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For a class of sparse random matrices of the form A, = (§; ;8; ;)7 =1’

where {&; ;} are i.i.d. centered sub-Gaussian random variables of unit vari-
ance, and {§; ;} are i.i.d. Bernoulli random variables taking value 1 with
probability p,, we prove that the empirical spectral distribution of Ay, //np,
converges weakly to the circular law, in probability, for all p, such that p, =
w(log?n/n). Additionally if p, satisfies the inequality np, > exp(c/Togn)
for some constant ¢, then the above convergence is shown to hold almost
surely. The key to this is a new bound on the smallest singular value of com-
plex shifts of real valued sparse random matrices. The circular law limit also
extends to the adjacency matrix of a directed Erd6s—Rényi graph with edge
connectivity probability pj.
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1. Introduction. For an x n matrix B, let .1 (B,), A2(By), ..., Ay (By,) be its
eigenvalues. The empirical spectral distribution (ESD) of B,,, denoted hereafter by
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Lp,, is given by

1 n
LBn == 28)”‘5
iz

where 8, is the dirac measure at x. If B, is a nonnormal matrix (i.e., B, B, #
By By), then its eigenvalues are complex valued, resulting in L g, being supported
on the complex plane. Furthermore, when B, is random its ESD is a random prob-
ability measure. Thus, to study the asymptotics of ESDs of random matrices one
needs to define appropriate notions of convergence. This can be done in one of the
two following ways: If {i,,} is a sequence of random probability measures such
that for every f € Cp(C), thatis, f : C+ R is bounded, [- fdu, = [o fdpin
probability, for some probability measure w (possibly random), then p, is said to
converge weakly to u, in probability. If [~ fdu, — [¢ f dp almost surely, then
Wn is said to converge to u weakly, almost surely.

The study of the ESD for random matrices can be traced back to Wigner [42, 43]
who showed that the ESD’s of n x n Hermitian matrices with i.i.d. centered entries
of variance 1/n (modulo symmetry) satisfying appropriate moment bounds (e.g.,
Gaussian) converge to the semicircle distribution. The conditions on the finiteness
of the moments were relaxed in subsequent works; see [4, 32] and the references
therein.

The rigorous study of non-Hermitian matrices, in particular nonnormal matri-
ces, emerged much later. The main difficulties were the sensitivity of the eigenval-
ues of nonnormal matrices under small perturbations and the lack of appropriate
tools. For example, Wigner’s proof employed the method of moments. Noting that
the moments of the semicircle law determine it, one computes by combinatorial
means the expectation and the variance of the normalized trace of powers of the
matrix to find the asymptotics of the moments of the ESDs. The analogue of this
for nonnormal matrices is to compute the mixed moments, that is, compute

n
(1.1) [C w ' dLg, (w) = %ZA,-(Bn)kixBn)f.
i=1

For B,, nonnormal, the RHS of (1.1) cannot be expressed as powers of traces of
B, and B;;. So the method of moment approach does not work. Another technique
that works well for Hermitian matrices is the method of evaluating limiting Stieltjes
transform (see [6]). Since the Stieltjes transform of a probability measure is well
defined outside its support, and the ESDs of nonnormal matrices are supported on
C, their Stieltjes transforms fail to capture the spectral measure.

In the 1950s, based on numerical evidences, it was conjectured that the ESD
of B, /s/n, where B, is an n x n matrix with i.i.d. entries of zero mean and unit
variance, converges to the circular law, the uniform distribution on the unit disk
in the complex plane. In random matrix literature, this conjecture is commonly
known as the circular law conjecture.
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Using the formula for the joint density function of the eigenvalues, Ginibre [24]
solved the case when the entries have a complex Gaussian distribution. The case of
real Gaussian entries, where a similar formula is available, was settled by Edelman
[21]. For the general case when there is no such formula, the problem remained
open for a very long time. An approach to the problem, which eventually played
an important role in the resolution of the conjecture, was suggested by Girko in the
1980s [25]; however, mathematically it contained significant gaps. The first non-
Gaussian case (assuming the existence of density for the entries) was rigorously
treated by Bai [5], and the first result without the density assumption was obtained
by Gotze and Tikhomirov [26]. After a series of partial results (see [14] and the
references therein), the circular law conjecture was established in its full generality
in the seminal work of Tao and Vu [40].

THEOREM 1.1 (Circular law for i.i.d. entries [40], Theorem 1.10). Let M,, be
an n X n random matrix whose entries are i.i.d. complex random variables with
zero mean and unit variance. Then the ESD of ﬁMn converges weakly to the

uniform distribution on the unit disk on the complex plane, both in probability and
in the almost sure sense.

A remarkable feature of Theorem 1.1 is its universality. The asymptotic behav-
ior of the ESD of M,,/\/n is insensitive to the specific details of the entry distri-
butions as long as they are i.i.d. and have zero mean and unit variance. Since the
work of Tao and Vu, there have been numerous attempts to extend the universality
of Theorem 1.1 for a wider class of random matrix ensembles. A natural extension
would be to prove Theorem 1.1 for matrix ensembles with dependent entries. This
has been shown in [1, 2, 12, 30, 31].

Another direction to pursue is to study the asymptotics of the ESD of sparse ma-
trices. Sparse matrices are abundant in statistics, neural network, financial mod-
eling, electrical engineering, wireless communications, neuroscience and in many
other fields. We refer the reader to [4], Chapter 7, for other examples, and their rel-
evant references. One model for sparse random matrices is the adjacency matrices
of random d-regular directed graphs with d = o(n) (for {a,} and {b,}, sequences
of positive reals, the notation a,, = o(b,,;) means lim,_, »c a, /b, = 0). Recently, in
[7, 20, 29], the circular law conjecture was established for two different models of
random d-regular directed graphs.

One of the most natural models for sparse random matrices is the Hadamard
product of a matrix of i.i.d. entries with zero mean and unit variance, and a matrix
of i.i.d. Ber(p,) entries, with p, = o(1). In this paper, we focus on the limiting
spectral distribution of this class of sparse matrices. When p, = n*~! for some o €
(0, 1), it has been shown that, under the assumption of the existence of (2 + §)th
moment of the entries, the ESD of these sparse matrices (properly scaled) converges
weakly to the circular law, in probability and almost surely (see [26, 39]). Later in
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[44] the assumption on the existence of (2 4+ §)th moment was removed but the
convergence was shown to hold in probability.

In this paper, we prove that the circular law limit continues hold when np,
grows at a subpolynomial rate (in #). Namely, we show that under certain moment
assumptions of the entries the circular law limit holds for sparse non-Hermitian
matrices whenever np,, grows at a polylogarithmic rate. Under an additional as-
sumption on p,, (see (1.2) below), the convergence is shown to hold almost surely.

Before stating our result, let us recall the well-known definition of sub-Gaussian
random variables.

DEFINITION 1.2. For a random variable &, the sub-Gaussian norm of &, de-
noted by [|&|y,, is defined as

— 1/k
111y, := supk Vgl where [1§]lx = (EIg[F)".
=
If the sub-Gaussian norm is finite, the random variable & is called sub-Gaussian.

We use the following standard notation: for two sequences positive re-
als {a,} and {b,} we write a, = w(b,) if b, = o(a,) and a, = O(b,) if
limsup,,_, o an/by < 0.

The following is the main result of this article.

THEOREM 1.3.  Let A, be an n x n matrix with i.i.d. entries a; j = §; ;& j,
where §; j, i, j € [n] are independent Bernoulli random variables taking value 1
with probability p, € (0, 1], and §; ;, i, j € [n] are real-valued i.i.d. centered sub-
Gaussian with unit variance:

() If py is such that np,, = a)(log2 n), the ESD of A, /. /npn converges weakly
to the circular law, as n — oo, in probability.

(ii) There exists a constant c1 3, depending only on the sub-Gaussian norm of
{&i,j}, such that if py satisfies the inequality

(1.2) np, > exp(ci3,/logn)

then the conclusion of part (i) holds almost surely.

It will be seen in Section 2 that a key to the proof of Theorem 1.3 is a uniform
bound on syin(A,; —w./np,1,) for Lebesgue a.e. w € C, where spmin(-) denotes the
smallest singular value. We initiated this work in [9] and showed that the desired
bound holds when w € R. The result of [9] relied on identifying the obstacles of
arithmetic nature by methods of Fourier analysis, and using geometry to show that
with high probability none of these obstacles realizes. However, even if the matrix
A, is real valued, the extension to w € C\R makes the set of potential arithmetic
obstacles so rich that it cannot be handled within the framework of the previous
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argument. This required developing new methods providing both a more precise
identification of the arithmetic obstacles arising from the complex structure and
entropy bounds showing that with high probability these obstacles are avoided.

The main part of this paper is devoted to find the desired bound on sp;, with
a probability bound strong enough to apply the Borel-Cantelli lemma in order to
deduce the almost sure convergence of Theorem 1.3(ii). To remove the condition
(1.2), one needs an improvement of [9], Proposition 3.1. See Remark 7.4 for more
details.

It is easy to see that if p, = 105", then the number of zero columns of A,, is
positive (and hence spin(A,) = 0) with probability bounded away from zero. So
logn is a natural barrier in this set-up. To extend the bound on smin beyond this
barrier, one needs to analyze the smallest singular value of the adjacency matrix of
“core of the graph,” when A, is viewed as the adjacency matrix of directed random
weighted graph. We leave this effort to future ventures.

Another key ingredient for the proof of Theorem 1.3 is the bound on the small-
ish singular values of (A, — w,/np,1I,) (see Theorem 2.10). This is derived by
relating the inverse second moment of the singular values to that of the distance
of a random vector from a random subspace. This idea originated in [40] and was
crucial in relaxing the assumption on the existence of the (2 + §)th moment and
prove Theorem 1.1 only under the second moment assumption. To carry out a
similar scheme in the sparse set-up, one needs to consider random subspaces of
dimension n — m with m = o(n/logn). Concentration inequalities yield a prob-
ability bound exp(—cmpy,), for some ¢ > 0. To accommodate a union bound, we
then need np, = w(log? n) which translates to the required lower bound on p,, in
Theorem 1.3(1).

REMARK 1.4 (Sub-Gaussianity assumption). The sub-Gaussianity assump-
tion of Theorem 1.3 is used in Theorem 2.2 to show that || A, || = O (\/npn), where
| - || denotes the operator norm. From [9], Remark 1.9, we note that if {§; ;} are
such that

(1.3) E|.§i,j|h < C"nPh for all 2 > 1, and for some constants C and S,

then [|A, |l = O(/npn), for all p, satistying np, = Q((logn)zﬂ) (for two se-
quences of positive reals {a,} and {b,} we write a, = Q(b,) if b, = O(ay,)).
The case B = 1/2 corresponds to the sub-Gaussian random variables. So we
conclude that if {&; ;} satisfies the moment assumption (1.3), for some B >
1/2, then the conclusion of Theorem 1.3(i) holds for all p, satisfying np, >
a)(log2 n), Q((log n)?P). It is easy to check that p, satisfies (1.2) whenever np, =
w((log n)?P). Hence, the conclusion of Theorem 1.3(ii) also holds under the mo-
ment assumption (1.3). To retain the clarity of presentation we prove Theorem 1.3
for sub-Gaussian random variables.



2364 A. BASAK AND M. RUDELSON

REMARK 1.5 (Circular law limit for shifted sparse matrices). It is well known
that the spectrum of normal matrices is stable under small perturbations (see [3],
Lemma 2.1.19, and [6], Lemma 2.2). However, for a general nonnormal matrix
its spectrum is highly sensitive to small perturbations; for example, see [38], Sec-
tion 2.8.1. So there are no analogues of [3], Lemma 2.1.19 and [6], Lemma 2.2,
for an arbitrary nonnormal matrix. Nevertheless, in [44] it was shown that if D, is
any n X n matrix with rank(D,) = o(n) and Tr(D, D}}) = O(nzpn) then the ESD
of (A, + Dy)/+/np, admit a circular law limit. Investigating our proof, one can
deduce that the ESD of (A, + D,)/./npn have a circular law limit for any sequence
real diagonal matrices {D,} such that || D, | = O(,/np,) and Tr(D,zl) = o(n? DPn).
It is possible to modify the proof of Theorem 1.3 to establish the circular law limit
for general shifts. We do not pursue this direction here.

We next show that the circular law limit holds for the adjacency matrix of a
directed Erd6s—Rényi random graph which may be of interest in computer science
and graph theory. Let us begin with the relevant definitions.

DEFINITION 1.6. Let G, be a random directed graph on n vertices, with ver-
tex set [n], such that for every i # j, a directed edge from i to j is present with
probability p, independently of everything else. Assume that the graph G,, is sim-
ple, that is, no self-loops or multiple edges are present. We call this graph G, a
directed Erd6s—Rényi graph with edge connectivity probability p. For any such
graph G,, we denote Adj, := Adj(G,) to be its adjacency matrix. That is, for any
i,j€ln],

1 if a directed edge from i to j is present in G,,,

Adi (i 1) =
(0. /) 0 otherwise.

THEOREM 1.7. Let Adj, be the adjacency matrix of a directed Erdos—Rényi
graph, with edge connectivity probability p, € (0, 1). Denote p, := min{p,, 1 —
Pn}:

() If pn is such that np, = w(log’n) the ESD of Adj, /</np,(I — pp) con-
verges weakly to the circular law, as n — 00, in probability.

(i) There exists an absolute constant c1 7 such that if p, satisfies the inequality

(1.4) npn > exp(ci7/logn)

then the conclusion of part (i) holds almost surely.

The proof of Theorem 1.7 follows from a relatively standard modification of
that of Theorem 1.3. We refer the reader to the arXiv version of this paper [8].
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REMARK 1.8. Theorem 1.3 and Theorem 1.7 find the asymptotics of the
eigenvalues of a large class of sparse non-Hermitian random matrices at a macro-
scopic level. An interesting question would be to prove the universality of the
eigenvalue distribution at the microscopic level. This has been shown for a wide
class of Hermitian random matrices (see [11] and references therein). For dense
non-Hermitian random matrices, it was shown in [15] that the local circular
law holds. In a forthcoming article [10], we establish the same for sparse non-
Hermitian random matrices.

Outline of the paper. Section 2 provides a brief outline of the proof techniques
of Theorem 1.3. We begin Section 2 with a replacement principle (see Lemma 2.1)
which is a consequence of Girko’s method. The replacement pr1n01ple allows us to
focus only on the integrability of log(-) with respect to the ESD of B =[(B, —
wly)*(B, — wl,)]'/? for w € C, where B, is any r random matrix. To 1mplement
this scheme, one requires a good control on smm(B ) as well as on its smallzsh
singular values. One also needs to establish weak convergence of the ESDs of B

The required control on sy, and smallish singular values are derived in The—
orem 2.2 and Theorem 2.10, and we outline of their proofs in Section 2.1 and
Section 2.2, respectively. The limit of the ESDs of I~3Z) is derived in Theorem 2.11
with the outline of the proof appearing in Section 2.3.

Section 3 through Section 7 are devoted to the proof of Theorem 2.2. Since
Smin(My,) equals the infimum of || M, u||2 (]| - |2 denotes the Euclidean norm) over
all vectors u of unit £, norm, we split the unit sphere into three parts: compressible
vectors, dominated vectors and the complement of their union. The compressible
vectors and dominated vectors are treated with results from [9]. The majority of the
work is to control infimum over the vectors that are neither compressible nor dom-
inated. Using a result of [34] (see Lemma 3.5 there), this boils down to controlling
the inner product of the first column of (A, — w,/np,I,) and the vector normal
to H,", the subspace spanned by the last (n — 1) columns of (A, — w./np,1,).
In Section 7, it is shown that the last assertion can be proved using Berry—Esséen
theorem. However, the probability bounds obtained from Berry—Esséen theorem is
too weak to prove the almost sure convergence of Theorem 1.3(ii).

In Section 3 through Section 6, we derive a better probability bound that is suit-
able for the proof of Theorem 1.3(ii). We split the set of vectors into two categories:
genuinely complex and essentially real. Roughly speaking, the set of essentially
real vectors are those for which the real and the imaginary parts are almost linearly
dependent, and its complement is the set of genuinely complex vectors.

In Section 3, we show that the vector normal to H,” has a nondominated real
part, with high probability. We construct a net of small cardinality for the gen-
uinely complex vectors in Section 4. We then use this net in Section 5 and results
of Section 3 to show that with high probability, the normal vector cannot be a gen-
uinely complex vector with a subexponential (in ,/np,) LCD. A similar result for
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essentially real vectors is obtained in Section 6. Then we complete the proof of
Theorem 2.2 in Section 7.

In Section 8, we prove Theorem 2.10. The key idea is to show that the distance
of any row of A,, from any given subspace of relatively small dimension cannot be
too small with large probability. This observation together with [40], Lemma A.4,
completes the proof.

Section 9 is devoted to the proof of Theorem 2.11, which establishes the weak
convergence of the empirical measure of the singular values of (A, /\/np, —wly).
The weak convergence is established by appealing to the Lindeberg replacement
lemma, which was introduced by Chatterjee in [17], in conjunction with the stan-
dard concentration inequalities for the spectral measure of a Hermitian matrix and
a truncation argument.

Finally in Section 10, combining the results of Section 7 through Section 9, we
complete the proof of Theorem 1.3.

2. Preliminaries and proof outline. In this section we provide an outline of
the proof of Theorem 1.3 and introduce necessary definitions and notation. As
mentioned in Section 1, the standard technique to find the limiting spectral dis-
tribution of a nonnormal matrix is the Girko’s method. We refer the reader to [7]
for a detailed description of it. The utility of Girko’s method, in the context of our
set-up, can be captured by the following replacement principle. The replacement
principle, which has its origin in [40], gives a sufficient criterion for the ESD of
two random matrix ensembles to have the same limit. To state the relevant result,
first we introduce a few definitions. A sequence of random variables {X,} is said
to be bounded in probability if

lim limsupP(|X,| <K)=1

K—o0 n—soo
and {X,,} is said to be almost surely bounded if

]P(limnsup | X, < oo) =1.

Next, for a matrix B,,, we denote ||B,||> its Frobenius norm, that is, || B,|2 :=

JTI(BFB,).

LEMMA 2.1 (Replacement lemma). (a) Let B,(,l) and B,(,z) be two sequences
of n x n random matrices, such that:

(1) The expression
1 1
2.1) —| BV H% +—|B® H% is bounded in probability,
n n

and
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(ii) For Lebesgue almost all w € D C Bc(0, R) C C, for some domain D and
some finite R,

1 1

(2.2) —log|det(BV — wl,)| — —log|det(B® —wl,)| — 0 in probability.
n n

Then for every f € CC2 (©) supported on D,

(2.3) / f @ dLB’gl)(UJ) — / f @ dLB,S” (w)— 0 in probability.

(b) If (2.1) is almost surely bounded and (2.2) holds almost surely then (2.3)
holds almost surely as well.

The replacement principle of [40] requires a uniform control on spin (A, —
w,/nply,) for Lebesgue almost every w € C. Theorem 2.2 (see below) provides
such a control only when w is away from the real line. Therefore, we need to use
Lemma 2.1, borrowed from [7], instead of [40], Theorem 2.1.

Lemma 2.1(a) was proved in [7]. Repeating the proof of [7], Lemma 10.1, one
can derive Lemma 2.1(b). Details are left to the reader.

We apply Lemma 2.1 with B,(ll) = ;pn A,, and B,(,Z) which is the matrix of
i.i.d. centered complex Gaussian entries with variance 1/n. The assumption (i) is
straightforward to verify: it follows from laws of large numbers. It is well known

that %log | det(B,(,z) — wl,)| admits a limit. Hence, establishing assumption (ii)
of Lemma 2.1 boils down to showing that log(-) is integrable with respect to the
empirical measure of the singular values of B,(,D — wl,. As log(-) is unbounded
near zero, one needs to establish the weak convergence of the empirical measure of
the singular values, find bounds on spi,, and show that there are not many singular
values in an interval near zero (the unboundedness of log(-) near infinity is not a
problem since the maximal singular value of B,(,l) — wl, is O(1) with probability
1 —o0(1)). These are the three ingredients of the proof of Theorem 1.3.

2.1. Smallest singular value. The desired bound on spin (A, — /np,wl,) is
derived in the theorem below.

THEOREM 2.2. Let A, be an n x n matrix with i.i.d. entries a; ; = 6; ;& j,
where {5; ;} are independent Bernoulli random variables taking value 1 with prob-
ability p, € (0,11, and {§; ;} are i.i.d. real-valued centered sub-Gaussian with
unit variance. Fix R > 1, r € (0, 1] and let D,, be a diagonal matrix such that
I D, |l < R /np, andIm(D,) =" /np, 1, for some r’ with |r'| € [r, 1]. Then there
exist constants 0 < ¢22,C22, c/2.2, Cao, Cé.z,fz_z < 00, depending only on R,r
and the sub-Gaussian norm of {&; ;}, such that for any & > 0 we have the follow-

ing:
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) If
. Coro logn’
n
then
log(1 C!
IP’<Smin(An + Dy) <26 eXp(—Cz.zw),/ &> <e4 —22
log(np,) /V n npn
(i1) Additionally, if
(2.4) log(1/py) < é22(lognpy)?,

then

log(1
]P(Smin(An + Dn) < (1€ exp<—C22M> &)
(2.5) log(np,) /V n
=&+ eXp(_C/Z.ZV npn)-

REMARK 2.3. It is easy to check that if np, > exp(c.+/logn) for some con-
stant ¢, then p, satisfies (2.4). Therefore, it is enough to prove Theorem 2.2(ii)
under the assumption (2.4) in order to apply it to the proof of Theorem 1.3(ii).

REMARK 2.4 (Optimality of Theorem 2.2). It is believed that for A, and D,

as in Theorem 2.2 one has that syin (A, + Dy) ~ p,l/zn_l/z. Hence, for p, ~ no—1
for some o > 0, Theorem 2.2 gives an optimal lower bound on syin(A, + D).
However, when np,, grows at a rate subpolynomial in n, we get an additional factor
n~°M This is due to the fact that one needs p = o(1) in [9], Proposition 3.1. To
obtain the optimal lower bound on smin (A, + D;), one needs p = (1) there.

We also add that the optimal probability bound for the event on the LHS of (2.5)
is & + exp(—c} ,np,). The suboptimality of the probability bound in (2.5) is again
due to the fact that we can only allow p = o(1) in [9], Proposition 3.1.

Similar to [9], without loss of generality, we can and will assume that p <
cR~2, for some small positive constant c. For larger values of p, the entries a;, j
have variance bounded below by an absolute constant. In such case, we can ignore
sparsity and regard entries a; ; as i.i.d. centered sub-Gaussian random variables
whose variance is bounded below.

To prove Theorem 2.2, we follow the same scheme as in [9] and borrow some
of its results. Recalling the definition of the smallest singular value we have

Smin(Ay + Dy) = inf 1“ (Ap + Dn)ZHZv
785

where Sé’;l :={z € C" : ||Iz|| = 1}. Thus, to bound syj, we need a lower bound
on this infimum. To obtain such a bound, we decompose the unit sphere into com-
pressible, dominated and incompressible vectors, and obtain necessary bounds on
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the infimum on each of these parts separately. The definitions of compressible,
dominated and incompressible vectors are borrowed from [9]. However, we now
need to treat complex shifts of the matrix A, which necessitates a straightforward
modification of those definitions to accommodate vectors with complex valued
entries. We start with the definition of compressible and incompressible vectors.

DEFINITION 2.5. Fix m < n. The set of m-sparse vectors is given by
Sparse(m) := {z € C" | |supp(z)| < m},

where |S| denotes the cardinality of a set S and supp(-) denotes the support. Fur-
thermore, for any § > 0, the vectors which are §-close to m-sparse vectors in Eu-
clidean norm, are called (m, §)-compressible vectors. The set of all such vectors,
hereafter will be denoted by Comp(im, §). Thus,

Comp(m, §) := {z € S{é‘l | Ay € Sparse(m) such that ||z — y||» < 8}.

The vectors in S(’é_l which are not compressible are defined to be incompressible,
and the set of all incompressible vectors is denoted as Incomp(m, §).

Next, we define the dominated vectors. These are close to sparse vectors but in
a different sense.

DEFINITION 2.6. Forany z € S{é_l, let 7, : [n] — [n] be a permutation which
arranges the absolute values of the coordinates of z in a nonincreasing order. For
1 <m <m’ <n, denote by Zim:m] € C" the vector with coordinates

Z[m:m/](j) =2z(j)- 1[m:m/] (”z(]))

In other words, we include in z[;,.,,/] the coordinates of z which take places from
m to m’ in the nonincreasing rearrangement of its absolute values. For o < 1 and
m < n, define the set of vectors with dominated tail as follows:

—1
Dom(m, a) := {Z € S(C | 1Zimt-1:n7ll2 < Ol\/m”Z[m—i—l:n]Hoo}-

Note that by definition, Sparse(m) N Sg:_l C Dom(m, «), since for m-sparse
Vectors, Z[m+1:1] = 0.

While studying the behavior of sy, of real shifts of A, in [9], we noted that the
control of the infimum over compressible and dominated vectors can be extended
when they are viewed as subsets of S(’é*] (cf. [9], Remark 3.10). So we only need
to control the infimum over vectors that are neither compressible nor dominated.
The infimum over the incompressible vectors is tackled by associating it with the
average distance of a column of the matrix A, from the subspace spanned by the
rest of the columns. We use the following result.
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LEMMA 2.7 (Invertibility via distance [34], Lemma 3.5).  Let fin beanyn xn
random matrix. For j € [n], let A, ;j € C" be the jth column of Ay, and let H,_;

be the subspace of C" spanned by {An,i, i € [n\{j}}. Then for any ¢, p > 0, and

M <n,
P(_, 0t sl <ot [7)
ze€lncomp(M, p) n

| I
< > P(dist(Ay,j, Hy,j) < p/PE).
j=1

(2.6)

We should mention here that Lemma 2.7 can be extended to the case when the
event on the LHS of (2.6) is intersected with an event €2, and in that case Lemma 2.7
continues to hold if the RHS of (2.6) is replaced by intersecting each of the event
under the summation sign with the same event 2 (see also [9], Remark 2.5). We
will actually use this generalized version of Lemma 2.7.

In order to apply Lemma 2.7 in our set-up, denote by BP"~! the (n — 1) x n
matrix obtained by collecting the last (n — 1) rows of (A, + D,)T. Hereafter, for
brevity, we will often write B? instead of BP-"~!. We note that any unit vector z
such that BPz = 0 is a vector normal to the subspace spanned by the last (n — 1)
columns of (A, + D;). Thus, applying Lemma 2.7 and the fact that the columns
of A, are i.i.d., we see that it is enough to find bounds on (A,?l, z), such that

BP7 =0, where A,?l is the first column of (A, + D;,).

The small ball probability bounds on (A,?’ 1» 2) depend on the additive structure
of the vector z. Following [9], we see that with high probability, we can assume
that any z € Ker(BP) is neither compressible nor dominated, where Ker(B?) :=
{u € C" : BPu = 0}. Therefore, it is enough to obtain estimates on the small ball
probability for incompressible and nondominated vectors. To this end, we define
the following notion of Lévy concentration function.

DEFINITION 2.8. Let Z be a random variable in C". For every ¢ > 0, the
Lévy concentration function of Z is defined as
L(Z,e):= sup P(|Z —ul2 <¢).

ueCn

The Berry—Esséen bound of [37], Theorem 2.2.17, yields a weak control on
Lévy concentration function which is enough to prove Theorem 2.2(i). To prove
Theorem 2.2(ii), a significant amount of additional work is needed which is the
key contribution of this paper.

To obtain a strong probability bound on the Lévy concentration function, the
standard approach is to first quantify the additive structure present in an incom-
pressible vector via the definition of least common denominator (LCD). When the
LCD is large, one can derive a good bound on the Lévy concentration function
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using Esséen’s inequality [22] (see also [41], Theorem 6.3). However, Esséen’s
inequality does not yield a strong small ball probability estimate for vectors with
small values of LCD. Nevertheless, these vectors are shown to admit a special net
of small cardinality and, therefore, one can still apply the union bound to complete
the proof; for example, see [9, 34, 35]. One would hope to carry out the same pro-
gram here. However, when we view the incompressible and nondominated vectors
of small LCD as a subset of S(’é_l, its real dimension is twice as large as in the
proof [9], Proposition 4.1. On the other hand, for the real-valued random variables
in A,, one does not expect to obtain better control on the Lévy concentration func-
tion. Thus the proof of [9], Proposition 4.1, breaks down as the bounds on the
Lévy concentration function and the size of the net do not match (see also [9],
Remark 4.5).

To tackle this obstacle, we decompose the vectors according to the angle be-
tween their real and imaginary parts. More precisely, we define the real-imaginary
decorrelation as follows.

DEFINITION 2.9. Let z € C" for some positive integer m. Denote V :=
T
V(z) = (’y“T ) where z = x +1y. Then we denote the real-imaginary de-correlation
of z by

d(z) := (det(VVT))2.

This notion of real-imaginary decorrelation was introduced in [36] to study the
no-gap delocalization property of the eigenvectors of a wide class of random ma-
trices. In [36], it is termed as “real-complex correlation.” Here we deviate from
that terminology upon noting that small values of d(z) indicate that the real and
the imaginary part of z are close to being linearly dependent.

If a vector z € S(’é_l has a large value of d(z), then we call this vector genuinely
complex, whereas vectors with small real-imaginary decorrelations are termed es-
sentially real vectors (see (5.1) and (6.1) for a precise formulation). The real and
imaginary parts of essentially real vectors being almost linearly dependent it al-
lows us to construct a net whose cardinality is a polynomial of degree n in terms
of the mesh. Therefore, one can use the small ball probability estimates from [9]
to show that with high probability, there does not exist any essentially real vector
in the kernel of B” with a small LCD.

The analysis of genuinely complex vectors is more delicate. Following the
recent work of [36], we define a notion of a two-dimensional LCD. Roughly
speaking the two-dimensional LCD D;(:) of z = x + iy identifies a nontrivial
0*(2) := (07(2),05(2)) € R? such that 07 (z)x + 605 (2)y is close to an integer point
and 6™ (z) has the least possible Euclidean norm among all such choices. See Defi-
nition 4.3 for a precise formulation. Using a result of [36] (Theorem 7.5 there), we
show that the small ball probability bound of genuinely complex vectors decays
roughly as the inverse of the (2n)th power of D> (-) (see the bound in (5.7)). This
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probability bound balances the cardinality of the net of genuinely complex vectors
for which A (zsman) := 1107 (Zsmal) Xsmatl + 03 (Zsmall) Ysmatt |2 (precise definition of
A(-) can be found in Definition 4.4) is large, where zZgmann = Xsmall + 1Ysmall 1S the
part of z containing the coordinates of small modulus. It allows us to take the union
bound over the net of such vectors. To treat the remaining set of genuinely complex
vectors, using results from [9], we show that, with high probability, there cannot
exist a vector z € Ker(BP) with a dominated real part. This additional observation
then shows that for any z € Ker(BP) the quantity A(zgma)) must also be large.
This completes the outline of the proof of Theorem 2.2.

2.2. Intermediate singular values. We also need to show that there are not
too many singular values of (A, — w,/npl,) in a small interval around zero. The
following theorem does that job. Before stating the theorem, for i € [n], let us
denote s;(-) to be the ith largest singular value.

THEOREM 2.10. Let A, be an n X n matrix whose entries are {5,-,‘,-8,-,_,-}?].:1
where {&; ;}! j—1 are i.i.d. real-valued random variables with zero mean and unit
variance, and {5; ;}! j1 are i.i.d. Ber(py,) random variables. There exist constants

210 and Ca.10° such that the following holds: Let ¥ : N+ N be such that y(n) <
n and min{ p, ¥ (n), wz(n)/n} > Cy.10logn. Then for any w € Bc(0, 1) we have

P( nol{ (An 1)< i}><2
Sn—i — Wiy | =C2.10— = -
=3y (n) 1Pn n n’

To prove Theorem 2.10, we follow the approach of [40], which was adapted to
the sparse case in [13, 44]. We first show that the distance of any row of A, from
any given subspace of not very large dimension cannot be too small with large
probability. This observation together with a result from [40] completes the proof.

2.3. Weak convergence. Recall that to show the integrability of log(-) we fur-
ther need to establish the weak convergence of the empirical measure of the singu-
lar values of J%An — wl,. Define

0
(2.7) AV = VP
A, —wl, 0
NG
and denote by v’ the ESD of A}’. It can be easily checked that v} is the sym-

. . .. . 1
metrized version of the empirical measure of the singular values \/T_PA” —wl,.

A, —wl,

Thus, it is enough to prove the weak convergence of v".

3The constants ¢p.10 and Cy 1o can potentially depend on the tail of the distribution of {§; ?:l'
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THEOREM 2.11. (i) Let A, be an n x n matrix with entries a; j = &; j - & j,
where §; j are i.i.d. Bernoulli random variables with P(; j = 1) = p,, and §&; ;
are centered i.i.d. real-valued random variables with unit variance. Assume p, =
a)(loff"). Fix any w € Bc(0, 1). Then there exists a probability measure vy such
that v’ converges weakly to vy, in probability.

(ii) If additionally {éi,j}l’.”jzl have finite fourth moment and "2 | n’py)~ ! <
oo then the above convergence holds almost surely.

To prove Theorem 2.11, we first apply a standard truncation technique which
shows that it is enough to prove the weak convergence of v,” to v% for bounded
{&i. j}Z =1 (see Lemma 9.1). This truncation argument requires the additional as-
sumptions of part (ii) of Theorem 2.11 to establish the almost sure convergence.

It is well known that v , the symmetrized version of the empirical law of the

singular values of ﬁGn —wl,, where G, is a complex Ginibre matrix, converges

weakly, almost surely to vy . Therefore, to obtain Theorem 2.11 it is enough to
show that for bounded {§; ; }?’ =1 the signed measure v,’ — vgn converges weakly
to the point mass to zero, as n — 00, in probability or almost surely, depending on
the sparsity parameter p.

This is done in Section 9 using the following two-fold argument. First, we es-
tablish that both the random probability measures v, and vgn are close to their
expectations, denoted hereafter by Ev,” and Evg , respectively. This step uses
standard concentration inequalities for the spectral measure of Hermitian random
matrices.

To complete the proof of Theorem 2.11, we then need to show that Ev;’ and
Evgn are themselves close to each other. Here we appeal to the Lindeberg replace-
ment principle which was introduced to the random matrix theory in [17, 18] to
prove the semicircle law for random symmetric matrices with exchangeable en-
tries on and above the diagonal. Subsequently, this technique has been used on
numerous occasions in the random matrix theory literature.

3. The structure of the kernel: Vectors with nondominated real part. Re-
call from Section 2.1 that the main challenge in proving Theorem 2.2 is to show
that there does not exist a genuinely complex vector z € Ker(BP) with a small
two-dimensional LCD. As a first step, we show that for any z € Ker(BP), its real
part must have a nondominated component with high probability. This is shown
in the following result, which is the main result of this section. Before stating the
result, let us introduce some notation, which is borrowed from [36]: For a number
M < n/2, to be determined during the course of the proof, we denote by small(z)
the set of the (n — M) coordinates of z having the smallest absolute values. The ties
are broken arbitrarily. We also write Zsmall = Xsmall + 1Ysmall := Zsmall(z). Hereafter,
we drop the subscript in p,, and for ease we write p instead.
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PROPOSITION 3.1. Let A, be a matrix with i.i.d. entries a; j = &;;0;j, where
{§ij} are i.i.d. centered real-valued random variables with unit variance and finite
fourth moment, and {6;;} are i.i.d. Ber(p) random variables. Set

. _Fogl/(sm]
T g ypn I

Fix r € (0,1] and R > 1 such that Im(D,)) = r' /npl, with |r'| € [r, 1] and
IDnll < R./np. Fix another positive real K > 1. Then there exist constants

Cs.1, C31,c3.1 and ¢3.1, depending only on r,NR, K and the fourth moment of {&;;},
such that the following holds. Denote p .= (C3.1(K + R)) "%~ and assume that

(3.1) cz1popn > 1.
Set M = C3.1p’4p’1. Then

Xsmall

]P’(Elz e Ker(BP)nsg!:

—H > pp'/2 and | Ay |l < K«/_np)
||xsmall||2 00

<exp(—c3.1np).

REMARK 3.2. For clarity, we only prove Proposition 3.1 for r’ € [r, 1]. It will
be evident that the proof of the case r’ € [—1, —r] is exactly the same. We spare
the details.

The key to the proof of Proposition 3.1 is in showing that if the real part of a
vector z is compressible then || BPz]|, cannot be too small. This is derived in the
following lemma.

LEMMA 3.3. Let BD,An,,o, K,R,r and r’ be as in Proposition 3.1. Then
there exist constants 0 < ¢33, C/s.s’ cg’g C33 < 00, depending only on K, R, r and
the fourth moment of {§; ;}, such that for any p <M< cyan/log(1/p),

P(3z=x+iye SE 1| BPz|, < c33p/mp,
[l xXsmanll2 < C,3/‘3:0’ and ||Ayll = K % np) = exp(—c33np).

To prove Lemma 3.3, we borrow results from [9]. In [9], Proposition 3.1, we
showed that, with high probability, there does not exist any real-valued compress-
ible or dominated vector z such that || Re(B?)z||» is small, where Re(B?) denotes
the real part of the matrix BP . In [9], Remark 3.10, it was also argued that the
same conclusion holds for || BPz||» when z is now allowed to be complex valued.
We will need this result to prove Lemma 3.3. For completeness, we state it below.

PROPOSITION 3.4 ([9], Proposition 3.1, Remark 3.10). Let A, be as in Propo-
sition 3.1. Fix K, R > 1, and assume that D,, is a nonrandom diagonal matri-
ces with complex entries such that ||D,|| < R./pn. Then there exist constants
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0 < c34,C34, cg.4, Csa, 53,4, C34 < 00, depending only on K, R and the fourth

moment of {§;;}, such that for

Cia4l 1
n 10

and any p_1 < M < c34n,we have
P(3z € Dom(M, (C34(K + R)) ™) U Comp(M, p)
” (A + Dy)z |2 =< C/3_4(K + R)P\/”P and ||A, || < K\/ pn)

<exp(—c34pn),

where p = (63.4(1( + R))~%=6 and ¢y are as in Proposition 3.1.

Observe that Proposition 3.4 is stated for the square matrix A,. To prove
Lemma 3.3, we need a version of Proposition 3.4 for (n — 1) x n matrices. As
noted in [9], Remark 3.9, this follows from an easy adaptation. So, without loss
of generality we will use Proposition 3.4 also for (n — 1) x n matrices. The final
ingredient for the proof of Lemma 3.3 is an estimate on the Lévy concentration
function for incompressible and nondominated vectors. Such an estimate was de-
rived in [9], Corollary 3.7, for real valued vectors and matrices with zero diagonal
and i.i.d. off-diagonal entries. One can investigate its proof to convince oneself that
the same proof works for complex valued vectors and matrices with i.i.d. entries.
We state this modified version below.

LEMMA 3.5 ([9], Corollary 3.7). Let A, be as in Proposition 3.1. Then for
any a > 1, there exist B,y > 0, depending on o and the fourth moment of {&;;},
such that for z € C", satisfying ||z|loo/lIzll2 < /P, we have

L(Anz, B-/pPrllzll2) < exp(—yn).
We now proceed to the proof of Lemma 3.3.

PROOF OF LEMMA 3.3. The proof is based on ideas from [23]. For ease of
writing, let us write cg := (C34(K + R))~*. We also denote

Qp.c := {Re(BP) : 3z € Dom(M, cp) U Comp(M, p)

|BPz||, < ch4(K + R)p/np and ||A, || < K \/np).

Using Proposition 3.4, we see that P(Q2p ¢) < exp(—c34np). We now make the
following claim.

CLAIM. Fixany J C [n] of cardinality M and let

Z/j = {Z =x+ iy : ”xsmall”2 =< C//p and Supp(x[l:M]) C J},
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for some small constant ¢” to be determined later. Then
P({3z € 2/ such that | BPz|, < co/np} N Q% ¢) <exp(—cn),

for some small constants ¢ and c.

The conclusion of the lemma immediately follows from the claim by taking a
union bound over J C [n], such that |J| = M. Thus we now only need to prove
the claim.

To prove this claim, we will first show that if z € Z/, such that || B Dz]l5 is small,
then y, the imaginary part of z, belongs to a small neighborhood of a linear image
of the subspace spanned by the largest M coordinates of x, the real part of z. This
together with the fact that [|xsmar||2 is small enables us to obtain a net of Z/J with
small cardinality. Finally, using the estimate on Lévy concentration function of
Lemma 3.5 and the union bound, we complete the proof of the claim. Below we
carry out the details.

Fix any J C [n] and let Re(B Dy | 7 denote the submatrix induced by the columns
of Re(BP) indexed by J. We first condition on a realization of Re(BP)|; and show
that for every such realization the conditional probability of the event in the claim
is less than e~“". Then taking an average over the realizations of Re(B?)|;, the
proof will be completed.

So let us assume that z € Z/; be such that || BPz|, < cp/np. Then we see that

(3.3) |Re(B)x —Im(BP)y, < | B z|, < cp/np.

Notice that || x{p+1:11112 < | Xsmaitll2 @s X[apr4+1:1] consists of the smallest in the
absolute value coordinates of x. Since

|Re(BP)|s¢] < |Re(BP)| < | BP| < | An]l + I Dull < (K + R)/np,
applying the triangle inequality we further deduce that
[tm(B®)y —Re(B?)lsx11:1]l, < cp/np + [Re(B) Lexiar1 |,
<cpy/np + |Re(BP)se| - lIXsmanll2
<2cp./np,

where in the last step we chose ¢” so that ¢’ (K + R) < c.

Hereafter, we write Im(B?) to denote the imaginary part of the matrix BP.
Hence Im(BP) is a (n — 1) x n matrix whose first column is zero and the last
(n — 1) columns form a diagonal matrix whose entries are all equal to r’,/np.
Therefore, denoting y|[2.,) to be the (n — 1) dimensional vector consisting of the
last (n — 1) coordinates of y we further have that

1
(3.4) HY|[2:n] - W

RG(BD)IJX[];M] H <2¥"lep <2k N ep.
2
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Thus (3.4) implies that the vector y|[2.,] belongs to a (2r_lc,o)-neighborhood
of the linear subspace <5’J’ = span(Re(BD)mRJ) c R"!. Since lxp+1:mll2 <
¢’ p <r~'cp, we have that for any z € Z/,, such that || BPz]|, < cp./np, belongs
toa (3r‘1c,o)—neighborhood of the set

&y = {x+1iy:supp(x) C J, ylpm € &,y € -1, 11},

with dim(&y) <2M + 1. Since 2/, C S(’é_l, applying the triangle inequality and
choosing ¢ < r/3 we further see that every vector in z € Z/,, such that |BPz||, <
cp/np, belongs to a (3r‘1c,o)—neighborhood of (2B¢) N &. Therefore, we can
choose a (r ~!¢p)-net N C (2B¢) N & of cardinality

12 2M+1
(3.5) IN|§<5> < exp(3M log(12/(cp)))-

Note that, using the triangle inequality we see that A/ is (4r~'cp)-net of the

set of all vectors z € Z'; such that IBPz|l2 < cp/np. Thus, fora z € Z', with

I1BPz|l, < cp/np, there must exist at least one w € N such that || BPw]|, <

5r~1(K + R)cp/np. Now shrink ¢ such that 10r ~'c < ¢} ,. With this choice of

the constant ¢, we see that w ¢ Dom(M, c¢g) U Comp(M, p) on the event Qi)’ c-
However, for any w ¢ Dom(M, cp) we have

w .
|| [M+1.n]||w§(60m)_15661f’

lwips+1:n1ll2

where in the last step we used the fact that M > p~!. Thus applying Lemma 3.5,
there exists constants ¢, and ¢ such that

P(|BPwl, < cp/np|Re(B)1s)
< L(Re(BP) | jewms1m)s callwing1:m)l24/mp) < exp(—2cn).
Hence, by the union bound,
P(Ew e N : |BPw]|, < cap/np|Re(BP)|;) <IN - exp(—2cn) < exp(—cn),

where the last step follows from the bound (3.5) and the fact that M log(1/p) <
¢'n for a sufficiently chosen small constant ¢’. Thus shrinking ¢ again such that
5r~1(K + R)c < ¢, we obtain that

P({3z € Z) such that | BPz|, < co/np} N Q% ¢|Re(BP)|,) < exp(—cn).

Finally, taking an average over all the realizations of Re(BP)|; completes the
proof. [

We are now ready to prove Proposition 3.1.
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PROOF OF PROPOSITION 3.1. Letz € Ker(B?)N S%_l. Assume that the event
QCD’C defined above occurs, so z ¢ Dom(M, cg) U Comp(M, p). We note that if
c3.1 1s chosen sufficiently small then the assumption (3.1) implies that

Mlog(1/p)
I A < 1,
€33N

whenever n is large enough. So Lemma 3.3 can be applied, which implies that,
with high probability, ||xsmaill2 > ¢4 ;0. On the other hand,

l|Xsmal lloo =< l|Zsmalllloo < .
cov M

Combining the last two inequalities, we show that on the event Q, -,

| Xsmatt || oo < 1
lXsmanll2 — C/3/3p60\/M’

and the result follows upon choosing Cs3; sufficiently large. [J

(3.6)

REMARK 3.6. Note that the inequality (3.6) continues to hold even if the con-
stant C3 1 is increased without changing other constants C3 1, ¢3.1 and ¢3 1, appear-
ing in Proposition 3.1. This implies that, if needed, we can arbitrarily increase the
constant C3 1. This observation will be used later in the paper.

4. Net construction: Genuinely complex case. In this section we show that
the set of genuinely complex vectors admits a net of small cardinality. We begin
with the relevant definitions.

DEFINITION 4.1. For y > 0, denote log,(y) :=logy-I(y > e). Fixing L > 1,
for a nonzero vector x € R™, we set

0
4.1 Di(x) := inf{@ > 0:dist(fx, Z™) < ZSL‘/logl ||2§l|!2 }

If V is a 2 x m matrix, define

V1o
42) D) 3=inf{||9||219ERz,dist(VTQ,Z’”)<L log, | 28L”2},

We will call the first version of the LCD one-dimensional, and the second one two-
dimensional. Note that D (-) matches with the definition of the LCD used in [9] up
to constants.

REMARK 4.2. The different powers of 2 appearing in the definitions (4.1) and
(4.2) play only a technical role. They do not affect most of the proof, and they will
be needed in Section 6 to compare the one and the two-dimensional LCD for almost
real vectors (see Lemma 6.1).
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Observe that D (-) and D, (-) are defined for real-valued vectors and matrices,
respectively. However, both these notions can be extended for complex valued
vectors by the following simple adaptation.

DEFINITION 4.3. Consider a complex vector z = x + iy € C”. Denote 7 :=
Z(2) = ()yc) € R?" and define a 2 x m matrix V := V(z) := (’ycl) Using these two
different representations of z € C™, we now define

Dy(z) :=Dy(V) and Di(z) := Di(2).

Let us assume that the infimum in (4.2) is attained at §*. Then from Defini-
tion 4.1, we have that D(V) equals ||6*||. We will see below that the cardinality
of the desired net for the genuinely complex vectors also depends on ||V T0*|,.

However, the infimum in (4.2) is not always achieved. Hence, we have the follow-
ing definition.

DEFINITION 4.4. For a real-valued 2 x m matrix V, define

A(V) :=liminf{||VT0H dist (V70,2 < L [log, 177012
T—1+ 2 ’ 1 28L ,

16112 < rD2<V)}.

As before, for a z € C", we define A(z) := A(V) where V = V(z). For later use,
let us note that for any z € S¢* -1

(4.3) d(2)D2(z) = A(z) < D1 (2),

where d(z) denotes the real-imaginary decorrelation of z appearing in Defini-
tion 2.9. Indeed, the inequalities (4.3) are immediate from the fact that the singular
values of VT are bounded by one and d(z) is the product of the singular values of
VT

REMARK 4.5. We take L = ((SOp)*]/Z, where §g € (0, 1) is a universal con-
stant as in [9], Remark 2.7.

Equipped with the above definitions, we consider the following simple reduc-
tion. Fix M <n/2,z € S&_l, and let J = small(z). It can be easily verified that for
any z € C" there exists a T € [0, 2r) such that z; = T (wy +iwy), where w; L wo
and ||wall2 < |lwi|l2. As z; € Ker(B) if and only if e 717z, € Ker(B), without loss
of generality, we can only consider the following set:

“44) Z:={ze€ S{é_l\(Dom(M, (C34(K + R))_4) U Comp(M, p)) :
Zsmall = W1 + 1wz, wi L wa, lwill2 > lwall2}
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instead of S{é_l\(Dom(M, (C3.4(K 4+ R))™*) U Comp(M, p)). Therefore, our re-
vised goal is to show that the set of genuinely complex vectors, when specialized
to Z, admits a net of small cardinality.

To this end, fixing a set J C [n], we start with constructing a small net for
the set of pairs (¢, ¥) with ¢ L ¢ in the unit sphere of R/ x R’ for which
the value of the two-dimensional LCD, the auxiliary parameter A(-), and the de-
correlation d(¢, V) = ||@|21|¥ ||2 are approximately constant. The condition on the
two-dimensional LCD means that there exists a linear combination of the vectors ¢
and ¥ which is close to an integer point. Our aim is to use this linear combination
to construct separate approximations of ¢ and .

For any y > 0, let us denote Z}{ =7/ N yByl. Using a simple volumetric
comparison argument, we have following estimate on |Z)f |:

4.5) 1z < (co(:%%T4—1>)uk

for some absolute constant Cy. The main technical result of this section is the
following lemma.

LEMMA 4.6. Letd €(0,1),and 0 <a <d®D < A <D. Define the set
S;@,A,d):={(¢,¥) eR! xR 19 Ly, pl2 € [1/2. 1], 1Y/ |12 € [d. 3]
3 eR*¢]2 € [D.2D1, 619 + 0¥ ll2 € [A, 2A],
and dist(¢1¢ + &v, 27) < ).
Then there exists a (Cg“)-net My®, A, d)C S;(®D, A,d) such that

- dD? 1 I\ /D\2
e sar(eT (D) ()

for some absolute constants Cy 5, and Cyss.

This lemma provides a significant improvement over the standard volumetric
estimate yielding (¢©?/a?)!/!. This improved bound precisely balances the term
appearing in the small ball probability estimate. Note that the bounds on ||¢||» and
lvr|l2 imply that the decorrelation d(¢, ) is approximately constant in the set
S7(®, A, d), whereas the bounds on ||¢||» and dist(¢1¢ + &, Z7) ensure that
the two-dimensional LCD and the auxiliary parameter A(-) are approximately con-
stant. Lemma 4.6 deals with the case when the decorrelation between ¢ and Y
is relatively large, represented by the assumption d > «/®, which in turn implies
that the angle between the real and the imaginary part of the vectors is nonnegli-
gible. In Section 5, we use this criterion to formally define the notion of genuinely
complex vectors.
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We also point out to the reader that a net for the genuinely complex vectors
was constructed in [36] (see Lemma 11.2 there). Using that net and the bound on
the Lévy concentration function (see [36], Theorem 10.3), it was then showed that
there are no vectors with LCD less than O (n) in the kernel of the matrix in context,
with high probability. Repeating the same argument here, one can at best hope to
show that there does not exist any vector in Ker(BP?) with LcD O (np), with high
probability. To treat the remaining vectors again, one needs to apply bounds on
Lévy concentration function (e.g., see the bound derived in Proposition 5.3). How-
ever, for such vectors the bound is too weak to deduce almost sure convergence of
the ESD of JLn_pAn.

Hence, we need to proceed differently. In particular, we use all the parameters
D, A, and d to find a net of appropriate size such that its cardinality balances with
the small ball probability derived in Proposition 5.5 so that we are able to show
that there are no vectors in Ker(B?) with LD less than exp(O(npp4)) with high
probability.

PROOF OF LEMMA 4.6. Assume that there exists ¢ := (¢1, &) € R? and g €
77 satisfying
(4.6) 1519 + oY ll2 € [A,2A] and  [[§1¢+ ¥ —gll2 <.

We consider two cases depending on the size of ;. Let us start with the case when
this value is small. Consider the set

SUD. A, d) = {(qs, V) €Sy®, A, d): 301, 1) € 2,

(€1, 0|, € [9,29],
1
1] = 5dD, 1616 + oYl € [A, 2A], and 3g € Z7 such that

um¢+aw—qM<a}

Since d < 1, note that the condition on ¢; implies that /2 < || < 23. Hence

1
4.7 A<|&ip+ oyl < id’DIIfIbllz + 29| ll2 =7dD.

We will approximate ¢ using the standard volumetric net and use (4.6) to construct
a small net for ¥. To this end, consider (¢, {) € 59 (®, A,d) and let (¢1, &) € R?
be the corresponding vector (i.e., for which (4.6) holds). Then, by the triangle
inequality,

gl <a+2A <3A,
thatis, g € Z3JA. Denote by Ny an («/D)-net in BZJ with

394\ I
o= ()
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Choose ¢’ € Ny such that ||¢p — ¢||l2 < /D. Then
[61¢" + v —ql, <a+lcil- [ —¢[, < 2a,
as ] < %d@ <2%. Therefore,

o, ®/2 ¢ 20 da
+—¢ —— — — < —.
Hlﬂ §2¢ L D)2 2< 122 )
We observe that
;l :9/2 / H
4. = —_— 1 1 d ||—— —
( 8) o o =1L Hd) HZE an @/2 <6:D <6,

where the last inequality follows from our assumption A < ®. Next, let N7 be
an («/®)-net in the unit square in R? with MOl < (6©/a)2. Using (4.8), and
applying the triangle inequality, we now see that there exists (x1, x2) € Mg such
that

H‘ﬁ —x19’ —X2©—/2H

Hence,

M%(’D,A,d)::{(qﬁ x1¢’ +x2©—/2) :¢/e./\/'¢,qeZ{A,(xl,xz)eND},

is a 12—"‘—net of SO (D, A, d), with

IMG@. A, d)] <IN+ |Zd, - |Nu|_(3%>9.(%+1>)'”.(%>2

< <63C0d7®2 : (\/% 4 %))lﬂ ' (%)2’

where (4.5) has been used to bound |Z:{ Al and (4.7) has been used to replace A by
d?® in the last inequality.
Turning to prove the case of || > %d@, we denote

SY@,A,d) =810, A,D\SY(D, A, d).
That is,

SI®, A, d) = {(¢ ) € S;(®,A,d): 3¢, &) 0|, €[9,29],
1
ISTES [Edﬁ 2@], 116 + &¥ |2 € [A,2A] and 3g € Z7

such that ||£1¢ 4+ O — g2 < Ol}-
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Now let us construct a netin S } (®, A, d). Our strategy here is opposite to what we
used in the previous case. Namely, we use the volumetric approximation for y» and
then use (4.6) to approximate ¢. To this end, consider any (¢, V) € S } ®,A,d)
and let (&1, ) € R? be the corresponding vector. As in the previous case, we
see |lgllo <3A,i.e.qg € ZgA. Since || > %d@ and |&z] <29, we also see that
24(1519M2 = 6dD = [|52¢ ||2. Therefore,

(4.9) A =519ll2 + 102V 112 = 2511519 1l2 < 25[41 1.

Recall that by assumption, a/® < d. Hence, we see that
9dD\ VI
= (20)

where Ny is an (a/D)-net in 3d By . Since || /]2 < 3d, there exists ¥’ € Ny, such
that || — ¥'|l2 < @/®. As in the previous case, this yields

[610 + 09" —al, <a+iol- ¥ —¥'], < 3a,

and so
H¢ n AL 50Dy A 25_q 3(x 75a
5095 A 250 Al |Cl| A
where we have used (4.9) in the last step. Note that
A A 1
‘ $! - <1, H < S0dD <150 and
509¢ 25¢1 2 A
25
H a ’ <75.

Let N be the same (a/D)-net in the unit square as in the previous case. Since
A <, combining the previous estimates with the triangle inequality, we have
that there exists a (x1, x) € N such that

500y’ 25¢q

n A

300«
<—.
2 A

o

Using the fact A < again, we now obtain an («/®)-net My in (%) . BZJ with

900D\ VI
Myl < <T) .

Thus there exists v € M, such that

50Dy’ 25¢
—X2-———V

o
A 2TA

<
2

o
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This implies that the set

50Dy’ 25
: A‘/f +x2-Tq+v,1ﬁ/):

M@, A, d) = {(xl

V' eNy,qeZi,ve My, (x1,x) END}

is a 2a/®)-net for S} (®, A, d). We observe that
IM5@D, A D] <INyl - |Z3al - IMg| - NG

(2 (Gor) 9 €

_ dD? 1 W\ /D)2
e (3 B
o [J| A o
where C is some absolute constant.
Since S; (D, A,d) = S?(@, A,d)U S}(@, A, d), it therefore means that

M@, A, d):= M@, A, d)UML®D, A, d)

is a (Ca/®)-net for the set S7(D, A, d), where C is an absolute constant.

The net M ;(®, A,d) constructed above is not necessarily contained in
S;(®, A,d). However, we can construct a new net by replacing each point of
this net by a point of the set S;(®, A, d) which is within distance Ca/® from
this point. If a (Ca/D)-close point does not exist, we skip the original point. Such
process creates a (2C«/®)-net contained in Sj(®, A, d) without increasing the
cardinality. Thus the lemma is proved. [

Building on Lemma 4.6, we now obtain a net with small cardinality for the
collection of vectors z for which D (zsman/ | Zsmaitll2) & D, A(zZsmai/ |zZsmanll2) ~
A, and d(zZsmal/llzZsmanll2) =~ d, where we recall that the vector zgma1 contains
n — M > n/2 coordinates of z having the smallest magnitude. To this end, let us
define the following set:

Z(®,A,d):={z € Z:Dy(zsman/l|zsmanll2) € [D, 3/2)D],
(4.10) A(Zsmall/”ZsmaIIHZ) € [A, (3/2)A],
d(Zsmall/”ZsmaHHZ) € [d» (3/2)d]}-

As will be seen in Section 5, the small ball probability for the images of such
vectors is controlled by the values of the two-dimensional LCD and the real-
imaginary decorrelation. So we partition this set according to D;(-), A(-), and
d(-). The net M ;(®, A,d) provides a net for the vectors which have D,(-) &~
®, A(-)~ A, and d(-) &~ d. This is shown in the proposition below.
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PROPOSITION 4.7. Letd €(0,1),®, A > 1, and denote

/ A
“4.11) oa:=L loglﬁ.

Assume that o < d® < A <. Then there exist absolute constants C47, C4.7 and
aset N(D,A,d) C Z(D, A,d) with

o (n DM dD? 1 I\\"M
vo.satscr (2" (2 (G- 3)
NV =G oM «o o ﬁ+A
having the following approximation properties: Let z € Z(®, A, d) be any vector
and denote J = small(z). Then there exists w € N(D, A, d) such that
2J wy

o oo
— Ca7—= lzje —wyella < Ca7—,
lzsllz  llwyll2

< :
2 ) D

oo
zsll2 = llwyll2| < C4.75-

REMARK 4.8. Note that Lemma 4.6 holds also for any subset of S; (9, A, d).
That is, given any S C S; (D, A, d) there exists a net M‘;(”D, A,d) C S with the
same properties as in Lemma 4.6. We use this version of Lemma 4.6 to prove
Proposition 4.7. Similarly, we will see that given any S C Z(9, A, d) there exists
aset NV9(®, A, d) C S with the same approximation properties and the cardinal-
ity bound as in Proposition 4.7. This version of Proposition 4.7 will be used in
Section 5.

In proving Proposition 4.7, our strategy will be to use the net M‘f (®, A, d), for
some suitable choice of S, obtained from Lemma 4.6, to approximate the small co-
ordinates. The cardinality of the net to approximate the large ones will be obtained
by a simple volumetric estimate.

PROOF OF PROPOSITION 4.7. Fix aset J C[n],|J|=n — M, and denote
Zi(®,A,d):={z€ Z(D,A,d):small(z) = J}.

Let us now construct an approximating set for this subset. Denote ¢ +iv = ¢ (z) +
iV (z) :=2z7/llzsll2 € C’. Recalling the definition of A(¢ + i), we see that there
exists ¢ € R? such that

I¢1l2 < (4/3)Da(¢p +iy) <29,
219 + 2|l < (4/3)A(p +iY) <2A and

119 + S ll2 A
sy Shyleigp =

dist(¢19 + Ly, Z") < L\/Iogl
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Further recall that d(zsman/llzsmaill2) = ll@ll2ll¥ |2 and note that by our con-

vention we have ||¢|l2 € [1/2,1]. Thus we deduce that ||{|2 € [d, 3d]. Hence

(¢, ¥) € S;(D, A,d), and in particular (¢, V) € S where S := {(¢(2), ¥ (2)) :

7€ Z(9, A, d)}. So it can be approximated by an element of M‘;(@, A,d). Set
={p+iv: (¢, ¥) eMI(®D, A, d)}.

Then for any z € Z;(D, A, d), there exists w’ € M such that
Z_J N < C45£.

‘ B w ’
lzs1l2 2 D

For the set J¢, we will use a net satisfying the volumetric estimate. Since z € S(?:_l ,
there exists a set Njec with

3 D 2M
|NJC| < <C : _) 5
450 «
such that for every z € Z;(D, A, d) there exists a wjc € Nje for which
Jolo’

lzje —wyella < Cq5—.
53]

Finally, consider a net NVjo,1) with |[Njo 17| <3D/(Ca5pa) such that for every z €
Z7(®, A,d) there exists a p” € [0, 1] for which

o
lzslla — o] < c4.5%.

Now let us define
N@,Ad):= ] {pw+w":p eNoiweMy,w eNye}.
|J|l=n—M
ThenforanyzeZ(@ A,d) thereexistsaw:wj—}—ch e N(®, A, d) such that

oo
—, lzje —wyella < Cq5—,

||ZJ||2 IwJ||2 D

po
lzsll2 = llwyll2| = C4.5—-
| < Cus

The set N (D, A, d) thus constructed may not be contained in Z(D, A, d).

However, as in the proof of Lemma 4.5 this can be rectified easily. It thus remains
to bound the cardinality of A'(D, A, d). By Lemma 4.6, we have

IN@, A D)< > INgel- Nl - IMy|

|J|=n—M

n 3 D 2M+1
< . .
- (M) (C446P 06)

(ot () (@)
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Since 1 < M < n/2, the required estimate follows from a straightforward calcula-
tion. This completes the proof. [

5. The structure of the kernel in the genuinely complex case. In this sec-
tion our goal is to show that with high probability, any genuinely complex vector
in Ker(BP?) has a large two-dimensional LCD. Before proceeding any further let
us formally define the notion of genuinely complex vectors:

Compl(Z)
5. = {z € Z : d(zsman/ llZsman ll2)
4L \/ A(Zsmall/”zsmallHZ) }
= logl 7 ’
Do (zgman/ | Zsmat l12) 2'L

where we recall the definition of Z from (4.4). Equipped with the notion of gen-
uinely complex vectors we state the main result of this section.

THEOREM 5.1. Let BP, A,, 0, K, R, r and r' be as in Proposition 3.1. Then
there exist constants cs1, cs |, depending only on K, R, r and the fourth moment
of {&ij}, such that if p satisfies the inequality

(5.2) csip’pn > 1,

then we have

D ;N
IP(EIZ € Compl(Z) NKer(B™) : Dy (zsmait/ | zsmatt ll2) < eXP<Cs.1 M)’

e K«/_pn) < exp(—E5.1np),

1

where M = C3_1,0_4p_ and Zgmal is the smallest (n — M) coordinates of z in

modulus.

The proof of Theorem 5.1 is carried out by the following two-fold argument.
Using Proposition 4.7, we show that the subset of vectors in Compl(Z) that have
a large value of A(Zsman/||Zsmanll2) admits a net of small cardinality. This obser-
vation together with an estimate on the small ball probability, obtained from [36],
Theorem 7.5, yields the desired conclusion for vectors z € Compl(Z) which pos-
sess a large value of A(zgmall/llZsmallll2) (see Proposition 5.2). For the other case,
we first show that such vectors, upon rotation, must have a dominated real part.
Applying Proposition 3.1, we show that this is impossible with high probability,
which completes the proof of Theorem 5.1. The rest of this section is devoted to
implementing this idea.

First, let us consider the case of large A(zgmarn/||Zsmanll2). For such vectors, we
prove that the following holds.
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PROPOSITION 5.2. Lets > 1. Define the set Z(s) by
Z(s) = {Z € Compl(Z) : A(Zsmall/“ZsmalIHZ) = SL}-

Let A,, B?, K, R and p be as in Theorem 5.1. Then there exist s5,,7x > 1, and
s, > 0, depending only on K, R and the fourth moment of {&;;} such that for any
rfp_l <M < pn we have

P(3z € Z(s52) N Ker(BP) : Dy (zsman/ || zsmanll2) < exp(cs,n/M)
and | Ayl < K /pn) <e ™.

To prove Proposition 5.2, we use bounds on Lévy concentration function. Using
such bounds, we show that for any vector z € Z(s) the £, norm of BP7 cannot be
too small with large probability. From the net constructed in Section 4, it follows
that Z(s) admits a net of small cardinality which enables us to take the union
bound and complete the proof of Proposition 5.2.

As mentioned above to prove Proposition 5.2, we need to derive bounds on
the small ball probability, in particular on Lévy concentration function. Before
deriving the bounds such bounds we need to fix some notation. Let z € C" and
J C [m]. Denote z; := (zi)ies € C’ and V; := V(z;), where we recall that for

any 7/ = x +1iy € C" we define V (7/) := (“;1 ). Further denote the real-imaginary
decorrelation of V; by

d(Vy) :=d(z) = (det(V;V]))"/2.
This parameter, along with the LCD of zj/||zs|l2 controls the Lévy concentra-
tion function of ZTZI Ejzj, for a sequence of independent random variables
{E;}jem). Below is the desired estimate on the Lévy concentration function,
which is a direct corollary of [36], Theorem 7.5.

PROPOSITION 5.3.  Fix any positive integer m and let 2 := (E1,..., Ey) €
R™, 8;:=dj§j,j=1,...,m,whered,, ... ,dy arei.id Ber(p),and&; arei.i.d.
random variables satisfying

(5.3) E(Sj,l)fl—cl and P(|§j|>C1)§Cl/2

for some absolute constants C1 and ¢y € (0, 1). Then for any z € C™, J € [m] such
that zy #0, and ¢ > 0, we have

: o i+ i)
54 L(VE, Vill) =
G4 LVEeVPIVID = g i+ v v
and if || Re(z )2 = [ Im(z /) |2, then

B 1
55 L(VE, Vil)=C ’
(5.5) (VE, e/PlVsll) < 5-3<8+ﬁDl(RC(ZJ))/||VJ||)

where V := V (2), Cs3 and Cs3 are some constants, depending only on c¢1 and C.
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REMARK 5.4. We point out to the reader that the definition of LCD in [36] and
that of ours are slightly different from each other. For example, to define LCD in
[36] the function log, (x) := max{log x, 0} was used instead of log; (-). Moreover,
the constants appearing in front of L are different (compare Definition 4.1 with
[36], Definition 7.1). However, upon investigating the proof of [36], Theorem 7.5,
it becomes evident that the same proof can be carried out for the LCDs D> (-) and
D1 (-) to obtain the same estimates on the Lévy concentration function. It only
changes the constant that appears in [36], equation (7.3). Below we apply this
version of [36], Theorem 7.5.

PROOF OF PROPOSITION 5.3. As mentioned above, the proof is a straight-
forward application of [36], Theorem 7.5. Indeed, we note that L(VE,r) <
L(V;Ey,1),forany t > 0, where E; := (E;) jes. The assertion (5.3) implies that

(5.6) L(E;,1)<1—pec; and P(|E/|> C)) < per/2.

Since L = (8op)~!/? (see Remark 4.5), shrinking 8¢ if necessary, the inequality
(5.4) follows directly from [36], Theorem 7.5, applied with m = 2. To prove (5.5),
using the triangle inequality we further note that L(V; &, 1) < E(x} Ey,t). Thus
applying [36], Theorem 7.5, with m = 1 we obtain (5.5). O

Applying Proposition 5.3 and standard tensorization techniques, we obtain the
following result, the proof of which is omitted.

PROPOSITION 5.5. Let BP be as in Proposition 3.1. Fix any z € C" and J =
small(z) such that 75 # 0. Then for any ¢ > 0, we have

L(BPz,&\/p(n—Dlizyll2)
5.7

il i) |
=< &+ ,
d(zy/llzsll2) PD2(zy/zsl2)
and if | Re(z;) |2 = [ Im(z) 2, then

L(BPz,&\/p(n—Dlizyll2)
(5.8)

. 1 n—1
C R
= [ 55(8 + \/ﬁD1(Re(ZJ)/|IZJIIz)>}

for some constants Cs.s and Cs s, depending only on E|&;| and E(éé)-

REMARK 5.6. The inequality (5.8) provides bounds on Lévy concentration
function based on one-dimensional LCD. It will be used later in Section 6 to treat
essentially real vectors.
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To prove Proposition 5.2 we also need the following elementary lower bound
on the LCD of nondominated vectors. Its proof follows from [36], Proposition 7.4,
and the definition of dominated vectors.

LEMMA 5.7. Ifz ¢ Dom(M, w,) for some M < n and oy > 0, then we have

a.vM
7

D, (Zsmall/ | Zsmart ”2) =

We are now ready to prove Proposition 5.2.

PROOF OF PROPOSITION 5.2. The set in question can be partitioned into the
subsets of Z(D, A, d) appearing in Section 4. Indeed, using Lemma 5.7 we note
that for any z € Z(s) we have Da(zsmal/l|zsmatill2) = j0v/M = 25 p~!/2 for
some a, > 0. Since L = (8op)~'/2, choosing r, sufficiently large, we therefore
obtain that

{Z € Z(s): DZ(Zsmall/”ZsmaHHZ) = exp(c/n/M)} - U Z(®,A,d)N Z(s),
D,A,d

where the union is taken over all ® = 2%, C,L <® < exp(c’n/M), for some large
constant C,, and over all A =2, d =2 satisfying d® < A <®. Also note that
for any z € Compl(Z) we have

4L A(Zsmall/ | Zsman ll2)
(5.9)  d(zsman/llzsmanll2) = \/10 )
( e e ) D2 (zsmatt /| Zsman l2) ! 27L

If z € Z(D,A,d), we further have that D> (zsman/l|Zsmanll2) < 29, d(zZsman/
lzsmatlll2) < 2d, and A(Zsman/ l|zsmaitll2) = A. Therefore, it follows from (5.9) that

/ A
a:=L logl ﬁ < d@
1

So it allows us to use Proposition 4.7. Recalling that M > r2p~! > p~!, we see
that the number of different values of © appearing in the partitions is bounded by
¢’ pn. Using the fact that @ > L, we see that the number of different values of d
is bounded by the same number, and so is the number of different values of A.
Therefore, using the union bound, we deduce that it is enough to show that

P(3z € Z(D, A,d)N Z(s) : B’z =0, and

|BP| < (K + R)/pn) <e ",

for each such triple (D, A, d).
To this end, we note that Z(®, A,d) N Z(s) admits a net N (D, A,d) C
Z(®, A,d) N Z(s). Therefore, from Proposition 5.5 it follows that

(5.10)

2qn—1
L(BPw, e/ p(n — 1) | wsmanl2) < [%(8 + ﬁ) ] ’
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for any w e N (D, A, d) and & > 0. Set

(5.11) g0 1= 40C47(K + R)%.
Since @ > L = (8op)~"/?> > p~/2 and K, R > 1 we note that g9 > ﬁ. There-
fore,

C 2qn—1
P(“BDwHZ = S?Ostmall”Z * A/ P”l) < [E((K + R)%) ] ,

for some positive constant C. Hence, by the union bound and applying Proposi-
tion 4.7,

&
]P(Elw eN®,A,d): ”BDU)H2 = EonwsmallllZ : VP”)

i)

C o 2qn—1 - n D SM
<[F(wrnz) ] (G 2)

(2 Gera)) ™

Recalling the definition of « and using the inequalities L <o <d® and A <%
we note that

1<a>2<a L1 A<L1 ©<1 27L
— . J— _ = — [¢) R J— _ J— R
d \D) S o\ By =\ By =7\ 9

where the last step follows from the fact that logx < x for any x > e. As we have
already noted that ® > C, L, for some large C,, we can enlarge C, further (i.e., we
increase r,) so that %((K + R)%)2C4,7 < 1. This means that we can drop the term

C o 29M-1
L(wemg) ] em<
in (5.12). Therefore, from (5.12) we obtain

(5.13) IP(EIw eEN®D,A,d): HBDwH2 < %Oﬂwsmaullz . /pn> <exp(—TI'n),

29n—1
<|IN@. A, d)|- [%((K—FR)“) }
(5.12)

where

r= _<1 - K) -log(C/(K +RPa K+ R)2a>

Jn A
SM ( n ’D)
- log _M -—,
n 1) o

and C’ := C - C47. To complete the proof, we need to show that I" > 2.
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Turning to proof of this, we recall that 47 a>L>1and D <exp(c'§).

> 1
= p’
So, choosing ¢ sufficiently small we obtam

M 10M SM
> ( ! ®> 0 log<n)+—log®§20.
n

oM«
Next, recall that L = (dop)~"/? and A <® <exp(c'n/M). So

A c'n
a=1L IOgl ﬁ < m

Therefore, using the fact that M < n/2 we obtain
1 C'(K + R)*Vc  C'(K + R)?
F>——-lo< (K + RPVer | C'(K + )a)—zo.
JdoMp A

We claim that by choosing s to be a sufficiently large constant, we can guarantee
that

— log
n

C'(K+R?’a s
—<e
A

Thus choosing ¢’ small enough and recalling that Mp > r2, from claim (5.14) we
see that I > 2, providing the required bound for the probablhty.

Now let us check our claim (5.14). Using the definition of «, choosing ss5.>
sufficiently large, and using the fact that the function f(x) := x~!,/log; x tends to
0 as x — oo, we note that

C'(K + R)%« L A

50 50 ~7 2
= T (K + R Jlog; — < 1,
¢ A e e N =Y

for any A such that A > s5, L. This proves the claim (5.14).
Thus we have shown that for a sufﬁciently large value of s5 7,

(5.15) IP’(EIw eN®,A,d):|BPw|, < |wgma11||2 m) < exp(—2n).

To deduce (5.10) from (5.15), we simply use the property of the net N'(D, A, d).
Indeed, let us assume that there exists a z € Z(s52) N Z(D, A, d) so that Bz =0.
Denoting J = small(z), using Proposition 4.7, and the triangle inequality we see
that there exists a w € N'(D, A, d) such that

|BPwl, =B w -2,

(5.14)

<81,

2] wyj

lzsll2  llwsll2l2

: (”ZJC —wyell2 + lwyll2 +|llwsll — IIZJ||2\>

o o
<(K+R)/np- <2C4.7% + C4.75||w1||2)

o
<3C47(K + R)Ellellzx/n ,
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where the last inequality follows from the fact that w € N (D, A, d) C Z(s52) C
Comp(M, p)¢. To complete the proof, let us show that ||wy |2 < 4||wsmanll2. As-
sume for a moment that the opposite inequality holds. Since © > 5= p~ 12, and

L = (8op)~'/?, choosing a sufficiently large r,, we may assume that

C <C L 1 <l
— 02| = =r—.
4733_ 47@\/ &1 27L — 8

Denote small(w) = I. Combining the estimate above and Proposition 4.7, we see
that

lzrll2 < llwrll2 + llzing — winsll2 + llzng —wnsll2

1
lelelz +llzg —wyll2 + llzge —wyell2

[S—

1 1
= 5llzsllz+ Zlizrlla+ 2o <llzsl2,

where we used ||z7]|2 > p in the last inequality. This contradicts the definition of
J as J = small(z) and proves the desired inequality ||w |2 < 4| wsmanll2-

Recalling the definition of g¢ in (5.11), we now deduce (5.10) from (5.15). This
completes the proof. [

Using Proposition 5.2, we now complete the proof of Theorem 5.1. The final
ingredient for the proof of Theorem 5.1 is a lower bound on the one-dimensional
LCD, the proof of which follows from [41], Lemma 6.2.

LEMMA 5.8.  For any x € R™, D1(x) = 53—

PROOF OF THEOREM 5.1. We first claim that

—1
n— p
P(HZ € KCI'(BD) N S(C ! . (Zsmall/”Zsmall”2) >

(5.16) 4./p

<exp(—c3.1np).
The probability bound above would follow from Proposition 3.1 if for any such
z, we find a number v € C, |v| = 1 such that the vector vzgma has a dominated
real part. To implement this idea and show (5.16), we fix z € Ker(BP) N S('é_l
and denote Zsmail/l|zZsmaill2 = ¢ + iy, where ¢, ¥ € R/, J = small(z). Let 6 =
(01, 62) € R? be such that

0 (7
G.17) i + 0. ) < 1 og, 11020201
and [|01¢ + Y ||2 < 2A(Zsmall/|lzsmall||2). Denote
_ 01 — 16>

=—F2.
|61 — 16|
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Then w € Ker(BP) N S(’é_l and Wgmall = Zsmall- Therefore, (5.17) implies that

D (Re(wsmall)/”Re(wsmall)”2) = 2A(Zsmall/”Zsmall”2)-
Upon applying Lemma 5.8, we find that
Re(wsmal) Zsmall -1
e I R (e |
| Re(wsman) ll2 l| Zsmatt |2
Since w € Ker(BP) N S{é_l, the claim (5.16) follows from Proposition 3.1.
Next, recalling the fact that L = (&g p)_l/ 2 and shrinking p, if necessary, we

obtain that

—1
S52L< o

r

The desired result then follows upon combining Proposition 5.2 and (5.16). [

6. Construction of the net and the structure of the kernel in the essentially
real case. In this section we consider the class of vectors whose real and imag-
inary parts are almost linearly dependent. Namely, we introduce the set of essen-
tially real vectors Real(Z) defined by

(6.1) Real(Z) := Z\ Compl(2),

where we recall the definitions of Z and Compl(Z) from (4.4) and (5.1) respec-
tively. Having shown that there does not exist any vector in Compl(Z) N Ker(B?)
such that its two-dimensional LCD is small, it remains to show the same for
Real(Z) N Ker(BP). For essentially real vectors, the real-imaginary decorrelation
d(-) is very small which precludes using (5.7). Instead we have to rely on the prob-
ability bound obtained in (5.8), which depends on the one-dimensional LCD. As
the bound on D (u) implies a much more rigid arithmetic structure than a bound
on Dy (u), construction of a net of real(Z) would be easier. To construct such a net,
we will follow the method of [36]. Before finding a net, let us remind the reader
that the definition of Compl(Z), and hence that of Real(Z), depends on the two-
dimensional LCD (see (5.1)). Since the bound on Lévy concentration function, for
vectors in Real(Z), depends on the one-dimensional LCD, we need a result that
connects D1(-) with D>(-). The lemma below does that job and this is the sole
reason of introducing different powers of 2 in the definitions (4.1) and (4.2) (recall
Remark 4.2).

LEMMA 6.1. Fix z € Real(2) and let zgman/llZsmallllz =: ¢ + iv¥. Then

D1 (¢) < 2D3(zsman/llzsmanll2). In particular, if D2(Zsman/l|zZsmanll2) < ® then
Dy(¢) <29.
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PROOF. Let us denote J = small(z). Denoting ® = Dy(¢ + iyy), we see
that there exists 6 = (01,6;) € R?> with [|0] < 2D and |0 + ¥6a]2 >
A(zy/zs112)/~/2, and ¢ € Z7 such that

1019 + 621 1l2

(6.2) 1019 + 629 —qll2 < L\/IOgl X7

Using the triangle inequality, and the facts that |62] < ||0]l2, l@ll2 - |¥l2 =
d(zy/\zs1l2), and ||@]|2 > 1/2, we also obtain

(6.3) 1616 + 621 ll2 < 101pll2 +4d (27 /1125 112) D2(z1 /21 1I2)-
Since ¢ + iy € Real(Z), we further note that

Azg/lzsll2)

d(zs/lzsl12) Da(zs/ 1121 12) §4L\/10g1 L

(see (5.1) and (6.1)). Therefore, denoting

w0 = L [log 1616 + (12
' N

from (6.2)—(6.3) we note that

101912 + 16aq

6.4 010 + 06 — <oag <L, [lo
(6.4) 1016 + ¢ —qll2 < a0 \/g1 231

It is easy to check that

s 5\/log1(t+s/4\/§),s >0andr>0 = = fy/logl(«/it).

Hence we deduce that

/ 1619112
1016 + 2 —qll2 < L,/log; 6L

As we have already noted |62 |2 <4d(zy/|lz71l12)D2(zs/llz71l2), using the fact
z € Real(Z), the triangle inequality, and (6.4), we conclude

[ l019l2
1616 — qll2 < 1616 + 629 — glla + 629 |2 < 17g < 2°L, [log, %L

Since |01] < |02 < 29, the proof of the lemma is now complete. [

Next, we find a small net for Real(Z). As in the genuinely complex case, we
start with constructing a small net for the set of the small coordinates.
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LEMMA 6.2. Fix J C[n]and 0 <a <. Define
Sy@) = {u,v) e R xR : [|ul3 + [vl3 =1, lull2 = llvll2,
d(u,v) <@/D,and 30 € [D, 3D], such that dist(du, Z’) < &).
Then there exists a (CGTJ&)-net My(®D) C S; (D) with
D (. /D 171
M@ <2 (66.2(—f+ 1)) ,

where Cgo and C_'(,,z are some absolute constants.

PROOF. Let (u,v) € S;(D), and let 6 € [D,3D], g € Z’ be such that
0u—ql2<a.

Then, using the triangle inequality, |||l < & + |#| <49, and so g € Zap. This
implies that

% 2<% where 51,”%

From the definition of real-imaginary decorrelation, it also follows that

(6.5) Hu — %

a
0

<4,
2

200
(6.6) lvll2 <2d(u,v) < —.
D
Let N be an (&/®)-net in [—1, 1] with |Nj| <29 /a&. Define M}(@) by
MIJ(C‘D) = {(x%,O) 1q € Ly, x e/\/]}.

Then from (6.5)—(6.6) we deduce that M b(@) is a (7a/®)-net for S;(®) and
IMb(’D)I = |Z4o| - IN1|. This in combination with the bound in (4.5) yields the
required estimate for the cardinality of the net. To complete the proof, we have to
replace the constructed set of vectors by a subset of S;(®). This is done in the
same way as in Lemma 4.6. We skip the details. [l

Now we use Lemma 6.2 to construct a small net in the set of essentially real
vectors with an approximately constant value of the one-dimensional LCD. Define
the set Z(D) by

Zsmall

Z2(@):= {z € Real(2) : =¢+iv, ol2 = 1Y 2, D1(9) € [D,29],

| Zsmatt |12

. 1) 5&/9},
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where

| D

The set Z(®) is the collection of vectors in Real(Z) for which D1 (zZsman/
|Zsmaltll2) = ®. The condition d(¢, ) < &/D ensures that the real-imaginary
decorrelation is small.

PROPOSITION 6.3.  Fix ® > 1. Let & be as in (6.7) and assume 0 < a <D.
Then there exist absolute constants Cg 3, Ce3 and a set N'(D) C Z(D) with

@) =iy §)4M~(%+1)”_M

having the following approximation property: Let z € Z(D) be any vector and
denote J = small(z). Then there exists w € N (D) such that

zJ wy o oo
—, lzge —wyell2 < Co3—=,
D £

lzsll2  Nlwyll2 12

Co3

2l = s la] < Cos 22
zjll2 = llw <Ce3—.
J12 J 2 6375

Proposition 6.3 is derived from Lemma 6.2 in the same way as Proposition 4.7
was derived from Lemma 4.6. We omit the details.

Now, we are ready to prove the main result of this section which shows that with
high probability, there are no essentially real vectors with a subexponential LCD in
the kernel of BP.

PROPOSITION 6.4. Let BP, A,, 0, K,R,r and r' be as in Proposition 3.1.
Then there exists a positive constant cg 4, depending only on K, R and the fourth
moment of {§;;}, such that

P(3z € Real(Z) N Ker(B

P):D
and | A, |l < K/pn) <e™",
1

2 (Zsmat/ | Zsmaitl2) < exp(cg.4n/M)

where M = C3,1,0_ p-

PROOF. The proof of this proposition is very similar to that of Proposition 5.2.
First, we note that using Lemma 6.1 it follows that it is enough to show that, with
high probability, there does not exist z € Ker(BP)NReal(Z) such that D (¢(z)) <
exp(c'n/M) for some small constant ¢’, where Zgman/l|lzsmanll2 =: ¢ (z) + i (z)
with [[¢(2)[l2 > [|¥(2) [l2. We then claim that the subset of Real(Z) in context can
be partitioned into the sets Z(®) as follows:

(6.8) {z €Real(2): D1 (¢(2) < exp(c'n/M)} | JZ(®),
K



2398 A. BASAK AND M. RUDELSON

where the union is taken over all © = 2K, © < exp(c'n/M). Note that the claim in
(6.8) is obvious if we drop the~requirement d(Zsmal/ |zsmanll2) = d(@(2), ¥ (z)) <
a/® from the definition of Z(®). We show that the required condition on the
real-imaginary decorrelation is automatically satisfied for all z € Real(Z). Indeed,
recalling the definition of Real(Z), and the fact that

A(Zsmall/”ZsmaHHZ) = DZ(Zsmall/”ZsmaHHZ)

we see that for any z € Real(Z),

4L \/ D> (Zsmant/ | Zsmatt l12)
lo 1

d <
(Zsmall/”Zsma” ”2) 27L

(6.9) ~ Dy (zsman/ | zsmaitl12)

_ 8L | D)
= 1081 /g
Di(#(2) 2L

where the last inequality is obtained upon noting that x,/log;(1/x) is an in-
creasing function for x € (0, e 1 together with an application of Lemma 6.1. If
z € Real(Z) such that D1(¢(2)) € [D, 2D] then recalling the definition of &, from
(6.9) we see that

d(¢ (2), w(Z)) = d(Zsmall/”ZsmaIIHZ) <ad/?D,
which in turn proves the claim (6.8). We further claim that the lower bound on ®
in (6.8) can be improved to

Do :=Cop ' p~1/2,

where Cp := +/C3.1/2. To see this we note that Real(Z) C Incomp(M, p). There-
fore, for any z € Real(Z) we have

[l Zsmatt [l oo < 2 . 2\/?

lzsmallz — pv/M — p~'/Csi’

where the last step follows from our choice of M. Hence, using Lemma 5.8 we see
that for any z € Real(Z) we must have D{(¢(z)) > ®g. This establishes that the
union in the RHS of (6.8) can be taken over all ® = 2K, Dy <® < exp(c'n/M). So
using the union bound, we deduce that it is enough to show that

P(3z€ Z(®): BPz=0,and | B?| < (K + R)/pn) <e ",

@), <2

for each such ©. N
To this end, using Proposition 5.5 we see that for any w € N (D) we have

_ LT
L(BPw, e/ p(n — 1) | wsmanll2) < [C5-5 (8 + ﬁ)] '

Now set

~ o
g0 :=40C¢3(K + R)5
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Since the fact &@ > L = (8op)~'/? implies that &) > J—Q’ we obtain that for any
w e N (D),

& n—1
IP><||BDw”2§30||wsmall||2’»\/P ) |:C55<€0+ﬁ>]

< (E(K + R)ﬁ)n_1
J— @ 9

for some constant C. Hence, by the union bound and applying Proposition 6.3 we
obtain

~ &
B30 e @) 1820l = 2 fumall 77

&\ n—1
<@ (e +R3)

o n—1 n D 4M D n—M
c(ewend) G d) G
- < ( )@ oM N
where C’ is some large constant. Next recalling the definitions of & and Dy, using

the facts that ® > 9, L = (80p)_1/2 and the function f(x) := x,/log;(1/x) is
increasing for x € (0, e~ 1) we find that

V g125L_ V ngSL CO,O 131/2>

Recalling the deﬁnition of Cp and enlarging C3; we therefore note from above
that we can assume C (K + R)&/® < 1. This yields

|Ql

(6.10)

~ Py ~
P(aw e N1 [B”w], < Dlwananlz- «/_pn) < exp(—Fn),

=~ MY C(K+R@a C(K+Ra\ 4Mm n 9D
I':= (1 ) 10g< NG + D ) log<p )

n
We next show that T > 2 which allows us to deduce that
~ 80
(6.11) IP’(EIw eN®): ||BDw||2 < 3||wsmau||2 . ./pn) < exp(—2n).

To prove that I" > 2, we recall that ti7 > <® <exp(c’'y;). Therefore,

1,
P
AM
— log

n

)

QZ|@ Q_
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upon choosing ¢’ sufficiently small. Using the fact M < n/2, this yields
~ 1 C'(K+Ra C/(K+Rua
L>—=-1 —10.
-2 Og( Jn + D )
Recalling (6.10), we see that we may enlarge C3 1 (and thus, the minimal value of

D) further so that C(K + R)&/D < eV, Using the upper bound for ©, we also
note that

~ / 5
i<25L logI% <2 L c/% B 25/ <25'02\/?<e—30
NI Vi T Jn VadMp ~ Ciady
where the second last inequality follows from our choice of M, and the last in-
equality results from enlarging C3; once more. This completes the proof of the
claim that I" > 2. Thus we have shown that (6.11) holds. The rest of the pr0~of re-
lies on the approximation of a general point of Z(®) by a point of the set (D),
and is exactly the same as that of Proposition 5.2. We leave the details to the reader.
This completes the proof. [J

7. Proof of Theorem 2.2. In this section our goal is to combine the results
of previous sections and complete the proof of Theorem 2.2. First, let us state the
following general result from which Theorem 2.2 follows.

THEOREM 7.1. Let A, be an n x n matrix with i.i.d. entries a; j = 6; j&; ;.
where {§; ;} are independent Bernoulli random variables taking value 1 with prob-
ability p, € (0,1], and {§; ;} are i.i.d. centered real-valued random variables
with unit variance and finite fourth moment. Fix K, R > 1, and r € (0, 1] and
let Qg = {||Ay|l < K. /np,}. Assume that D, is a diagonal matrix such that
| Dyl < R/np, and Im(D,) =r' /np, 1, with |r'| € [r, 1]. Then there exists con-
stants 0 < ¢7.1,¢7.1,¢5 1, C7.1, Cé.l,fm < 00, depending only on K, R, r and the
Sfourth moment of {&; ;}, such that for any ¢ > 0 we have the following:

o If

. C7,1logn’
n

then

1 1/ pn n
P({smm(An + D) < c7.1eexp(—c7.1 L/”)) ”—} n QK)
10g(npn) n

/
<e+—LL.
npy

(ii) Additionally, if
(7.1) log(1/pn) < &7.1(lognpy)?,
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then

log(1

( {sminn + D) = c7.1eexp<—c7.1M) Pl o )
log(npn) n

<e+exp(—ch 1 /npn)-

The proof of part (i) of Theorem 7.1 follows from Berry—Esséen theorem and
Proposition 3.4. The proof of part (ii) uses results from Section 5 and Section 6.
Recall that in Section 5 and Section 6 we have shown that there does not exist
any vector in Ker(BP) with a subexponential two-dimensional LCD, with high
probability. To prove the second part of Theorem 7.1, we use LCD based bounds on
Lévy concentration function. At this moment, we know that with high probability,
any vector in in Ker(B?) has an exponential two-dimensional LCD. However, we
do not have any control the real-imaginary decorrelation of this vector. This means
that we cannot use the bound (5.7), and have to rely on (5.8).

To apply (5.8), we therefore need to show that any vector with a large two-
dimensional LCD must also admit a large value of one-dimensional LCD. This calls
for another modification to the definition of the one-dimensional LCD.

DEFINITION 7.2. For a nonzero vector x € R, we set

_ T
D (x) :=inf{9 > 0:dist(6x, Z") < L.[log, ”2;632 }

The advantage of working with this one-dimensional LCD Di(-) can be seen
from the following result.

LEMMA 7.3. Forz:=x +iy € C", we have 51(x) > Dy (2).

PROOF. The proof follows by simply noting that if there exists a 8’ > 0 such

that
. [ 107x]l2
dist(9'x, Z™) < L,/1 ;
ist(9'x, Z™) < L,/log, 03

then for = (6’, 0) we also have that

IVTOll2

: T
dlSt(V Q,Zm) <L logl W N

Now we are ready to prove Theorem 7.1.
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PROOF OF THEOREM 7.1. The proof is similar to that of [9], Theorem 1.1.
We include it for completeness. Note that for any ¢ > 0,

P({Smin(An + D,) < 19} N QK)
(7.2) <P({ inf |40 + Dol =9} 0 2)

+P({ inf |(4s + Do)x], = 0} N ).

where
V= S(E’:_l\(Comp(C3_4n, p) UDom(c34n, (C34(K + R))_4)),

and p as in Proposition 3.4. Using Proposition 3.4 with M = c3 4n, we obtain that
B( inf [(An+ Du)x ], < &5 4(K + R)p/p. | Aull < K/PT) < exp(~C3.4np).

Therefore, it only remains to find an upper bound on the second term in the RHS
of (7.2). Applying Lemma 2.7, we see that to find an upper bound of

IP’({ inf [ (A, + Dy)x|, < spz\/z} N QK>
xeV n

is enough to find the same for
P({dist(A,, j, Hn,j) < pa/PE} N Q) for a fixed j,

where A, ; are columns of (A, + D,,). As these estimates are the same for different
j’s, we only need to consider the case j = 1. Recall that B is the matrix whose
rows are the columns A, 2, ..., A, . Therefore,

diSt(An,la Hn,l) = |<v7 An,l)

El

forany v € ngl N Ker(BP). Thus it is enough to find an upper bound on
(7.3) P({3v € ZNKer(BP) : [(An.1,v)| < pe/p} N Q).

First, we obtain a bound on (7.3) under the assumption of part (i). This follows
from a simple Berry—Esséen bound.

Since v € S('é_l N Ker(BP) using Proposition 3.4 again, we may assume that
v ¢ Comp(c34n, p) UDom(czan, (C34(K + R))™). Let J = supp(Vje; yn+1,n1)-
Then

B(l(An1. 0] = pep) < £ X wditi. 0/Fe )
ieJ
Since v ¢ Comp(c3.4n, p) UDom(c34n, (C34(K + R))*4), we have
C34(K + R))*
lvilloo < ——F—Ilvsllz and Jlvsl2 > p.

Jc34n
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The Berry—Esséen theorem (see [37], Theorem 2.2.17) then yields that

3
LY vidi&, ,0\/58) <Ce+ C/M

32 3

~ P e llvg |l

(74) iel 2
<C<‘3+C/7”wIIOO Ce+ ’
B p vyl ~ N2

where C is an absolute constant, the constant C” depends only on the fourth mo-
ment of {&; ;}, and

_ C34(K + R))* .
/€34

Replacing ¢ by ¢/C completes the proof of part (i) of the theorem.

It remains to prove part (ii). As seen above, we only need to obtain a bound
on (7.3) under the stronger assumption of p, of part (ii). To this end, we apply
Proposition 3.4 again. Setting Mo = C3.1p *p~! from Proposition 3.4, we find
that it is enough to bound

(7.5) P({3v € Vo NKer(BP) : [(An.1,v)| < pe/P} N k),

c’ C'.

where
Vo := S\ (Comp(Mo, p) U Dom(Mo, (C34(K + R)) ™).
Further denote
V1= {w € Vo : Da(wsman/ |l wsmanll2) < exp(c’n/Mg)} and Vi := Vo\Vi,
where ¢’ := min{c} |, cg ,}. We will show that
(7.6) P({3v € Vi NKer(BP)} N Qk) < exp(—cnp),

for some ¢ > 0. Since Ker(BP) is invariant under rotation, recalling the definition
of the set Z (see (4.4)), we see that it is enough to show that

]P’({Elv ezZnN Ker(BD) : DZ(vsmall/”Usmall”Z) = exp(c/n/Mo)} N Q)
< exp(—cnp).

Note that, if p satisfies (7.1) with a sufficiently small ¢7 1, then it also satisfies
the assumption (5.2). So we can apply Theorem 5.1. Applying Theorem 5.1 and
Proposition 6.4, we then immediately obtain our claim (7.6). Therefore, it only
remains to find an upper bound on

P({Hv cZN KCI(BD) : DZ(vsmall/”vsmall”Z) > exp(c/n/Mo) and

(7.7)
(An1 0] < pe/P} N 2%),
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To obtain the desired bound we condition on B?, which fixes the vector v for
which

DZ(Usmall/”USmall||2) > exp(c/n/MO).

Lemma 7.3 implies that

D (¢ (v)) > exp(c'n/ M),

where we recall that vgman/ || Vsman ll2 = @ (v) + 1 (v). Inequality (5.8) holds with
D) (-) instead of Dy (-) if the constant Cs 5 is appropriately adjusted. Recalling the
definition of M we deduce that

_ 1
P An ’ — _C JPD1(¢()
([{An1,v)| <ep/p) < <8+ ﬁpl(qf;(v)))

- 1
< C(s + — exp(—c"npp* >,
NG ( )
for some constants C and ¢”. Choosing ¢7,; sufficiently small and recalling the
definition of p, we further deduce that
1

— exp(—c"npp*) < exp(—c"J/np).
75 ( ) (—c"/np)

Therefore, replacing ¢ by £/C we conclude that (7.7) is bounded by
e + Cexp(—c"/np).

This completes the proof of the theorem. [

PROOF OF THEOREM 2.2. The proof immediately follows from Theorem 7.1,
[9], Theorem 1.7, and the triangle inequality. [J

REMARK 7.4. From the proof of Theorem 7.1, we note that the assumption
(1.2) (equivalently (7.1)) was needed to show that the assumption (5.2) holds. From
[9], Proposition 3.1, we have p = exp(—C log(1/p)/log(np)), for some large C. If
one can improve the conclusion of [9], Proposition 3.1, to accommodate p = (1)
then it is obvious that (5.2) holds without the assumption (1.2) and, therefore,
Theorem 1.3(ii) can be extended without any extra assumption.

8. Intermediate singular values. The goal of this short section is to prove
Theorem 2.10 which shows that there are not too many singular values of the
matrix J%An — wl, near zero. In proving Theorem 2.10, we employ the same
strategy as in [13, 40, 44]. Namely, we first show that the distance of any row of
A, from any given subspace of not very large dimension cannot be too small with
large probability.
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LEMMA 8.1. Leta := (§;6;);_, be an n-dimensional vector where {§;}"_, are
i.i.d. with zero mean and unit variance and {8}_, arei.i.d. Ber(p). Let y : N+ N
be such that ¥ (n) — 0o and ¥ (n) < n. Then there exists a positive finite constant
cs.1 % such that for every subspace H of C" with 1 <dim(H) <n — ¥ (n), we have

P(dist(a, H) < cg.1y/ p(n — dim(H)))

< exp(—cs.1p¥ (n)) + exp(—cg. 192 (n)/n).

A result similar to Lemma 8.1 was obtained in [40] (see Proposition 5.1 there)
for the dense case. Later in [13] (and [44]) it was improved for the sparse case.
Our Lemma 8.1 follows from [13], Lemma 3.5, when applied to the set-up of this
paper. So we omit the proof and refer the reader to the proof of [13], Lemma 3.5.

We now complete the proof of Theorem 2.10 using Lemma 8.1. We use same
approach as in [40], pages 2055-2056 (see also the proof of [13], Lemma 3.14).

PROOF OF THEOREM 2.10. To lighten the notation, let us denote by s; >
§3 > -+ > s, the singular values of (A, — /npwl,). Fix i such that 3y (n) <i <
n — 1 and denote by A" the submatrix formed by first m rows of the matrix
(Ap — /npwly,), where m = n — [i/2]. Further denote by s| > s} > --- >s;, the
singular values of A)>*. Using Cauchy’s interlacing inequality, we see that

(8.1) Sn_i < Sn—i.

Next, from [40], Lemma A.4, it follows that

(8.2) SR s 2 = dist) 2 - disty 2 - - dist, 2

where dist’j = dist(a; — w/npe;, H;f’,;w), a} is the jth row of the matrix A,,
H;f’;lw is the subspace spanned by all the rows of A" except the jth row, and
e; is the jth canonical basis. We also note that dist; < dist/j, where dist; :=
dist(a;, span(H'"" e;)). Thus from (8.1)—(8.2), we deduce

Jn

i -2 1< =2 1< fop—2
(83) %S"*"SE Zisj S;;dlstl .

j=n7 j—

It is easy to note that dim(span(H]'?f,;w, ej)) <m+1=<n—1y) for all j =
1,2, ..., m. Therefore, from Lemma 8.1 we further obtain

P(dist; <cg1y/p-i/3) <2n%, ji=1,2,...,m,

4The constant cg.1 may depend on the tail of the distribution of {§; :?:1.
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where we used the fact that n — dim(span(H]’-?f,’lw, ej))>n—(m+1)>i/3 and

chose C2.10 > 4cg. 11 Hence, from (8.3) we see that

c8.1 I 3
]P’(s~<—-4/n -—)<2n‘,
nl_ﬁ 14 )=

for all i such that 3y (n) <i <n — 1. After taking the union over i, the proof of
the theorem completes. [

9. Weak convergence. Here, our goal is to prove Theorem 2.11. As men-
tioned in Section 2.3, using a truncation argument, we first show that it is enough
to restrict to the case of bounded {§; ;} To this end, we have the following
lemma.

n
ij=1°

LEMMA 9.1.  If the conclusion of Theorem 2.11 holds for {&; ; }?,jzl bounded,
then it continues to hold without the boundedness assumption.

The proof of the truncation argument has now become standard in the random
matrix literature which follows from an application of Hoffman—Wielandt inequal-
ity (see [3], Lemma 2.1.19) upon using the fact that the bounded Lipschitz met-
ric on the space of all probability measures on R metrizes the weak convergence
of probability measures (see [3], Theorem C.8). We refer the reader to [3], Ap-
pendix C.2, for a definition of the bounded Lipschitz metric. Using the above two
ingredients and proceeding similarly as in the the proof of [16], Proposition 4.1,
one can complete the proof of Lemma 9.1. Further details are omitted.

Equipped with Lemma 9.1, hereafter we may and will assume that {§;, j}l'.f =1
are bounded by some constant Kg. It is well known that the conclusion of The-
orem 2.11 holds for vg , the symmetrized version of the empirical law of the

singular values of (n_l/ 2G, — wl,), where G, is a real Ginibre matrix. Thus to
prove Theorem 2.11 it is enough to show that

9.1 /f(x)dvé‘;’n (x) — / fx)dv,(x) =0 as n — 00, almost surely,

for every f € C.(R), the set of all continuous and compactly supported functions
on R, and w € C. To prove (9.1), we first show that both the random probability
measures v,’ and vg are close to their expectations, Ev,’ and Evg , respectively,
and then we establish that Ev,’ and Evg; are close to each other as well. To carry
out the first step, we use the following concentration inequality.

LEMMA 9.2. Let H, := (h"*j)ﬁJ':l be a Hermitian random matrix with en-
tries on and above the diagonal are jointly independent. Let f : R +— R be an
L-Lipschitz function supported on a compact interval I C R, with || f|lco :=
sup,¢; | f(x)| < 1. Further, let Hy be an arbitrary n x n deterministic matrix and
denote H,, := H,, + Hy. Fix an ¢ > 0.
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(i) If the entries of H, are uniformly bounded by &/./n for some & < oo then
p(|[ rooatnm -2 [ reodin |z
CorL|I| < coon’e )
< ————¢eXx e el
- R2LA1)?
for some absolute constants c92, Cgp > 0.

(1) If the entries of H, satisfy the logarithmic Sobolev inequality with uniform
constant £ then
)

P(|[ reodrn,w -8 [ reats,w

09.21’1282)

= 26Xp<_ 8L

PROOF. Part (i) is a consequence of [19], Lemma 3.2. For Hy = 0, the proof
part (ii) is immediate from [28], Theorem 1.1(b). A key step in the proof [28],
Theorem 1.1(b), is to show that for any Lipschitz function f : R — R the map
H+ [ f(x)dL,(x) is also a Lipschitz function (see [28], Lemma 1.2(b)). The
same proof shows that for any deterministic Hy the map H — [ f(x)dp,, . Ho (x)
is again Lipschitz. Therefore, the general case follows. [

Next, we need to show that Ev,” and Evg; are close to each other. This will be
obtained upon showing that the corresponding Stieltjes transforms asymptotically
are the same. Before stating the relevant result, let us define the Stieltjes transform
of a probability measure on R.

DEFINITION 9.3. Let u be a probability measure on R. Its Stieltjes transform
is given by

1
Gu) = [, pdnm. (R

We write m, () :=m, (¢, w) and mg, (¢) :=mg, (¢, w) to denote the Stieltjes
transform of v’ and vg; , respectively. We now have the following lemma.

LEMMA 9.4.  Let A, be ann x n matrix with entries a; j = §; j-&; j, where §; j
are i.i.d. Bernoulli random variables with P(8; j = 1) = p, and &; ; are centered
i.i.d. random variables with unit variance bounded by R for some Ry. Fix any
weCand¢ e Ct. Then

Cos 1
B (6) B, 0] = (1 + )

Im ¢ )4 (nIm¢)?

for some constant Co 4 depending only on Ry.
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A version of Lemma 9.4 was proved in [20] when A, is replaced by B,, a
matrix of i.i.d. centered Ber(p) random variables. A crucial step in the proof of
[20], Lemma 8.2, is the Lindeberg replacement strategy of [17]. The latter depends
only the bounds on the first three moments of the entries of B,. Since {&; j}Z =1
are uniformly bounded by Rg, one can obtain the bounds necessary to apply [17],
Theorem 1.1, Corollary 1.2. Hence, following the same lines of arguments as in
[20], Lemma 8.2, one completes the proof of Lemma 9.4.

Equipped with all the required ingredients we now complete the proof of Theo-
rem 2.11.

PROOF OF THEOREM 2.11. Itis known that for any w € C the random proba-
bility measure v converges weakly to vy, for some probability measure, almost
surely; for example, see [5]. Therefore, it is enough show that

9.2) /f(x)dv,'j’(x) — / fx)dvg (x) =0 almost surely, as n — o0,

for every bounded continuous function f : R — R. Since {§;, j}z j=1 are uniformly
bounded, by Chernoff’s bound and the Borel-Cantelli lemma it follows that the
sequence of probability measures {v,’},cn are almost surely compactly supported,
whenever np > Cologn for some large constant Cg. The strong law of large num-
ber further shows that {vg }nen are almost surely compactly supported. Hence,
we only need to show that (9.2) holds for continuous and compactly supported
functions f.

Now, given any § > 0, and a continuous and compactly supported function f,
one can construct a Lipschitz function fs, such that || f — fs|/coc <& with the Lips-
chitz constant of f5 depending only on f and §. Hence, it suffices to establish (9.2)
only for compactly supported Lipschitz functions.

To this end, recalling that Gaussian random variables satisfy the logarithmic
Sobolev inequality (see [27]), from Lemma 9.2 we deduce that

9.3) /f(x)dun(x) —E/f(x)dun(x)—>0 as n — oo,

almost surely, for u, = v, and vgn. Since np — 0o as n — o0, from Lemma 9.4
it also follows that (one can argue similarly as in the proof of [3], Theorem 2.4.3)

9.4) E/f(x)dv}f(x)—E/f(x)dvgn(x)eo as n — oo.

Combining (9.3)-(9.4), we establish that (9.2) holds for any Lipschitz and com-
pactly supported function f. This completes the proof. [J

10. Proof of Theorem 1.3. In this section we combine Theorem 2.2, The-
orem 2.10 and Theorem 2.11 to prove Theorem 1.3. As already mentioned in
Section 2, to prove Theorem 1.3 we need to invoke the replacement principle.
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We fix r € (0, 1) and define D, :={w € Bc(0,1 —r) : |Imw]| > r}. Then apply-
ing Lemma 2.1, we show that for every f € C E(C) supported on D,, we have
[ f(w)dL,(w) — [ f(w)dm(w) in probability or almost surely, depending on
the choice of the sparsity parameter p, where L, is the ESD of anAn. Afterward,
letting » — 0, we establish the circular law limit. Below we make this idea precise.

Before we prove Theorem 1.3, we need some properties of the probability mea-
sure vY.. Recall that v¥ is the limit of the ESD of A}’ where A, was defined in
2.7).

LEMMA 10.1. (i) For any w € Bc(0, 1), the probability measure v is sup-
ported on [—+/A4, \/Ay], where

(/14 8Jw|>+3)?
8(/1+8lwP +1)

Ay i=Ap(w) =
(ii) There exists some absolute constant ro € (0, 1) such that for all r € (0, rg),
7 €(0,1),and w € Bc(0,1 —r) we have
T
[log |x||dvy (x) < Cio.i7|log],
-7
for some positive constant C1o.1 which depends only on r.

PROOF. In [5], Lemma 4.2, it was shown that for any w € B¢(0, 1) the prob-
ability measure V%, is supported on [0, A (w)] where for any # > 0, V¥ ((0, 2)) =
v ((—t,t)). From this part, (i) of the lemma follows.

Turning to prove (ii), using integration by parts we note that for any probability
measure yuonRand0 <7 <1,

' T p((0,1))
(10.1) /(; llog(x)|dp(x) < [log()|u((0, 7)) +/(; fdt.
Using [7], Lemma 7.8 and [7], Lemma 8.3, we see that for any ¢ € (0, 1),
v ((0,1)) < vZ((—t,1)) <2t - (Immoo(ir)) < 2Ct,
for some large constant C depending on r. The rest follows from (10.1). [J
We are now ready to prove Theorem 1.3.
PROOF OF THEOREM 1.3.  We first prove part (i). That is we show that the ESD

of A, /./np converges weakly to the circular law, in probability. Fix r € (0, 1/2)
and denote D, :={w € Bc(0,1 —r) : |Imw| > r}. Let us also fix w € D,. Define

Q’; = {Smin(i - U)In> = Cn}»
/P
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where

_ ( 10g(1/P)> 1
cni=cpexp|l —C

22 .
log(np) / n./np
Setting D,, := —w./npl, and applying Theorem 2.2 we deduce that
1+ G,
(10.2) P(Q))>1— “t G
/np

Fix any § € (0, 1) and let T := t(§) := c2.108. Further denote v (n) := max{ /n/p,
n/(logn)z}. Since np = a)(log2 n), we note that ¥ (n) = o(n/logn). Equipped
with these notation, we recall the definition of v, to see that

/_t|log(|x|)|dv,'f(x)

(10.3) n—3y (n) n
1 1
=— Y gl <n+— Y [logls)|Ies; < 7).
L M 39 ()41

We evaluate each term of the RHS of (10.3) separately. Focusing on the second
term, we see that on the event €2/,

> [log(s)|Itsi <) < [log(sn)] - 3¢ (n)
(10.4) M i3y ()41 -

-1 3y (n)

" n

<logc =o(1).

We next consider the first term of (10.3). Denote the event described in Theo-
rem 2.10 by Q. Since min{py (n), ¥2(n)/n} = Ca.10logn, on the event Q" we
have

n—3y (n)
p > [log(si)|I(si < 1)

i=l

n—1

1
== > [log(sn—i)|Isn—i <7)

i=3y(n)
(10.5) 1
log(1 n=
< og(1/c2.10) Z I(s,_; <7)
n i=3y(n)

1 n-l n
o % tog(4 )i <0,
=3y m) !
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and by Theorem 2.10, P((2))¢) <2/ n2. Recalling the definition of 7, from Theo-
rem 2.10 it also follows that

Sp—i <T=1<ébn
on the event 2//. So from (10.5), we deduce that
n—3y(n) on

1 n
= Z [log(si)|I(si <7) <8 -log(1/c2.10) + — Z log(7>
106) =l Midgm N

B
<é-log(1/c2.10) — 2/ logxdx,
0

for all large n. Hence, denoting €2, := 2/, U Q/, from (10.3)—(10.4) and (10.6) we
obtain that

7(3)
/ [log(|x)| dvy’ (x) <k (8),
—7(8)
for all large n, on the event 2,,, where k(§) := 26 - log(1/c2.10) — 2f(;S logxdx.
Note that lims_.g k(8) = 0. Therefore, given any x > 0 there exists 7, := 7 (x),
with the property lim,_,¢ 7x = 0, such that

Ty
limsupIP</ llog |x|| dv, (x) > K)

n— 00 —Ti

(10.7) .
< limsupP({/ [log |x|| dv,’ (x) > K} N Qn> =0.

n—00 —T

Next, noting that log(-) is a bounded function on a compact interval that is bounded
away from zero, we apply Theorem 2.11 to deduce that

(10.8) / [log |x|| dv, (x) —>/ llog |x|| dvi (x)
(=R,—7)U(7¢,R) (=R, — 7 )U(t¢, R)

in probability, for any R > 1. Recall that for w € D, the support of v¥ is con-
tained in [—6, 6] (see Lemma 10.1(i)). On the other hand, from [9], Theorem 1.7,
it follows that there exists a Ky < oo such that

P(IlAnll = Ko+/np) < exp(—cnp),

for some constant ¢ > 0. Therefore, using the Borel-Cantelli lemma we deduce
that
[log x| dvyY (x)
(—=Ro,Ro)¢
(10.9)
— / [log |x|| dv2 (x) almost surely,
(—=Ro,Ro)¢
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for some Ry > 0. From Lemma 10.1(ii), we also have that

Tk
(10.10) / [log |x|| dv (x) < Cte|log Tel,
—
for some constant C. As « > 0 is arbitrary and 7, — 0 as k — 0, combining
(10.7)-(10.10) we deduce that

llog}det(A,,/\/@— wly)| = foo log |x| dv)’ (x)
n o0

(10.11) <
— / log x| dvy (x),
—o0

in probability. Now the rest of the proof is completed using Lemma 2.1. Indeed,
consider &,, the n x n matrix with i.i.d. centered Gaussian entries with variance
one. It is well known that, for Lebesgue almost all w,

o
(10.12) %log|det((’5n/ﬁ —wly)| — f log |x| dvy (x) almost surely.
—00
For example, one can obtain a proof of (10.12) using [14], Lemma 4.11,
Lemma 4.12, [15], Theorem 3.4, and [33], Lemma 3.3.

Thus setting D = D, B,gl) = A,//np, and Br(lz) = 6, /+/n in Lemma 2.1(a),
we see that assumption (ii) there is satisfied. The assumption (i) of Lemma 2.1(a)
follows from weak laws of large numbers for triangular arrays. Hence, using
Lemma 2.1(i) and the circular law for i.i.d. Gaussian matrix of unit variance (e.g.,
[40], Theorem 1.13), we obtain that for every r > 0 and every f, € C?((C), sup-
ported on D,

(10.13) /f,(w) dL,(w) — %/fr(w) dm(w) in probability.

To complete the proof, it now remains to show that one can extend the convergence
of (10.13)to all f € CE(C). It follows from a standard argument.

Indeed, for any r > O define i, € Cg((C) such that i, is supported on D, and
ir =1 on Dy, and i, (D,\Dy,) C [0, 1]. Fixing any § > 0 choose an r > 0 such
that » < 8/641 where & := || f |0 := sup,,cc | f(w)|. Denote f, := fi, and fr =
f — f+. Applying (10.13) for the function i, and the triangle inequality we find
that

B(| [ Frwrara)| = 54)

(10.14) 51@(‘/(1 —ir(w))dLn(w)’ > %)

A

P(‘/ir(w) dL,(w) — %/i,(u}) dm(w)' > %{) — 0,
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as n — 00, where the last step follows from the fact that
1

)
/ dm(w) < —
7T JBc(0,H\Dy,

f— 8,@’
by our choice of 7. Thus combining (10.13)—(10.15) and the triangle inequality we
find that for any f € C 62 ©

1 .
(10.15) ’;lécmn(l—h(w»dmaw‘f

P(‘f(w)dLn(w) -~ f(w)dm(w)’ > 5)

<

+2(|[ frwar,w) = o/4) >0

as n — oo. This completes the proof of the first part of the theorem. To prove
the second part of the theorem, we note that under the assumption (1.2), using
Theorem 2.2 it follows

1
frwdLaw - | ﬁ(w)dm(w)] > 8/2)

P@gzl—o(%)

n
where

Q/‘—{s~<i—wl>>5} and

n +— )Smin W n)=Cn

- log(1/p)\ 4

Cp i=C22€Xp _CZ'ZW n .
n

Therefore, proceeding similarly as above, applying the Borel-Cantelli lemma, and
using Theorem 2.11(ii) we see that the conclusions of (10.7)—(10.8) hold almost
surely.

Thus under the assumption (1.2) we have shown that (10.11) holds almost
surely. Therefore, proceeding same as above and using Lemma 2.1(ii), we obtain
that for every » > 0 and every f € C 02 (©),

(10.16) /fr(w) dL,(w) — %/fr(w) dm(w) almost surely,

where we recall that f, = f - i,. The same proof shows that
1
limsup [ (1 —iy(w))dL,(w) < —/ (1—ir(w))dm(w) <8r,
n—00 7T JBc(0,1)
almost surely. Therefore,
1
[ Ly -~
T

lim sup
n—oo

/ f(w) dm(w)’ < 168r almost surely,
Bc(0,1)

where we recall R = || f||co. Since r is arbitrary, the result follows. [J
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