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Abstract
Testing the hypothesis of parallelism is a fundamental statistical problem arising from many applied
sciences. In this paper, we develop a nonparametric parallelism test for inferring whether the
trends are parallel in treatment and control groups. In particular, the proposed nonparametric
parallelism test is a Wald type test based on a smoothing spline ANOVA (SSANOVA) model which
can characterize the complex patterns of the data. We derive that the asymptotic null distribution of
the test statistic is a Chi-square distribution, unveiling a new version of Wilks phenomenon. Notably,
we establish the minimax sharp lower bound of the distinguishable rate for the nonparametric
parallelism test by using the information theory, and further prove that the proposed test is minimax
optimal. Simulation studies are conducted to investigate the empirical performance of the proposed
test. DNA methylation and neuroimaging studies are presented to illustrate potential applications of
the test. The software is available at https://github.com/BioAlgs/Parallelism .
Keywords: asymptotic distribution, minimax optimality, nonparametric inference, parallelism test,
penalized least squares, smoothing spline ANOVA, Wald test

1. Introduction

The assessment of parallelism is a fundamental problem in statistical inference and arises from
many applications. For example, in genomic studies, one of primary interest is to detect genes with
nonparallel expression patterns in time course studies (Storey et al., 2005; Ma et al., 2009). Another
motivating example is in epigenomics, researchers are interested in testing whether the patterns of
DNA methylation intensities along genome in the treatment and control groups are parallel or not
(Hansen et al., 2012). The abnormal DNA methylation patterns are associated with changes in many
important biological processes such as imprinting, X-chromosome inactivation, and aging (Schübeler,
2015). In functional neuroimaging, a common problem is to detect nonparallel signals (Nichols and
Holmes, 2002; Orrison et al., 2017) among different brain regions.

There is an immense literature focused on the analysis of the parallelism of trends using linear
model-based approaches, ranging from simple ANOVA (Sthle and Wold, 1989) to linear mixed
models (Vossoughi et al., 2016). However, the linear model-based approaches have a limited ability
to parsimoniously represent non-linear structures in complex data. Nonparametric parallelism
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comparison methods have drawn huge attention due to the modeling flexibility. Munk and Dette
(1998) developed a test statistic through a weighted L2 distances for the regression functions based
on similar equal-spaced fixed design. Degras et al. (2011) tested the parallelism of multiple time
series based on the L2 distances between the local linear estimator of each individual curve and the
global one for time series data when the time points are evenly spaced. Wang (1998) proposed a
wavelet-based method to measure the changes of curves. Liu and Wang (2004) compared different
nonparametric testing methods and showed that the performances of these tests depend on the shape
of the true function. Ma et al. (2009) proposed an approximate F-test to detect nonparallel patterns in
time course gene expression data with a more flexible random design.

However, rigorous testing methods with optimal power guarantees are still lacking in the existing
nonparametric parallelism literature. The key cause of such research gap is that distinguishing from
the simple/linear/polynomial null hypothesis, the parameter space of the null hypothesis for the
nonparametric parallelism testing is a nonparametric function class with infinite dimension. How to
conduct a rigorous test for such composite functional null hypothesis is still an open question. A
major motivation of this article is on developing a nonparametric parallelism testing approach that
detects the significance of the nonparallel effect, while guarantees statistical optimality in the sense
of minimax testing rate, facilitating the power performance analysis.

In this article, we develop a nonparametric parallelism test based on the decomposition of tensor
product reproducing Hilbert space (RKHS) (Wahba, 1990; Gu, 2013; Wang, 2011) under both fixed
and random design. Tensor product RKHS provides a flexible space for modeling complex functions;
see Wahba et al. (1995), Wood (2003) and reference therein. For the simplicity of description, we
consider the case that there are two predictors only. Suppose the response variable Yij is the observed
value of the jth subject at the ith time or spatial location for i = 1, · · · , n and j = 1, · · · , s. Yij
depends on two predictors x〈1〉i and x〈2〉j through an unknown bivariate function f(·, ·) ∈ H, the

tensor product RKHS, where x〈1〉i ∈ X1 = [0, 1] is a continuous variable representing the ith time or
the i-th spatial location, and x〈2〉j ∈ X2 = {0, 1} is a discrete variable representing the jth subject in

different groups, x〈2〉j = 1 represents the jth subject in treatment group, otherwise in control group.
That is,

Yij = f(x
〈1〉
i , x

〈2〉
j ) + εij , i = 1, · · ·n, j = 1, · · · , s, (1)

where εijs are i.i.d. random noise following a normal distribution with mean zero, variance σ2, and s
is the number of subjects. Each subject can be represented by a curve. When s = 2, there are two
curves in total and each group has only one curve. When s > 2, we have multiple curves in each
group. We assume the i.i.d. random noise since, in many scientific experiments, the random errors are
attributed to environmental factors independent of the time points or spatial location. For example, in
the fMRI data analysis in Section 6, the error is mostly attributed to the random movement of the
head and imaging noise which are independent with the time.

Analogous to the classical ANOVA decomposition, f ∈ H has the smoothing spline ANOVA
(SSANOVA) decomposition (Wahba, 1990):

f(x
〈1〉
i , x

〈2〉
j ) = f00 + f10(x

〈1〉
i ) + f01(x

〈2〉
j ) + f11(x

〈1〉
i , x

〈2〉
j ), (2)

where f00 is the grand mean, f10 and f01 are the main effects, and f11 is the nonparallel effect.
When f11 = 0 (see the left panel in Figure 1), the curves in two groups are parallel. Then f11 = 0
is equivalent to that f(x〈1〉, 0) and f(x〈1〉, 1) are parallel. When f11 6= 0 (see the right panel in
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Figure 1: An illustration of two scenarios of a bivariate function f(x〈1〉, x〈2〉), where x〈1〉 is continuous,
x〈2〉 only takes two values, 0 and 1. Left panel: the scenario with f11 = 0, i.e., f(x〈1〉, 0) and f(x〈1〉, 1) are
parallel. Right panel: the scenario with f11 6= 0, i.e., f(x〈1〉, 0) and f(x〈1〉, 1) are nonparallel.

Figure 1), the magnitude of ||f11||22 characterizes the significance of the non-parallelism between
the treatment and control groups, where ‖f11‖22 =

∑1
x〈2〉=0

∫ 1
0 f

2(x〈1〉, x〈2〉)dω1, with ω1 as the
marginal density of x〈1〉. Statistically, the hypothesis testing for parallelism can be formulated as

H0 : f11 = 0 vs H1 : f11 6= 0. (3)

We introduce two concrete examples which motivate our study.
Example 1. DNA methylation in case-control study. DNA methylation is an essential epigenetic

mechanism that regulates gene expression. Aberrant DNA methylation contributes to a number
of human diseases including cancer (Stach et al., 2003). In a typical case-control study of DNA
methylation (Filarsky et al., 2016), the DNA methylation level, denoted as Yij at the ith location x〈1〉i
on the genome for the jth individual in group x〈2〉j , can be modeled using Equation (1), where f is an
unknown function with the SSANOVA decomposition in Equation (2). A primary focus is to infer
whether the DNA methylation levels have different profiles along the genome between the case and
control groups, i.e., testing the presence/absence of nonparallel effect f11 as in Equation (3).

Example 2. Neuroimaging using functional magnetic resonance imaging (fMRI). fMRI is a
powerful neuroimaging technology for the diagnosis of many brain-related diseases. It measures
brain activity by detecting changes associated with blood flow. The primary form of fMRI uses the
blood-oxygen-level dependent (BOLD) as signal (Huettel et al., 2004). In many case-control studies,
the BOLD signal, Yij , at the ith time x〈1〉i for the jth subject in group x〈2〉j is measured for a particular
region of interest (ROI), and can be modeled using Equation (1), where f is an unknown function
with the SSANOVA decomposition in Equation (2). The goal is to test whether the BOLD signals in
two groups have same patterns along the time, i.e., test the significance of nonparallel effect f11 in
Equation (3).

We first establish the minimax lower bound for nonparametric parallelism test in Equation (3)
for general testing rules with the aid of tensor product decomposition of RKHS and the information
theory. The tensor product decomposition in Equation (2) enables us to quantify the magnitude of
nonparalelism by ||f11||2, where || · ||2 is the L2 norm. Intuitively, the smaller ||f11||2 is, the harder
it is to distinguish the alternative hypothesis from the null. In analyzing the power performance, we
consider a slightly different alternative hypothesis,

H∗1 : ||f11||2 ≥ dn, (4)
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where we remove the neighborhood within the dn distance of f11 = 0 from the original alternative
H1. Here the sequence dn is called the distinguishable rate (or separation rate) (Ingster and Suslina,
2012; Giné and Nickl, 2015). We first introduce a geometric interpretation of the testing problem
in Equation (3), and then establish a general minimax lower bound for the distinguishable rate for
the nonparametric parallelism test using the Bernstein k-width in information theory (Pinkus, 2012).
Bernstein k-width provides a geometric measure of the distinguishable rate and is easy to evaluate
in the tensor product RKHS. Recently, similar technique was also used in analyzing the testing
problems over cones and studied in Gaussian sequence models (Wei and Wainwright, 2020).

In addition, we propose a Wald-type test statistic as the squared empirical norm of the penalized
least square estimator of f11. We derive its asymptotic null distribution, which satisfies the Wilks
phenomenon. The asymptotic distribution of our test statistic is Gaussian, and the testing rule
does not depend on any unknown quantities, thus is easy to compute. We can further reduce
the computational cost by applying many popular fast computation methods such as fast random
kernel methods Alaoui and Mahoney (2015) and subsampling methods such as Ma et al. (2015);
Kim and Gu (2004). We note that our proposed Wald-type test distinguishes from the existing
nonparametric testing methods as follows. The existing testing procedures mostly consider simple
null hypothesis, such as the generalized likelihood ratio test in Fan et al. (2001), the penalized
likelihood ratio test in Shang and Cheng (2013), the wavelet based method in Shen et al. (2002),
and kernelized Stein method in Liu et al. (2016), whereas we consider a composite null hypothesis.
More importantly, there is a nontrivial technical complication in addition to the above model setting
difference. The composite null hypothesis H0 : f11 = 0 here defines a nonparametric function in
an infinite-dimensional functional space rather than a parametric function in a finite-dimensional
parameter space as required in Shang and Cheng (2013), because testing H0 : f11 = 0 is equivalent
to testing H0 : f ∈ {f00 + f10 + f01}. Developing the limiting distribution of the test statistic in an
infinite-dimensional null hypothesis space and quantifying the testing difficulty are very challenging
since the distribution relies on the more delicate tensor product decomposition of the RKHS.

We further prove that the upper bound of the distinguishable rate for the proposed Wald type test
matches the established minimax lower bound. Thus the proposed Wald-type test is minimax optimal.
To the best of our knowledge, our work is the first one in establishing the minimax nonparametric
parallelism test. Based on the Wald-type test statistic, we propose a data-adaptive choice of the
regularization parameter with testing optimality guarantee.

The rest of the paper is organized as follows. We introduce the background of tensor product
RKHS in Section 2. In Section 3, we introduce a minimax principle and a geometric interpreta-
tion of the parallelism testing problem. In Section 4, we derive the minimax lower bound of the
distinguishable rate for general parallelism test using the information theory. Section 5 presents
various simulation studies demonstrating substantial performance of our testing method, and Section
6 applies the methods to genome-wide anomaly of DNA methylation in chronic lymphocytic leukemia
patients and brain function change in patients with Alzheimer disease. We conclude with a few
remarks in Section 7. All technical proofs are relegated to the Appendix and Supplementary Material.

2. Background

In this section, we introduce some background of the tensor product RKHS, its tensor product
decomposition, together with the penalized least square estimation.

4
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2.1. Reproducing Kernel Hilbert Space

Given an RKHS H with an inner product 〈·, ·〉H, there exists a symmetric and square integrable
function K(·, ·) : X × X → R such that

〈f,K(x, ·)〉H = f(x), for all f ∈ H and x ∈ X .

We call K as the reproducing kernel of H. By Mercer’s theorem, any continuous kernel has the
following decomposition

K(x, y) =

∞∑
ν=0

λνϕν(x)ϕν(y), (5)

where λνs are non-negative descending eigenvalues and ϕνs are eigen-functions.
We consider the bivariate function f in Equation (1) on the product domain X1×X2. We assume

that f is a function in a tensor product RKHS (Lin, 2000)

H = H〈1〉 ⊗H〈2〉. (6)

Given the Hilbert space H〈1〉 and H〈2〉, H〈1〉 ⊗ H〈2〉 is defined as the completion of the class of
functions with the form

∑M
i=1 η1i(x)η2i(y), for η1i ∈ H〈1〉, η2i ∈ H〈2〉, and M is any positive

integer. We considerH〈1〉 as an mth order homogeneous Sobolev space, i.e.,

H〈1〉 = {η1 ∈ L2[0, 1] | η(k)
1 is absolutely continuous and η(k)

1 (0) = η
(k)
1 (1)

for k = 0, 1, . . . ,m− 1, η
(m)
1 ∈ L2[0, 1]},

andH〈2〉 is a two-dimensional Euclidean space with standard Euclidean norm.
Assume thatH〈1〉 has the eigenvalue and eigenvector pairs {µi, φi}∞i=0 andH〈2〉 has the eigen-

value and eigenvector pairs {νj , ψj}2j=1. Then we have the eigenvalue and eigenvector pairs for the
kernel function K inH as

{µiνj , φiψj} for i = 0, . . . ,∞, j = 1, 2, (7)

in the decomposition in Equation (5). We refer Equation (7) as the eigensystem forH. We further
denote 〈·, ·〉H as the product norm induced by the norm on the marginal space H1 and H2 (Lin,
2000).

Using the Riesz representation theorem (Schölkopf et al., 2001), we can easily represent any
function f ∈ H as in the following Lemma.

Lemma 1 Given the sampling points xij = (x
〈1〉
i , x

〈2〉
j ), i = 1, · · · , n and j = 1, · · · s, for any f in

a reproducing kernel Hilbert spaceH, there exists a set of reproducing kernels Kxij (·, ·) such that

f(x〈1〉, x〈2〉) =
n∑
i=1

s∑
j=1

αijKxij (x
〈1〉, x〈2〉) + ρ(x〈1〉, x〈2〉). (8)

Lemma 1 implies that f can be expressed as a sum of a linear expansion of Kxij and a nonlinear
function ρ. Notice that when (x〈1〉, x〈2〉) ∈ {xij}j=1,··· ,s

i=1,··· ,n, we have ρ(x〈1〉, x〈2〉) = 0. Thus, ρ(·, ·)
can be considered as a residual that quantifies the unknown information of function f . To get an
estimate of f , we only need to specify Kxij (·, ·) and estimate αij . Next, we provide a way to
construct the reproducing kernels Kxij (·, ·). In order to do that, we need the following two lemmas.
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Lemma 2 Suppose K〈1〉 is the reproducing kernel of H〈1〉 on X1, and K〈2〉 is the reproducing
kernel ofH〈2〉 on X2. Then the reproducing kernels ofH〈1〉 ⊗H〈2〉 on X = X1 ×X2 is K(x, z) =
K〈1〉(x〈1〉, z〈1〉)K〈2〉(x〈2〉, z〈2〉) with x = (x〈1〉, x〈2〉) and z = (z〈1〉, z〈2〉).

Lemma 3 For every Sobolev spaceH of functions on X , there corresponds a unique reproducing
kernel K, which is non-negative definite. If K0 and K1 are both non-negative definite reproducing
kernels forH0 andH1, andH0

⋂
H1 = {0}, thenH0⊕H1 has a reproducing kernel K = K0 +K1.

Lemmas 2 and 3 can be easily proved based on Theorems 2.3 to 2.6 in Gu (2013). Lemma 2
states that the reproducing kernel of the tensor product space is the product of the reproducing kernels.
Lemma 3 states that the reproducing kernel of a tensor sum space is the sum of the reproducing
kernels. Therefore, to construct Kxij (·, ·), we introduce the decomposition of tensor product space in
the following part.

2.2. Decomposition of Tensor Product Space

For any η1 ∈ H〈1〉 and η2 ∈ H〈2〉, define the averaging operators A1 : η1 →
∫ 1

0 η1(x)dx and A2 :

η2 → 1
2

∑2
k=1 η2(k) where η2(k) = eTk η2, ek is the unit vector with the kth element one and all other

elements zeros. We haveH〈1〉 andH〈2〉 with the following tensor sum decompositionH〈1〉0 ⊕H
〈1〉
1

and H〈2〉0 ⊕ H〈2〉1 respectively, where H〈1〉0 = {A1η1 | η1 ∈ H〈1〉}, H〈2〉0 = {A2η2 | η2 ∈ H〈2〉},
H〈1〉1 = {(I − A1)η1 | η1 ∈ H〈1〉},H〈2〉1 = {(I − A2)η2 | η2 ∈ R2}, and I is the identity operator.
ThusH has the following tensor sum decomposition

H = (H〈1〉0 ⊗H
〈2〉
0 )⊕ (H〈1〉1 ⊗H

〈2〉
0 )⊕ (H〈1〉0 ⊗H

〈2〉
1 )⊕ (H〈1〉1 ⊗H

〈2〉
1 ), (9)

and for any f ∈ H〈1〉 ⊗H〈2〉, we have

f = f00 + f10 + f01 + f11, (10)

where f00 = A1A2f ∈ H〈1〉0 ⊗H
〈2〉
0 , f10 = (I − A1)A2f ∈ H〈1〉1 ⊗H

〈2〉
0 , f01 = A1(I − A2)f ∈

H〈1〉0 ⊗ H〈2〉1 and f11 = (I − A1)(I − A2)f ∈ H〈1〉1 ⊗ H〈2〉1 . Thus, any function f ∈ H can be
decomposed uniquely as : f00 the interception, f10 and f01 the marginal effects and f11 the two-way
interaction term.

Denote the reproducing kernels ofH〈1〉0 ,H〈2〉0 ,H〈1〉1 ,H〈2〉1 as K〈1〉0 , K〈1〉1 , K〈2〉0 , K〈2〉1 , respectively.
Specifically, K〈1〉0 (x〈1〉, z〈1〉) = 1 and K〈1〉1 (x〈1〉, z〈1〉) is defined as (−1)m−1k2m(z〈1〉 − x〈1〉) for
the mth order homogeneous subspace where kr(·) is the rth order scaled Bernoulli polynomials
(Abramowitz and Stegun, 1964; Gu, 2013) and 1(·) is the indicator function. K〈2〉0 (x〈2〉, z〈2〉) = 1/2

and K〈2〉1 (x〈2〉, z〈2〉) = 1(z〈2〉=x〈2〉) − 1/2 on X2. Let H``′ = H〈1〉` ⊗H
〈2〉
`′ with reproducing kernel

K``′ , where
K``′(xij ,xi′j′) = K〈1〉` (x

〈1〉
i , x

〈1〉
i′ )K〈2〉`′ (x

〈2〉
j′ , x

〈2〉
j′ ),

for `, `′ ∈ {0, 1}. The induced inner product ofH``′ is denoted as 〈f``′ , g``′〉``′ , where f``′ and g``′
are projections of f and g on H``′ respectively, `, `′ ∈ {0, 1}. Notice that the metrics induced by
inner products 〈f``′ , g``′〉``′ are not necessarily of the same scale for different ``′. The inner product
forH can be defined as

〈f, g〉H =
∑
``′

θ−1
``′ 〈f``′ , g``′〉``′ , (11)
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where θ``′s re-scale the metrics on differentH``′ , 〈·, ·〉``′ is the restricted norm of 〈·, ·〉H onH``′ .
Based on Lemmas 2 and 3, we can easily show that the reproducing kernels associated with

Equation (11) is K(xij ,xi′j′) =
∑

`,`′ θ``′K``
′
(xij ,xi′j′) with `, `′ = 0, 1. Thus, given the sampling

points xij = (x
〈1〉
i , x

〈2〉
j ) for i = 1, · · · , n and j = 1, · · · , s, the kernel function in H is a bivariate

function depending on xij , i.e.,

Kxij (x
〈1〉, x〈2〉) =

θ00

2
+ θ01(1

(x〈2〉=x
〈2〉
j )
− 1

2
) + θ10

1

2
K〈1〉1 (x〈1〉, z〈1〉)

+ θ11
1

2
(1

(x〈2〉=x
〈2〉
j )
− 1

2
)K〈1〉1 (x〈1〉, z〈1〉), (12)

and accordingly f(x〈1〉, x〈2〉) =
∑

ij αijKxij (x
〈1〉, x〈2〉) + ρ(x〈1〉, x〈2〉) by Lemma 1.

In the function decomposition in Equation (10), it is easy to verify that f00 ∈ H00 =
{
g :

g = {(θ00 − θ01)/2}
∑

ij αij
}

. As f00 is a constant for any x〈1〉 and x〈2〉, it is analogous to
the ground mean in classical ANOVA models. Similarly, we have f01 ∈ H01 = {g : g =

θ01
∑

ij αij1(x〈2〉=x
〈2〉
j )
}. Recall that x〈2〉j can only be either 0 or 1, we can rewrite f01 as 1(x〈2〉=0)β0+

1(x〈2〉=1)β1, where β0 =
∑s

j=1(
∑n

i=1 αij)1(x
〈2〉
j =0)

and β1 =
∑s

j=1(
∑n

i=1 αij)1(x
〈2〉
j =1)

.

We remark that f00 and f01 are all in a finite-dimensional space. The spaceH10 (where f10 lies in)
spanned by the third term in the right hand side of Equation (12) is, however, an infinite-dimensional
space, because we have uncountable x ∈ X1. The function can be expressed as a linear combination
of the observed reproducing kernels plus a residual that quantifies the unobserved reproducing
kernels, i.e.,H10 = {g : g = 1

2

∑n
i=1(θ10

∑s
j=1 αij)K

〈1〉
1 (x〈1〉, z〈1〉) + ρ2}. Notice that function in

this space only changes as we change x〈1〉. Thus, the third term in right hand side of (12) can be used
to quantify the effect of the continuous variable such as the temporal effect. The forth term in the right
hand side of Equation (12) varies for both continuous variable and the case-control indicator, thus it is
the term that can catch different functional patterns between the case and control. Similarly, the space
spanned by the last addend is also an infinite-dimensional space because we still have an infinite
number of unobserved kernel functions in addition to the n× s observed kernel functions. Thus, we
have f11 ∈ H11 = {g : g = 1

2θ11
∑

ij αij(1(x
〈2〉
j =x〈2〉)

− 1
2)K〈1〉1 (x〈1〉, z〈1〉) + ρ12}. Clearly, to test

if two functions are parallel to each other, we only need to test if f11 = 0.

2.3. Penalized Least Squares

Here we introduce the penalized least square estimate of f ∈ H, and the interaction term f11 in
Equation (10). Given the sampling points xij = (x

〈1〉
i , x

〈2〉
j ) for i = 1, . . . , n and j = 1, . . . , s,

consider the model space

Hmodel = {g : g =
n∑
i=1

s∑
j=1

αijKxij (x
〈1〉, x〈2〉)},

a closed linear subspace ofH. αijs are the regression coefficients, and the bivariate residual function
ρ(·, ·) in Lemma 1 is inHresidual = H	Hmodel. Notice that ρ(x

〈1〉
i , x

〈2〉
j ) = 〈Kxij (x

〈1〉, x〈2〉), ρ〉 =
0 because of the orthogonality constraint betweenHmodel andHresidual. Then, f can be estimated
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by minimizing the penalized least squares functional as follows:

1

ns

n∑
i=1

s∑
j=1

(Yij −
∑
i′j′

αi′j′Kxi′j′ (x
〈1〉
i , x

〈2〉
j ))2 + λJ(f10 + f11), (13)

where the quadratic functional J(f) = J(f10 + f11) = ‖f10 + f11‖2H quantifies the roughness of
f10 and f11, the smoothing parameter λ controls the trade-off between the goodness-of-fit and the
roughness of f10 and f11. Recall ρ and Kxi′j′ (·, ·) are orthogonal to each other. Plugging Equation
(8) into J(f), we have

J(f) = 〈
∑
i′j′

αi′j′(θ10K10
xi′j′

+ θ11K11
xi′j′

),
∑
i′j′

αi′j′(θ10K10
xi′j′

+ θ11K11
xi′j′

)〉H + 〈ρ, ρ〉H.

Further notice that 〈K``′xij ,K
``′
xi′j′
〉 = K``′xij (x

〈1〉
i′ , x

〈2〉
j′ ) by the reproducible property of reproducing

kernels (Gu, 2013). Thus, substituting K and K``′ by (12) and f in J(f) by Equation (8), Equation
(13) can be rewritten as

||y − nsKα||22 + nsλαTQα+ nsλ〈ρ, ρ〉H, (14)

where y = (Y11, Y21, . . . , Yns)
T , K is the ns × ns matrix with (i + n(j − 1), i′ + n(j′ − 1))th

entry 1
nsKxij (x

〈1〉
i′ , x

〈2〉
j′ ), Q is the ns × ns matrix with (i + n(j − 1), i′ + n(j′ − 1))th entry

1
ns(θ

10K10
xij (x

〈1〉
i′ , x

〈2〉
j′ ) + θ11K11

xij (x
〈1〉
i′ , x

〈2〉
j′ )) and α = (α11, α21, . . . , αns)

T . Similar to Chapter
A3 in Gu (2013), we set the rescale parameter θ10 and θ11 to make θ10K10 and θ11K11 contribute
equally in penalty term of Equation (14) (see Appendix A.1 for details) and set θ00 and θ01 as one
since H00 and H01 are simply one-dimensional Euclidean space. Since ρ does not rely on α, the
optimizer of α in minimizing Equation (14) is equivalent to minimizing

α̂ = arg min
α∈Rns

||y − nsKα||22 + nsλαTQα. (15)

The penalized least square estimate of f is then f̂(x
〈1〉
i , x

〈2〉
j ) =

∑n,s
i,j α̂i,jKxi,j (x

〈1〉
i , x

〈2〉
j ).

As n goes to infinity, we have countable number of kernels and f(x〈1〉, x〈2〉) that the minimizer
of Equation (13) resides in an infinite dimensional space spanned by a countable number of kernels,
i.e.,

H∞model = {g : g(x〈1〉, x〈2〉) =

∞∑
ij

αijKxij (x
〈1〉, x〈2〉)}.

The nonparallel effect f11 also resides in a subspace that is spanned by a countable number of kernels.
We denote the subspace by

H∞11 = {f11 : f11(x〈1〉, x〈2〉) =

∞∑
ij

αij
(−1)m−1

2
(1

(x
〈2〉
j =x〈2〉)

− 1

2
)k2m(x

〈1〉
i − x

〈1〉)}.

Here, we did not normalize f11 by the constant scale parameter θ11 for the simplicity of description.
The penalized least square estimate of f11 ∈ H∞11 is

f̂11(x〈1〉, x〈2〉) =

n,s∑
i,j

α̂ij
(−1)m−1

2
(1

(x
〈2〉
j =x〈2〉)

− 1

2
)k2m(x

〈1〉
i − x

〈1〉). (16)
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With a little abuse of notation, we use f̂11 to denote the vector version evaluation of f̂11 on ns data
points from now on. Plugging in α̂ to (16), we have an explicit expression of f̂11 as

f̂11 = K11M
−1(Ins − S(STM−1S)−1STM−1)y, (17)

where Ins is the ns dimensional identity matrix, S, M and K11 are reparametrization of the kernel
matrices with explicit forms provided in Appendix A.1–“Notation Clarification”.

In Section 4, we will construct a Wald type test statistics based on f̂11 for the parallelism test
H0 : f11 = 0, and derive its null asymptotic distribution. Before that, we first establish the minimax
principle of the parallelism test for general testing rules in the following Section 3.

3. Minimax Principle of the Nonparametric Parallelism Test

Consider the test problem as follows

H0 : f11 = 0 vs H1 : ||f11||2 > 0. (18)

Given a decision rule φn for the testing problem (18), φn = 0 if H0 is preferred and 1 otherwise.
Then the zero-one loss function is

Loss(φn) =

{
φn if H0 is true,
1− φn if H1 is true.

(19)

The minimax principle requires φn to minimize the maximum possible risk, i.e.,

min
φn

max
H

E[Loss(φn)] = min
φn

[max
H0

E(φn|H0 is true) + max
H1

E(1− φn|H1 is true)]. (20)

Notice E(φn|H0 is true) is the probability of making a type I error and E(1 − φn|H1 is true) is
the probability of making a type II error. Intuitively, we choose φn to minimize the maximum
possible type I error and type II error. Notice that if H0 and H1 are contiguous, we cannot ensure
that Equation (20) can be controlled, because there may lie some f11 on the boundary of H0 and
H1 for which strikes the balance between acceptance and rejection of the null hypothesis, and an
appropriate decision cannot be made. Thus, instead of H1, we consider a slightly different alternative
hypothesis (4) and partition the parameter space into three sets: H0 +H∗1 + I , of which I designates
the indifference zone 0 < ||f11||2 < dn. Because dn clearly separates H0 from H∗1 , it is referred
to as the distinguishable rate (a.k.a the separation rate) (Ingster and Suslina, 2012; Giné and Nickl,
2015). Let

pseudo.risk(φn, dn) = sup
H0

E(φn|H0 is true) + sup
H∗1

E(1− φn|H∗1 is true). (21)

Then pseudo.risk(φn, dn) converges to the risk function E[Loss(φn)] as dn goes to zero.
Compared to the risk function, the pseudo.risk is not only a function of a decision rule φn but also

a function of the distinguishable rate dn. When φn is given, we have supH∗1 E(1− φn|H∗1 is true) ≤
supH1

E(1− φn|H1 is true) because H∗1 is a subset of H1. Thus, finding the largest pseudo.risk on
H∗1 for a given φn is equivalent to finding the smallest dn with a tolerable pseudo.risk. In another
word, finding the maximum possible pseudo.risk over the parameter space can be considered as
finding the smallest boundary ofH∗1 such that an appropriate decision φn can be made and the risk can

9
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be controlled. Meanwhile, for an adequately large given dn, we can always find a decision rule such
that the pseudo.risk can reach its minimum value. Let φ†n(dn) = arg minφn pseudo.risk(φn, dn).
Then, if dn can reach the smallest value d†n, the corresponding φ†n(d†n) is the minimax decision. Thus,
the essential step to find the minimax decision of pseudo.risk(φn, dn) is to find d†n such that

d†n = arg min
dn

φ†n(dn). (22)

Because d†n is an estimate of the distinguishable rate to obtain the minimax test, it is referred to as the
minimax distinguishable rate. Clearly, the corresponding decision rule φ†n is the minimax decision
rule.

We first introduce a geometric interpretation of the testing problem (18). Geometrically, we can
treat E = {f ∈ H : ||f ||H < 1/2} as an ellipse with eigenvalues in Equation (7) as axis lengths
as shown in Figure 2. For any f ∈ E , the projection of f on {f : f ∈ E11 := H11 ∩ E} is f11. The
magnitude of nonparallelism can be qualified by ||f11||2. The distinguishable rate dn is the radius of
the sphere centered at f11 = 0 inH11.

ℰ

ℰ11

𝑑𝑛

𝑓

𝑓11

Figure 2: Geometric interpretation of the distinguishable rate of the parallelism test.

Intuitively, the testing will be harder when the projection of f on E11 is closer to the origin
f11 = 0. We use the Bernstern width in Pinkus (2012) to characterize the testing difficulty. Let Sk+1

be the set of all (k + 1)-dimensional subspaces for any k ≥ 1. For a compact set C, the Bernstein
k-width is defined as

bk,2(C) := arg max
r≥0

{Bk+1
2 (r) ⊂ C ∩ S for some subspace S ∈ Sk+1}, (23)

where Bk+1
2 (r) is a (k + 1)-dimensional l2-ball with radius r centered at f11 = 0 in E11. The

Bernstein width characterizes the largest ball that can be inserted into a (k+1)-dimensional subspace
in E11. Based on the Bernstein width, we give an upper bound of the testing radius, i.e., for any f

10
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projected in the ball with radius less than this upper bound, the minimum pseudo.risk is larger than
1/2.

Lemma 4 For any f ∈ H, we have

inf
φn

pseudo.risk(φn, dn) ≥ 1/2

for all

dn ≤ rB := sup{δ | δ ≤ 1

2
√
n
σ(kB(δ))1/4}

where kB(δ) := arg maxk{b2k−1,2(H11) ≥ δ2} is the Bernstein lower critical dimension, and rB is
called the Bernstein lower critical radius.

Lemma 4 shows that when dn is less than rB , there has no test can distinguish the alternative
hypothesis from the null. In order to achieve a non-trivial power, we need dn to be larger than the
Bernstein lower critical radius rB , which is determined by the Bernstein lower critical dimension
kB(δ). In the next lemma, we provide the lower bound for kB(δ).

Lemma 5 Let {ρi}∞i=1 be eigenvalues ofH11. We have

kB(δ) > arg max
k
{√ρk ≥ δ} (24)

Plugging in the lower bound of kB(δ) derived in Lemma 5 to Lemma 4, we calculate a lower bound
for rB based on the decay rate of eigenvalues. rB is served as a minimax lower bound for the
distinguishable rate. The following theorem summarizes the minimax distinguishable rate for the
testing problem (18).

Theorem 6 (Minimax lower bound for distinguishable rate) In the nonparametric model (1) with
SSANOVA (2). Suppose f ∈ H, where H = H〈1〉 ⊗ H〈2〉 with H〈1〉 as the mth order Sobolev
space1, and H〈2〉 as a two-dimensional Euclidean space. The minimax distinguishable rate for
testing hypotheses (18) is achieved at d†n & n−2m/(4m+1).

Theorem 6 provides a general guidance for justifying a local minimax test, i.e., there is no test can
distinguish the alternative from null if dn . n−2m/(4m+1). The proof of Theorem 6 is presented in
the Appendix. Essentially, for any test φn that is defined by a family of type I error α = E(φn) and
by the supremum of the type II error δ = supH∗1 E(1 − φn|H∗1 is true), we need φn converges to
zero faster than dn to ensure the distinguishability of the null distribution. We further remark that the
minimax rate for nonparametric estimation is n−m/(2m+1) (Yang et al. (2017)) which is higher than
the minimax distinguishable rate n−2m/(4m+1). In the next section, we will introduce a Wald type
test for the hypothesis testing (18) with the separation rate dn achieves the lower bound n−2m/(4m+1)

indicating our proposed test is minimax optimal.

1. The mth order Sobolev space is defined as H〈1〉 = {η1 ∈ L2[0, 1] | η(k)1 is absolutely continuous for k =
0, 1, . . . ,m− 1}.

11
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4. Wald Type Parallism Test

In this section, we propose a Wald type test statistics based on the penalized least squares estimate of
f11, and derive the asymptotic distribution of the test statistics. We further prove an upper bound of
the distinguishable rate of the Wald type test which matches the minimax lower bound established in
Theorem 6.

4.1. Wald Type Test and Asymptotic Distribution

The nonparallel effect of the curves between the case group and the control group is measured by the
magnitude of ||f11||22. The nonparallel test in Equation (3) is equivalent to

H0 : f ∈ H∞model 	H∞11 vs H1 : f ∈ H∞model

or equivalently, H1 : f11 ∈ H∞11. First, notice that the null hypothesis in Equation (18) is a composite
hypothesis as the null hypothesis defines a class of functions inH∞model 	H∞11. Second, H0 defines
an infinite dimensional parameter spaces as n→∞, the assumptions of Neyman-Pearson Lemma
cannot be satisfied. Thus the uniformly most powerful test may not exist in general. To overcome the
difficulty, we propose a Wald-type test

Tn,λ =
1

ns
||f̂11||22 (25)

and show its minimax optimality.
Since Yij follows Equation (1) with f satisfying the SSANOVA decomposition in Equation (2),

we can replace each element in vector y by f00(x
〈1〉
i , x

〈2〉
j ) + f10(x

〈1〉
i , x

〈2〉
j ) + f01(x

〈1〉
i , x

〈2〉
j ) +

f11(x
〈1〉
i , x

〈2〉
j ) + εij . Then plug in the expression of f̂11 in Equation (17) to Tn,λ, we have

Tn,λ =
1

ns
||K11M

−1(In − S(STM−1S)−1STM−1)(f00 + f10 + f01 + f11 + ε)||22,

where f00, f10, f01 and f11 are ns dimensional vectors with the ijth entry f00(x
〈1〉
i , x

〈2〉
j ), f10(x

〈1〉
i , x

〈2〉
j ),

f01(x
〈1〉
i , x

〈2〉
j ) and f11(x

〈1〉
i , x

〈2〉
j ) respectively, and ε is the ns dimensional stochastic error that fol-

lows a normal distribution with mean 0 and variance σ2Ins. Because f00, f10 and f01 are in the
space that is orthogonal to the space spanned by K11, and f11 = 0 under the null hypothesis, Tn,λ
can be further simplified as

Tn,λ =
1

ns
||K11M

−1(Ins − S(STM−1S)−1STM−1)ε||22. (26)

A detailed discussion of this simplification will be provided in Lemma 12 in Appendix.
Next, we develop the null limiting distribution of Tn,λ as n goes to infinity. In the derivation, we

only require the number of subjects s to be finite. This requirement is desired in real applications
since the number of subjects in an experiment is usually limited. For example, due to the high
sequencing cost, there are usually only tens of sample sequenced in the DNA methylation studies.

We consider the following two designs.

Quasi-Uniform Design : x〈1〉1 , x
〈1〉
2 , . . . , x

〈1〉
n

iid∼ ω(x〈1〉) where ω is the marginal density of x〈1〉.
For any x〈1〉 ∈ [0, 1], there exist two constants c1, c2 > 0 such that c1 ≤ ω(x〈1〉) ≤ c2

(Eggermont and LaRiccia, 2001).

12
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Uniform Design: x〈1〉1 , x
〈1〉
2 , . . . , x

〈1〉
n are evenly spaced on [0, 1].

The above two designs are commonly used in scientific investigations. For example, in fMRI
experiments, the sampling points on the time domain are usually measured with equal-time intervals.
Thus, they are assumed to follow uniform design. On the other hand, the DNA methylation sites
are randomly scattered on DNA sequence. Therefore, they are assumed to follow a quasi-uniform
design.

Theorem 7 For both the uniform design and the quasi-uniform design, if the smoothing parameter
λ = O(nc−1) for any fixed c ∈ (0, 1), we have

Tn,λ − µn,λ
σn,λ

d−→ N(0, 1) as n→∞,

where µn,λ = σ2 Tr(∆)/(ns) and σ2
n,λ = 2σ4 Tr(∆2)/(ns)2 with ∆ = M−1K2

11M
−1.

In practice, we estimate the variance σ2 via σ̂2 defined as

σ̂2 =
y>(I −A(λ))2y

Tr(I −A(λ))
,

where A(λ) = K(nsK2 + λQ)−1y, and (I −A(λ))y is the residual y − f̂ based on the objective
function in equation (15). The consistency of the variance estimate σ̂2 is established in Theorem 3.4
in Gu (2013).

The proof of Theorem 7 is provided in Appendix and sketched below. Notice that Tn,λ =
T1 + T2 − 2T3, where

T1 =
1

ns
εTM−1K2

11M
−1ε,

T2 =
1

ns
||K11M

−1S(STM−1S)−1STM−1ε||22, (27)

T3 =
1

ns
εTM−1S(STM−1S)−1STM−1K2

11M
−1ε.

We show that T2 and T3 are higher order small perturbation terms compared to T1. Thus, the null
distribution of Tn,λ and the distribution of T1 are asymptotically equivalent. We only need to focus on
the distribution of the quadratic form T1 = 1

nsε
T∆ε with ε having a mean zero normal distribution.

To prove the normality of T1, we show that the log-characteristic function of the standardized
T1 is asymptotically −σ2t2/2, provided that Tr(∆2) diverges as λ → 0. Lemma 15 shows that
Tr(∆2) � τ̂λ, where τ̂λ = max{i | µ̂i ≥ λ} as the effective dimension (Bartlett et al., 2005; Liu
et al., 2019) with µ̂1 ≥ · · · ≥ µ̂n the empirical eigenvalues of kernel matrix K〈1〉1 which is the kernel
matrix ofH〈1〉1 with (i, i′)th entry as 1

nK
〈1〉
1 (x

〈1〉
i , x

〈1〉
i′ ). We further show in Lemma 13 and 14 that τ̂λ

is of the same order as its population counterpart τλ defined as τλ = max{i | µi ≥ λ}, under both
the quasi-uniform design and the uniform design, where µ1 ≥ · · · ≥ 0 are a sequence of ordered
eigenvalues satisfying K〈1〉1 (x, x′) =

∑∞
i=1 µiφi(x)φi(x

′). Since µi has a polynomial decay rate
i−2m (Gu, 2013), we have Tr(∆2) � τ̂λ � τλ � λ−1/(2m) diverges as λ → 0. Consequently, the
testing consistency in Theorem 7 holds.
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Theorem 7 characterizes the distribution of the test statistic Tn,λ for f ∈ H∞model 	H∞11. The
distribution turns out to be fairly simple and easy to calculate as the test statistic does not depend on
any unknown nuisance functions such as f00, f10 and f01. Critical value can be easily found based
on the known null distribution N(µn,λ, σ

2
n,λ). Consequently, one can make a statistical decision by

comparing Tn,λ with the critical value. This nuisance-parameter free property is referred to as the
“Wilks phenomenon” in statistics literature (Fan et al., 2001; Fan and Zhang, 2004).

4.2. Upper Bound of the Distingushiable Rate

Given type I error α, we show that our Wald-type testing rule φn,λ = 1(|Tn,λ−µn,λ|≥zα/2σn,λ) achieves
the local minimax distinguishable rate. Without loss of generality, we assume ‖f‖H ≤ 1.

Theorem 8 Let the minimum distinguishable rate of the test φn,λ be dn(φn,λ). Suppose λ =
O(nc−1) for any fixed c ∈ (0, 1). Then for any δ > 0, there exist positive constants Cδ and Nδ such
that, when n ≥ Nδ, the tolerable pseudo.risk(φn,λ, dn) = α+ δ, with dn(φn,λ) := Cδ

√
λ+ σn,λ.

Theorem 8 shows that for a controlled type I error, Tn,λ can achieve arbitrary small type II error
provided that the local alternative is separated from the null by at least an amount of dn(φn,λ). The
proof of Theorem 8 is collected in Appendix.

Note that d2
n(φn,λ) consists of two components: σn,λ representing the standard variation of the

test statistic Tn,λ, and λ representing the squared bias of f̂1,2 (see the proof of Lemma S.1 in the
Supplementary). Through approximating σn,λ by the Rademacher complexity (Bartlett et al., 2005;
Liu et al., 2019), we show that σn,λ �

√
τλ/n, which is a decreasing function of λ. Hence, the

minimum distinguishable rate for φn,λ is achieved by the trade-off between the bias of f̂1,2 and the
standard derivation of Tn,λ, i.e., choosing appropriate λ such that λ � σn,λ. Next, we prove that our
proposed Wald-type test is minimax under two special design conditions: the quasi-uniform design
and the uniform design in the next two corollaries.

Corollary 9 [Quasi-Uniform Design] Let λ � n−4m/(4m+1) and suppose x〈1〉 follows a quasi-
uniform design. We have

P (dn(φn,λ) � n−2m/(4m+1)) ≥ 1− 4 exp(−n1/(2m+1)).

Corollary 10 [Uniform Design] Let λ � n−4m/(4m+1), and suppose x〈1〉 follows a uniform design,
we have

dn(φn,λ) � n−2m/(4m+1) a.s.

Corollaries 9 and 10 suggest that if λ � n−4m/(4m+1), our Wald-type test φn,λ can achieve the
minimax distinguishable rate d†n � n−2m/(4m+1). Thus, we demonstrate that our proposed Wald
type test is minimax optimal. We remark that Corollary 9 still holds when extending H〈1〉 as a
standard Sobolev space.

4.3. The Choice of Regularization Parameter

Different from the classical “bias-variance” tradeoff in optimal nonparametric estimation, Theorem 8
states that the optimal nonparametric testing for Equation (3) can be achieved by another type of
tradeoff between the squared bias of the estimator and the standard deviation of the test statistic.

14



MINIMAX NONPARAMETRIC PARALLELISM TEST

Such intrinsic difference further leads to different orders of optimal regularization parameters: as
shown in Corollary 9, 10, the optimal λ is chosen as the order of n−

4m
4m+1 ; while as the order of

n−
2m

2m+1 for optimal estimation (Gu, 2013).
In practice, cross validation method is often used as a tuning procedure for nonparametric

estimation based on penalized loss functions (Golub et al., 1979). Raskutti et al. (2014) proposed
another data-dependent algorithmic regularization technique, that is, choosing an early stopping
rule for an iterative algorithm to avoid over-fitting in nonparametric estimation. Both of the above
approaches are optimal for estimation but suboptimal for testing. There has few theoretically justified
tuning procedure for obtaining optimal testing in nonparametric inference. One related work we
are aware currently is Liu and Cheng (2018), under which they developed a data-dependent early
stopping regularization rule from an algorithmic perspective for testing f = 0 in nonparametric
regression model Y = f(X) + ε. The total step size determined via the early stopping rule in
gradient descent algorithm plays the same role with 1/λ in the penalized regularization, to avoid
over-fitting. However, a data-adaptive choice of the regularization parameter λ is still lacking for
nonparametric inference in Equation (3) under the penalization regularization.

We propose a data-adaptive method to choose λ with testing optimality guarantee based on
Theorem 8. In practice, we can choose the optimal smoothing parameter λ∗ satisfying

λ∗ = min
{
λ | λ < σn,λ

}
, (28)

where σn,λ can be explicitly calculated based on the observed data by the expression defined in
Theorem 7, i.e., σ2

n,λ = 2σ4Tr(∆2)/(ns)2, with ∆ = M−1K2
11M

−1.
The above criterion in Equation (28) in choosing λ is a data-dependent rule that produces a

minimax-optimal nonparametric testing method. Based on the Rademacher complexity, σn,λ �
σ2

ns

√∑n
i=1 min{1, µ̂i/λ}. That is, the rule in Equation (28) depends on the eigenvalues of the kernel

matrix, especially the first few leading eigenvalues. There are many efficient methods to compute the
top eigenvalues fast (Drineas and Mahoney, 2005; Ma and Belkin, 2017). As a future work, we can
also introduce the randomly projected kernel methods to accelerate the computing time.

5. Simulation Study

To assess the performance of our proposed test, we carried out extensive analyses on simulated data
sets. We compared our approach with F-test (SSF) (Ma et al., 2009), parallelism trend test (PTT)
(Degras et al., 2011) and a random permutation test with 500 permutations. In the three methods,
permutation test can be used as a benchmark because it can closely approximate null distribution
when the number of permutations is adequate. However, the permutation test is computationally
intensive, especially for calculating the Kullback-Leibler distance under the null and alternative
hypothesis for SSANOVA model (Gu, 2004).

5.1. Empirical Power Analysis

We illustrate the empirical power performance of our proposed test through four well-designed
examples. In all four examples, we generated 100 to 1000 observations with an increment of 100

observations in each simulation for both case and control groups in Equation (1), where x〈1〉i
iid∼

U(0, 1) and εij
iid∼ N(0, 1). Each example was repeated 500 times for power and other comparisons.

To make the simulation more close to the reality, we considered two types of nonparallel patterns
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between f(x〈1〉, 1) and f(x〈1〉, 0): magnitude and frequency. These two kinds of nonparallel patterns
are often observed in real applications. For example, the hypermethylated DNA regions, i.e., regions
with low methylation levels, are related to transcriptional silencing which plays an important role in
cancer development; the frequency differences are often related to different brain functions between
the neurodisease and control groups in fMRI studies. In the first four examples, we consider the
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Figure 3: Plotted here are functions of the control group (solid line) and case group (dashed, dotted and
dot-dash lines) with four types of nonparallel patterns: magnitude differences only (Setting 1), frequency
differences only (Setting 2), both magnitude and frequency differences (Setting 3), and magnitude dynamic
differences (Setting 4).

following function in Equation (1),

f(x〈1〉, x〈2〉) =

{
2.5 sin(3πx〈1〉)(1− x〈1〉) if x〈2〉 = 0, i.e., control
(2.5 + δ1) sin((3 + δ2)πx〈1〉)(1− x〈1〉)(1+δ3) if x〈2〉 = 1, i.e., case

(29)

where δ1, δ2 and δ3 control the magnitude of nonparallelism between the null hypothesis and the alter-
native hypothesis in Equation (18). In general, varying δ1, δ2 and δ3 give rise to different distinguish-
able rates dns. The larger the δ1, δ2 and δ3 are, the larger the dn is. To illustrate how the testing power
is affected by different δ’s, as shown in Figure 3, we considered the following four settings. Setting 1:
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Case and control have constant magnitude differences (δ1 = 0.50, 0.75, 1.00 and δ2, δ3 = 0.00); Set-
ting 2: Case and control have frequency differences (δ2 = 0.20, 0.30, 0.40 and δ1, δ3 = 0.00); Set-
ting 3: Both magnitude and frequency are different (δ1, δ2 = (0.50, 0.20), (0.75, 0.30), (1.00, 0.40)
and δ3 = 0.00); Setting 4: Case and control have non-constant magnitude differences (δ1, δ2 = 0.00
and δ3 = 0.50, 0.75, 1.00). The corresponding functions f(x〈1〉, 0) and f(x〈1〉, 1) are shown in
Figure 3.

Sample Size

100 200 300 400 500 600 700 800 900 1000
δ1 = 0.50 Proposed 0.17 0.33 0.49 0.59 0.69 0.75 0.86 0.91 0.92 0.96

Permutation 0.19 0.38 0.53 0.60 0.62 0.76 0.80 0.88 0.94 0.97
SSF 0.02 0.09 0.11 0.16 0.26 0.28 0.36 0.54 0.58 0.72
PTT 0.05 0.06 0.05 0.1 0.11 0.1 0.14 0.21 0.11 0.17

δ1 = 0.75 Proposed 0.37 0.67 0.90 0.93 0.97 0.98 1.00 1.00 1.00 1.00
Permutation 0.38 0.66 0.81 0.90 0.96 0.99 0.99 1.00 1.00 1.00
SSF 0.04 0.21 0.37 0.50 0.81 0.86 0.91 0.96 0.97 0.98
PTT 0.09 0.14 0.15 0.33 0.38 0.36 0.47 0.55 0.44 0.54

δ1 = 1.00 Proposed 0.61 0.92 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Permutation 0.57 0.89 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00
SSF 0.14 0.48 0.79 0.90 0.97 0.99 1.00 1.00 1.00 1.00
PTT 0.08 0.23 0.42 0.43 0.54 0.62 0.77 0.77 0.79 0.85

Table 1: Table lists the empirical power of our proposed test and permutation test for Setting 1 with δ1 =
0.50, 0.75, 1.00, δ2 = δ3 = 0.00 and sample size ranging from 100 to 1000.

Sample Size

100 200 300 400 500 600 700 800 900 1000
δ2 = 0.20 Proposed 0.28 0.46 0.66 0.79 0.86 0.95 0.95 0.97 0.98 0.99

Permutation 0.27 0.43 0.59 0.74 0.86 0.94 0.94 0.98 1.00 1.00
SSF 0.02 0.05 0.21 0.32 0.48 0.62 0.79 0.84 0.88 0.95
PTT 0.04 0.03 0.04 0.08 0.11 0.14 0.12 0.09 0.16 0.26

δ2 = 0.30 Proposed 0.40 0.63 0.81 0.94 0.96 0.99 0.99 1.00 1.00 1.00
Permutation 0.36 0.64 0.79 0.89 0.97 0.98 0.99 1.00 1.00 1.00
SSF 0.03 0.13 0.35 0.52 0.72 0.85 0.91 0.97 0.99 1.00
PTT 0.03 0.08 0.09 0.15 0.31 0.23 0.28 0.4 0.35 0.4

δ2 = 0.40 Proposed 0.73 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Permutation 0.78 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SSF 0.24 0.74 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00
PTT 0.11 0.16 0.18 0.38 0.39 0.52 0.56 0.59 0.81 0.89

Table 2: Table lists the empirical power of our proposed test and permutation test for Setting 2 with δ2 =
0.20, 0.30, 0.40, δ1 = δ3 = 0.00 and sample size ranging from 100 to 1000.

The empirical powers of our proposed Wald-type test, permutation test, SSF test and PTT test
are summarized in Tables 1-2 for Settings 1-2. For Setting 1, as shown in Table 1, the empirical
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Sample Size

100 200 300 400 500 600 700 800 900 1000
δ1 = 0.50 Proposed 0.35 0.51 0.74 0.86 0.91 0.95 0.97 0.98 1.00 1.00
δ2 = 0.20 SSF 0.04 0.15 0.29 0.41 0.57 0.72 0.85 0.89 0.91 0.96

PTT 0.03 0.07 0.07 0.08 0.08 0.06 0.15 0.19 0.21 0.2
δ1 = 0.75 Proposed 0.42 0.70 0.86 0.96 0.99 1.00 1.00 1.00 1.00 1.00
δ2 = 0.30 SSF 0.05 0.26 0.46 0.64 0.79 0.93 0.94 0.95 1.00 1.00

PTT 0.04 0.07 0.11 0.15 0.19 0.23 0.31 0.29 0.43 0.46
δ1 = 1.00 Proposed 0.72 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
δ2 = 0.40 SSF 0.25 0.72 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00

PTT 0.11 0.19 0.22 0.32 0.52 0.5 0.64 0.61 0.73 0.69

Table 3: Table lists the empirical power of our proposed test and permutation test for Setting 3 with δ1, δ2 =
(0.50, 0.20), (0.75, 0.30), (1.00, 0.40), δ3 = 0 and sample size ranging from 100 to 1000.

Sample Size

100 200 300 400 500 600 700 800 900 1000
δ3 = 0.50 Proposed 0.15 0.33 0.47 0.58 0.66 0.75 0.83 0.88 0.89 0.94

SSF 0.01 0.04 0.07 0.16 0.18 0.28 0.35 0.47 0.57 0.64
PTT 0.06 0.03 0.08 0.09 0.09 0.14 0.07 0.13 0.08 0.13

δ3 = 0.75 Proposed 0.35 0.61 0.73 0.84 0.92 0.95 0.99 1.00 1.00 1.00
SSF 0.03 0.12 0.18 0.34 0.56 0.70 0.83 0.86 0.96 0.96
PTT 0.01 0.07 0.06 0.07 0.09 0.12 0.13 0.18 0.18 0.24

δ3 = 1.00 Proposed 0.42 0.70 0.85 0.95 0.99 0.99 1.00 1.00 1.00 1.00
SSF 0.07 0.20 0.52 0.76 0.82 0.92 0.98 0.98 1.00 1.00
PTT 0.09 0.04 0.08 0.10 0.18 0.18 0.21 0.24 0.25 0.28

Table 4: Table lists the empirical power of our proposed test and permutation test for Setting 4 with δ3 =
0.50, 0.75, 1.00, δ1 = δ2 = 0.00 and sample size ranging from 100 to 1000.

power of our test increases rapidly as sample size increases, and approaches to 1 even for the smallest
magnitude (δ1 = 0.50). The empirical powers of the proposed test are comparable with that of
the permutation test. In contrast, the empirical powers of SSF and PTT increase slower than our
proposed test. For the weak signal scenario, i.e., δ1 = 0.50, the proposed test has significantly gain
of power under different sample sizes. For the strong signal scenario, i.e, δ = 1.00, our proposed
test is significantly more powerful than SSF and PTT when sample size is less than 500. For Setting
2, as shown in Table 2, the empirical power of our proposed test converges to 1 as the sample size
increases for all three cases with δ2 = 0.20, 0.30 and 0.40. In contrast, the empirical power of SSF
and PTT converges to 1 slower than the proposed test.

For Settings 3 and 4, we only included the empirical results for our proposed test and SSF test
due to the extremely high computational cost of the permutation test. As shown in Table 6, it takes
more than 150 hours to complete the permutation test for one setting. For Setting 3, we simulated the
signal with differences in both scale and frequency across case and control groups. The empirical
powers of the simulation with different distinguishable parameters are listed in Table 3. The empirical
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powers of our proposed test and SSF increase for all the three cases with δ1, δ2 = 0.20, 0.30, 0.40.
The empirical power of PTT also increases, but with a much slower pattern. When the sample size is
small and signal strength is weak, our proposed test has significant gain of power compared to the
SSF and PTT test. For Setting 4, there is a nonlinear magnitude difference along the x〈1〉 between
the two groups. As shown in Table 4, the empirical power of SSF test converges to one slower than
the proposed test and is lower than 0.65 for the least distinguishable case.

5.2. Empirical Size Analysis

To examine the approximation of significance levels, we generated data from a new setting Setting
5. We kept the function form of control group the same as Equation (5.4) and only added a parallel
shift over the control function as the function of the case group, i.e., the model does not include the
nonparallel patterns. In particular,

f(x〈1〉, x〈2〉) = 2.5 sin(3πx〈1〉)(1− x〈1〉) + δ4I{x〈2〉=1},

where δ4 was set to be 0, 0.5 and 1 to characterize different level parallel difference in the two groups.
We generated data from Equation (1) with function f specified in Setting 5. The rest of parameters
were set the same as before.

Sample Size

100 200 300 400 500 600 700 800 900 1000
δ4 = 0.00 Proposed 0.04 0.07 0.06 0.06 0.05 0.06 0.06 0.07 0.06 0.05

Permutation 0.04 0.08 0.05 0.08 0.06 0.05 0.06 0.04 0.07 0.06
SSF 0.06 0.11 0.03 0.08 0.08 0.03 0.07 0.09 0.07 0.03
PTT 0.03 0.05 0.02 0.02 0.03 0.02 0.12 0.09 0.08 0.06

δ4 = 0.50 Proposed 0.06 0.05 0.05 0.06 0.06 0.05 0.06 0.04 0.05 0.06
Permutation 0.07 0.04 0.05 0.06 0.08 0.09 0.04 0.03 0.05 0.04
SSF 0.06 0.05 0.07 0.06 0.07 0.08 0.07 0.04 0.04 0.07
PTT 0.02 0.02 0.03 0.03 0.07 0.04 0.06 0.07 0.06 0.04

δ4 = 1.00 Proposed 0.07 0.06 0.07 0.06 0.05 0.05 0.06 0.06 0.06 0.05
Permutation 0.04 0.06 0.03 0.05 0.05 0.04 0.03 0.02 0.04 0.04
SSF 0.07 0.07 0.08 0.06 0.04 0.07 0.06 0.09 0.07 0.04
PTT 0.03 0.04 0.03 0.05 0.05 0.04 0.06 0.05 0.05 0.08

Table 5: Table lists the empirical sizes of the proposed test, permutation test, SSF, and PTT for δ4 =
0.00, 0.50, 1.00 and sample size ranging from 100 to 1000.

Table 5 lists the empirical sizes of our proposed test, permutation test, SSF test, and PTT under
Setting 5. We varied δ4 from 0.00 to 1.00 to model different magnitudes of the main effect. The
empirical size of our proposed test approaches to 0.05 as the sample size increases for different
values of δ4. The empirical size of SSF test is fluctuating from 0.03 to 0.1. The inaccurate size of
the SSF test may be attributed to the fact that the degrees of freedom of the SSF test is very roughly
approximated by the rounding value of the trace of the smoothing matrix. The empirical size of PTT
test is fluctuating from 0.02 to 0.12.
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5.3. Computation Time

As shown in Tables 1 and 2, our purposed test achieves the power similar to the permutation test.
Next, we compared the computation time of our proposed test and permutation test for 500 replicated
samples. We conducted the comparison on a computer workstation with core Intel i7 8700k CPU
and 32 Gb RAM. In Table 6, we reported the computational time in Setting 1 with δ1 = 0.5 and
sample size ranging from 100 to 1000. As shown in Table 6, our proposed test is consistently faster
than the permutation test. Our proposed test is nearly 263×faster than the permutation test when the
sample size is 1000. Note that the computational time is more than 42 hours when the sample size
is 1000 for running 500 test. In practice, the huge computational cost limits the application of the
permutation test in many large scale studies involving large sample size and multiple tests.

Sample Size

100 200 300 400 500 600 700 800 900 1000
Proposed 0.01 0.03 0.04 0.06 0.07 0.09 0.10 0.12 0.14 0.16

Permutation 3.22 6.14 9.29 13.29 17.93 22.26 26.74 31.26 36.57 42.23

Table 6: Table lists computational time (in hour) of running the simulation with 500 replications for our
proposed test and the permutation test.

5.4. Simulation Studies with Correlated Noise

We established Setting 6 to evaluate the performance of the proposed test when the noises are
correlated. In this example, we generated 100 to 1000 observations with an increment of 100
observations in each simulation for both case and control groups in Equation (1). We consid-
ered x〈1〉i , i = 1, . . . , n are evenly distributed in [0, 1]. We generated two correlated noise vector
(ε11, . . . , εn1) and (ε12, . . . , εn2) i.i.d. from N(0,Σ) where Σ is autoregressive, i.e., each of its
element σii′ = ρ|i−i

′| with ρ = 0.5. We generated the signal Yij = f(x
〈1〉
i , x

〈2〉
j ) + εij where f is

defined in Equation (5.4) with δ1 = 0.00, 0.50, 0.75, 1.00 and δ2, δ3 = 0.00, that is,

f(x〈1〉, x〈2〉) =

{
2.5 sin(3πx〈1〉)(1− x〈1〉) if x〈2〉 = 0,

(2.5 + δ1) sin(3πx〈1〉)(1− x〈1〉) if x〈2〉 = 1.

We set the significance level as 0.05 and repeated 500 times for evaluating the empirical size and
power.

As shown in Table 7, when δ1 = 0.00, the size of our proposed method concentrates around
0.05 − 0.07, while the sizes of SSF and PTT are fluctuating from 0.02 to 0.16. When δ1 > 0.00,
compared with SSF and PTT, the power of our proposed method has the highest performance, and
approaches to 1 as δ1 increases.

5.5. Simulation Studies with Non-smooth Cases

We evaluate the robustness of the proposed method when the smoothness assumption is invalid. We
established Setting 7 to test the performance of the proposed test for the cases with non-smooth
trends. In this setting, we generated 100 to 1000 observations with an increment of 100 observations
in each simulation for both case and control groups in model (1). We considered x〈1〉i , i = 1, . . . , n,
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Sample Size

100 200 300 400 500 600 700 800 900 1000
δ1 = 0.00 Proposed 0.08 0.04 0.06 0.06 0.06 0.08 0.10 0.07 0.06 0.07

SSF 0.08 0.06 0.06 0.09 0.10 0.05 0.09 0.14 0.08 0.06
PTT 0.02 0.1 0.04 0.08 0.11 0.05 0.16 0.12 0.13 0.06

δ1 = 0.50 Proposed 0.21 0.33 0.48 0.57 0.73 0.73 0.82 0.91 0.94 0.96
SSF 0.01 0.05 0.10 0.17 0.29 0.32 0.46 0.48 0.63 0.72
PTT 0.13 0.22 0.35 0.50 0.51 0.53 0.72 0.73 0.78 0.86

δ1 = 0.75 Proposed 0.66 0.89 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SSF 0.13 0.48 0.74 0.89 0.98 1.00 0.99 1.00 1.00 1.00
PTT 0.16 0.32 0.41 0.43 0.66 0.67 0.73 0.85 0.85 0.89

δ1 = 1.00 Proposed 0.93 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SSF 0.47 0.93 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PTT 0.16 0.41 0.55 0.62 0.69 0.85 0.86 0.90 0.90 0.95

Table 7: Table lists the empirical size (δ1 = 0) and power (δ1 = 0.50, 0.75, 1.00) of our proposed test, SSF
and PTT for Setting 6 with δ2 = δ3 = 0.00 and sample size ranging from 100 to 1000.

are evenly distributed in [0, 1] and εij
iid∼ N(0, 1). We generated the signal Yij = f(x

〈1〉
i , x

〈2〉
j ) + εij

with f defined as

f(x〈1〉, x〈2〉) = 2.5 sin(2πx〈1〉)I{x〈1〉∈(0,0.5)} + (1 + δ5I{x〈2〉=1})(x− 1)I{x〈1〉∈[0.5,0)}

which is shown in Figure 4. This curve is non-differentiable at x〈1〉 = 0.5 which is a change point
from nonlinear to linear trend. We set the significance level as 0.05 and repeated 500 times to
evaluate the empirical size and power.
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Figure 4: Solid line with δ5 = 0: function of the control group; dashed and dotted lines with δ5 = 1, 2: the
case group for Setting 7.
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As shown in Table 8, when δ5 = 0.00, the empirical size of our proposed method concentrates
around 0.05. The empirical size of our proposed method is slightly inflated compared with SSF
and PTT. When δ5 = 1, 2, compared with SSF and PTT, the power of our proposed method has the
highest performance, and approaches to 1 as n increases.

Sample Size

100 200 300 400 500 600 700 800 900 1000
δ5 = 0.00 Proposed 0.08 0.04 0.06 0.06 0.06 0.08 0.10 0.07 0.06 0.07

SSF 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00
PTT 0.02 0.06 0.04 0.08 0.03 0.05 0.03 0.06 0.03 0.03

δ5 = 1.00 Proposed 0.21 0.33 0.48 0.57 0.73 0.73 0.82 0.91 0.94 0.96
SSF 0.03 0.02 0.06 0.07 0.09 0.15 0.23 0.29 0.34 0.37
PTT 0.01 0.05 0.01 0.02 0.04 0.02 0.04 0.04 0.08 0.06

δ5 = 2.00 Proposed 0.66 0.89 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SSF 0.07 0.24 0.46 0.63 0.76 0.87 0.91 0.98 0.97 0.99
PTT 0.02 0.04 0.02 0.09 0.03 0.06 0.07 0.10 0.06 0.06

Table 8: Table lists the empirical size (δ5 = 0) and power (δ5 = 1.00, 2.00) of our proposed test, SSF and
PTT for Setting 7.

6. Real Data Examples

We apply the technique to analyze two real data sets: DNA methylation in chronic lymphocytic
leukemia and neuroimaging of Alzheimer’s Disease using fMRI.

6.1. DNA Methylation in Chronic Lymphocytic Leukemia

Recently, Filarsky et al. (2016) reported a DNA methylation study for chronic lymphocytic leukemia
(CLL) patients. In the study, the DNA samples were extracted from CD19+ cells from 12 CLL
patients and B cells from 6 normal subjects. The DNA methylation is profiled by the whole-genome
tiling array technique. The goal is to identify differentially methylated regions (DMRs), i.e., the
genome regions that have significantly different methylation levels, between CLL patients and normal
subjects.

To achieve this goal, we compiled the DNA methylation intensities within the −3.8 to +1.8 kb
of transcription start sites (TSS) for each gene. We used the M-value suggested by Irizarry et al.
(2008) as methylation level at each site and as our response variable. In particular, the data consists of
(Yij , x

〈1〉
i , x

〈2〉
j ), where Yij is the methylation level at the ith genome location x〈1〉i of the jth subject

in group x〈2〉j , which equals to 1 if the jth subject is in the case group and equals to 0 if the jth
subject is in the control group. We fit the model in Equation (1) with SSANOVA decomposition in
Equation (2) to the data.

We applied the proposed hypothesis testing on 10383 regions. Through controlling FDR < 0.01
using Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995), we selected 613 DMRs.
We conducted gene ontology analysis on the 613 genes corresponding 613 identified DMRs using
the GSEA (Subramanian et al., 2005). Among these genes, 79 genes participate the lipid metabolic
process, which plays an important role in the development of CLL (Pallasch et al., 2008). This
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biological process contributes to apoptosis resistance in CLL cells. Furthermore, 78 and 61 genes
participate the immune related biological processes: “Immune system process” and “Regulation of
immune system process” respectively. The observation indicates that the aberrant DNA methylation
has the potential impact on the immune system.

Our Wald-type test, even after FDR control, yields p-values that are as small as 10−9. Con-
sequently, it is very difficult to compare our test with the permutation test with only hundreds or
thousands of permutations. Thus, we only compared our proposed test with permutation test (based
on 500 permutation) for regions with p-values larger than 0.05 the averaged difference between our
test and permutation test is 0.012.
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(a) MTA3 (b) DNMT3A

Figure 5: The promoter regions of two genes, (a) MTA3 and (b) DNMT3A. The horizontal axis is the genomic
location and the y axis is the M-value representing the methylation levels. The red and blue lines are the fitted
curves for the case and control groups respectively.

We highlighted two DMRs with significant nonparallel patterns in Figure 5. The focal hyper-
methylation at genome locations 42574000 and 42576500 are observed on the promoter region of
gene MTA3. It was reported in (Bilban et al., 2006) that MTA3 signaling pathway is a potential
bio-marker for CLL and shows significantly altered gene expression. Our test also identified that
the methylation levels between CLL patients and normal subjects, of MTA3 gene have significant
difference, which has potential prognostic value. In the promoter region of DNMT3, we observed
significant hypomethylation at genome location 25244500. DNMT3 is a family of DNA methyltrans-
ferases that could methylate hemimethylated and unmethylated CpG sites at the same rate (Okano
et al., 1998). Since the global hypomethylation is observed, the aberrant methylation levels of this
DNA methylatransferase may have influence on this global trend.

6.2. Neuroimaging of Alzheimer’s Disease using fMRI

Alzheimer’s disease (AD) is one of the most commonly known neurology disease characterized with
neurodegeneration and cognitive decline (Rombouts et al., 2005; Wang et al., 2006). Despite the
prevalence of AD, there are no cure or preventive methods available due to the lack of a complete
understanding of the mechanisms that contribute to AD pathophysiology. Discovering aberrant
neural network of AD will fundamentally advance the scientific understanding of this disease.
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In this study, we analyzed the data that was collected by Alzheimer’s Disease Neuroimaging
Initiative (ADNI) 2, in which the resting-state fMRI signals of 60 normal/early-mild-cognitive-
impairment subjects (control group) and 50 AD/late-mild-cognitive-impairment subjects (AD group)
were collected from 256×256×170 voxels for 140 consecutive time points with equal time intervals
of 30ms. The fMRI signals for each subject were preprocessed using fMRI Expert Analysis Tool
(FEAT) (Smith et al., 2004) for skull-stripping, motion correction, slice timing correction, temporal
filtering, spatial smoothing and registration to standard space (MNI152 T1 2mm model) so that
signals from all subjects can be considered as from the same engineered brain template. Sixty-
nine brain-region-of-interests (ROI) that are defined by Harvard-Oxford-Atlas (http://fsl.fmrib.ox
.ac.uk/fsl/fslwiki/Atlases) was extracted by automatic regional labeling approach using the refined
fMRI data. For each ROI, we consider model (1) with SSANOVA decomposition in Equation (2),
where Yij records the average blood-oxygen-level (Huettel et al., 2004) of the brain region for
subject j measured at the x〈1〉i time point. As the blood-oxygen-level can accurately quantify the
corresponding brain activity, we can detect abnormal AD related brain activity. Testing problem
in Equation (18) is equivalent to testing whether the brain activities of a given ROI have different
temporal patterns in case and control groups.

Cingulate Gyrus, posterior divisionParahippocampal Gyrus, posterior division

Time Time

Figure 6: Plotted here are blood-oxygen-levels of parahippocampal gyrus (left) and cingulate gyrus (right)
for control group (blue) and AD group (red) observed at 140 time points. Physical locations of either ROIs on
frontal, axial and lateral sides are illustrated on the top of each panel.

2. Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation
of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI
investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/
ADNI_Acknowledgement_List.pdf
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Seven cortical regions parahippocampal gyrus, cingulate gyrus, inferior temporal gyrus, post-
central gyrus, juxtapositional lobule cortex, precuneous cortex, central opercular cortex and one
sub-cortical region right thalamus with significantly different temporal patterns were identified using
our test with the false discovery rate controlled at 5% using Benjamini-Hochberg procedure (Ben-
jamini and Hochberg, 1995). Among the eight ROIs, parahippocampal gyrus and cingulate gyrus
have been shown clinically to be risk factors for AD. As demonstrated in Echávarri et al. (2011) and
Kesslak et al. (1991), parahippocampal gyrus of AD patients have significant atrophy. Meanwhile,
cingulate gyrus was also found to be AD related (Scheff et al., 2015) due to its extensive connectivity
with multiple different cortical areas, especially areas involved with learning and memory. In Figure 6,
we plotted frontal, axial, and lateral views and corresponding temporal patterns of parahippocampal
gyrus and cingulate gyrus. The temporal regions with significant difference between AD/late-mild-
cognitive-impairment subjects (red line) and normal/early-mild-cognitive-impairment subjects (blue
line) are highlighted. As clearly demonstrated in lower left panel of Figure 6, the first highlighted
area of parahippocampal gyrus has a significant reversed pattern between case group and control
group. The second highlighted area shows the reduced levels for the AD group. For cingulate gyrus,
the highlighted regions in the right panel of Figure 6 show clearly larger magnitude for the AD
groups. This difference was also observed via fMRI in a visual encoding memory task (Rami et al.,
2012). Both of the two experiments suggest that the difference may change the memory function.

7. Discussion

The hypothesis testing in SSANOVA is a very challenge problem. In this paper, we develop a
Wald-type test for testing the significance of the nonparallelism in a two-way SSANOVA model.
The optimality of the proposed test is justified by the minimax distinguishable rate. The extensive
empirical studies suggest that the proposed test has a superior performance over existing methods.
Although we only discuss the test of the significance of the nonparallelism in a two-way SSANOVA
model, the test on a higher order SSANOVA model can be developed parallel to our framework.
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Appendix A. Proof of Main Results

In this section, we present main proofs of the theorems and lemmas in the main text.

A.1. Notation Clarification

We rewrite (16) as
f̂11 = K11M

−1(Ins − S(STM−1S)−1STM−1)y,

where

S =

[
In ⊗ 1w0 0

0 In ⊗ 1w1

] [
1n 1n
1n 0

]
,K11 =

1

2

[
K
〈1〉
1 −K〈1〉1

−K〈1〉1 K
〈1〉
1

]
and

M =

[
In ⊗ 1w0 0

0 In ⊗ 1w1

](
θ10

2

[
K
〈1〉
1 K

〈1〉
1

K
〈1〉
1 K

〈1〉
1

]
+
θ11

2

[
K
〈1〉
1 −K〈1〉1

−K〈1〉1 K
〈1〉
1

]
+ λI2n

)
[
In ⊗ 1Tw0

0
0 In ⊗ 1Tw1

]
,

K
〈1〉
1 is the kernel matrix of H〈1〉1 with (i, i′)th entry as 1

nK
〈1〉
1 (x

〈1〉
i , x

〈1〉
i′ ), w0 is the number of

subjects in control group, w1 is the number of subjects in case group, and ⊗ denotes the Kronecker
product. Based on Chapter A.3 in Gu (2013), we set θ−1

10 ∝ Tr(K10) and θ−1
11 ∝ Tr(K11) with

θ10 + θ11 = 1.
In the following theoretical derivation, we only focus on the case with s = 2, i.e. w0 = w1 = 1. If

we have s > 2 subjects, the proof can be easily generalized to this situation by replacing Equation (15)
by the penalized weighted least squares; see Section 3.2.4 in Gu (2013).

A.2. Proofs for Section 3

A.2.1. PRELIMINARY

We identify a sequence model that is equivalent to our nonparametric model (1) with SSANOVA
decomposition in Equation (2). Let {ρi, φi}∞i=1 be pairs of eigenvalue and eigenfunction in H〈1〉
and {νj , ψj}2j=1 be pairs of eigenvalue and eigenfunction inH〈2〉. In the tensor product spaceH =

H〈1〉⊗H〈2〉, as shown in Lin (2000), eigenvalues and eigenfunctions are {µiνj , φiψj}i=1,...,∞, j=1,2.
Model (1) is equivalent to a sequence model

zij = θij + ωij , (30)

where θij = 1
2

∑1
x〈2〉=0

∫
X1
f(x

〈1〉
i , x

〈2〉
j )φi(x

〈1〉)ψj(x
〈2〉)dω(x〈1〉) are the basis expansion coeffi-

cients, the random noise ωij is mean zero and variance σ2/n. The space E = {f ∈ H : ||f ||H < 1}
in Equation (30) is equivalent to E = {

∑∞
i=1

∑2
j=1

θ2ij
(µiνj)

≤ 1}. The hypothesis in Equation (18) is
equivalent to the hypothesis

H0 : θi2 = 0 for i = 2, . . . , n.

Let θ11 = (θ22, θ32, . . . , θn2)T , and E11 = {θ11 |
∑n

i=2
θ2i2

(µiν2) ≤ 1}. Consider a local alternative
H1n : θ11 ∈ E11 with ‖θ11‖2 ≥ dn, where dn represents a generic distinguishable rate. The total
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error of a generic testing rule φn under distinguishable rate dn can be rewritten as

pseudo.risk(φn, dn) = EH0{φn|H0 is true}+ sup
θ11∈E11
‖θ11‖2≥dn

E{1− φn|H1 is true}. (31)

Equation (31) is consistent with the testing error defined by Ingster (1993), Wei and Wainwright
(2020). For the simplicity of description, we order the axis length {(µiν2)}∞i=2 from the smallest to
the largest as {ρp}∞p=1. Next we introduce a lemma to give a low bound of the minimum pseudo risk.

Lemma 11 For every set C and probability measure Q supported on C ∩ Bc(dn), we have

inf
φn
pseudo.risk(φn, dn) ≥ 1− 1

2

√
Eη,η′ exp(

〈η, η′〉
σ2

)− 1

where Eη,η′ denotes expectation with respect to an i.i.d. pair η, η′ ∼ Q

The proof of this lemma directly follows Lemma 3 in Wei and Wainwright (2020).

A.2.2. PROOF OF LEMMA 4

Proof As shown in Lemma 11, we have

inf
φn
pseudo.risk(φn, dn) ≥ 1− 1

2

√
Eη,η′ exp(

〈η, η′〉
σ2

)− 1 (32)

Next we show that if δ2 ≤
√
kB(δ)σ2

4 , we have the last term in Equation (32) larger than 1/2. Let
θb = δ√

k

∑k
i=1 biei where ei is the standard basis vector with ith coordinate as one. We consider Q

as the uniform distribution on {θb, b ∈ {−1, 1}k}. The expectation in the last term of Equation (32)
can be written as

Enη,η′ exp(
n〈η, η′〉
σ2

) =
1

2k

∑
b,b′

exp(
nθTb θb′

σ2
) =

1

2k

∑
b,b′

exp(
nδ2

∑k
i=1 bib

′
i

kσ2
)

=
1

2k
(exp(

nδ2

kσ2
) + exp(−nδ

2

kσ2
))k

(i)

≤(1 +
n2δ4

k2σ4
)k

(ii)

≤ exp(
n2δ4

kσ4
),

where (i) is due to that 1
2(exp(x)+exp(−x)) ≤ 1+x2 for |x| ≤ 1/2 and (ii) is due to that 1+x ≤ ex.

Thus for any δ4 ≤ kσ4

16n2 , we have

inf
φn
pseudo.risk(φn, dn) ≥ 1− 1

2

√
e1/16 − 1 ≥ 1/2.

By the definition of rB , we have pseudo.risk(φn, dn) > 1/2 for all dn ≤ rB .
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A.2.3. PROOF OF LEMMA 5

Proof We show that bk,2(E11) is bounded below by√ρk+1. It is sufficient to show that E11 contains
a l2 ball centered at f11 = 0 with radius√ρk+1. For any v ∈ E11 with ||v||2 ≤

√
ρk+1, we have

b2,k
(i)

≤
k+1∑
i=1

v2
i

ρi

(ii)

≤ 1

µk+1

k+1∑
i=1

v2
i ,

where inequality (i) holds by set the (k + 1)-dimensional subspace spaned by the eigenvectors
corresponding to the first (k + 1) largest eigenvalues; inequality (ii) holds by the decreasing order of
the eigenvalues, i.e., ρ1 ≥ ρ2 ≥ . . . ρk+1.

Recall that the definition of the Bernstein lower critical dimension is kB(δ) = arg maxk{b2k−1,2(E11) ≥
δ2}, we have

kB(δ) ≥ arg max
k
{√ρk ≥ δ}.

A.2.4. PROOF OF THEOREM 6

Proof By Lemme 4, we have

dn ≤ sup{δ : kB(δ) ≥ 16n2δ4}.

We plug in the lower bound of kB(δ) in Lemma 5. Then we have

dn ≤ sup{δ : arg max
k
{√ρk ≥ δ} ≥ 16n2δ4}. (33)

The eigenvalues have polynomial decay rate i.e., ρp � p−2m, and consequently, arg maxk{
√
ρk ≥

δ} � δ−1/m. Plugging this into Equation (33), it is easy to see that the supremum on the right hand
side has an order n−

2m
4m+1 . Proof is thus completed.

A.3. Proof of Theorem 7

Before deriving the proof of Theorem 7, we first state Lemma 12, Lemma 13, Lemma 14, and Lemma
15, which are used in the proof of Theorem 7. The proof of these auxiliary lemmas is referred to the
Supplementary.

A.3.1. SOME AUXILIARY LEMMAS

Lemma 12 shows the projection of f10 onH11∩Hmodel is zero. This result indicates our test statistic
does not depend on the nuisance parameter f10.

Lemma 12 The quantity, K11M
−1(In − S(STM−1S)−1STM−1)f10, equals to zero.

The next two lemmas show the equivalence of τλ and τ̂λ under the quasi-uniform design and
uniform design.
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Lemma 13 If x〈1〉 follows the quasi-uniform random design, for any λ = 1
n1−c , m > 3/2, and any

δ, c > 0, we have

P (τ̂λ � τλ) ≥ 1− (n
2

2m−1
−2δ + n

1
2m−1 ) exp{−cn

2m−3
2m−1

+2δ},

where τλ = max{i | µi ≥ λ} and τ̂λ = max{i | µ̂i ≥ λ}.

Lemma 14 If x〈1〉 follows the uniform fixed design condition, for m > 1/2 and λ > 0, we have

τ̂λ � τλ.

In the following lemma, we bound Tr(∆) by a function of τ̂λ. This result is essential in deriving
the asymptotic distribution of Tn,λ.

Lemma 15 For ∆ = M−1K2
11M

−1 defined in Theorem 7, we have

4τ̂λ
9
≤ Tr(∆) ≤ 4

(1− θd)2
(τ̂λ +

1

2λ

n∑
i=τ̂λ+1

µ̂i). (34)

A.3.2. PROOF OF THEOREM 7

Proof For simplicity, we suppose σ2 = 1. We define the three terms on the right-hand side of
Equation (26) as T1, T2 and T3, i.e.,

T1 =
1

n
εT∆ε,

T2 =
1

n
εTM−1S(STM−1S)−1ST∆S(STM−1S)−1STM−1ε,

T3 =
1

n
εTM−1S(STM−1S)−1ST∆ε.

We now show T2 and T3 are in smaller order compared to T1. First, we analyze the second term
T2 in Equation (26). We have

E[T2] =
1

n
E[εTM−1S(STM−1S)−1ST∆S(STM−1S)−1STM−1ε]

=
1

n
Tr(M−1S(STM−1S)−1ST∆S(STM−1S)−1STM−1)

≤ 2

n
λmax(∆)λmax(M−1S(STM−1S)−1STS(STM−1S)−1STM−1)

≤ 2

n
λmax(∆),

where λmax denotes the largest eigenvalue. Since all eigenvalues of ∆ are less than 1, we have
E[T2] ≤ 2

n . Analogously, we can derive the variance inequality of T2. Combining the results together
and using the Chebyshev inequality, we have

T2 = Op(
1

n
). (35)
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Second, we analyze the third term T3 in Equation (26). We apply the Cauchy-Schwarz inequality
and have

|T3| ≤
√
T2

√
T1. (36)

Finally, we derive the magnitude of T1. We first consider the testing consistency of T1 conditional
on X . Denote Eε as the expectation with respect to ε, and define Varε as the variance with respect to
ε. Note that

Eε[εT∆ε] = Tr(∆), Varε[εT∆ε] = 2 Tr(∆2).

Let Z = (εT∆ε− Tr(∆))/
√

2 Tr(∆2) and t ∈ (−1/2, 1/2). Then the log-characteristic function
of Z can be written as

logEε[exp(itZ)]

= logEε[exp(itεT∆ε/
√

2 Tr(∆2))]− itTr(∆)/
√

2 Tr(∆2)

=− 1

2
log det{I2n − 2it∆/

√
2 Tr(∆2)} − itTr(∆)/

√
2 Tr(∆2). (37)

Through Taylor expansion, one has

− 1

2
log det{I2n − 2it∆/

√
2 Tr(∆2)}

=it
Tr(∆)√
2 Tr(∆2)

− t2 Tr(∆2)

2 Tr(∆2)
+O(t3

Tr(∆3)

[Tr(∆2)]3/2
). (38)

Combining Equations (37) and (38), we have

logEε[exp(itZ)] = − t
2

2
+O(t3

Tr(∆3)

[Tr(∆2)]3/2
). (39)

Since all eigenvalues of ∆ are less than 1, we have Tr(∆3)
Tr(∆2)

≤ 1. Analogous to (S.11), we have

Tr(∆2) ≥ 16

81
τ̂λ. (40)

Under the quasi-uniform design, we have Tr(∆2)→∞ as λ→ 0 with probability approaching
1 by Lemma 13 and Equation (40). Hence, the second term on the right-hand side of Equation (39) is
op(1). We thus conclude that

Eε[exp(itZ)]
P−→ exp(− t

2

2
).

Next, we show that

E[exp(itZ)] = EX
[
Eε[exp(itZ)]

]
→ exp(−t2/2)

for t ∈ (−1
2 ,

1
2). If not, there exists a subsequence of r.vX〈1〉nk , such that for ∀ε > 0, |E

X
〈1〉
nk

Eε exp(itZ)−

exp(−t2/2)| > ε. On the other hand, since Eε exp(itZ(X
〈1〉
nk ))

P−→ exp(−t2/2), which is bounded,
there exists a sub-sub sequence {X〈1〉nkl}, such that Eε exp(itZ(X

〈1〉
nkl))

a.s−−→ exp(−t2/2). Then by
dominate convergence theorem, E

X
〈1〉
nkl

Eε exp(itZ)→ exp(−t2/2), which is a contradiction. Under
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the uniform design, we can easily obtain E[exp(itZ)] → exp(− t2

2 ) by Lemma 14 and Equation
(40).

Thus Z is asymptotically normally distributed, and

T1 − Tr(∆)/n√
2 Tr(∆2)/n2

d−→ N(0, 1). (41)

Combining (35), (36) and (41), the theorem follows.

A.4. Proof of Theorem 8

Proof Under the alternative hypothesis, the statistic Tn,λ in Equation (26) can be decomposed into
three terms as follows

Tn,λ =
1

n
||Hε||22 +

1

n
||Hf11||22 +

2

n
fT11H

THε. (42)

where H = θ11K11M
−1(I − S(STM−1S)−1STM−1). Let W1 = 1

n ||Hε||
2
2, W2 = 1

n ||Hf11||22,
and W3 = 2

nf
T
11H

THε denote corresponding three terms on the right-hand side of Equation (42).
We now derive a lower bound for W2. By Lemma S.1, we have

1

n
||Hf11 − f11||22 ≤

1

n
||Hf11 − f11||22 +

1

n
||Hf10 − f10||22

=
1

n
||Hf10 +Hf11 − f10 − f11||22

= ||g̃∗ − g∗||2n ≤ cλ. (43)

Let c′ =
√
c, we consider the distinguishable rate

1

n
||f11||22 = ||f11||2n > c′2d2

n = c(λ+ σn,λ). (44)

where the inequality is satisfied since || · ||n dominates || · ||2 by Lemma S.2. The lower bound of
W2 is thus,

W2 =
1

n
||Hf11||22 =

1

n
||f11||22 −

1

n
||f11 −Hf11||22 ≥ cd2

n − cλ ≥ cσn,λ. (45)

where the first inequality is obtained by (43) and the second inequality is obtained through plugging
in Equation (44).

For the third term W3, it is seen that EW3 = 0. It is easy to verify that the eigenvalues of HHT

are all less than 1. Moreover,

EW 2
3 =

4

n2
E[fT11H

THεεTHTHf11] =
4

n2
(Hf11)THHT (Hf11)

≤ 4

n2
(Hf11)T (Hf11) =

4

n
W2.

By the Chebyshev’s inequality, for any ε > 0, we have

P(|W3| ≥
2ε−

1
2W

1
2

2√
n

) ≤ nEW 2
3

4ε−1W2
≤ ε.
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Consequently, there exists an n0, for any n > n0, we have

P{|W3| >
1

2
W2} ≤ P(|W3| ≥

2ε−
1
2W

1
2

2√
n

) ≤ ε. (46)

Now, we are ready to prove our theorem. By the triangle inequality, we have

|
W1 − µn,λ

σn,λ
+
W2 +W3

σn,λ
| ≥|W2 +W3

σn,λ
| − |

W1 − µn,λ
σn,λ

| (47)

≥| W2

σn,λ
| − | W3

σn,λ
| − |

W1 − µn,λ
σn,λ

|. (48)

If |W1−µn,λ|
σn,λ

≤ Cε, and |W3| ≤ 1
2W2 hold, in view of (47) and Equation (45), we have

|
W1 − µn,λ

σn,λ
+
W2 +W3

σn,λ
| ≥ 1

2
c− Cε.

Noting that W1 is identical to Equation (26), by Theorem 7, we have |W1−µn,λ|
σn,λ

= Op(1). That is for
any Cε > 0, there exists an s, for any n > s, we have

P(
|W1 − µn,λ|

σn,λ
> Cε) ≤ ε. (49)

Setting c ≥ 2(Cε + z1−α
2
) and N = max(n0, s), for any n > N , we have

P(φn,λ = 1) =P{
|W1 +W2 +W3 − µn,λ|

σn,λ
≥ z1−α

2
}

≥P{
|W1 − µn,λ|

σn,λ
≤ Cε, |W3| ≤

1

2
W2}

≥1− P{
|W1 − µn,λ|

σn,λ
> Cε} − P{|W3| >

1

2
W2}

≥1− 2ε,

where the second inequality is due to the Boole’s inequality (Casella and Berger, 2002) and the last
inequality is obtained by combining Equation (45) and Equation (49). Thus, we have

sup
H∗1

E(1− φn,λ|H∗1 is true) < δ,

where H∗1 = {f | f ∈ H∞model and ||f11||2 ≥ Cδ
√
λ+ σn,λ , dn}.
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Supplementary

Supplement to
Minimax Nonparametric Parallelism Test

This document contains some auxiliary lemmas, the proofs of Corollary 9 and Corollary 10 as
well as the proofs of Lemma 12, Lemma 13, Lemma 14, and Lemma 15 stated in Appendix.

• Section S.1 includes some auxiliary lemmas in proving Theorem 8.

• Section S.2 includes the proof of Corollary 9 and Corollary 10.

• Section S.3 includes the proof of Lemma 12, Lemma 13, Lemma 14, Lemma 15, Lemma S.1,
Lemma S.2, and Lemma S.4.

S.1. Some Auxiliary Lemmas in Proving Theorem 8

We first introduce several notations and lemmas and then start the main proof of Theorem 8.
Let g∗ = f10 + f11 and its estimator as

g̃∗ = R[M−1 −M−1S(STM−1S)−1STM−1]g∗. (S.1)

Lemma S.1 If ‖f‖H < 1 for any f ∈ H, as n→∞, λ→ 0 and λ ≥ n−1, we have

||g̃∗ − g∗||2n ≤ cλ,

where c is a constant, || · ||n is the empirical norm.

In the following Lemma S.2, we discuss the relationship between the empirical norm and L2

norm. Recall the definition of empirical norm and L2 norm are as follows:

||f ||2n =
1

2n

2∑
j=1

n∑
i=1

f2(x
〈1〉
i , x

〈2〉
j ) and ||f ||22 =

1∑
x〈2〉=0

∫ 1

0
f2(x〈1〉, x〈2〉)dω1.

Lemma S.2 Under the quasi-uniform design or the uniform design, for f : X1 × X2 → R and a
positive constant c, we have

||f ||2 ≤ c||f ||n,

i.e. the empirical norm of f dominates the L2 norm.

S.2. Proofs of Corollary 9 and Corollary 10

In order to find the optimal distinguishable rate, we need to bound the tail sum of the eigenvalues of
the empirical kernel matrix. We state the following two lemmas which give upper bounds for the
tail sum of the eigenvalues of the empirical kernel matrix under the quasi-uniform design and the
uniform design respectively.

39



XING, LIU, MA AND ZHONG

Lemma S.3 (Liu et al. (2019)) If 1/n < λ→ 0 and the quasi-uniform design is satisfied, then with
probability at least 1− 4e−τλ ,

n∑
i=τ̂λ+1

µ̂i ≤ Cτλµτλ ,

where C > 0 is an absolute constant.

Lemma S.4 If λ > 0 and the uniform design is satisfied, we have

n∑
i=τ̂λ+1

µ̂i ≤ Cτλµτλ ,

where C > 0 is an absolute constant.

Now we start the main proof of Corollary 9 and Corollary 10. The distinguishable rate is

dn =
√
λ+ σn,λ,

where σ2
n,λ = 2θ4

11σ
4 Tr(∆2)/n2. We now derive the order of σ2

n,λ. Since the eigenvalues of ∆ are
less than 1, and by Lemma 15, we have

Tr(∆2) ≤ Tr(∆) ≤ 4

(1− θd)2
(τ̂λ +

1

2λ

n∑
i=τ̂λ+1

µ̂i).

Proof Under the quasi-uniform design, applying Lemma A.1, we have

Tr(∆2) .
4

(1− θd)2
(τ̂λ +

1

2λ
λτλ)

with probability at least 1 − 4e−τλ . Combining the lower bound of Tr(∆2) in Equation (40) and
Lemma S.3, we have

Tr(∆2) � τλ, (S.2)

with probability at least 1− 4e−τλ − (n
2

2m−1
−2ε + n

1
2m−1 ) exp{−cn

2m−3
2m−1

+2ε}. Similarly, we have
Equation (S.2) satisfied under the uniform design by applying Lemma 14 and Lemma S.4.

Using Equation (S.2), we have

σ2
n,λ � λ−

1
2mn−2 � τλn−2. (S.3)

By the Cauchy-Schwartz inequality, the distinguishable rate dn =
√
λ+ σn,λ is minimized when

λ � σn,λ, i.e.,
λ � n−4m/(4m+1).

Thus we have the minimum distinguishable rate

d∗n � n−2m/(4m+1).

By Lemma S.2, this optimal distinguishable rate is achieved in the sense of L2 norm.

40



MINIMAX NONPARAMETRIC PARALLELISM TEST

S.3. Proofs of Auxiliary Results

S.3.1. PROOF OF LEMMA 12

Proof Write matrix R as

R = θ01K01 + θ11K11 =
1

2

[
K
〈1〉
1 θdK

〈1〉
1

θdK
〈1〉
1 K

〈1〉
1

]
,

where θd = θ01 − θ11. The inverse of M can be written as

M−1 =

[
1
2K
〈1〉
1 + λIn

θd
2 K

〈1〉
1

θd
2 K

〈1〉
1

1
2K
〈1〉
1 + λIn

]−1

,

[
A B
B A

]−1

=

[
A−1 +A−1B(A−BA−1B)−1BA−1 −A−1B(A−BA−1B)−1

−A−1B(A−BA−1B)−1 (A−BA−1B)−1

]
,

where A = 1
2K
〈1〉
1 + λIn, B = θd

2 K, and In denotes the n × n identity matrix. Note that S is a
2n× 2 matrix defined as S = (1n,1n)T . We thus have

STM−1S =

[
a b
b c

]
,

where

a = 1TA−11 + 1TA−1B(A−BA−1B)−1BA−11 + 2b− c,
b = −1TBA−1(A−BA−1B)−11 + 1T (A−BA−1B)−11,

c = 1T (A−BA−1B)−11.

Consequently,

S(STM−1S)−1ST =
1

ac− b2

[
c11T (c− b)11T

(c− b)11T (a+ c− 2b)11T

]
=

1

ac− b2

[
c11T (c− b)11T

(c− b)11T c11T

]
,

where the second equality holds by the fact a− 2b = 0 and Woodbury matrix identity.
Note that f10 = (f10(x

〈1〉
1 ), . . . , f10(x

〈1〉
n ), f10(x

〈1〉
1 ), . . . , f10(x

〈1〉
n )). Let

(f10(x
〈1〉
1 ), . . . , f10(x〈1〉n ) , hT .

Therefore, we have

K11M
−1(In − S(STM−1S)−1STM−1)f10

=
1

2

[
K
〈1〉
1 −K〈1〉1

−K〈1〉1 K
〈1〉
1

]
(M−1 − 1

ac− b2
M−1

[
c11T (c− b)11T

(c− b)11T c11T

]
M−1)

[
h
h

]
.
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Since bothM−1 and 1
ac−b2M

−1

[
c11T (c− b)11T

(c− b)11T c11T

]
M−1) are symmetric matrices and their

diagnonal entries are identical, we have[
h∗

h∗

]
, (M−1 − 1

ac− b2
M−1

[
c11T (c− b)11T

(c− b)11T c11T

]
M−1)

[
h
h

]
.

Simple algebra yields K11M
−1(In − S(STM−1S)−1STM−1)f10 = 0.

S.3.2. PROOF OF LEMMA 13

Proof Under the quasi-uniform design, X〈1〉1 ,. . . , X〈n〉n are i.i.d with distribution ω〈1〉. Therefore, by
Theorem 3 in Braun (2006), for 1 ≤ i ≤ n and i ≤ r ≤ n, simple algebra yields

P(|µ̂i − µi| ≤ cmµi + µr + Λr) ≥ 1− r(r + 1) exp{− nc2
m

2C4r2
},

where Λr =
∑∞

i=r+1 µi, C is an absolute constant, and cm is a constant depending solely on m.
Since the eigenvalue µi has the polynomial decay rate i−2m, we have

Λr �
∞∑

i=r+1

i−2m.

For m > 1/2,
∞∑

i=r+1

i−2m ≤
∫ ∞
r

x−2mdx =
r1−2m

2m− 1
= O(r1−2m).

Let r = n1/(2m−1)−ε, we have Λr + µr = O(n2εm−1−ε) = o(µi) for i = 1, . . . , n1/2m−ε. Next,
we have, for any i = 1, . . . , n

1
2m
−ε, the empirical eigenvalue µ̂i satisfies

|µ̂i − µi| ≤ cmµi,

with probability at least

1− (n
2

2m−1
−2ε + n

1
2m−1 ) exp{−cn

2m−3
2m−1

+2ε}, (S.4)

where c = c2m
2C4 , cm is a constant only related to m, and M is an absolute constant. To ensure

the probability in Equation (S.4) goes to 1, we further require m > 3/2. Thus, for λ > 1/n and
m > 3/2,

τ̂λ � τλ

with probability at least 1− (n
2

2m−1
−2ε + n

1
2m−1 ) exp{−cn

2m−3
2m−1

+2ε}.
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S.3.3. PROOF OF LEMMA 14

Proof Considering H〈1〉 as the homogeneous Sobolev space, the kernel function K〈1〉1 can be
explicitly written as

K〈1〉1 (x, y) = 2

∞∑
i=1

cos(2πk(x− y))

(2πk)2m
.

Under the uniform design, we have the X〈1〉1 , . . . , X
〈1〉
n evenly distributed on [0, 1]. Without loss of

generality, we assume that X〈1〉1 < · · · < X
〈1〉
n . Therefore, the ii′th entry of kernel matrix K〈1〉1 is

K〈1〉1 (x
〈1〉
i , x

〈1〉
i′ ) which is a symmetric circulant matrix of order n (Shang and Cheng, 2017) with

eigenvalues

µ̂∗i =

{∑∞
k=1

1
[2π(kn−i)]2m +

∑∞
k=0

1
[2π(kn+i)]2m

if 1 ≤ i ≤ n− 1

2
∑∞

k=1
1

(2πkn)2m
if i = n

. (S.5)

Note that µ̂∗i is a re-arrangement of µ̂i. When m > 1/2, simple calculation yields

1

[2π(n− i)]2m
+

1

(2πi)2m
+ 2cm(2πn)−2m ≤µ̂∗i

≤ 1

[2π(n− i)]2m
+

1

(2πi)2m
+ 2c̄m(2πn)−2m,

(S.6)

for i = 1, . . . , n− 1, and
µ̂∗n = 2c̄m(2πn)−2m,

where cm :=
∑∞

k=1 k
−2m, and c̄m =

∑∞
k=2 k

−2m. By Equation (S.6), we have µ̂∗i � µi for 1 ≤
i ≤ n

2 and µ̂∗i � µn−i for n2 ≤ i ≤ n. Since {µ̂}ni=1 are obtained by ordering {µ̂∗i }ni=1 decreasingly,
we have µi � µ̂i, and consequently,

τλ � τ̂λ

for any λ > 0.

S.3.4. PROOF OF LEMMA 15

Proof
Note that the kernel matrix K〈1〉1 in Equation (A.1) has the spectral decomposition K〈1〉1 =

UDUT , where the eigenvector matrix U is a n × n unitary matrix and the eigenvalue matrix
D = Diag{µ̂i} is a diagonal matrix with eigenvalues µ̂1 ≥ µ̂2 ≥ · · · ≥ µ̂n. Correspondingly, we
have the following decomposition,

K11 =
1

2

[
U 0
0 U

] [
D −D
−D D

] [
UT 0
0 UT

]
,

M =
1

2

[
U 0
0 U

] [
D + 2λIn θdD
θdD D + 2λIn

] [
UT 0
0 UT

]
,
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where In is the n× n identity matrix, and θd = θ01−θ11. LettingE = D+2λIn = Diag{µ̂i+2λ}
and F = θdD = Diag{θdµ̂i}, we have

K11M
−1 =

[
U 0
0 U

] [
D −D
−D D

] [
E F
F E

]−1 [
UT 0
0 UT

]
.

Using the inverse of block matrix, we have[
D −D
−D D

] [
E F
F E

]−1

,

[
V11 V12

V21 V22

]
where

V11 = DE−1 + (D +DE−1F )(E − FE−1F )−1FE−1,

V12 = −(DE−1F +D)(E − FE−1F )−1,

V21 = −V12, (S.7)

V22 = −V11. (S.8)

Consequently,

∆ = M−1K2
11M

−1 =

[
U 0
0 U

] [
V11 V12

V21 V22

]T [
V11 V12

V21 V22

] [
UT 0
0 UT

]
.

We thus have

Tr(∆) = Tr(M−1K2
11M

−1) = Tr(

[
V11 V12

V21 V22

]T [
V11 V12

V21 V22

]
)

= Tr

[
V T

11V11 + V T
21V21 V T

11V12 + V T
21V22

V T
12V11 + V T

22V21 V T
12V12 + V T

22V22

]
. (S.9)

By Equation (S.7) and Equation (S.8), we have

V T
11V11 + V T

21V21 = V T
12V12 + V T

22V22.

Simple algebra yields
V T

11V11 + V T
21V21 = 2V T

11V11.

Therefore, we have
Tr(∆) = 4 Tr(V T

11V11). (S.10)

Notice that D, E, F are diagonal matrices, we have

Tr(∆) = 4 Tr(V T
11V11) ≥ 4 Tr (D2E−2).

Since

D2E−2 = Diag{ µ̂2
i

(µ̂i + 2λ)2
},

we have

Tr(∆) ≥ 4
n∑
i=1

µ̂2
i

(µ̂i + 2λ)2
≥ 4

τ̂λ∑
i=1

µ̂2
i

(µ̂i + 2λ)2
, (S.11)
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where τ̂λ is the effective dimension for kernel matrix K11. For the any i < τ̂λ, we have µ̂i
µ̂i+2λ >

1
3 .

Thus we have
Tr(∆) ≥ 4

9
τ̂λ.

Now we shall prove the upper bound for Tr(∆). Since Tr(∆) has the expression in Equation
(S.10), we expand V11 as

V11 = DE−1 +DE−1(F (E − FE−1F )−1FE−1 + (E − FE−1)−1F ).

The ith diagonal entry of F (E − FE−1F )−1FE−1 is

Diagi(F (E − FE−1F )−1FE−1) =
θ2
dµ̂

2
i

(µ̂i + 2λ− θ2dµ̂
2
i

µ̂i+2λ)(µ̂i + 2λ)

≤
θ2
d

1− θ2
d

, (S.12)

and the ith diagonal entry of (E − FE−1)−1F is

Diagi((E − FE−1)−1F ) =
θdµ̂

µ̂i + 2λ− θ2dµ̂
2
i

µ̂i+2λ

≤ θd
1− θ2

d

. (S.13)

Combining Equation (S.12) and Equation (S.13), we have the ith diagonal entry of V11

Diagi(V11) ≤ (1 +
θ2
d

1− θ2
d

+
θd

1− θ2
d

Diagi(DE
−1) =

1

1− θd
Diagi(DE

−1).

Since the lower diagonal block of DE−1 is identical to the upper diagonal block, we only need
to bound the trace of DE−1. We have

Tr(D2E−2) =

τ̂λ∑
i=1

µ̂2
i

(µ̂i + 2λ)2
+

n∑
i=τ̂λ+1

µ̂2
i

(µ̂i + 2λ)2

≤
τ̂λ∑
i=1

µ̂i
µ̂i + 2λ

+
n∑

i=τ̂λ+1

µ̂i
µ̂i + 2λ

≤τ̂λ +
1

2λ

n∑
i=τ̂λ+1

µ̂i.

Thus we have Tr(∆) ≤ 4
(1−θd)2

(τ̂λ + 1
2λ

∑n
i=τ̂λ+1 µ̂i).

S.3.5. PROOF OF LEMMA S.1

Proof By the functional decomposition in Equation (10), we have

||f10 + f11||2H10⊕H11
≤ ||f ||2H < 1. (S.14)
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For any function g inH10 ⊕H11, we write g = ξT c̃ + ζ(·), where ζ(·) ∈ H10 ⊕H11 is orthogonal
to ξ. Moreover,

||f10 + f11||2H10⊕H11
=||ξT c̃||2H10⊕H11

+ ||ζ(·)||2H10⊕H11

≥nc̃TRc̃ =
1

n
(nc̃TR)R−1(nRc̃)

=
1

n
g∗TR−1g∗. (S.15)

Combining Equation (S.14) and Equation (S.15), we have

1

n
g∗TR−1g∗ < 1. (S.16)

By Equation (S.1), we have

||g̃∗ − g∗||2n =
1

n
||g∗ −RM−1g∗ +RM−1S(STM−1S)−1STM−1g∗||22

=
1

n
g∗T (I −RM−1)2g∗ +

1

n
||RM−1S(STM−1ST )−1STM−1g∗||22.

Noting that M = R + λIn, the eigenvalues of In −R(R + λIn)−1 are all smaller than 1, and the
rank of RM−1S(STM−1ST )−1STM−1 is 2, we have

||g̃∗ − g∗||2n ≤
1

n
g∗(I −R(R+ λI)−1)g∗ +O(

1

n
)

≤λ+O(
1

n
),

where the last inequality holds by applying Woodbury matrix identity,

(R+ λIn)−1 = R−1 −R−1(
1

λ
In +R−1)−1R−1 ≥ R−1 − λR−2,

and Equation (S.16). The proof is thus completed.

S.3.6. PROOF OF LEMMA S.2

Proof Under the quasi-uniform design, Theorem 3.1 of Eggermont and LaRiccia (2001)(page
384, Eggermont and LaRiccia (2001)) implies that || · ||ω〈1〉mh norm is equivalent to || · ||n for
any fixed x〈2〉. The || · ||ω〈1〉hm, which is defined as ||f(x〈1〉, 0)||2

ω〈1〉mh
= ||f(x〈1〉, 0)||2

L2(ω〈1〉)
+

h2m||f(x〈1〉, 0)(m)||2, trivially dominates the || · ||L2(ω〈1〉) norm. Since x〈2〉 can only take the values
0 or 1, we have that || · ||n dominates || · ||2, i.e. there exists a positive constant c such that
||f ||2 ≤ c||f ||n.

Under the uniform design, Lemma 2.27 in Eggermont and LaRiccia (2001) states that || · ||n
dominates || · ||2 for x〈1〉.
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S.3.7. PROOF OF LEMMA S.4

Proof Under the uniform design, the empirical eigenvalues could be calculated by Equation (S.5).
By the definition of τ̂λ, we have

n∑
i=τ̂λ+1

µ̂i =
∑

{i|µ̂∗i<λ}

µ̂∗i . (S.17)

Since the population eigenvalues are {(2πi)−2m}∞i=1, we calculate the population efficient dimension
as τλ = (λ)−1/2m/2π. By the inequalities Equation (S.6), we have µ̂∗i ≥ λ for i = 1, . . . , τλ or
i = n− τλ, . . . , n. We can bound the term in Equation (S.17)

∑
{i|µ̂∗i<λ}

µ̂∗i ≤
n−τλ∑
i=τλ

µ̂∗i .

By the upper bound of µ̂∗i given in Equation (S.6), we have

n−τλ∑
i=τλ

µ̂∗i ≤ Cτλµτλ ,

which completes the proof.
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