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Abstract—Deep learning has an impressive performance of
object detection and classification for autonomous vehicles. Nev-
ertheless, the essential vulnerability of deep learning models to
adversarial samples makes the autonomous vehicles suffer severe
security and safety issues. Although a number of works have been
proposed to study adversarial samples, only a few of them are
designated for the scenario of autonomous vehicles. Moreover, the
state-of-the-art attack models only focus on a single data source
without considering the correlation among multiple data sources.
To fill this blank, we propose two multi-source adversarial sample
attack models, including the parallel attack model and the fusion
attack model to simultaneously attack the image and LiDAR
perception systems in the autonomous vehicles. In the parallel
attack model, adversarial samples are generated from the original
image and LiDAR data separately. In the fusion attack model, the
adversarial samples of image and LiDAR can be generated from
a low-dimension vector at the same time by fully exploring data
correlation for data fusion and adversarial sample generation.
Through comprehensive real-data experiments, we validate that
our proposed models are more powerful and efficient to break
down the perception systems of autonomous vehicles compared
with the state-of-the-art. Furthermore, we simulate possible
attack scenarios in Vehicular Ad hoc Networks (VANETs) to
evaluate the attack performance of our proposed methods.

Index Terms—Adversarial Examples, Multi-source Data, Gen-
erative Adversarial Networks, Vehicular Ad hoc Networks

I. INTRODUCTION

AUTONOMOUS driving techniques have been experienc-
ing profound innovation and is gradually being applied to

the automotive industry. According to [1], by the end of 2020,
the market share of autonomous vehicles is going to be over
40%, which will bring a value of more than 61 billion dollars.
This explosive progress is benefited from the sophisticated
deep learning models: deep neural network structure and
powerful computation capability. Even autonomous vehicles
are so successful, they are still not perfect. As studied in
prior research, deep neural networks, which are utilized in the
perception systems of autonomous vehicles for object detec-
tion and classification, are vulnerable to adversarial samples
that can mislead object detection and classification by slightly
modifying the original data [2]. Once the autonomous vehicles
are attacked by adversarial samples, the incorrect detection
or classification will cause not only system security issues
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but also safety issues on the road (e.g., traffic accidents),
resulting in severe consequences to both the society and
individuals [3], [4]. Therefore, studying adversarial exam-
ple1 attack can help us understand perception vulnerabilities,
develop defense strategies, and improve security and safety
performance for autonomous vehicles.

However, the existing works on adversarial examples have
a major limitation: they only use single data source to gen-
erate adversarial samples and ignore the correlation among
multiple data sources [5], [6], [7], [8], [9], [10], [11], [12].
Actually, correlated data sources can be exploited to perform
accurate prediction, detection and classification; and thus only
modifying one data source might not work if other related
data sources are used as well. In the autonomous vehicles,
object detection employs two main kinds of data, including
image/video data captured by onboard cameras and LiDAR
data collected by LiDAR sensors [13]. As shown in Fig. 1,
the image data and LiDAR data are input into the perception
systems and classified as different objects, such as vehicles and
buildings; especially, in Fig. 1(c), the semantic segmentation
is labeled for the image and yellow boxes are labeled for the
LiDAR data. Since both the image and LiDAR data can local-
ize vehicles, attacking either the image model or the LiDAR
model is not enough to defeat the entire perception system,
which is illustrated in our experiments in Section IV-D.

Motivated by the above analysis, in this paper, we aim
to develop multi-source adversarial sample attack models
towards both the image and the LiDAR models such that
neither the image-based nor the LiDAR-based perception
model obtains correct detection on their inputs. Unavoidably,
developing the desired attack models is a challenging task.
(i) In most of the existing works, adversarial samples are
generated via optimization, which is time inefficient. Thus, a
more efficient method is needed for the autonomous vehicles
scenario. (ii) Multi-source adversarial sample attack has never
been studied for autonomous vehicles and even any other
applications. So, how to produce adversarial samples in such a
multi-source scenario is a worth-thinking problem. (iii) Multi-
source adversarial sample attack requires to successfully attack
multiple data sources with imperceptible modification at the
same time. Note that the image and LiDAR models can help
each other to infer the same label (e.g., vehicles). Thus,
a qualified adversarial sample should be able to make the
involved victim perception system predict incorrectly on the
same label. (iv) Particularly, in autonomous vehicles, multiple

1In this paper, adversarial sample and adversarial example are interchange-
able.
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(a) Image data captured by camera (b) LiDAR data captured by LiDAR sensor (c) Joint detection of image and LiDAR data

Fig. 1: An example of multi-source perception systems in autonomous vehicles. In Fig. 1(c), the blue color segmentation is
classified as detected vehicles by image perception model, and the yellow cubic boxes are detected as vehicles by LiDAR
perception model.

data sources have different data formats. Before launching
attack, we should preprocess these heterogeneous data sources
properly for data fusion, which is a non-trivial problem. (v)
Moreover, in the Vehicular Ad hoc Networks (VANETs), many
factors have influences on the implementation of adversarial
sample attack, which is missing in literature but is necessary
for us to investigate the attack performance in real applications.

In order to tackle these challenges, we carry out a series
of research activities. To enhance the time efficiency of attack
implementation, we utilize the generative adversarial networks
(GANs) [14] and variational autoencoder (VAE) [15] as the
generators. To attack different multi-source systems, we an-
alyze two mainstream industrial pipelines in the current per-
ception systems of autonomous vehicles and then elaborately
design two attack models, including parallel attack model
and fusion attack model. Under the parallel attack model,
adversarial samples are generated from the original image
and LiDAR data separately. Under the fusion attack model,
by employing the correlation between the image and LiDAR
data, an adversarial image sample and an adversarial LiDAR
sample can be generated from a same low-dimension vector
simultaneously, which is a technical breakthrough in sample
generation compared with the traditional attack models. In
the experiments, the real datasets, the state-of-the-art, and
the simulated Vehicle-to-Vehicle (V2V) communication are
employed to investigate the performance of our proposed
attack models. Our multi-fold contributions are summarized
below.

• To the best of our knowledge, this paper is the first work
to investigate multi-source adversarial example attack in
literature, especially for the autonomous vehicles.

• Two different multi-source adversarial example attack
models are proposed to simultaneously attack the image
and LiDAR models, where the correlation between the
image and the LiDAR data is utilized for data fusion and
adversarial example generation.

• Extensive experiments are conducted to validate the supe-
riority of our proposed attack models over the traditional
single-source adversarial sample attack and evaluate the
attack performance in V2V communication scenario.

The rest of this paper is organized as follows. Section II
introduces the related works on adversarial examples. The
details of our attack models are presented in Section III. After
analyzing the experiment results in Section IV, the paper is
concluded in Section V.

II. RELATED WORKS

A. Adversarial Examples
Adversarial examples have attracted lots of research inter-

ests to invade machine learning models since they were found
by Szegedy et al. [16]. According to the prior knowledge hold
by attackers, the adversarial sample attack can be categorized
into two classes: white-box attack and black-box attack. Under
the white-box attack, attackers have full knowledge about the
parameters of target models; while in the black-box attack,
they do not [5], [6]. The methods of generating adversarial
samples include optimization-based method and generation-
based method [7]. In the optimization-based methods, the
problem of finding perturbation is formulated as an optimiza-
tion problem and can be solved by different optimization
solvers [2], [17], [18], [19]. In the generation-based methods,
the typical process is training a neural network with specific
loss functions such that the outputs of the network are ad-
versarial samples [8], [9], [20], [21]. Although these existing
attack models can work well on single-label datasets, their
performance on multi-label datasets is unknown. What’s more,
these attack models might not be applicable in the street view
data that has too many different labels.

B. Adversarial Examples in Autonomous Vehicles
Due to the adoption of deep neural network in the perception

systems, autonomous vehicles are also vulnerable to adversar-
ial example attack [22], [23]. As an important component of
the perception system, street view image semantic segmen-
tation has become a major attack target. Hendrik et al. [10]
designed a universal noise to attack certain class segmentation
based on gradient dependent optimization method. Fischer
et al. [11] proposed a method to find adversarial samples
for specific class of objects under white-box by changing
parameters of classifier. Chen et al. presented a robust physical
adversarial attack on Faster R-CNN object detector [12], which
can find an optimal modification to add into a real-world
images. All of the above attack models use optimization-based
methods and thus are not time efficient to be implemented for
the autonomous vehicles.

As another important sensory data of autonomous vehicles,
the LiDAR data also has been studied. Cao et al. [24], [25]
designed two physical methods to attack the LiDAR data
so that the LiDAR-based system predicts incorrectly on its
input data. In [26], adversarial samples were produced based
on LiDAR range images with traditional image processing
methods. But there is no work on the digital adversarial
samples for the LiDAR 3D points cloud data.
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C. Adversarial Attack Implementation

Currently, there are two mainstream methods of implement-
ing adversarial sample attack towards machine learning mod-
els: digital implementation and physical implementation. Dig-
ital implementation has the advantages of lightweight, easy-
implementation and high efficiency, which commonly assumes
that attackers can access the target models and feed the digital
data directly into them. Various digital adversarial sample
attacks have been designed for many applications, including
image classifier [16], [18], [19], object detection/semantic
segmentation [11], [27], [28], and reinforcement learning [29].

Physical adversarial sample attack has been investigated in
engineering field. By printing out crafted adversarial exam-
ples and re-taking them using physical devices [17], [30],
[31], [24], [25], the physical adversarial attack seems more
realistically applicable. But, during the execution of physical
attack, there are a lot of uncertain factors hindering the
performance of adversarial examples, such as limited training
samples, changing environment, resolution changes and angles
of physical devices. Those factors require expensive manual
efforts to control and conduct physical attack experiments,
which is hardly possible in real-time scenarios.

Compared with the state-of-the-art, the most significant
advance of this paper is that both the image and LiDAR data
are employed to perform digital adversarial example attack
towards the perception systems in autonomous vehicles. Such
a type of multi-source adversarial example attack has more
power to destroy the perception systems and lead to more
serious consequences.

III. METHODOLOGY

In this paper, we focus on digital adversarial sample attack
where attackers can launch attacks with prior knowledge such
as sufficient training dataset, black-box of pre-trained target
models, and others. In our proposed attack models, we assume
attackers have enough power to obtain prior knowledge and
inject the generated adversarial samples into the models that
are equivalent to the perception models of victim autonomous
vehicles. For example, a driver of autonomous vehicles could
attack other vehicles. The consideration of this assumption
comes from two important facts: (i) it is hard or imprac-
tical for users or defenders to estimate an attacker’s actual
power/capability; and (ii) with the presence of a powerful
attacker, we can deeply understand the vulnerability of per-
ception systems in autonomous vehicles and then help design
strong defense strategies.

A. Adversarial Scenarios

Cooperative data sharing and communication have been
treated as promising solutions helping autonomous vehicles
obtain more comprehensive views and improve detection per-
formance [32]. The communication capacity can be supported
by Vehicular Ad hoc Networks (VANETs) [33], [34], where
autonomous vehicles can connect with each other and Road
Side Infrastructure (RSU) based on wireless local network
technology. Vehicular communications in VANETs contain

Fig. 2: An example of vehicular communications in VANETs.

three types, including Vehicle-to-Vehicle (V2V), Vehicle-
to-Infrastructure (V2I), and Infrastructure-to-Vehicle (I2V),
which benefit self-driving a lot but also face security issues.

A possible adversarial scenario is shown in Fig. 2, where
a malicious RSU and vehicles can attack on the perception
systems of victim vehicles by sending manipulated data via
vehicular communications. In VANETs, RSU has enough com-
putational power to perform complex calculation and sufficient
space to store vehicular sensory data (e.g. camera data and
LiDAR data) uploaded from nearby vehicles through V2I
communication. Those data can be used as training data by the
malicious RSU to extract prior knowledge. Then, by utilizing
adversarial sample generation methods, the malicious RSU can
inject the paired adversarial examples that consist of image
and LiDAR data into target autonomous vehicles through
I2V communication. On the other hand, malicious vehicles
can launch adversarial sample attack towards their nearby
victim vehicles by injecting adversarial samples through V2V
communication in a data-sharing manner.

Notably, compared with the V2I/I2V attack scenario, the
V2V attack scenario is more practical in real applications. (i)
Any autonomous vehicle in VANETs can act as an attacker;
in contrast, deploying a malicious RSU might not be an
easy job. (ii) The malicious vehicles do not require any
training data from the victim vehicles, because they already
have enough sensory data for training inside their perception
systems. (iii) The malicious vehicles can generate adversarial
samples either with or without the original data from the
victim vehicles. Since the malicious vehicles could be close
to the victim vehicles within the V2V communication range,
the captured data of the malicious and victim vehicles has
a certain (high) similarity. Thus, the malicious vehicles can
generate adversarial samples by using their own sensory data
locally.

B. Problem Statement

Let f(I) and g(F ) be the image semantic segmentation
model and the LiDAR detection model, where I and F are
image and LiDAR data of street view, respectively. In this
paper, the objects in street view, including image and LiDAR
data, are classified into two categories: (1) target class that
are vehicles, denoted by yt, and (2) non-target class that are
the objects except for vehicles. In the semantic segmentation
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TABLE I: Notations & Definitions

Notation Definition

I real image data
I′ generated image data I′ = GI(I)
F real LiDAR data
F ′ generated LiDAR data F ′ = GF (F )
GI adversarial sample generator for image data
DI discriminator for image data
GF adversarial sample generator for LiDAR data
DF discriminator for LiDAR data
f image data detection model
g LiDAR data detection model
LI
GAN GAN loss for image data

LF
GAN GAN loss for LiDAR data

LI′
V AE VAE loss for image data

LF ′
V AE VAE loss for LiDAR data

LP p-norm loss for image data
LZ latent feature loss for both image and LiDAR data
LADV adversarial loss
LImage entire loss for image data
LLiDAR entire loss for LiDAR

model f(I) with target class yt, Iyt
= {(i, j)|f(I) = yt} rep-

resents the pixels corresponding to vehicles, and the remaining
part of an image is denoted by Ibg = I − Iyt

. In the LiDAR
model g(F ), the targeted class “vehicles” yt is indicated by the
area bounded within yellow cubic boxes as shown in Fig. 1(c).

The goal of this paper is to attack the image and LiDAR
perception models of autonomous vehicles by modifying both
the image and LiDAR data in a black-box setting such that
the victim vehicles mis-classify the target class into the non-
target class while classifying the non-target class correctly.
That is, except the vehicles, the victims are expected to classify
other objects correctly. The assumption of black-box setting
has been widely adopted by prior works [25], [12]. Formally,
our proposed problem can be defined as follows.

Definition 1. (Problem of Multi-Source Adversarial Exam-
ple for Autonomous Vehicles) Given a semantic segmentation
model f(I) with image data I and a LiDAR detection model
g(F ) with LiDAR data F , the corresponding adversarial
samples, I ′ and F ′, are outputs with the following properties:

(1) for I ′, argminI′ ∥I − I ′∥p, s.t. (i) ∀ pixel ∈
I ′yt

, f(I ′yt
) ̸= yt, and (ii) ∀ pixel ∈ I ′bg, f(I

′
bg) = f(Ibg);

(2) for F ′, argminF ′ ∥F − F ′∥p, s.t. f(F ′) ̸= yt;
where ∥ · ∥p is the p-norm.

For our problem, it is unbearably inefficient to implement
the (existing) optimization-based methods on the high di-
mensional complex street view data. Thus, to speed up the
process of generating adversarial samples in the autonomous
vehicle scenario, we utilize a generation-based approach that
is more efficient than the optimization-based method once the
generative model has been trained.

On the other hand, since one single sensor cannot fulfill
the requirement of reliable object detection in complex ur-
ban environments, multi-sensor fusing approaches have been
widely adopted in autonomous vehicles [35]. Currently, there
are two mainstream techniques used in the perception systems
of autonomous vehicles for data fusion: low-level fusion
(LLF) and high-level fusion (HLF) [36]. Both two fusion

(a) Image pipeline of parallel attack model

(b) LiDAR pipeline of parallel attack model

Fig. 3: Framework of our parallel attack model.

methods are dedicated to handle the multi-sensor data from
camera, LiDAR, and radar, etc. for improving the perception
performance of autonomous vehicles. Particularly, the LLF-
style method performs multiple detection pipelines on multiple
heterogeneous sensory data separately and then integrates the
result of each pipeline, where the sensory data usually have
different characteristics that need to be considered for effective
result combination. While the HLF-style method aims to
find a unified representation for multi-sensory data regardless
of sensor type, which should contain essential information
of heterogeneous sensory data, such as shape, position, and
semantic information, and so on. In the HLF-style method
proposed in [36], 3D LiDAR data and 2D image data are
preprocessed and transferred into an 2D feature space through
projection and calibration.

To achieve our goal, we propose a parallel attack model to
attack the LLF-style perception systems and a fusion attack
model to attack the HLF-style perception systems. The main
notations are summarized in Table I, and the details of our
attack models are described in Section III-C and Section III-D.

C. Parallel Attack Model

In our problem, the objective is to generate adversarial
samples that have a distribution similar to the original data
subject to the requirement of incorrect classification on the
target class objects but correct classification on the non-target
class objects. For the autonomous vehicles that adopt the LLF-
style perception systems with camera sensors and LiDAR
sensors, we design a parallel attack model, in which we attack
the image model f(·) and the LiDAR model g(·) by using
two separate pipelines to mislead their detection as shown in
Fig. 3. The pseudo code of sample generation algorithm of
our parallel attack is presented in Algorithm 1. The design is
detailed as follows.

1) Image Data Pipeline: As shown in Fig. 3(a), three neural
networks are deployed in the image data pipeline, including a
generator GI , a discriminator DI , and a semantic segmentation
model f(·). Here f(·) is the victim image model we intend
to attack, and its output for an image I is f(I) = y, where
y has the same shape as I , and each pixel of y is the class
probability of this pixel. The generator GI takes real image
data I as input to produce an adversarial sample I ′ = GI(I).
For I ′, we also have a predicted label y′ = f(I ′) for each
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Algorithm 1: Sample Generation Algorithm of Parallel
Attack Model

Input: training iteration T , discriminator’s training steps k,
minibatch size m, and real data I (resp. F )

Output: adversarial sample generator G∗
I (resp. G∗

L)
1 for t < T do
2 for k steps do
3 Input m samples of I (resp. F ) into GI (resp. GF )

to generate I ′ (resp. F ′);
4 Feed I ′ (resp. F ′) and other m samples of I (resp.

F ) into DI (resp. DF ) and update DI (resp. DF )
to maximize LI

GAN (resp. LF
GAN ) by gradient:

5 ∇DIL
I
GAN (resp. ∇DF L

F
GAN );

6 end
7 Select m samples of I (resp. F );
8 Use GI (resp. GF ) to generate I ′ (resp. F ′) from the

selected m samples;
9 Feed the selected m samples and I ′ (resp. F ′) into DI

and f (resp. DF and g) for updating GI (resp. GF ) to
minimize LImage (resp. LLiDAR) by gradient:

10 ∇GILImage (resp. ∇GF LLiDAR).
11 end

pixel. Then both I and I ′ are fed to discriminator DI and
model f(·) for training.

For the requirement of generating adversarial samples, we
aim to minimize the loss function in Eq. (1).

LADV = EI,I′ [L(f(Ibg), f(I
′
bg))− L(f(Iyt), f(I

′
yt))], (1)

where L(·) is the cross entropy of the distribution of prediction
on the original data I and the distribution of prediction on
the generated data I ′. During the training process, a smaller
L(f(Ibg), f(I

′
bg)) indicates a higher similarity between Ibg and

I ′bg for imperceptible modification on the non-target classes,
while a bigger L(f(Iyt

), f(I ′yt
)) means a larger difference

between Iyt
and I ′yt

for adversarial attack on the target class.
When L(f(Iyt), f(I

′
yt
)) becomes large enough, Iyt and I ′yt

will be classified differently, resulting in a successful attack.
To ensure the desired attack ability while hiding the attack

behavior, the output image I ′ of GI is expected to have a
different prediction on the target class yt but be close to the
original image I . That is, I and I ′ should be different at the
pixels corresponding to the target class but have almost the
same underlying image structure. For this purpose, we adopt
the “U-Net” based structure whose capability to process com-
plex image data has been confirmed in previous research [37].
In “U-Net”, an encoder is used to compress the input image,
and a decoder is used to recover the output image from middle
hidden layer, where the hidden layer preserves the common
underlying structure of the input and output. Also, there exist
many effective skip links between the ith layer of encoder
and the (n− i)th layer of decoder, which performs copy and
corp operations to compel the output image to retain more
information of the input.

Then, the discriminator DI decides whether its input data
is real or fake with the following loss function:

LI
GAN = EI [logDI(I)] + EI′ [log(1−DI(I

′))]. (2)

This loss function is used to guarantee the generated images
are as realistic as possible. In order to maximize Eq. (2), DI

is encouraged to assign a large value to the real data I and a
small value to the generated adversarial sample I ′.

Besides, one more loss function is needed to control the
magnitude of modification on the original data. To quantify
the distance between the real data and the generated data, a
measurement is defined in Eq. (3).

LP = EI,I′∥I − I ′∥p. (3)

In this paper, we use the L2 norm distance because the
performance of L2 is better than that of others.

To sum up, we fulfill the adversarial sample attack by
minimizing Eq. (1), make the adversarial sample realistic
by maximizing Eq. (2), and meet the need of imperceptible
modification by minimizing Eq. (3). For our image generator
GI , the overall loss function can be combined as

LImage = LI
GAN + λ1LADV + λ2LP , (4)

where λ1 and λ2 are hyper-parameters to control the loss scale
of LADV and LP , respectively. After the training process is
terminated, we can obtain an optimal image generator, i.e.,

G∗
I = argmin

GI

max
DI

[LI
GAN + λ1LADV + λ2LP ], (5)

which is able to generate adversarial samples from any original
data efficiently. With G∗

I , attackers can produce adversarial
samples I ′ = G∗

I(I) to invade the image model f(·) in the
perception systems on autonomous vehicles.

2) LiDAR Data Pipeline: From Fig. 1, one can observe
that attacking the image model only is not enough to invade
the entire perception system of autonomous vehicles. So, we
also need to compromise the LiDAR sensors simultaneously.
The LiDAR data is represented by the format of 3D points
cloud, which can not be directly used in deep learning model.
Instead, the 3D points cloud data need to be transferred to
3D voxels for further analysis. VoxelNet is one of the most
popular methods of detecting objects through 3D voxels, in
which the 3D voxels are transformed into the unified feature
representations through voxel feature encoding layer [38].
These condensed feature representations, F , are used as input
features for vehicle detection from LiDAR data.

In order to attack the LiDAR model, we should find adver-
sarial feature representations, F ′, that can mislead detection
results on vehicles but is close to F . Similar to the design
of the image data pipeline, the LiDAR data pipeline also has
three networks: a VAE-based generator GF , a discriminator
DF , and a LiDAR model g(·). As depicted in Fig. 3(b),
the generator GF takes the real LiDAR data F as input and
produces adversarial sample F ′ = GF (F ). Then both F and
F ′ are fed to the discriminator DF and the model g(·) for
training.

The VAE-based generator GF is built from an encoder Enc
and a decoder Dec with a loss function in Eq. (6).

LF ′
V AE = −Ez∼q(z|F )[log p(F

′|z)] +KL(q(z|F )∥p(z)), (6)

where z is a predefined low-dimensional vector and KL(·∥·) is
the Kullback-Leibler divergence between q(z|F ) and p(z). To
improve the quality of the generated feature F ′, we integrate
the VAE-based generator GF and the discriminator DF in
adversarial training, which can induce F ′ to be more similar
to F ; that is,

LF
GAN = EF [logDF (F )] + EF ′ [log(1−DF (F

′))]. (7)
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Fig. 4: Framework of our fusion attack model.

With Eq. (6) and Eq. (7), we can produce realistic feature
representation F ′.

In the VoxelNet model of LiDAR data, the only output
label is the location of vehicles, which is indicated by the
yellow boxes as shown in Fig. 1(c). Thus, attacking the LiDAR
model is equivalent to reducing the accuracy of detecting
the yellow boxes. In this paper, VoxelNet is adopted, where
the yellow box of each vehicle can be drew by a 7-tuple
(x, y, z, h, w, l, r) in the output. Specifically, (x, y, z) is the
3D position of a LiDAR sensor; h , w and l are height,
weight and length of a vehicle in the 3D space, respectively;
and r is the rotation angle with y-coordinate. Let Boxo and
Boxa be the detected boxes in F and F ′, respectively. For
each detected vehicle, the overlapping space of Boxo and
its corresponding Boxa is denoted by Boxol. The utility of
LiDAR data is calculated by (Boxol/Boxo) to measure the
similarity between the adversarial sample and the original
LiDAR data, and the attack performance is calculated by
(1 − Boxol/Boxa) to depict the impact of modification on
vehicle detection, where Boxo = h × w × l, Boxa =
h′ ×w′ × l′, and Boxol = olh × olw × oll × cos(r′ − r) with
olh = (min{h′, h}−(z′−z)), olw = (min{w′, w}−(y′−y)),
and oll = (min{l′, l} − (x′ − x)). Then, minimizing the loss
function in Eq. (8) is to improve the attack performance for
adversarial sample.

LADV = EF,F ′ [Boxol/Boxa −Boxol/Boxo], (8)

where (Boxol/Boxa) is used to maximize the attack per-
formance, and (Boxol/Boxo) is used to make the detecting
yellow boxes of generated feature F ′ imperceptible. Finally,
the objective function of LiDAR data pipeline can be expressed
in Eq. (9).

LLiDAR = LF
GAN + η1LF ′

V AE + η2LADV , (9)

where η1 and η2 are the scaling parameters. When the training
process is terminated, we can feed the LiDAR data F into the
generator GF and produce the adversarial sample F ′.

D. Fusion Attack Model

For the autonomous vehicles that use the HLF-style percep-
tion systems, we propose a fusion attack model to integrate
the two data pipelines together as shown in Fig. 4. This idea
is inspired by a fact: for a pair of image data and LiDAR
data that captures the same scene from the same location,
their basic information embedded in the latent space should
be the same. Because the essence of these two types of data
contains the same information, we can use a same latent vector
to represent the information and then recover the image data
and the LiDAR data from the same latent vector.

Algorithm 2: Sample Generation Algorithm of Fusion
Attack Model

Input: training iteration T , discriminator’s training steps k,
minibatch size m, and real data I and F

Output: adversarial sample generators Dec∗I and Dec∗F
1 for t < T do
2 for k steps do
3 Input m samples of I and m samples of F into GI

and GF to generate I ′ and F ′, respectively;
4 Sample another m real image I and real LiDAR F ;
5 Feed I ′ and other m samples of I into DI , and

update DI to maximize LI
GAN by ascending their

gradients:
6 ∇DIL

I
GAN ;

7 Feed F ′ and other m samples of F into DF , and
update DF to maximize LF

GAN by ascending their
gradients:

8 ∇DF L
F
GAN ;

9 end
10 Select m samples of I and m samples of F ;
11 Use GI to generate zI and I ′ from the selected m

samples of I;
12 Use GF to generate zF and F ′ from the selected m

samples of F ;
13 Calculate LZ using zI and zF ;
14 Feed I ′ and the selected m samples of I into DI and f ,

feed F ′ and the selected m samples of F into DF and
g, and update GI and GF to minimize [LImage + LZ ]
and [LLiDAR + LZ ] by descending their gradients,
respectively:

15 ∇GI [LImage + LZ ] and ∇GF [LLiDAR + LZ ].
16 end

In the fusion attack model, to jointly attack the image model
and the LiDAR model, we adopt the VAE-GAN model [39]
and modify the image data pipeline of the parallel attack model
as shown in Fig. 4. Both the image generator GI and LiDAR
generator GF are constructed by an encoder and a decoder,
in which the encoder maps the original data I and F to low
dimension representations zI and zF , respectively. Then the
decoder DecI and DecF recover zI and zF back to adversarial
samples I ′ and F ′, respectively. The discriminators and target
models implement the same operations as those in the parallel
attack model. Especially, the encoded low dimensional vectors
zI and zF should be restricted by elaborately designed loss
functions. The pseudo code of sample generation algorithm of
our fusion attack is presented in Algorithm 2.

To make the image generator GI adapt to the fusion attack
model, the structure and loss function of GI are rewritten as
a VAE-based formula:

LI′
V AE = −Ez∼q(z|I)[log(I

′|z)] +KL(q(z|I)∥p(z))), (10)

where z is the predefined latent distribution N (0, 1).
For the generated data I ′, we still use a discriminator DI

to improve the data quality through maximizing Eq. (2). The
computation of LADV and LP in the fusion attack model is
the same as those in the parallel attack model. Therefore, the
loss function of the image model in the fusion attack model
is expressed as,

LImage = LI
GAN + LI′

V AE + λ1LADV + λ2LP . (11)

Then, to bring a tie between image pipeline and LiDAR
pipeline and compel these two pipelines to encode two types of
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TABLE II: Network architecture of image pipeline in our parallel attack model

Layer Encoder Decoder Discriminator

1 5× 5× 64 conv, Leaky ReLU 5× 5× 512 deconv, B N, ReLU 5× 5× 64 conv, Leaky ReLU
2 5× 5× 128 conv, B N, Leaky ReLU 5× 5× 512 deconv, B N, ReLU 5× 5× 128 conv, B N, Leaky ReLU
3 5× 5× 256 conv, B N, Leaky ReLU 5× 5× 512 deconv, B N, ReLU 5× 5× 256 conv, B N, Leaky ReLU
4 5× 5× 512 conv, B N, Leaky ReLU 5× 5× 512 deconv, B N, ReLU 5× 5× 512 conv, B N, Leaky ReLU
5 5× 5× 512 conv, B N, Leaky ReLU 5× 5× 256 deconv, B N, ReLU Fully Connected, Sigmoid
6 5× 5× 512 conv, B N, Leaky ReLU 5× 5× 128 deconv, B N, ReLU
7 5× 5× 512 conv, B N, Leaky ReLU 5× 5× 64 deconv, B N, ReLU
8 5× 5× 512 conv, B N, Leaky ReLU 5× 5× 3 deconv, tanh

TABLE III: Network architecture of LiDAR pipeline in two attack models

Layer Encoder Decoder Discriminator

1 FC input dimension ×512, Leaky ReLU FC 128× 256, ReLU Block1: (1× 1× 64 conv) ×3
2 FC 512× 256, Leaky ReLU FC 256× 512, ReLU Block2: (1× 1× 128 conv) ×4
3µ FC 256× 128, Sigmoid FC 512× output dimension, Sigmoid Block3: (1× 1× 256 conv) ×6
3σ FC 256× 128, Sigmoid Fully Connected, Sigmoid

TABLE IV: Network architecture of image pipeline in our fusion attack model

Layer Encoder Decoder Discriminator

1 5× 5× 64 conv, Leaky ReLU 5× 5× 512 deconv, B N, ReLU 5× 5× 64 conv, Leaky ReLU
2 5× 5× 128 conv, B N, Leaky ReLU 5× 5× 512 deconv, B N, ReLU 5× 5× 128 conv, B N, Leaky ReLU
3 5× 5× 256 conv, B N, Leaky ReLU 5× 5× 256 deconv, B N, ReLU 5× 5× 256 conv, B N, Leaky ReLU
4 5× 5× 512 conv, B N, Leaky ReLU 5× 5× 128 deconv, B N, ReLU 5× 5× 512 conv, B N, Leaky ReLU
5 FC 1024× 512, Leaky ReLU 5× 5× 64 deconv, B N, ReLU Fully Connected, Sigmoid
6µ FC 512× 128, Sigmoid 5× 5× 3 deconv, tanh
6σ FC 512× 128, Sigmoid

data into the same point of latent space, the encoders’ results
zI and zF should be as close as possible. This enlightens us to
define the latent content loss, denoted by LZ , between image
data and LiDAR data:

LZ = Ez∥zI − zF ∥2.

Through minimizing LZ , we can force the low dimension
representation zI and zF to be similar.

The LiDAR model of the fusion attack model is the same
as that of the parallel attack model, because it already uses
VAE as the generator. During the training process, the image
pipeline and LiDAR pipeline optimize their loss function
LImage +LZ and LLiDAR +LZ in turns, respectively. After
both models are trained, we can take the decoder, DecI ,
from the image model and the decoder, DecF , from the
LiDAR model as the adversarial sample generators. Then, two
adversarial samples are generated with the same latent low-
dimension vector z, i.e., I ′ = DecI(z) and F ′ = DecF (z).

E. Network Architecture of Attack Models

In this part, we illustrate the network architecture of parallel
attack model and fusion attack model.

For the parallel attack model, the networks of image
pipeline and LiDAR pipeline are presented in TABLE II
and TABLE III, respectively. In TABLE II, the structures
of “U-Net”-based generator and discriminator are constructed
according to the setting in [40], where conv/deconv represents
convolution/deconvolution, and and B N represents batch nor-
malization [41]. In the encoder of generator, there are 8 fully
convolutional layers with a filter size of 5× 5. From the 2nd

to the 8th layers, each layer has a Leaky ReLU and Batch
Normalization except. The structure of decoder is the opposite
of the encoder except for ReLU and the tanh activation of
the 8th layer. In the discriminator, the filter size is also 5× 5,
the layer structure is a traditional CNNs with 4 convolutional
layers, and it is ended with fully connected layer.

TABLE IV presents the network structure of image process-
ing in our fusion attack model, which is a VAE-based structure
mainly built from convolution layers. To integrate with VAE-
based LiDAR pipeline shown in TABLE III, the outputs of
encoders in image pipeline and LiDAR pipeline should have
the same size. We use two fully connected layers to map the
output of encoder to 128 dimension vector so that the image
pipeline and LiDAR pipeline can use the same latent vector z
to perform attack.

F. Comparison of Proposed Attack Models

The major differences between our two attack models lie in
the following three aspects.

• Model Structure. The parallel attack model contains two
separate pipelines designed for the LLF-style perception
systems, and the fusion attack model has an integrated
structure designed for the HLF-style systems.

• Sample Generation. In the parallel attack model, the
adversarial samples are generated based on the original
data directly; while in the fusion attack model, two types
of adversarial samples are generated from a same low-
dimensional latent vector z that contains less compressed
information than the original data. As a result, the adver-
sarial samples of the parallel attack model may have a
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better visualization quality, and the adversarial samples
of the fusion attack model may have more powerful
attack performance on semantic segmentation and object
detection but lower generation quality.

• Time Efficiency. Different from most current works that
use optimization-based methods to generate adversarial
samples, both the parallel attack model and the fusion
attack model utilize generation-based approach to pro-
duce adversarial samples, which can significantly reduce
processing time at sample generation stage. Particularly,
our fusion attack model produces adversarial samples
from a low-dimensional latent vector instead of real data,
and thus the size of its parameters and inputs can be
reduced, further saving processing time.

IV. PERFORMANCE EVALUATION

In this section, intensive experiments are set up to validate
the effectiveness of our parallel and fusion attack approaches,
compare with the state-of-the art, and investigate the attack
performance in V2V communication.

A. Experiment Settings

Datasets. To evaluate the power of our attack models, we
implement the parallel attack model and the fusion attack
model on KITTI dataset [42] that is a benchmark dataset
containing various kinds of sensory data and their labels
for performance evaluation of autonomous vehicles. In the
experiments, 1600 pairs of images and LiDAR data are used
in our proposed models for training, and 400 pairs are used
for testing.

Configurations. In the experiments, the device used for
algorithm implementation is a Linux server with Intel(R) Xeon
CPU E5-1607, 16 GB memory, and the NVIDIA GeForce
RTX 2080 GPU with 11 GB memory, and the machine
learning library Pytorch and OpenCV are adopted.

Experiment Steps. There are five steps in our experiments.
• We show that our generated adversarial samples can

attack the semantic segmentation model f(·) and the
LiDAR model g(·) separately under the single-source
scenario.

• To exam the limitation of single-source adversarial sam-
ple attack, we provide two comparative experiments:
(i) when only the image model f(·) is attacked, the
LiDAR model g(·) can still detect vehicles for the whole
system, called LiDAR-assisted detection; (ii) when only
the LiDAR model g(·) is attacked, the image model
f(·) can detect vehicles normally, called Image-assisted
detection.

• We launch attacks towards both the image model f(·) and
the LiDAR model g(·) under the multi-source scenario.

• A comparison is conducted to study the advantages of our
attack models over the state-of-the-art in terms of attack
effectiveness and attack efficiency.

• We simulate a V2V attack scenario to check the attack
performance of our proposed methods with respect to
communication quality in VANETs.

Performance Metrics. Our results are comprehensively
analyzed via performance statistics, semantic segmentation
results for the image model and object detection results for the
LiDAR model. The performance statistics include the average
utility, the average accuracy, the average image processing
time and their corresponding variances.

• For the image data I and the image model f(·), the pixel
accuracy of FCN-score [43] is used as the metric, where
a high score implies an accurate detection. The utility of
image is represented by the pixel accuracy for all non-
target classes in Ibg , i.e., the higher utility the better image
generation performance. While, a lower pixel accuracy
of target class “vehicle” indicates a higher attack success
rate.

• For the LiDAR data F and the LiDAR model g(·), the
computation of accuracy and utility is different from
their computation in image data because “vehicle” is
the only label in LiDAR data. The utility of LiDAR is
defined by the ratio of the overlapping space between an
original detected box and its corresponding adversarial
detected box to the space of the original detected box,
which measures the similarity between the original and
the adversarial data samples, i.e., the larger utility the
higher similarity. The accuracy of LiDAR on vehicles is
the ratio of the overlapping space between a ground truth
box and its corresponding adversarial detected box to the
space of the ground truth box. Accordingly, a smaller
accuracy implies a larger attack success rate.

Performance Baselines. To our best knowledge, many ex-
isting adversarial example attacks on image segmentation use
optimization-based methods [11], [10], which achieves a good
performance for complex street view dataset but takes much
more implementation time for autonomous vehicles. Thus, for
a comparable evaluation on attack quality and efficiency, we
take one optimization-based method in [11], termed Iterative
Gradient Sign Optimization (IGSO), and one generation-based
adversarial sample attack of [44], termed Generative Adver-
sarial Perturbations (GAP), as the performance baselines. On
the other hand, since no digital adversarial sample attack has
been studied for the LiDAR data, no comparable attack model
can be adopted for comparison, which, indeed, does not affect
the validation of our attack models.

B. Hyper-parameter Analysis

The impacts of hyper-parameters on our two attack models
are shown in Fig. 5. In Fig. 5(a), we change the values of
λ1 and λ2 of image pipeline in parallel attack model from 0
to 1 through grid search method and plot the corresponding
loss LImage in Eq. (4) in a 3D view, where the 3D surface
displays the trend, and the top color map plane presents the
value distribution. When λ1 = 0.8 and λ2 = 0.4, the loss
is minimum, indicating the best performance. Similarly, the
hyper-parameter analysis of λ1 and λ2 on image pipeline in
fusion attack model is evaluated in Fig. 5(b), in which λ1 =
0.6 and λ2 = 0.4 are the values to obtain the minimum loss
LImage in Eq. (11). For the impacts of η1 and η2 on LiDAR
pipeline of both two attack models, the results in Fig. 5(c)
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(a) Impacts of λ1 and λ2 on image pipeline of
parallel attack model

(b) Impacts of λ1 and λ2 on image pipeline of
fusion attack model

(c) Impact of η1 and η2 on LiDAR pipeline of
both two models

Fig. 5: Hyper-parameter analysis of our two proposed attack models.

TABLE V: Quantitative performance statistics of parallel attack model (model 1) and fusion attack model (model 2)

Baseline w/o attack Model 1 attack on I Model 1 attack on F Model 2 attack both
Utility of image on non-target class 0.85±0.01 0.81±0.01 0.85±0.01 0.65±0.03
Accuracy of image on vehicles 0.85±0.01 0.39±0.02 0.85±0.01 0.26±0.02
Utility of LiDAR N/A N/A 0.62±0.02 0.61±0.02
Accuracy of LiDAR on vehicles 0.99±9.03× 10−6 0.99±8.99× 10−6 0.03±1.13× 10−5 0.02±9.65× 10−6

show that η1 = 0.6 and η2 = 0.6 are the best setting to gain the
minimum loss LLiDAR in Eq. (9). In the following sections,
the experiments are conducted with the following settings of
these critical hyper-parameters: λ1 = 0.8 and λ2 = 0.4 for
image pipeline in parallel attack model, λ1 and λ2 for image
pipeline in fusion attack model, and η1 = 0.6 and η2 = 0.6
for LiDAR pipeline in both two models.

C. Effectiveness of Our Attack

In this part, to understand our attack power towards the
LLF-style perception systems in autonomous vehicles, the
adversarial samples are generated by using our parallel attack
model (i.e., model 1) to separately attack the image model and
the LiDAR model.

For the images, the results of Fig. 6(a) show that the vehicles
are correctly detected (colored in blue) on the original street
view data; while after being attacked, the vehicles cannot be
detected in blue any more as shown in Fig. 6(b). In Fig. 6(c),
the vehicles are detected and labeled by the LiDAR model
using yellow boxes on the original LiDAR data F . When our
adversarial example attack is launched, the detection results
are presented in Fig. 6(d), where the vehicles cannot be
detected by the LiDAR model.

As shown in Table V, when the parallel attack model is
implemented, the accuracies of vehicle detection on the images
and LiDAR data are reduced to 0.39 and 0.03, respectively,
which confirms that our parallel attack model can effectively
attack the image model and the LiDAR model of the LLF-
style perception systems in autonomous vehicles. In addition,
all the values of accuracy variance are very small, indicating
our parallel attack model has a high performance stability.
Moreover, under the parallel attack model, the utility of
image can be preserved well for the non-target class objects.
Specifically, in Table V, the utility of image in the adversarial
samples can achieve 0.81 for images and reach 0.62 for the
LiDAR data.

Notably, our fusion attack model (i.e., model 2) simultane-
ously generates adversarial samples for both the image and
LiDAR models from a low-dimensional latent vector z that
has some content loss due to dimension reduction, so it cannot
build complex street view data as clear as the parallel attack
model, which is consistent with the analysis in Section III-F.
The performance of our fusion attack model for the HLF-style
perception systems of autonomous vehicles is demonstrated in
Section IV-E.

D. Limitation of Single-Source Attack

To examine the limitations of single-source adversarial
sample attack, only one data source is attacked under the
parallel attack model. In Fig. 6(e), after the image model is
attacked, the LiDAR model still detects all vehicles correctly.
In Fig. 6(f), when the LiDAR model is down, the image model
can perform object detection normally.

Additionally, the results of Table V can confirm that the
image model and the LiDAR model can help each other
for object detection. For examples, the detection accuracy of
image is decreased from 0.85 to 0.39 when only the image
model is attacked while the detection accuracy of LiDAR
remains the same; and the detection accuracy of LiDAR is
reduced from 0.99 to 0.03 when only the LiDAR model
is attacked while the detection accuracy of image does not
change. Thus, the single-source adversarial sample attack on
autonomous vehicles may fail when more than one data source
is utilized in their perception systems; that is, it is hard for the
single-source adversarial sample attack to beat the LLF-style
or HLF-style perception systems.

E. Capability of Multi-Source Attack

To successfully break down the perception systems of
autonomous vehicles, attacks should be launched towards the
image model and the LiDAR model at the same time.
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(a) Segmentation on original image data (b) Segmentation on adversarial image sample (c) Vehicle detection on original LiDAR data

(d) Vehicle detection on adversarial LiDAR data (e) LiDAR-assisted detection with image being at-
tacked

(f) Image-assisted detection with LiDAR being at-
tacked

Fig. 6: Detection results on image and LiDAR data. In image data, the correct segmentation color of vehicles is blue and the
yellow line boxes are the detected region of vehicles by LiDAR data.

(a) Both image and LiDAR data are attacked by parallel attack model (b) Both image and LiDAR data are attacked by fusion attack model

Fig. 7: Detection results on both image and LiDAR data under our two attack models. In 7(a), the vehicles are mostly segmented
as pink color, which is “road” class; while in 7(b) the vehicles are segmented green and red, representing “grass” and “bike”
classes, respectively.

From the detection results under the parallel attack model
in Fig. 7(a), one can see that both the image and the LiDAR
models fail to predict vehicles at all. In Table V, when both the
image and LiDAR models are attacked by our parallel attack
model, the accuracies of vehicle detection for the image model
and the LiDAR model are respectively decreased to 0.39 and
0.03, which means our parallel attack model can effectively
beat both the image and the LiDAR models. Therefore, we
can conclude that it is effective to launch our parallel attack
towards the LLF-style perception systems of autonomous
vehicles.

In the fusion attack model, due to the generative property
of VAE, the adversarial samples of image and LiDAR can
be simultaneously generated from a low-dimensional latent
vector z. In the experiments, a 128-dimensional vector z is
randomly picked from N (0, 1) and then is fed into both the
image and LiDAR pipelines as shown in Fig. 4. After z passes
through the decoders: DecI and DecF , adversarial samples I ′

and F ′ are generated. Fig. 7(b) shows the detection results
after being attacked by the fusion attack model, in which
we observe that neither the image model nor the LiDAR
model can detect vehicles. In Table V, when the fusion attack
model is implemented, the accuracies of vehicle detection
on the image data and the LiDAR data are reduced to 0.26
and 0.02, respectively, implying that our fusion attack model
can effectively attack the HLF-style perception systems of
autonomous vehicles.

F. Baseline Comparison

In this subsection, we compare the effectiveness and the
efficiency of our parallel attack model (i.e., model 1), our
fusion attack model (i.e., model 2), Iterative Gradient Sign
Optimization (IGSO) [11], and the Generative Adversarial
Perturbations model (GAP) [44] when the image model f(I)
is attacked.

1) Attack Effectiveness: In Fig. 8, the original street view
images and the adversarial images generated by the four
adversarial attack models are presented, where the first row
shows the original street view image and its ground truth
semantic segmentation. The second and third rows present four
attacked street view images and their corresponding semantic
segmentation results, respectively. Compared with Fig. 8(a),
the adversarial sample of GAP in Fig. 8(e) contains much
more noisy pixels than our model 1 in Fig. 8(c). Due to the
over perturbation in GAP, its semantic segmentation accuracy
for both target class and non-target class objects is lower than
our model 1’s semantic segmentation accuracy. In Fig. 8(f), the
optimized adversarial sample of IGSO has good visual quality
and is comparable to our model 1’s result. The segmentation
of IGSO in Fig. 8(j) successfully misleads the detection result
on vehicles, because IGSO is an iterative gradient based attack
method and likely to obtain a good adversarial solution with
enough iteration and updating time. Finally, Fig. 8(d) and
Fig. 8(h) show that the visual quality of the adversarial sample
of our model 2 is worst among these four methods, which is
resulted from the essential of data generation in our model
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(a) Original image data (b) Segmentation on original image data

(c) Adversarial sample of model 1 (d) Adversarial sample of model 2 (e) Adversarial sample of GAP (f) Adversarial sample of IGSO

(g) Segmentation on adversarial sam-
ple of our model 1

(h) Segmentation on adversarial sam-
ple of our model 2

(i) Segmentation on adversarial sample
of GAP

(j) Segmentation on adversarial sample
of IGSO

Fig. 8: Visual quality comparison between original image and adversarial samples (model 1 represents our parallel attack
model, and model 2 represents our fusion attack model). The correct segmentation color of vehicles is blue.

Fig. 9: Failure of GAP attack on perception system when
LiDAR detection is utilized.

2 – a low-dimension vector z is used to generate adversarial
data and thus more information is lost. On the other hand,
from the viewpoint of attack effectiveness, the segmentation
result of the adversarial sample of model 2 achieves the
best performance, which is consistent with our analysis in
Section III-F.

As illustrated via Fig. 6(e) and Fig. 6(f), only attacking one
data source is hard or impossible to beat the entire perception
system when multi-source data is used for object detection. In
Fig. 9, the LiDAR model can still recognize every vehicle in
the presence of GAP attack. In other words, GAP cannot suc-
cessfully attack the LLF-style or HLF-style perception systems
of autonomous vehicles, which demonstrates the superiority of
our two attack models. The same result is observed on IGSO
attack, because both GAP and IGSO do not attack the LiDAR
model.

Besides, the performance statistics of the four attack models
are listed in Table VI, where Structural Similarity Index Metric
(SSIM), image utility, detection accuracy without defense, and
detection accuracy with defense are adopted to compare attack
performance. SSIM is a scalar number in [0, 1] and used to
measure the similarity between images; especially, 1 means
exactly the same, and 0 means totally different [45]. In order
to investigate the robustness of attack models, the average

TABLE VI: Quantitative comparison on image perception
model between our two models and two baseline models

Model 1 Model 2 GAP [44] IGSO [11]
SSIM 0.87±0.005 0.56±0.041 0.79±0.010 0.88±0.035
Utility 0.81±0.012 0.65±0.028 0.74±0.024 0.83±0.017
w/o defense 0.39±0.022 0.26±0.019 0.32±0.027 0.34±0.014
w/ defense 0.51±0.007 0.37±0.020 0.55±0.009 0.49±0.010

detection accuracy with and without defense is compared. We
employ adversarial training as the defense strategy, which is
broadly used in research [5], [46], [47] to protect machine
learning model from adversarial samples. During the adversar-
ial training, we inject adversarial samples generated by the four
attack models into benign training datasets. Correspondingly,
four mixed datasets are built with half adversarial samples and
half benign. We train the defense model on each mixed dataset
and then re-attack them with the four attack models.

The results of SSIM in Table VI show that the adversarial
images generated by our model 1 and IGSO are closer to the
original image compared with the other two attack models.
When there is no defense, the attack performance of our model
2 is the best with the lowest accuracy due to information loss in
the low-dimensional vector z, and GAP is slightly better than
our model 1 partially because it adds more noise into image
data. The image quality and utility of IGSO are the best among
these four models. But as we emphasized before, IGSO takes
too much time to reach a good performance (as illustrated
in TABLE VII), which is not applicable for the scenario of
autonomous vehicles. With the adoption of adversarial training
as a defense method, the attack performance of our model 1,
our model 2, GAP and IGSO is reduced by 12%, 11%, 23%,
and 15%, respectively. The comparison between detection
accuracy w/ and w/o defense declares that the robustness of
our two proposed models outperforms the baseline models.
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TABLE VII: Time efficiency comparison between our two
models and two baseline models

Model 1 Model 2 GAP [44] IGSO [11]
images/s 13.58±0.083 22.63±0.018 13.41±0.034 0.01±0.004

2) Attack Efficiency: Finally, we evaluate the time effi-
ciency of different attack models in terms of throughput that
is defined as the number of processed images per second
(i.e. images/s). We test the four attack models with 400
images for 10 times and present their average throughput and
corresponding variances in Table VII. It is clear that model
2 has the highest throughput because it generates adversarial
images from a low-dimensional vector z and the size of its
parameter and input is less than the other three models.

For the adversarial samples of image data, our model 1
and GAP have comparable attack effectiveness and attack
efficiency. Both of the two models are generation-based ad-
versarial attack, but their largest difference is that our model
1 uses image-dependent dynamic target while GAP uses a
static target. That is, for all images in GAP implementation,
their objective is to manipulate image to get a pre-defined
target segmentation. Because of this multiple-to-one mapping,
more noise need to be injected to all images to counteract
image difference as shown in Fig. 8(e), and the generated
perturbations targeting on static semantic label are like a
universal noise without oblivious difference, leading to smaller
SSIM, lower image utility and worse attack robustness. On the
contrast, our model 1 generates perturbation based on each
image, which means only small specific objects are affected
by image manipulation and less noise is needed, improving
SSIM, image utility, and attack robustness.

G. Attack Performance in V2V Communication

Since the V2V attack scenario is more practical in VANETs
as analyzed in Section III-A, it is worth investigating the
performance of our proposed attack models in V2V commu-
nication.

In the V2V attack scenario, the attacker generates adver-
sarial samples based on his local captured data, which may
be slightly different from the victim vehicles’ original data
due to the distance between the attacker’s vehicle and the
victim vehicles. It is well-known that the transmission distance
between a sender and a receiver influences the quality of
V2V communications and shared data [48]. In Eq. (12), the
computation of signal-noise-ratio (SNR) is given [49].

γ =
Eb

N0BDb
. (12)

In Eq. (12), Eb is the energy per bit, N0 is the noise
density in W/Hz, Db is the transmission distance per bit,
and B is the channel bandwidth in the IEEE 802.11p OFDM
PHY. Moreover, SNR in V2V communication has impacts
on the attack capability: a lower SNR reduces the quality of
the received adversarial samples, resulting in a worse attack
performance.

To keep a comparability with the previous experimental
results, we simulate the victim vehicle’s received adversarial
samples by adding appropriate noise to distort the original

(a) Accuracy on image w.r.t Noise (b) Accuracy on LiDAR w.r.t. Noise

Fig. 10: The impact of noise on data utility and attack
performance.

adversary samples as more noise implies a lower SNR experi-
enced by the victim and a larger transmission distance between
the attacker and the victim. The added noise follows the
normal distribution N (0, σ2), where the value of σ ∈ [0, 100]
represents set a certain percentage of the range of original
data value. Specifically, for image data, the range is 256 as its
values falls within [0, 255], and the added noise is σ%× 256;
for LiDAR data, the range is 78 as its value falls into [0, 77],
and the added noise is σ%×78. In this way, the SNR in image
and LiDAR data is the same. Then, the attack performance is
measured based on the noisy adversarial samples.

In Fig. 10, the x-axis represents the value of σ that indicates
how much noise we add in the generated adversarial samples,
“Image Utility” is the utility of image on non-target class in
Table V, “Attack Performance” in Fig. 10(a) is the accuracy
of image on vehicles in Table V, “LiDAR Utility” is the
utility of LiDAR in Table V, and “Attack Performance” in
Fig. 10(b) is the accuracy of LiDAR on vehicles in Table V.
From Fig. 10, we can see that when there is no noise in the
adversarial samples (i.e., σ = 0), the results are the same as
those in Table V. For the image data in Fig. 10(a), when the
noise is small (i.e., distance is close), increasing noise scale
yields a dramatic reduction of the image utility but a slow
degradation of attack performance. This indicates that within
a short distance, the attack capability of adversarial examples
can be relatively maintained and is reduced gradually. After
the noise exceeds 10% of the data range, both image utility and
attack performance become very low with a smooth decrease
rate as the noise scale in increased, which shows that the
received adversarial samples are almost unusable due to the
large noise injection. For the LiDAR data in Fig. 10(b), we
can obtain the similar observations. From the above results,
we can conclude that: (i) the distance between the attacker
and the victim in V2V communication does impact on the
quality of received adversarial samples; (ii) when the distance
is smaller than a range, the attack performance is reduced with
an increased transmission distance; and (iii) when the distance
is large enough, adversarial attack will lose its capability due
to a bad communication quality.

H. Summary of Experiment Analysis

From the above comprehensive experiments, some critical
conclusions can be drawn as follows. (i) Our two proposed
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attack models can effectively attack the image perception sys-
tems and the LiDAR perception systems separately. (ii) Even
facing multi-source perception systems (i.e., the LLF-style and
HLF-style perception systems of autonomous vehicles in this
paper), our two proposed attack models can successfully beat
the whole systems as well, which cannot be accomplished
by the existing single-source adversarial sample attack. (iii)
Compared with the state-of-the-art, our parallel attack model
can not only achieve the comparable attack effectiveness and
efficiency but better image utility and attack robustness, and
our fusion attack model has better attack robustness and higher
time efficiency. (iv) In the real implementation of adversarial
sample attack in V2V communication, the attack performance
is dependent on the transmission distance between an attacker
and a victim.

V. CONCLUSION

In this paper, through analyzing digital attack on the practi-
cal perception systems of autonomous vehicles, we design two
multi-source adversarial sample attack models, which has not
been addressed before and brings the following innovations.
First, in our proposed attack models, the correlation of multiple
heterogeneous data sources is utilized for data fusion and
sample generation, which can contribute to the technology
development of generating adversarial samples. Second, com-
pared with the traditional single-source adversarial sample
attack models, our multi-source adversarial sample attack
models have more power to successfully damage the image
and LiDAR models at the same time, which is well confirmed
by our intensive real-data experiments. Last but not least, the
study of multi-source attack is helpful to enlighten effective
defense solutions in our future research, further improving the
security and safety performance for autonomous vehicles.
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