the apparently persistent glaciation of the Antarctic
Peninsula since the latest Miocene (Smellie et al., 2009) and re-
peated Pliocene ice sheet advances across the shelf observed in seis-
mic profiles all along the Antarctic margin (e.g., Larter et al., 1997;
Nitsche et al., 1997; Bart and Anderson, 2000; Smith and Anderson,
2010; Bart, 2001). Indeed, results from SHALDRIL cores and other
data from the eastern Antarctic Peninsula shelf indicate progressive
cooling and associated decline in vegetation over the past 37 My,
culminating in early Pliocene ice sheet expansion onto the conti-
nental shelf (Anderson et al., 2011). Results from Leg 178 cores
from the western Antarctic Peninsula margin are consistent with re-
peated ice sheet advances throughout the Pliocene (Eyles et al.,
2001; Hillenbrand and Ehrmann, 2005; Hepp et al., 2006; Bart,
2001) but also indicate significant oceanic warming during Pliocene
interglacials (Hillenbrand and Cortese, 2006; Escutia et al., 2009;
Hepp et al., 2009; Bart and Iwai, 2012). The proposed drill cores
from the ASE will decipher whether the WAIS responded directly
to the orbitally paced climatic cycles of the Pliocene and Quaternary
or it varied at periods determined by its internal dynamics, as find-
ings from Leg 178 suggest for the Antarctic Peninsula Ice Sheet
(Barker et al., 2002). Similar to drill cores from the Ross Sea and
Antarctic Peninsula shelves (Eyles et al., 2001; McKay et al., 2009),
the proposed drill cores from the ASE shelf will probably be incom-
plete because of glacial erosional unconformities. To obtain com-
plete sedimentary sequences, at least one site will core deep-sea
drifts on the continental rise offshore from the ASE. Similar drift
sediments drilled on the western Antarctic Peninsula continental
rise during Leg 178 provided excellent archives of Neogene to Qua-
ternary ice sheet dynamics and paleoenvironmental changes (e.g.,
Hillenbrand and Ehrmann, 2005; Hepp et al., 2006, 2009; Escutia et
al., 2009; Bart and Iwai, 2012). A comparable potential has already
been demonstrated for Pleistocene drift sediments recovered from
the Amundsen Sea continental rise (Hillenbrand et al., 2009).

3. Hypothesis H3: the stability of marine-based WAIS margins is 
and has been controlled by warm deep-water incursions onto the 
shelf.

In model experiments, incursions of relatively warm CDW onto
the West Antarctic continental shelf have been implicated in regu-
lating WAIS behavior on orbital and suborbital timescales (Thoma
et al., 2008; Pollard and DeConto, 2009). Therefore, paleorecords of
CDW upwelling are urgently needed to understand the relationship
between WAIS dynamics and ocean circulation. Producing proxy
records of past CDW incursions from marine sediment cores is still
a challenge but has recently been demonstrated to be possible in
sediments from the ASE shelf (Hillenbrand et al., 2017). With recent
observations of present CDW advection predominantly through the
paleo–ice stream troughs of the ASE (e.g., Arneborg et al., 2012),
drilling on the ASE shelf has a good chance to recover sample mate-
rial suitable for applying benthic foraminifer–based proxies to re-
construct past CDW upwelling onto the shelf and its effect on
WAIS dynamics.
6
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4. Hypothesis H4: major WAIS advances onto the middle and outer 
shelf occurred since the middle Miocene.

Seismic data revealed progradational and aggradational depo-
sition on the outer shelf and slope of the ASE probably since the 
mid-Miocene (e.g., Nitsche et al., 1997, 2000; Hochmuth and Gohl, 
2013; Gohl et al., 2013a). Numerous unconformities within strata 
on the shelf document frequent advance and retreat of grounded ice 
from the late Miocene until the Pliocene/Pleistocene according to 
the stratigraphic age model by Gohl et al. (2013a). The preservation 
of buried grounding-zone wedges in the Pliocene/Pleistocene se-
quence on the outer ASE shelf is consistent with prolonged contin-
uous accumulation of (glaci-)marine sediments in an open-marine 
setting, probably during a long interglacial period with a signifi-
cantly reduced WAIS, as observed on the Ross Sea shelf during the 
early Pliocene. However, the models of grounded ice advance and 
retreat across the ASE shelf are based on long-distance correlations 
of seismic facies and characteristics, which must be tested by drill 
core data to constrain past WAIS extent.

5. Hypothesis H5: the first WAIS advance onto the inner ASE shelf 
occurred during the Oligocene and was related to the uplift of 
Marie Byrd Land.

The onset of major glaciation in West Antarctica is still undated 
because of sparse drill cores. Records of ice-rafted debris suggest 
that glaciers must have reached the coast of the Ross Sea in the early 
to mid-Oligocene (Miller et al., 2008). Ice sheet models (e.g., De-
Conto and Pollard, 2003) reconstructed an early WAIS nucleus in 
the mountain chain extending from elevated Marie Byrd Land over 
the Ellsworth Mountains to the southern Antarctic Peninsula. The 
exhumation and erosion history of Marie Byrd Land, and especially 
the Marie Byrd Land dome, is important for the interrelations be-
tween ice sheet and lithosphere dynamics (e.g., Rocchi et al., 2006; 
Wilson and Luyendyk, 2009; Wilson et al., 2012a, 2012b) because 
(1) exhumation and erosion change topography, which in turn influ-
ences glacier movements by slope steepness; (2) exhumation is of-
ten associated with surface uplift, and high altitude favors 
formation of glaciers; and (3) glaciation changes erosion rates and, 
due to isostatic adjustment, exhumation rates. This relationship can 
be investigated by detailed provenance and thermochronological 
analyses of Neogene drill samples from the ASE midshelf and exist-
ing rock samples from the hinterland.

Operations plan/drilling strategy
Proposed drill sites

The primary aim of our proposed drilling campaign is to obtain 
core and log data from oceanward-dipping strata along a transect 
from the presumed Late Cretaceous to Paleogene sequences close 
to the boundary with bedrock on the inner shelf to the presumed 
Pliocene to Pleistocene sequences on the outer shelf and continuing 
onto the continental rise for continuous high-resolution records 
(Tables T1, T2, T3, T4; Figure F6). To record past CDW upwelling 
onto the ASE, where the Thwaites and Pine Island Glaciers have 
previously been extended onto the shelf, our highest priority core 
transect will be located within the Pine Island paleo–ice stream 
trough in the eastern ASE (Figure F1; Tables T1, T2). The existing 
seismic sections of both the western and eastern ASE (Gohl et al., 
2013b) (Figure F4) indicate that the dipping strata of the middle 
shelf are cut by major unconformities that likely represent signifi-
cant episodes of ice sheet expansion onto the shelf and subglacial 

erosion. The upper part of the section consists of numerous pro-
grading wedges. If these wedges are analogous to similar features 
observed in the Ross Sea and off the Antarctic Peninsula, they re-
flect higher frequency glacial oscillations during the Pliocene–Pleis-
tocene. The observed sequences of strong and continuous 
reflections probably represent glaciomarine sediments that were 
deposited under seasonal or permanent open-water conditions and 
therefore should contain microfossils and possibly tephra layers.

If sea ice conditions during the drilling expedition are unsuitable 
for accessing the first priority sites in Pine Island Trough, a core 
transect targeting strata of comparable age and cross-shelf position 
will be drilled in the Dotson-Getz paleo–ice stream trough of the 
western ASE. Each scientific hypothesis in the proposal can also be 
addressed in the Dotson-Getz core transect (Table T2). The bio-
stratigraphic studies and the multiproxy analyses of the sediments 
recovered from the shelf will focus on interglacial strata. Even if the 
shelf sequences are incomplete (because of hiatuses resulting from 
subglacial erosion or because of low core recovery) and thus ham-
per magnetostratigraphic interpretations, the microfossils and bio-
markers of the interglacial strata will enable us to date the 
sediments and test Hypotheses H1–H5. Taking into account the 
likelihood of hiatuses in the shelf records, we plan to investigate 
more continuous, high-resolution records to be drilled at continen-
tal rise sites. Here, the drill targets are identified according to the 
interpreted seismostratigraphy by Uenzelmann-Neben and Gohl 
(2012, 2014) (Figure F3). By following this shelf-to-rise transect 
drilling strategy, we expect to obtain excellent control on the extent, 
frequency, and rapidity of WAIS advance and retreat and the role of 
CDW in regulating ice sheet retreat from the shelf.

In the unlikely worst-case scenario of extensive sea ice cover on 
both sides of the ASE shelf, we have also included a third priority set 
of targets on the continental rise. This third set of targets will still 
allow us to work on Hypotheses 1–3. However, if this third work 
area is the only area we are able to reach, our final two hypotheses 
will not be addressed directly (Table T2).

We have defined several distinct potential drill sites for the shelf 
and continental rise, providing sufficient alternatives to respond to 
variable ice-cover situations, and we have prioritized the sites such 
that the main objectives can be addressed at multiple different loca-
tions (Tables T1, T2).

In the following sections, we describe the drill sites in more de-
tail, sorting them into groups with alternate sites around their pri-
mary sites based on their common scientific objectives and drill 
targets. A summary is presented in Table T1, with priorities listed in 
Table T2. The seismostratigraphic units, unconformities, and age 
estimates of the shelf are from Gohl et al. (2013b), and those of the 
rise are from Uenzelmann-Neben and Gohl (2012, 2014).

We plan to core two holes at each primary site using the ad-
vanced piston corer (APC)/extended core barrel (XCB) and rotary 
core barrel (RCB) systems and then collect log data in the deeper 
RCB hole at each site (Table T3; Figure F6).

Continental shelf sites
Proposed sites ASSE-03B (primary) and ASSE-10A, ASSE-04B, ASSW-
02B, and ASSE-06B (alternates)

Primarily located on the middle shelf of the eastern embayment, 
proposed Sites ASSE-03B and ASSE-04B are on the western and 
eastern flanks of the glacial central Pine Island Trough, respectively, 
proposed Site ASSE-10A is in the middle of this trough, and pro-
posed Site ASSE-6B is on a ridge between the central Pine Island 
Trough and the Abbott Trough. Proposed Site ASSW-02B is located 
7
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in the glacial Dotson-Getz Trough of the western embayment. 
Common to these sites is that they are located for drilling into gla-
cial sediment sequences from the presumed middle Miocene to 
Pliocene/Pleistocene, thereby obtaining records from the transition 
to full glacial conditions, the early Pliocene warm period, and the 
transition to cooling in the late Pliocene. The trough sites have the 
potential to sample material for tracing past CDW events if inter-
glacial sequences are preserved. The major truncational Unconfor-
mity ASS-u4, which possibly separates the mid-Miocene from the 
late Miocene, will be penetrated to provide age constraints for ad-
vances of grounded ice to the middle shelf. At proposed Sites ASSE-
04B and ASSE-10A, we may even be able to drill well below the mid-
Miocene Unconformity ASS-u3. We expect to core alternating 
diamicton and thin diatomaceous ooze.

Proposed sites ASSE-11A (primary) and ASSE-05C, ASSE-07B, ASSE-
12A, ASSE-08C, and ASSW-03B (alternates)

Primarily located on the middle to outer shelf of the eastern em-
bayment, proposed Site ASSE-11A is in the middle of the outer Pine 
Island Trough West, proposed Site ASSE-05C is on the western 
flank of this trough, and proposed Sites ASSE-7B and ASSE-12A are 
on the outermost shelf. Proposed Site ASSE-08C is located in the 
outer Pine Island Trough West, whereas proposed Site ASSW-03B 
is located on the outer shelf of the glacial Dotson-Getz Trough of 
the western embayment. In contrast to those around proposed Site 
ASSE-03B, this suite of sites sitting on a progradational wedge fo-
cuses even more on the Pliocene to Pleistocene shelf sequences and 
the full glacial conditions after the late Miocene climate cooling, in-
cluding the pronounced early Pliocene warm period followed by 
late Pliocene cooling. The proposed trough Sites ASSE-11A, ASSE-
08C, and ASSW-03B have the potential to sample material for trac-
ing past CDW events if interglacial sequences are preserved. Pro-
posed Sites ASSE-11A and ASSE-05C may reach the mid- to late 
Miocene after penetrating Unconformity ASS-u4. We expect to 
core alternating diamicton and thin diatomaceous ooze.

Proposed site ASSE-02C (primary, no alternates)
Proposed site ASSE-02C is located on the eastern flank of the 

midshelf Pine Island Trough and is expected to recover core from 
the preglacial to early glacial sequences up to the middle Miocene. 
According to recently collected MeBo70 seabed drill records from 
the northward dipping sequences of the middle shelf about 70 km 
farther south (Gohl et al., in press), it is very likely that we will drill 
into the Cretaceous below Unconformity ASS-u2 and sample Paleo-
cene to Oligocene sequences above Unconformity ASS-u2, thus 
bridging the Eocene–Oligocene climate transition. We expect to 
core alternating diamicton and thin diatomaceous ooze in the upper 
part of the hole and preglacial mudstone and sandstone from the 
older sequences below.

Proposed sites ASSE-01C (primary) and ASSE-09A and ASSW-01B 
(alternates)

The sites located on the southern middle shelf in the Pine Island 
Trough are proposed Sites ASSE-01C and ASSE-09A on the eastern 
shelf and proposed Site ASSW-01B in the Dotson-Getz Trough of 
the western shelf. The objective of these sites is to obtain records 
from early glacial sequences and thus the onset of major West Ant-
arctic glaciation and the Mid-Miocene Climate Optimum. Accord-
ing to the seismostratigraphic interpretation, this site should 
penetrate the early to middle Miocene, thereby avoiding the Uncon-
formity ASS-u3 at proposed Sites ASSE-01C and ASSE-09A, and 

may reach the Eocene and Oligocene above Unconformity ASS-u2-
if the first analyses of MeBo70 seabed drill cores, collected 70 km 
farther south (Gohl et al., in press), can be confirmed. We expect to 
core alternating diamicton and thin diatomaceous ooze in the upper 
part of the hole and preglacial mudstone and sandstone from the 
older sequences below.

Continental rise sites
Proposed sites ASRE-05B (primary) and ASRE-03B, ASRE-06A, ASRE-
01B, ASRE-02B, ASRE-04A, and ASRW-01C (alternates)

Proposed Sites ASRE-05B, ASRE-03B, ASRE-06A, and ASRE-
04A are located on the flanks of sediment drift deposits on the rise 
about 120–150 km north of the ASE shelf edge, proposed Sites 
ASRE-01B and ASRE-02B are on the lower continental slope north 
of the Abbott Trough and Pine Island Trough East of the eastern 
ASE, and proposed Site ASRW-01C is on the lower slope northeast 
of the Dotson-Getz Trough of the western ASE. The drift deposits 
are well imaged in the seismic data. All sites were picked in loca-
tions of regular, undisturbed deposition to obtain records from pre-
sumed early Miocene to Pliocene/Pleistocene times. We assume 
that continuous sedimentation at a relatively high rate took place on 
these drifts, similar to that observed on other drift deposits. The 
aim of the lower slope sites is to collect cores from the outer parts of 
trough-mouth fan systems where seismic data suggest regular, un-
disturbed deep-sea deposition. Compared to the sites on the sedi-
ment drifts (grouped around proposed Site ASRE-05B above), these 
sites are slightly more ice-proximal. From all these sites, we expect 
to recover high-resolution records from the presumed onset of ma-
jor West Antarctic glaciation, the Mid-Miocene Climate Optimum, 
the Miocene–Pliocene transition, and the early mid-Pliocene warm 
interval to the glacials/interglacials of the Pleistocene and Quater-
nary. We expect to drill mostly fine-grained hemipelagic bioge-
neous mud/silt and fine-grained turbiditic material.

Logging/downhole measurements 
strategy

Wireline logging is planned for all sites. We will use the triple 
combination (triple combo) tool string, which acquires formation 
resistivity, density, porosity, natural (spectral) gamma radiation, and 
borehole diameter data. The Formation MicroScanner (FMS)-sonic 
tool string will provide an oriented 360° resistivity image of the 
borehole wall, as well as formation acoustic velocity, natural gamma 
radiation, and borehole diameter data. These data will provide the 
only in situ formation characterization and are the only data where 
core recovery is incomplete, allowing some level of interpretation 
even in core gaps. For example, individual clasts in diamict will be 
apparent in the FMS resistivity images, and silica-cemented layers 
will be clear in the resistivity and density logs. Porosity, gamma ray, 
sonic, and density logs together will provide additional constraints 
on the depositional history.

We also plan a third logging run at all sites to conduct a check 
shot survey. Check shot surveys give depth to traveltime conver-
sion; a combination of sonic velocity and density data will be used to 
generate a synthetic seismic profile at each site. Synthetic seismic 
profiles based on check shot surveys for each hole will enable litho-
stratigraphy to be tied to seismic stratigraphy and thus extend the 
knowledge gained from the cores over a much broader area. To re-
duce the risk of incomplete logging resulting from bad hole condi-
tions in the deep-penetration sites, we may elect to log in two 
stages: the upper 500 m of the section in the first APC/XCB hole 
8
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and the lower part in the second RCB hole. However, this option is 
not in the current plan and would only be practical if extra time be-
came available. Although we plan to log all sites, if we do not have 
sufficient time for all the planned logging, we might elect to only 
conduct a check shot at one shelf site and one rise site.

Risks and contingencies
We expect to encounter severe environmental conditions 

(ice/weather) throughout the expedition in addition to very chal-
lenging drilling conditions on the shelf. These conditions will im-
pact our operations, and no contingency time for any anticipated 
delays are included in the primary drilling, coring, and logging plan 
(Table T1; Figure F6). If operations need to be cut back due to time 
constraints, options include but are not limited to (1) reducing the 
amount of XCB coring penetration and switching to the RCB sys-
tem earlier and (2) conducting check shots only at one shelf site and 
one rise site.

Ice conditions
Satellite images and ship-born observations have shown that the 

sea ice and iceberg cover on the ASE shelf has changed from being 
severe in the 1980s and 1990s to almost ice-free conditions in mid-
January to March 2010. Atmospheric researchers relate this phe-
nomenon to an enduring shift in the Southern Annular Mode 
(Turner et al., 2009). Ice cover returned in the ASE in the 2010–
2011 season but did not reach the same large extent as observed in 
the 1980s and 1990s. Figure F7 illustrates worst- and best-case sce-
narios of ice cover in the ASE encountered in mid-February 2006 
and 2010, respectively. We address the potential risk of unpredict-
able ice cover with a strategy of numerous identified alternate sites 
that will allow a choice of a drill site in ice-free water. Table T2
demonstrates our prioritization of primary and alternate sites with 
respect to access and drilling feasibility. The table also illustrates 
how each hypothesis can be addressed at multiple drill sites, not just 
the first priority option. Icebergs pose an additional threat to drill-
ing operations, and the JOIDES Resolution will have to move off site 
if an iceberg approaches too close to a site location. In these in-
stances, we will have a free-fall funnel (FFF) ready to deploy that 
would allow for hole reentry after the iceberg passes. No contin-
gency time is included in the expedition plan for time lost due to ice 
or weather impacting our ability to access or remain on the drill 
sites. Because of their high scientific priority, we have put the shelf 
sites first in our planned operations. However, we likely must oc-
cupy the rise site first until ice conditions improve enough on the 
shelf for us to access those sites.

Coring in glacial sediment
Past drilling with riserless systems has shown less than optimum 

core recovery of pre-Holocene sediments on Antarctic shelves. This 
problem can be minimized with improved techniques and a careful 
drilling strategy. Weather conditions are of primary importance in 
reducing vessel heave and thus variations in the weight-on-bit 
during drilling, which can affect core recovery. Scheduling drilling 
for the best possible weather and ice window is the primary strategy 
to reduce risk. The use of passive heave compensation can minimize 
the effects of vessel motion on core recovery and will be used to the 
extent possible (and active heave compensation for wireline log-
ging). Although sea ice cover is certainly a significant overall risk, its 
presence nearby can substantially dampen waves, and thus ice may 
help to mitigate the problems associated with heave. FFFs may be 

used at sites with unconsolidated coarse till near the surface. In case 
we encounter persistent problems with penetrating the shallow sec-
tion on the shelf, we will also have a back-up reentry system with 
casing that can be drilled-in if necessary. Because we are largely tar-
geting consolidated, older, and more compacted or lithified se-
quences than on some Antarctic drilling legs by DSDP, ODP, and the 
Integrated Ocean Drilling Program, better recovery is expected.

The potential for poor core recovery on glaciated shelves should 
not be used as an argument to refrain from riserless drilling in these 
locations because such ice-proximal records are desperately needed 
to resolve regional differences in Antarctic ice sheet dynamics. In 
our well-planned shelf-to-rise transect strategy, the potential gaps 
caused by potential recovery problems and hiatuses due to reoccur-
ring events of glacial erosion can be bridged. Each cored sediment 
section, even short ones, that can be recovered and dated will be of 
unprecedented scientific value. It should be noted that the Ross Sea 
shelf sites of DSDP Leg 28, despite their relatively poor core recov-
ery with the technology of the 1970s, resulted in enough material to 
constrain fundamental chronological, stratigraphic, and paleocli-
matic parameters of this embayment. Not only are they still being 
cited in numerous publications, they are still being sampled for new 
analyses.

Other operational risks
The proposed penetration at some sites (as deep as 1400 m) 

presents several challenges for successful collecting of cores and log 
data. Hole stability is always a risk during coring and logging opera-
tions, and the risk increases with longer open-hole sections. Casing 
long open-hole sections (especially over intervals of unconsolidated 
sediment) is the best way to mitigate this risk and ensure that deep 
objectives can be achieved; however, no casing is currently planned 
for any holes during this expedition. Casing adds a significant 
amount of operational time and could also be compromised if ice 
approached the site. FFFs can be deployed to allow reentry capabil-
ity if we have to move off site during coring operations, but there are 
several risks associated with these FFF deployments. The FFF can 
be dislodged while pulling out of the hole or can become buried or 
impossible to use for reentry. The use of an FFF also leaves the 
open-hole section open for a longer duration, which can contribute 
to hole stability problems. A stuck drill string (or logging tool string) 
is always a risk during operations and can consume expedition time 
with attempts to sever the stuck drill string. If the drill string cannot 
be extracted, then additional time is spent to sever the stuck pipe. 
This process can result in the complete loss of the hole, lost equip-
ment, and lost time while starting a new hole. The JOIDES Resolu-
tion generally carries sufficient spare drilling equipment to enable 
the continuation of coring, but the time lost to the expedition can 
be significant.

Downhole logging risks
The upper parts of holes have been open longer before logging, 

and high levels of fluid circulation might have been used to raise the 
cuttings and clear the hole. Therefore, the hole could be washed out 
(wide) over intervals through unconsolidated sediment, which 
would reduce log quality for those tools that need good contact with 
the borehole wall (e.g., density, porosity, FMS resistivity images, and 
Versatile Seismic Imager [VSI] check shots). Second, there is a risk 
of bridging where the hole closes up, which would mean either not 
reaching the total depth of the hole or, in the worst-case scenario, 
getting a tool string stuck in the hole. We will obtain hole condition 
information needed to plan for logging while coring and during the 
9
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preparations for downhole logging. Permitting requirements may 
prevent us from deploying the density tool source in the triple 
combo tool string. Sufficient heavy mud will be available to displace 
each hole to be logged to reduce the risk of hole collapse during 
wireline logging.

Sampling and data sharing strategy
Shipboard and shore-based researchers should refer to the 

IODP Sample, Data, and Obligations Policy and Implementation 
Guidelines posted on the Web at http://www.iodp.org/program-
documents. This document outlines the policy for distributing 
IODP samples and data. The document also defines the obligations 
that sample and data recipients incur. The Sample Allocation Com-
mittee (SAC; composed of Co-Chief Scientists, Staff Scientist, and 
IODP Curator on shore and curatorial representative on board ship) 
will work with the entire scientific party to formulate a formal expe-
dition-specific sampling plan for shipboard and postcruise sam-
pling. 

Each member of the science party is obligated to perform scien-
tific research for the expedition and publish the results. To initiate 
this process, all shipboard scientists (and any potential shore-based 
scientists) will be required to submit a research plan and associated 
sample and data request ~6 months before the expedition (see 
http://iodp.tamu.edu/curation/samples.html). Based on these re-
search plans, the SAC will prepare a tentative sampling plan, which 
will be revised on the ship as dictated by recovery and cruise objec-
tives. The sampling plan will be subject to modification depending 
upon the actual material recovered and collaborations that will 
evolve between scientists during the expedition. Modification of the 
strategy during the expedition must be approved by the Co-Chief 
Scientists, Staff Scientist, and curatorial representative on board 
ship.

The minimum permanent archive will be the standard archive 
half of each core. The coring plan as presented in this document 
plan will provide only a single copy of the formation at each site 
(e.g., one working half from which samples can be taken for per-
sonal research). All sample frequencies and sizes must be justified 
on a scientific basis and will depend on core recovery, the full spec-
trum of other requests, and the cruise objectives. Some redundancy 
of measurement is unavoidable, but minimizing the duplication of 
measurements among the shipboard party and identified shore-
based collaborators will be a factor in evaluating sample requests.

If some critical intervals are recovered, there may be consider-
able demand for samples from a limited amount of cored material. 
These intervals may require special handling, a higher sampling 
density, reduced sample size, or continuous core sampling by a sin-
gle investigator. A sampling plan coordinated by the SAC may be 
required before critical intervals are sampled.

Our plan is to restrict shipboard sampling to those samples re-
quired for shipboard characterization/measurements, any samples 
that are ephemeral, and possibly very limited, very low resolution 
samples for personal research that are required to define plans for 
the postcruise sampling meeting. Whole-round samples may be 
taken for, but not limited to, interstitial water measurements and 
petrophysical measurements as dictated by the primary cruise ob-
jectives, approved research plans, and the shipboard sampling plan 
that must be finalized during the first few days of the expedition. 

Nearly all personal sampling for postexpedition research will be 
postponed until a shore-based sampling meeting that will be imple-
mented ~3–5 months after the end of Expedition 379 at the IODP 

Gulf Coast Repository (College Station, Texas, USA). All collected 
data and samples will be protected by a 1 y moratorium period fol-
lowing the completion of the postexpedition sampling meeting, 
during which time data and samples will be available only to the Ex-
pedition 379 science party. 

Expedition scientists and scientific 
participants

The current list of participants for Expedition 379 can be found at 
http://iodp.tamu.edu/scienceops/expeditions/amundsen_sea_ice
_sheet_history.html.
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Table T1. Summary of proposed drill sites on continental shelf and rise of the Amundsen Sea Embayment.See Scientific objectives for descriptions of scientific 
hypotheses (H); numbers here match descriptions. Alternate sites are listed below their primary sites. Drill site locations are shown in Figure F1. Coring and log-
ging time estimates are shown in Figure F9 and Tables T3 and T4. (Continued on next page.)

Site Location Drill targets Scientific hypotheses (H) and objectives Site selection criteria and seismic site data

Continental shelf
ASSE-02C
(primary)

Eastern ASE, central Pine Island 
Trough, middle shelf

Preglacial to early glacial sequences,  
Late Cretaceous to early Miocene

H 4, 5; greenhouse-to-icehouse 
transition, Eocene–Oligocene 
climate gradient, timing of early 
West Antarctic glaciation

Single-line MC seismics (7 km north of 
cross-line): penetrating early Miocene 
and reaching Late Cretaceous, avoiding 
structural complication

ASSE-01C
(primary)

Eastern ASE, central Pine Island 
Trough, middle shelf

Preglacial to early glacial sequences,  
late Oligocene to mid Miocene

H 4, 5; transition from preglacial to 
glacial, timing of onset of major 
West Antarctic glaciation

Crossing MC seismics: continuous early 
Miocene; avoiding unconformity ASS-u3 
but penetrating into late Oligocene

ASSE-09A
(alternate)

Eastern ASE, central Pine Island 
Trough, middle shelf

Preglacial to early glacial sequences, 
Eocene/Oligocene to mid Miocene

H 4, 5; transition from preglacial to 
glacial, timing of onset of major 
West Antarctic glaciation

Crossing SC/MC seismics: continuous early 
Miocene; avoiding unconformity ASS-u3 
but penetrating into Oligocene and 
Eocene

ASSW-01B
(alternate)

Western ASE, Dotson-Getz Trough, 
middle shelf

Preglacial sediment sequences,  
early to mid Miocene

H 4, 5; timing of onset of glaciation, 
transition from preglacial to glacial, 
mid-Miocene climate optimum

Crossing SC/MC seismics: capturing most 
of early to mid Miocene; intentionally 
penetrating Unconformities ASS-u3 and 
-u4

ASSE-03B
(primary)

Eastern ASE, central Pine Island 
Trough, middle shelf

Glacial sediment sequences,  
mid Miocene to 
Pliocene/Pleistocene

H 1, 2, 3; transition to full glacial 
conditions, CDW events; early 
Pliocene warm period, transition to 
cooling in late Pliocene

Crossing MC seismics: continuous mid 
Mio.; penetrating major glacial 
unconformity ASS-u4 (full glacial 
advance conditions)

ASSE-10A
(alternate)

Eastern ASE, central Pine Island 
Trough, middle shelf

Glacial sediment sequences,  
mid Miocene to 
Pliocene/Pleistocene

H 1, 2, 3; transition to full glacial 
conditions, CDW events; early 
Pliocene warm period, transition to 
cooling in late Pliocene

Crossing SC/MC seismics: continuous mid 
Mio.; penetrating major glacial 
Unconformities ASS-u4 (full glacial 
advance conditions) and ASS-u3 
(erosional truncation?)

ASSE-04B
(alternate)

Eastern ASE, central Pine Island 
Trough, middle shelf

Glacial sediment sequences,  
mid Miocene to 
Pliocene/Pleistocene

H 1, 2, 3; transition to full glacial 
conditions, CDW events; early 
Pliocene warm period, transition to 
cooling in late Pliocene

Crossing MC seismics: penetrating major 
glacial Unconformities ASS-u4 (full 
glacial advance conditions) and ASS-u3 
(erosional truncation?)

ASSW-02B
(alternate)

Western ASE, Dotson-Getz Trough, 
middle shelf

Glacial sediment sequences,  
mid Miocene to 
Pliocene/Pleistocene

H 1, 2, 3; transition to full glacial 
conditions, CDW events; early 
Pliocene warm period, transition to 
cooling in late Pliocene

Single-line MC seismics: thick Pliocene/ 
Pleistocene sequences; penetration 
through major glacial unconformity 
ASS-u4

ASSE-06B
(alternate)

Eastern ASE, Pine Island Trough 
East, mid to outer shelf

Glacial sediment sequences,  
mid Miocene to 
Pliocene/Pleistocene

H 1, 2, 3; transition to full glacial 
conditions, CDW events; early 
Pliocene warm period, transition to 
cooling in late Pliocene

Crossing MC seismics: thick Pliocene/ 
Pleistocene sequences; penetration into 
major glacial unconformity ASS-u4

ASSE-11A
(primary)

Eastern ASE, central Pine Island 
Trough, mid to outer shelf

Glacial sediment sequences,  
mid/late Miocene to 
Pliocene/Pleistocene

H 1, 2, 3; transition to full glacial 
conditions, CDW events; early 
Pliocene warm period, transition to 
cooling in late Pliocene

Crossing SC/MC seismics: thick Pliocene/ 
Pleistocene sequences and penetration 
into major glacial unconformity ASS-u4

ASSE-05C
(alternate)

Eastern ASE, central Pine Island 
Trough, mid to outer shelf

Glacial sediment sequences,  
late Miocene to 
Pliocene/Pleistocene

H 1, 2, 3; transition to full glacial 
conditions, CDW events; early 
Pliocene warm period, transition to 
cooling in late Pliocene

Single-line MC seismics (7 km south of 
cross-line): thick Pliocene/ Pleistocene 
sequences and penetration into major 
glacial unconformity ASS-u4

ASSE-07B
(alternate)

Eastern ASE, Pine Island Trough 
East, outer shelf

Glacial sediment sequences,  
early Pliocene to Pleistocene

H 1, 2, 3; full glacial conditions, CDW 
events; late Pliocene cooling

Crossing SC/MC seismics: thick Pliocene 
and Pleistocene sequences, above 
prograding sequences

ASSE-12A
(alternate)

Eastern ASE, Pine Island Trough 
East, outer shelf

Glacial sediment sequences,  
early Pliocene to Pleistocene

H 1, 2, 3; full glacial conditions, CDW 
events; late Pliocene cooling

Crossing SC/MC seismics: thick Pliocene 
and Pleistocene sequences, above 
prograding sequences

ASSE-08C
(alternate)

Central ASE, Pine Island Trough 
West, outer shelf

Glacial sediment sequences,  
late Miocene to Pleistocene

H 1, 2, 3; full glacial conditions, CDW 
events; late Pliocene cooling

Crossing SC/MC seismics: thick Pliocene 
and Pleistocene sequences, above 
prograding sequences

ASSW-03B
(alternate)

Western ASE, Dotson-Getz Trough, 
middle to outer shelf

Glacial sediment sequences,  
late Miocene to Pleistocene

H 1, 2, 3; full glacial conditions, CDW 
events; late Pliocene cooling

Single-line MC seismics: thick Pliocene and 
Pleistocene sequences

Continental rise
ASRE-05B
(primary)

Eastern ASE, continental rise Deep-sea record of glacial sequences, 
early Miocene to 
Pliocene/Pleistocene, drift deposit

H 1, 2, 3; onset of major glaciation, 
mid-Miocene climate optimum, 
high-resolution record, correlation 
with paleo-current reconstruction

Crossing MC seismics: thick sequence 
down to early Miocene; avoiding 
structural complication and top of drift

ASRE-03B
(alternate)

Eastern ASE, continental rise Deep-sea record of glacial sequences, 
early Miocene to 
Pliocene/Pleistocene, drift deposit

H 1, 2, 3; onset of major glaciation, 
mid-Miocene climate optimum, 
high-resolution record, correlation 
with paleo-current reconstruction

Crossing MC seismics: thick sequence 
down to early Miocene; avoiding 
structural complication

ASRE-06A
(alternate)

Central ASE, continental rise Deep-sea record of glacial sequences, 
early Miocene to 
Pliocene/Pleistocene, drift deposit

H 1, 2, 3; onset of major glaciation, 
mid-Miocene climate optimum, 
high-resolution record, correlation 
with paleo-current reconstruction

Single-line MC: thick sequence 
Pliocene/Pleistocene and down to early 
Miocene; avoiding top of drift and 
structural complication
15
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Table T1 (continued).
Table T2. Prioritization of drill sites. Highest priority level is 1, lowest is 3. Penetration depths differ in some cases from the maximum penetration depths of a 
particular site according to the overall objectives within a priority level. Hypothesis/objective numbers are according to descriptions in Scientific Objectives. 
NA = not applicable.

ASRE-01B
(primary)

Eastern ASE, continental rise Deep-sea record of glacial sequences, 
mid Miocene to Pleistocene

H 1, 2, 3; major glacial and warm 
periods from mid-Miocene climate 
optimum to early Pliocene warm 
period to present, high-resolution 
record of Pliocene/Pleistocene

Crossing MC seismics: thick sequence 
Pliocene/Pleistocene and down to mid 
Miocene; avoiding structural 
complication

ASRE-02B
(alternate)

Eastern ASE, continental rise Deep-sea record of glacial sequences, 
mid Miocene to Pleistocene

H 1, 2, 3; major glacial and warm 
periods from mid-Miocene climate 
optimum to early Pliocene warm 
period to present, high-resolution 
record of Pliocene/Pleistocene

Single-line MC seismics: thick sequence 
Pliocene/Pleistocene and down to mid 
Miocene; avoiding structural 
complication

ASRE-04A
(alternate)

Eastern ASE, continental rise Deep-sea record of glacial sequences, 
late Miocene to Pleistocene, drift 
deposit

H 1, 2, 3; major glacial and warm 
periods from early Pliocene warm 
period to present, high-resolution 
record, correlation with paleo-
current reconstruction

Single-line MC seismics (7 km west of 
cross-line): thick sequence Pleistocene 
and down to late Miocene; avoiding top 
of drift and structural complication

ASRW-01C
(alternate)

Western ASE, continental rise Deep-sea record of glacial sequences, 
late Miocene to Pleistocene

H 1, 2, 3; major glacial and warm 
periods from early Pliocene warm 
period to present, high-resolution 
record

Crossing MC seismics: thick sequence 
Pliocene/Pleistocene and down to late 
Miocene; avoiding structural 
complication

Ice cover scenario
Priority

level
Primary site or 

first-choice alternate site Alternate site(s)
Maximum 

penetration (m)
Hypothesis/

objective

Minimum ice cover on east and 
west ASE shelf (best case)

1.1 ASSE-11A ASSE-05C, ASSE-07B, ASSE-12A, ASSE-08C 600–950 H 1, 2, 3
1.2 ASSE-03C ASSE-10A, ASSE-04B, ASSE-06B 850–950 H 1, 2, 3
1.3 ASRE-05B ASRE-03B, ASRE-06A 1200–1400 H 1, 2, 3
1.4 ASSE-02C ASSE-09A 900 H 4, 5
1.5 ASRE-01B ASRE-02B, ASRE-04A 900–950 H 1, 2, 3
1.6 ASSE-01C ASSE-09A 900 H 4, 5

Minimum ice cover on west ASE 
shelf and maximum ice cover 
on east ASE

2.1 ASSW-02B NA 900 H 1, 2, 3
2.2 ASSW-03B ASSE-08C 850–950 H 1, 2, 3
2.3 ASRW-01C ASRE-06A, ASRE-05B, ASRE-01B 900–1200 H 1, 2, 3
2.4 ASSW-01B NA 600 H 4, 5
2.5 ASRE-06A ASRE-05B, ASRE-01B 950–1200 H 1, 2, 3

Maximum ice cover on east and 
west ASE shelves (worst case)

3.1 ASRE-01C ASRE-02B, ASRE-04A 900–950 H 1, 2, 3
3.2 ASRE-05B ASRE-04A, ASRE-02B 900–1200 H 1, 2, 3
3.3 ASRE-03B ASRE-02B, ASRE-04A 900–1400 H 1, 2, 3
3.4 ASRE-06A NA 1200 H 1, 2, 3
3.5 ASRW-01C NA 900 H 1, 2, 3

Site Location Drill targets Scientific hypotheses (H) and objectives Site selection criteria and seismic site data
16
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Table T3. Operations and time estimates for primary sites, Expedition 379. This is the plan based on our scientific priorities, but we expect environmental con-
ditions (ice, weather) to impact this plan. See Figure F9 for planned coring and logging operations. 
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Table T4. Summarized operations and time estimates for alternate sites, Expedition 379.
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Figure F1. Bathymetric map of the ASE off West Antarctica (adopted from Nitsche et al., 2007) with Expedition 379 primary (red) and alternate (yellow) drill 
sites. Thick gray lines mark existing marine multi- and single-channel seismic profiles collected during six ship expeditions from 1994 to 2010 (e.g., Gohl et al., 
2013b). Orange line marks the boundary between the outcropping basement of the inner shelf and the sedimentary basin of the middle shelf (Graham et al., 
2009; Gohl et al., 2013a, 2013b).
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Figure F2. Antarctic ice sheet models for the Pliocene (modified from DeConto and Pollard, 2016) and the Last Interglacial (modified from Sutter et al., 2016)
simulating the collapse of the WAIS in both warm times. Major ice retreat in the ASE seems to be a precursor for partial or total WAIS collapse.

Figure F3. Seismic profile across continental rise of the eastern ASE with interpreted major sedimentary units and boundaries (modified from Uenzelmann-
Neben and Gohl, 2014). Black arrow marks the location of a seismic crossing line. Proposed Site ASRE-05B is marked to a penetration depth of 1200 m.
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Figure F4. A. Composite of seismic profiles from the central Pine Island Trough across the outer shelf and slope of the eastern ASE shelf (adopted from Gohl et 
al., 2013b) with locations of three proposed drill sites. Main Unconformities ASS-u1 to ASS-u5 separate the main sedimentary Units ASS-1 to ASS-6 (blue) and 
are marked and annotated. Other dominant seismic horizons within the sediment units are line-drawn. Black arrows indicate seismic cross-lines. B. The seismic 
reflection pattern of the top segment of Profile AWI-20100134 across our Amundsen Sea drill sites has a large degree of similarity with that of (C) seismic Profile 
PD90-30 collected across the Eastern Basin of the Ross Sea shelf (Anderson and Bartek, 1992), which crosses DSDP Leg 28 Sites 270–272 (Hayes and Frakes, 
1975). D. Composite of seismic profiles following the Dotson-Getz Trough of the western ASE shelf and across the upper slope (adopted from Gohl et al., 
2013b) with three proposed drill sites. See Figure F1 for location of seismic profiles.
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Figure F5. A. Seismic stratigraphic model of the eastern ASE shelf with sedimentary Units ASS-1 to ASS-6 and major Unconformities ASS-u1 to ASS-u5 (modi-
fied from Gohl et al., 2013a). Units ASS1–ASS4 correspond to sedimentary units of the ASE continental rise according to Uenzelmann-Neben and Gohl (2012). 
Units ASS-6 to ASS-1 are schematically backstripped to (B) the Pliocene, (C) the mid-late Miocene, (D) the middle Miocene, (E) the early Miocene and (F) the 
Cretaceous. NZ = New Zealand, MBL = Marie Byrd Land, WARS = West Antarctic Rift System.

Figure F6. Planned coring and logging plans for the primary sites. See Table T3 for operations and time estimates.
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Figure F7. Maps illustrating the ASE with large ice cover in mid-February 2006 (worst case) and little ice cover in mid-February 2010 (best case). Both cases 
show the extremes within the past 12 y. Ice-cover data are from AMSR-E Sea Ice Maps produced by IUP, University of Bremen (https://seaice.uni-
bremen.de/sea-ice-concentration).
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Site Summaries
Site ASSE-03B
Priority: Primary
Position: 72.582°S, 108.002°W
Water depth (m): 578
Target drilling depth 

(mbsf):
850

Approved maximum 
penetration (mbsf):

850

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20100134: SP 1674, CDP 2396
• AWI-20100121: SP 2220, CDP 3079

Objective(s): • Recovery of glacial sediment sequences from mid-Miocene 
to Plio/Pleistocene

• Transitions to full glacial conditions, early Pliocene warm 
period, and cooling in the late Pliocene

• CDW events
• Penetrating truncational Unconformities ASS-u5, ASS-u4, 

and ASS-u3
Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels

Hole B: RCB to 850 mbsf with nonmagnetic core barrels
Logging/downhole 

measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Alternating diamicton and thin diatomaceous ooze 
sequences
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Figure AF1. Top: map with multibeam bathymetry swaths showing location of proposed Site ASSE-03B on seismic reflection (MCS) Lines AWI-20100134 and
AWI-20100121. Bottom: MCS Line AWI-20100134 with location of proposed Site ASSE-03B and crossing MCS Line AWI-20100121 (SP 2220). Lines include shot
point (SP) numbers.
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Site ASSE-10A
Priority: Alternate
Position: 72.572°S, 107.267°W
Water depth (m): 733
Target drilling depth 

(mbsf):
900

Approved maximum 
penetration (mbsf):

900

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20100121: SP 2930, CDP 4062
SCS data:
• NBP9902-11: SP 6900

Objective(s): • Recovery of glacial sediment sequences from early/mid-
Miocene to Plio/Pleistocene

• Transitions to full glacial conditions, early Pliocene warm 
period, and cooling in the late Pliocene

• CDW events
• Penetrating truncational Unconformities ASS-u5, ASS-u4, 

and ASS-u3
Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels

Hole B: RCB to 900 mbsf with nonmagnetic core barrels
Logging/downhole 

measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Alternating diamicton and thin diatomaceous ooze 
sequences
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Figure AF2. Top: map with multibeam bathymetry swaths showing location of proposed Site ASSE-10A on MCS Line AWI-20100121 and SCS Line NBP9902-11.
Bottom: MCS Line AWI-20100121 with location of proposed Site ASSE-10A and crossing SCS Line NBP9902-11 (SP 6900).
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Site ASSE-04B
Priority: Alternate
Position: 72.558°S, 106.448°W
Water depth (m): 538
Target drilling depth 

(mbsf):
900

Approved maximum 
penetration (mbsf):

900

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20100122: SP 250, CDP 456
• AWI-20100121: SP 3748, CDP 5163

Objective(s): • Recovery of glacial sediment sequences from mid-Miocene 
to Plio/Pleistocene

• Transitions to full glacial conditions, early Pliocene warm 
period, and cooling in the late Pliocene

• CDW events
• Penetrating truncational Unconformities ASS-u5, ASS-u4, 

and ASS-u3
Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels

Hole B: RCB to 900 mbsf with nonmagnetic core barrels
Logging/downhole 

measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Alternating diamicton and thin diatomaceous ooze 
sequences
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Figure AF3. Top: map with multibeam bathymetry swaths showing location of proposed Site ASSE-04B on MCS Lines AWI-20100122 and AWI-20100121. Bot-
tom: MCS Line AWI-20100122 with location of proposed Site ASSE-04B and MCS Line AWI-20100121 (SP 3748).
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K. Gohl et al. Expedition 379 Scientific Prospectus
Site ASSW-02B
Priority: Alternate
Position: 72.817°S, 116.583°W
Water depth (m): 654
Target drilling depth 

(mbsf):
900

Approved maximum 
penetration (mbsf):

900

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20100119: SP 4490, CDP 5000

Objective(s): • Recovery of glacial sediment sequences from mid-Miocene 
to Plio/Pleistocene

• Transitions to full glacial conditions, early Pliocene warm 
period, and cooling in the late Pliocene

• CDW events
• Penetrating truncational Unconformities ASS-u5, ASS-u4, 

and ASS-u3
Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels

Hole B: RCB to 900 mbsf with nonmagnetic core barrels
Logging/downhole 

measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Alternating diamicton and thin diatomaceous ooze 
sequences
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Figure AF4. Top: map with multibeam bathymetry swaths showing location of proposed Site ASSW-02B on MCS Line AWI-20100119. Bottom: MCS Line AWI-
20100119 with location of proposed Site ASSW-02B.
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K. Gohl et al. Expedition 379 Scientific Prospectus
Site ASSE-06B
Priority: Alternate
Position: 71.893°S, 105.552°W
Water depth (m): 514
Target drilling depth 

(mbsf):
950

Approved maximum 
penetration (mbsf):

950

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20060001: SP 100, CDP 157
• AWI-20100133: SP 42, CDP 203

Objective(s): • Recovery of glacial sediment sequences from mid-/late 
Miocene to Plio/Pleistocene

• Transitions to full glacial conditions, early Pliocene warm 
period, and cooling in the late Pliocene

• CDW events
• Penetrating truncational Unconformities ASS-u5 and ASS-

u4
Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels

Hole B: RCB to 950 mbsf with nonmagnetic core barrels
Logging/downhole 

measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Alternating diamicton and thin diatomaceous ooze 
sequences
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Figure AF5. Top: map with multibeam bathymetry swaths showing location of proposed Site ASSE-06B on MCS Lines AWI-20060001 and AWI-20100133. Bot-
tom: MCS Line AWI-20060001 with location of proposed Site ASSE-06B and MCS Line AWI-20100133 (SP 42).
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K. Gohl et al. Expedition 379 Scientific Prospectus
Site ASSE-11A
Priority: Primary
Position: 72.022°S, 107.588°W
Water depth (m): 585
Target drilling depth 

(mbsf):
700

Approved maximum 
penetration (mbsf):

700

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20060133: SP 440, CDP 1650
SCS data:
• NBP9902-11: SP 10150

Objective(s): • Recovery of glacial sediment sequences from mid-/late 
Miocene to Plio/Pleistocene

• Transitions to full glacial conditions, early Pliocene warm 
period, and cooling in the late Pliocene

• CDW events
• Penetrating truncational Unconformities ASS-u5 and ASS-

u4
Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels

Hole B: RCB to 700 mbsf with nonmagnetic core barrels
Logging/downhole 

measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Alternating diamicton and thin diatomaceous ooze 
sequences
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Figure AF6. Top: map with multibeam bathymetry swaths showing location of proposed Site ASSE-11A on MCS Line AWI-20100133 and SCS Line NBP9902-11.
Bottom: MCS Line AWI-20100133 with location of proposed Site ASSE-11A and SCS Line NBP9902-11 (SP 10150).
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K. Gohl et al. Expedition 379 Scientific Prospectus
Site ASSE-05C
Priority: Alternate
Position: 72.149°S, 108.436°W
Water depth (m): 582
Target drilling depth 

(mbsf):
800

Approved maximum 
penetration (mbsf):

800

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20060134: SP 150, CDP 340
• AWI-20100133: crosses 10 km north of drill site, projected 

to SP 630, CDP 2262
Objective(s): • Recovery of glacial sediment sequences from late Miocene 

to Plio/Pleistocene
• Records of full glacial conditions, early Pliocene warm 

period, and cooling in the late Pliocene
• CDW events
• Penetrating truncational Unconformity ASS-u5 (and 

perhaps ASS-u4)
Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels

Hole B: RCB to 800 mbsf with nonmagnetic core barrels
Logging/downhole 

measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Alternating diamicton and thin diatomaceous ooze 
sequences
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Figure AF7. Top: map with multibeam bathymetry swaths showing location of proposed Site ASSE-05C on MCS Line AWI-20100134. Crossing MCS Line AWI-
20100133 (projected to SP 630) is 10 km north of the site. Bottom: MCS Line AWI-20100134 with location of proposed Site ASSE-05C.
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K. Gohl et al. Expedition 379 Scientific Prospectus
Site ASSE-07B
Priority: Alternate
Position: 71.287°S, 104.750°W
Water depth (m): 540
Target drilling depth 

(mbsf):
600

Approved maximum 
penetration (mbsf):

600

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-94042: SP 4800, CDP 8481
SCS data:
• BAS056-S114: SP 13600

Objective(s): • Recovery of glacial sediment sequences from early Pliocene 
to Pleistocene

• Records of full glacial conditions, early Pliocene warm 
period, and cooling in the late Pliocene

• CDW events
• Penetrating truncational Unconformity ASS-u5

Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels
Hole B: RCB to 600 mbsf with nonmagnetic core barrels

Logging/downhole 
measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Alternating diamicton and thin diatomaceous ooze 
sequences
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Figure AF8. Top: map with multibeam bathymetry swaths showing location of proposed Site ASSE-07B on MCS Line AWI-94042 and SCS Line BAS056-S114.
Bottom: MCS Line AWI-94042 with location of proposed Site ASSE-07B and SCS Line BAS056-S114 (SP 13600).
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K. Gohl et al. Expedition 379 Scientific Prospectus
Site ASSE-12A
Priority: Alternate
Position: 71.332°S, 108.365°W
Water depth (m): 495
Target drilling depth 

(mbsf):
600

Approved maximum 
penetration (mbsf):

600

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
SCS data:
• BAS056-S114: SP 4806
• NBP9902-11: SP 14400

Objective(s): • Recovery of glacial sediment sequences of Pliocene and 
Pleistocene

• Records of early Pliocene warm period and cooling in the 
late Pliocene

• CDW events
• Penetrating truncational Unconformity ASS-u5

Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels
Hole B: RCB to 600 mbsf with nonmagnetic core barrels

Logging/downhole 
measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Alternating diamicton and thin diatomaceous ooze 
sequences
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Figure AF9. Top: map with multibeam bathymetry swaths showing location of proposed Site ASSE-12A on SCS Lines BAS056-S114 and NBP9902-11. Bottom:
SCS Line BAS056-S114 with location of proposed Site ASSE-12A and SCS Line NBP9902-11 (SP 14400).
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K. Gohl et al. Expedition 379 Scientific Prospectus
Site ASSE-08C
Priority: Alternate
Position: 71.597°S, 113.255°W
Water depth (m): 644
Target drilling depth 

(mbsf):
950

Approved maximum 
penetration (mbsf):

950

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20100139: SP 2100, CDP 3078
SCS data:
• BAS56-S112: crosses AWI-20100139 3.1 km southeast of 

drill site, projected to SP 2297
Objective(s): • Recovery of glacial sediment sequences from late Miocene 

to Plio/Pleistocene
• Records of full glacial conditions, early Pliocene warm 

period, and cooling in the late Pliocene
• CDW events
• Penetrating truncational Unconformity ASS-u5

Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels
Hole B: RCB to 950 mbsf with nonmagnetic core barrels

Logging/downhole 
measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Alternating diamicton and thin diatomaceous ooze 
sequences
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Figure AF10. Top: Map with multibeam bathymetry swaths showing location of proposed Site ASSE-08C on MCS Line AWI-20100139. SCS Line BAS056-S112
(SP 2297) crosses 3.1 km southeast of the site. Bottom: MCS Line AWI-20100139 with location of proposed Site ASSE-08C.
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K. Gohl et al. Expedition 379 Scientific Prospectus
Site ASSW-03B
Priority: Alternate
Position: 72.502°S, 117.972°W
Water depth (m): 538
Target drilling depth 

(mbsf):
850

Approved maximum 
penetration (mbsf):

850

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20100119: SP 2330, CDP 2602

Objective(s): • Recovery of glacial sediment sequences from late Miocene 
to Plio/Pleistocene

• Records of full glacial conditions, early Pliocene warm 
period, and cooling in the late Pliocene

• CDW events
• Penetrating truncational Unconformity ASS-u5 (and 

perhaps ASS-u4)
Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels

Hole B: RCB to 850 mbsf with nonmagnetic core barrels
Logging/downhole 

measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Alternating diamicton and thin diatomaceous ooze 
sequences
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Figure AF11. Top: map with multibeam bathymetry swaths showing location of proposed Site ASSW-03B on MCS Line AWI-20100119. Bottom: MCS Line AWI-
20100119 with location of proposed Site ASSW-03B.
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K. Gohl et al. Expedition 379 Scientific Prospectus
Site ASSE-02C
Priority: Primary
Position: 72.848°S, 106.347°W
Water depth (m): 576
Target drilling depth 

(mbsf):
900

Approved maximum 
penetration (mbsf):

900

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20100122: SP 1235, CDP 1759
• AWI-20100126: crosses AWI-20100122 7 km south of drill 

site, projected to SP 2549, CDP 3504
Objective(s): • Recovery of records from preglacial times (back to 

Cretaceous–Paleocene) to preglacial to glacial transition 
(E/O boundary)

• Onset of first glacial period of West Antarctica
• Penetrating truncational Unconformities ASS-u5 and ASS-

u2
• Records of Marie Byrd Land dome uplift in relation to early 

glacial phases
Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels

Hole B: RCB to 900 mbsf with nonmagnetic core barrels
Logging/downhole 

measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Alternating diamicton and thin diatomaceous ooze 
sequences; preglacial mudstone and/or sandstone
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Figure AF12. Top: map with multibeam bathymetry swaths showing location of proposed Site ASSE-02C on MCS Line AWI-20100122. Crossing MCS line AWI-
20100126 (projected to SP 2549) is 7 km south of the site. Bottom: MCS Line AWI-20100122 with location of proposed Site ASSE-02C.
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K. Gohl et al. Expedition 379 Scientific Prospectus
Site ASSE-01C
Priority: Primary
Position: 72.895°S, 107.814°W
Water depth (m): 612
Target drilling depth 

(mbsf):
900

Approved maximum 
penetration (mbsf):

900

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20100134: SP 2775, CDP 3823
• AWI-20100126: crosses 2.7 km south of drill site, projected 

to SP 1103, CDP 1563
Objective(s): • Recovery of records from preglacial times (back to 

Cretaceous–Paleocene) to preglacial to glacial transition 
(E/O boundary)

• Onset of first glacial period of West Antarctica
• Penetrating truncational Unconformities ASS-u5 and ASS-

u2
• Records of Marie Byrd Land dome uplift in relation to early 

glacial phases
Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels

Hole B: RCB to 900 mbsf with nonmagnetic core barrels
Logging/downhole 

measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Alternating diamicton and thin diatomaceous ooze 
sequences; preglacial mudstone and/or sandstone
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Figure AF13. Top: map with multibeam bathymetry swaths showing location of proposed Site ASSE-01C on MCS Line AWI-20100134. Crossing MCS Line AWI-
20100126 (projected to SP 1103) is 2.7 km south of the site. Bottom: MCS Line AWI-20100134 with location of proposed Site ASSE-01C.
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K. Gohl et al. Expedition 379 Scientific Prospectus
Site ASSE-09A
Priority: Alternate
Position: 72.910°S, 107.307°W
Water depth (m): 690
Target drilling depth 

(mbsf):
900

Approved maximum 
penetration (mbsf):

900

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20100126: SP 1596, CDP 2220
SCS data:
• NBP9902-11: SP 4850

Objective(s): • Recovery of records from preglacial times (back to 
Cretaceous–Paleocene) to preglacial to glacial transition 
(E/O boundary)

• Onset of first glacial period of West Antarctica
• Penetrating truncational Unconformities ASS-u5 and ASS-

u2
• Records of Marie Byrd Land dome uplift in relation to early 

glacial phases
Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels

Hole B: RCB to 900 mbsf with nonmagnetic core barrels
Logging/downhole 

measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Alternating diamicton and thin diatomaceous ooze 
sequences; preglacial mudstone and/or sandstone
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Figure AF14. Map with multibeam bathymetry swaths showing location of proposed Site ASSE-09A on MCS Line AWI-20100126 and SCS Line NBP9902-11.
Bottom: MCS Line AWI-20100126 with location of proposed Site ASSE-09A and SCS Line NBP9902-11 (SP 4850).
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K. Gohl et al. Expedition 379 Scientific Prospectus
Site ASSW-01B
Priority: Alternate
Position: 72.993°S, 115.792°W
Water depth (m): 710
Target drilling depth 

(mbsf):
600

Approved maximum 
penetration (mbsf):

600

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20100119: SP 5610, CDP 6309
SCS data:
• BAS056-S110: SP 2605

Objective(s): • Recovery of records from preglacial to glacial transition 
(E/O boundary), Miocene, and Plio/Pleistocene

• Onset of first glacial period of West Antarctica
• Penetrating truncational Unconformities ASS-u5 and ASS-

u3
• Records of Marie Byrd Land dome uplift in relation to early 

glacial phases
Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels

Hole B: RCB to 600 mbsf with nonmagnetic core barrels
Logging/downhole 

measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Alternating diamicton and thin diatomaceous ooze 
sequences; preglacial mudstone and/or sandstone
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Figure AF15. Top: map with multibeam bathymetry swaths showing location of proposed Site ASSW-01B on MCS Line AWI-20100119 (Figure A15b) and SCS
Line BAS056-S110. Bottom: MCS Line AWI-20100119 with location of proposed Site ASSW-01B and SCS Line BAS056-S110 (SP 2605).
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K. Gohl et al. Expedition 379 Scientific Prospectus
Site ASRE-05B
Priority: Primary
Position: 70.079°S, 108.612°W
Water depth (m): 3720
Target drilling depth 

(mbsf):
1200

Approved maximum 
penetration (mbsf):

1200

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20060023: SP 1200, CDP 1812
• AWI-20100131: crosses AWI-20060023 4.3 km west of drill 

site, projected to SP 5150, CDP 7233
Objective(s): • Recovery of continuous high-resolution drift records from 

early/mid-Miocene to Plio/Pleistocene and Quaternary
• Records of Mid-Miocene Climate Optimum, late Miocene 

cooling, and Pliocene warm period
• Onset of first glacial period of West Antarctica
• Correlation with paleo-ocean current reconstruction

Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels
Hole B: RCB to 1200 mbsf with nonmagnetic core barrels

Logging/downhole 
measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Fine-grained hemipelagic biogeneous mud/silt; fine-grained 
turbidites
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Figure AF16. Top: map with multibeam bathymetry swaths showing location of proposed Site ASRE-05B on MCS Line AWI-20060023. MCS Line AWI-20100131
(projected SP 5150) crosses 4.3 km west of the site. Bottom: MCS Line AWI-20060023 with location of proposed Site ASRE-05B.
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K. Gohl et al. Expedition 379 Scientific Prospectus
Site ASRE-03B
Priority: Alternate
Position: 69.774°S, 103.299°W
Water depth (m): 4040
Target drilling depth 

(mbsf):
1400

Approved maximum 
penetration (mbsf):

1400

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20100130: SP 1200, CDP 1812
• AWI-94042: crosses AWI-20100130 825 m southeast of drill 

site, projected to SP 788, CDP 1353
Objective(s): • Recovery of continuous high-resolution drift records from 

early/mid-Miocene to Plio/Pleistocene and Quaternary
• Records of Mid-Miocene Climate Optimum, late Miocene 

cooling, and Pliocene warm period
• Onset of first glacial period of West Antarctica
• Correlation with paleo-ocean current reconstruction

Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels
Hole B: RCB to 1400 mbsf with nonmagnetic core barrels

Logging/downhole 
measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Fine-grained hemipelagic biogeneous mud/silt; fine-grained 
turbidites
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Figure AF17. Top: map with multibeam bathymetry swaths showing location of proposed Site ASRE-03B on MCS Line AWI-20100130. MCS Line AWI-94042
(projected SP 788) crosses 825 m southeast of the site. Bottom: MCS Line AWI-20100130 with location of proposed Site ASRE-03B.
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K. Gohl et al. Expedition 379 Scientific Prospectus
Site ASRE-06A
Priority: Alternate
Position: 70.325°S, 114.223°W
Water depth (m): 3466
Target drilling depth 

(mbsf):
1200

Approved maximum 
penetration (mbsf):

1200

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20060023: SP 8670, CDP 16706

Objective(s): • Recovery of continuous high-resolution drift records from 
early/mid-Miocene to Plio/Pleistocene and Quaternary

• Records of Mid-Miocene Climate Optimum, late Miocene 
cooling, and Pliocene warm period

• Onset of first glacial period of West Antarctica
• Correlation with paleo-ocean current reconstruction

Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels
Hole B: RCB to 1200 mbsf with nonmagnetic core barrels

Logging/downhole 
measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Fine-grained hemipelagic biogeneous mud/silt; fine-grained 
turbidites
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Figure AF18. Top: map with multibeam bathymetry swaths showing location of proposed Site ASRE-06A on MCS Line AWI-20060023. Bottom: MCS Line AWI-
20060023 with location of proposed Site ASRE-06A.

Site ASRE-06A
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Site ASRE-01B
Priority: Primary
Position: 70.242°S, 103.718°W
Water depth (m): 3820
Target drilling depth 

(mbsf):
950

Approved maximum 
penetration (mbsf):

950

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-94042: SP 2016, CDP 3524
• AWI-20060022: SP 1395, CDP 2750

Objective(s): • Recovery of continuous high-resolution lower slope 
records from mid-/late Miocene to Plio/Pleistocene and 
Quaternary

• Records of Mid-Miocene Climate Optimum, late Miocene 
cooling, and Pliocene warm period

• Onset of first glacial period of West Antarctica
Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels

Hole B: RCB to 950 mbsf with nonmagnetic core barrels
Logging/downhole 

measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Fine-grained hemipelagic biogeneous mud/silt; fine-grained 
turbidites
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Figure AF19. Top: map with multibeam bathymetry swaths showing location of proposed Site ASRE-01B on MCS Lines AWI-94042 and AWI-20060022. Bottom:
MCS Line AWI-94042 with location of proposed Site ASRE-01B and MCS Line AWI-20060022 (SP 1395).
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Site ASRE-02B
Priority: Alternate
Position: 70.528°S, 102.394°W
Water depth (m): 3060
Target drilling depth 

(mbsf):
950

Approved maximum 
penetration (mbsf):

950

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20100129: SP 1600, CDP 2251

Objective(s): • Recovery of continuous high-resolution lower slope 
records from mid-/late Miocene to Plio/Pleistocene and 
Quaternary

• Records of Mid-Miocene Climate Optimum, late Miocene 
cooling, and Pliocene warm period

• Onset of first glacial period of West Antarctica
Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels

Hole B: RCB to 950 mbsf with nonmagnetic core barrels
Logging/downhole 

measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Fine-grained hemipelagic biogeneous mud/silt; fine-grained 
turbidites
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Figure AF20. Top: map with multibeam bathymetry swaths showing location of proposed Site ASRE-02B on MCS Line AWI-20100129. Bottom: MCS Line AWI-
20100129 with location of proposed Site ASRE-02B.
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Site ASRE-04A
Priority: Alternate
Position: 70.242°S, 105.775°W
Water depth (m): 3600
Target drilling depth 

(mbsf):
900

Approved maximum 
penetration (mbsf):

900

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20060023: SP 1750, CDP 3467
• AWI-20060021: crosses AWI-20060023 10 km east of drill 

site, projected to SP 2596, CDP 4062
Objective(s): • Recovery of continuous high-resolution drift records from 

mid-/late Miocene to Plio/Pleistocene and Quaternary
• Records of Mid-Miocene Climate Optimum, late Miocene 

cooling, and Pliocene warm period
• Onset of first glacial period of West Antarctica
• Correlation with paleo-ocean current reconstruction

Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels
Hole B: RCB to 900 mbsf with nonmagnetic core barrels

Logging/downhole 
measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Fine-grained hemipelagic biogeneous mud/silt; fine-grained 
turbidites
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Figure AF21. Top: map with multibeam bathymetry swaths showing location of proposed Site ASRE-04A on MCS Lines AWI-20060023. MCS Line AWI-20060021
(projected SP 2596) crosses 10 km east of the site. Bottom: MCS Line AWI-20060023 with location of proposed Site ASRE-04A.
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Site ASRW-01C
Priority: Alternate
Position: 71.705°S, 120.668°W
Water depth (m): 2643
Target drilling depth 

(mbsf):
900

Approved maximum 
penetration (mbsf):

900

Survey coverage (track 
map; seismic profile):

Bathymetric and seismic track map
MCS data:
• AWI-20100117: SP 17050, CDP 22440
• AWI-94054: crosses AWI-20100117 7.8 km east of drill site, 

projected to SP 4053, CDP 6912
Objective(s): • Recovery of continuous high-resolution lower slope 

records from mid-/late Miocene to Plio/Pleistocene and 
Quaternary

• Records of Mid-Miocene Climate Optimum, late Miocene 
cooling, and Pliocene warm period

• Onset of first glacial period of West Antarctica
• Correlation with paleo-ocean current reconstruction

Drilling program: Hole A: APC/XCB to 400 mbsf with nonmagnetic core barrels
Hole B: RCB to 900 mbsf with nonmagnetic core barrels

Logging/downhole 
measurements 
program:

Hole B:
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Fine-grained hemipelagic biogeneous mud/silt; fine-grained 
turbidites
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Figure AF22. Top: map with multibeam bathymetry swaths showing location of proposed Site ASRW-01C on MCS Line AWI-20100117. MCS Line AWI-94054
(projected SP 4053) crosses 7.8 km east of the site. Bottom: MCS Line AWI-20100117 with location of proposed Site ASRW-01C.
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