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Abstract. We give several new characterizations of the continuous enumer-
ation degrees. The main one proves that an enumeration degree is continuous
if and only if it is not half of a nontrivial relativized K-pair. This leads to a
structural dichotomy in the enumeration degrees.

1. Introduction

The Turing degrees, DT , measure the computability-theoretic complexity of sets
of natural numbers. By coding, they can be used to measure the complexity of
other mathematical objects. For example, a real number r in the unit interval
can be coded by a function nr : Q` Ñ Q that takes as input a positive ε and
outputs a rational number q within ε of r. We call nr a name for r. A real
number is thus associated with a set of names, which are discrete objects and
hence have Turing degree. It is not difficult to see that every real number has a
name of least Turing degree: the degree of its binary expansion. In this way, we
can associate a Turing degree to every real number r. In many cases, however,
the Turing degrees are not sufficient to measure the compexity of objects studied
in effective mathematics. An early example of this phenomenon was given by
Richter [19], who proved that we cannot associate a Turing degree to every countable
linear ordering. In fact, the only countable linear orderings that have a Turing
degree are the ones with computable presentations. In search for an answer to
a similar question—“Does every continuous function on the unit interval have a
name of least Turing degree?”—Miller [15] introduced the continuous degrees to
measure of the complexity of continuous functions, and, more generally, points in
computable metric spaces. He proved that the Turing degrees properly embed into
the continuous degrees, and that the continuous degrees, in turn, properly embed
into the enumeration degrees.

Enumeration reducibility, ďe, and the enumeration degrees, De, were introduced
by Friedberg and Rogers [5]. They form a natural extension of the Turing degrees:
by mapping the Turing degree of a set A to the enumeration degree of A ‘ A
we get an embedding ι of DT into De. The image of a Turing degree is called a
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total enumeration degree. So, the enumeration degrees turn out to be sufficient to
capture the effective content of a continuous function on the unit interval: there is
a least enumeration degree such that the total degrees bounding it are exactly (the
images of) the Turing degrees of names of the continuous function. The enumeration
degrees of continuous functions give us a proper subclass of the enumeration degrees:
the continuous enumeration degrees.

The study of the continuous enumeration degrees has revealed an important
connection between degree theory and topology. All proofs that nontotal contin-
uous enumeration degrees exists—in other words, that the continuous degrees are
a proper extension of the Turing degrees—have used nontrivial topological theo-
rems. Miller’s original proof [15] uses a variant of Brouwer’s fixed point theorem
for multivalued functions on the Hilbert cube. Levin’s construction of a neutral
measure [13] uses Sperner’s Lemma and was shown by Day and Miller [4] to also
produce a nontotal continuous degree. More recently, Kihara and Pauly [12] and
independently Hoyrup (unpublished) use facts from topological dimension theory
to prove the existence of a nontotal continuous enumeration degree. The connection
can be followed in the reverse direction as well. For example, a structural property
of the continuous enumeration degrees was the main tool in Kihara and Pauly’s [12]
solution to the Second level Borel isomorphism problem; they constructed an un-
countable Polish space which is neither second-level Borel isomorphic to the unit
interval nor to the Hilbert cube.

Andrews, Igusa, Miller, and Soskova [2] have recently given several character-
izations of the continuous enumeration degrees as a subclass of the enumeration
degrees, including a chracterization via a simple structural property: an enumer-
ation degree a is almost total if and only if for every total enumeration degree
x ę a we have that x _ a is a total degree. An enumeration degree is continuous
if and only if it is almost total. The total enumeration degrees were shown to be
definable by Cai, Ganchev, Lempp, Miller, and Soskova [3], and so the continuous
enumeration degrees also form a definable subclass of the enumeration degrees.

Another class of enumeration degrees that has been studied extensively is the
class of Kalimullin pairs or K-pairs1, introduced by Kalimullin [10]. A pair of sets
tA,Bu form a K-pair relative to U if and only if there is some setW ďe U such that
AˆB Ď W and AˆB Ď W . K-pairs lie at the heart of most natural definability
results in the enumeration degrees. Kalimulin [10] proved that they have a natural
structural definition—they are the degrees ta,bu that form a robust minimal pair
relative to a degree u: for all x ě u we have that x “ pa_xq^pb_xq. He then used
them to define the enumeration jump operator. Ganchev and Soskova [6] proved
that K-pairs are definable in Dpď 0eq, the substructure of the Σ0

2 enumeration
degrees, and used them to prove the first order definability of a series of subclasses
of Dpď 0eq, including the total ∆0

2 enumeration degrees [7], the downwards properly
Σ0

2 enumeration degrees, the upwards properly Σ0
2 enumeration degrees [6], and the

Lown and Highn enumeration degrees, for all n P ω [8]. A special type of K-pairs—
the maximal K-pairs—were used by Cai, Ganchev, Lempp, Miller, and Soskova [3]
to define the total enumeration degrees.

In this paper we study the relationship between the continuous degrees and K-
pairs more closely. We give several new characterizations of continuous degrees,

1K-pairs were called e-ideal pairs in Kalimullin’s paper. Ganchev and Soskova established the
new name.
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leading up to our main new characterization: an enumeration degree is continuous
if and only if it is not half of a nontrivial K-pair relative to any enumeration degree.
This new characterization gives a simpler first order definition of the continuous
enumeration degrees in terms of quantifier complexity. In the language with ď and
_, the definition via almost total degrees is Π3, while the definition via K-pairs
is Π2. It also allows for an interesting structural dichotomy in the enumeration
degrees. Recall that an enumeration degree a is a strong quasiminimal cover of b if
and only if a ą b and for all total enumeration degrees x, if x ď a then x ď b. The
characterization of the continuous degrees as almost total, along with properties of
nontrivial K-pairs allow us to derive the following:

Theorem 1.1. For every enumeration degree a, exactly one of the following two
properties holds:

(1) The degree x is continuous, so for every total enumeration degree x ę a,
a_ x is total.

(2) There is a total enumeration degree x ę a such that a _ x is a strong
quasiminimal cover of x.

A subclass of the enumeration degrees that is larger than the continuous enu-
meration degrees is the cototal degrees. A degree is cototal if it contains a cototal
set, i.e., a set A, such that A ďe A. This class arises naturally in many areas
of effective mathematics, including graph theory [1], symbolic dynamics [14] and
computable structure theory [14]. The cototal enumeration degrees also reveal a
topological connection: Kihara et al. [11] showed that the cototal enumeration de-
grees are the degrees of points in computably Gδ topological spaces. Miller and
Soskova [17] prove that they form a dense substructure of the enumeration degrees,
viewed as an upper-semilaltice with jump operation. We study the connection be-
tween cototal sets and K-pairs. Our investigation leads us to a conjecture that,
if true, would yield the first order definability of the cototal enumeration degrees
within the structure of the enumeration degrees.

We end with an alternative characterization of the continuous degrees in terms
of the relation “PA above” extended to enumeration oracles, introduced by Miller
and Soskova [16]. This new characterization opens up many questions for future
work on this topic.

2. Preliminaries

We start by giving formal definitions of standard notions used throughout this
paper. For a more thorough exposition on degree theory, we refer the reader to
Odifreddi [18].

2.1. Enumeration reducibility and the enumeration degrees.

Definition 2.1 (Friedberg, Rogers [5]). A ďe B if and only if there is a c.e. set W
such that

A “W pBq “ tx : pDvq xx, vy PW & Dv Ď Bu.

Here Dv denotes the finite set with code v in the standard coding of finite sets. The
set W is called an enumeration operator and the pair xx,Dvy is called an axiom for
x in W .
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We will abuse notation and think of an enumeration operator interchangeably
as a c.e. set of numbers or as a set of axioms xx,Dy, where D is a finite set.

Enumeration reducibility gives rise to a degree structure as usual: A is enu-
meration equivalent, ”e, to B if A ďe B and B ďe A; the enumeration degree
of a set A is depAq “ tB : A ”e Bu. The preorder ďe on sets induces a partial
order on the enumeration degrees, De. The least enumeration degree 0e consists
of all c.e. sets. We can supply De with a least upper bound operation by setting
depAq _ depBq “ depA ‘ Bq, where A ‘ B “ t2n : n P Au Y t2n ` 1: n P Bu. We
can also define a jump operator: depAq1 “ depKA‘KAq, where KA “

À

ePωWepAq
and tWeuePω is some fixed computable enumeration of all c.e. sets, or equivalently
enumeration operators.

As mentioned above, the Turing degrees can be embedded into the enumeration
degrees. The reason should now be clear: it follows easily from the definition of
enumeration reducibility that A ďT B if and only if A‘A ďe B ‘B.

Definition 2.2. A set A is total if A ďe A (i.e., if A‘ A ”e A). An enumeration
degree is total if it contains a total set.

The set of total enumeration degrees as an upper semi-lattice with jump opera-
tion is an isomorphic copy of the Turing degrees.

Selman [20] provided a useful alternative way to think about enumeration re-
ducibility. An enumeration of a set A is a total function f : ω Ñ ω with range
equal to A. The definition of enumeration reducibility given above can be restated
as follows: A is enumeration reducible to B if there is a uniform way to compute an
enumeration of A from an enumeration of B. Selman proved that the uniformity
condition is not necessary.

Theorem 2.3 (Selman [20]). A ďe B if and only if every enumeration of B com-
putes an enumeration of A

2.2. The continuous degrees. A computable presentation of a metric space M
consists of a fixed dense sequence QM “ tqnunPω on which the metric is computable
as a function on indices. Metric spaces with computable presentations include
Cantor space 2ω, Baire space ωω, the continuous functions on the unit interval
Cr0, 1s, the Hilbert cube r0, 1sω, and many others. For a computable presentation
of Cr0, 1s, for example, we fix an effective enumeration of the polygonal functions
having segments with rational endpoints. A name for a point x in a computable
metric space is a function nx : Qą0 Ñ ω that gives a way to approximate x via the
sequence QM: it takes a rational number ε ą 0 as input and produces an index
nxpεq such that dMpx, qnxpεqq ă ε. Such names can easily be coded as elements
of Baire space. For points x, y in (possibly different computably presented metric
spaces), we say that x reduces to y if every name for y uniformly computes a
name for x. This reducibility induces a degree structure, the continuous degrees.
Miller [15] proves that there are universal computably presented metric spaces:
every continuous degree contains an element of Cr0, 1s and, more importantly for
our purposes, also an element of r0, 1sω.

In order to understand the embedding of the continuous degrees into the enu-
meration degrees, we use the fact that the Hilbert cube r0, 1sω is universal. We take
the usual metric on the Hilbert cube: dpα, βq “

ř

nPω 2´n|αpnq ´ βpnq|. A dense
set witnessing that r0, 1sω is computable is, for example, a computable enumeration
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of the rational sequences with finite support. Given α P r0, 1sω, consider the set

Cα “
à

nPω

tq P Q : q ă αpnqu ‘ tq P Q : q ą αpnqu.

Miller [15] proved that enumerating Cα is just as difficult as computing a name for
α. Thus the map α ÞÑ Cα induces an embedding of the continuous degrees into the
enumeration degrees.

Definition 2.4. An enumeration degree a is continuous if it contains a set of the
form Cα, where α P r0, 1sω.

Note that the i-th component of Cα is very close to a total set in structure:
tq P Q : q ăQ αpiqu ‘ tq P Q : q ąQ αpiqu “ X ‘ X, unless αpiq is rational. The
nonuniformity introduced by the rational components of some α P r0, 1sω suffice to
produce nontotal enumeration degrees:

Theorem 2.5 (Miller [15]). There are nontotal continuous degrees.

We will use two of the three characterizations of continuous enumeration degrees
proved in [2]. We restate the definition of an almost total degree for convenience:

Definition 2.6. We say that an enumeration degree a is almost total if whenever
b ę a is total, a_ b is also total.

The second characterization relies on an extension of the notion of a Π0
1 class to

an enumeration oracle. We will use xAy to indicate that we are treating A as an
enumeration oracle rather than a Turing oracle.

Definition 2.7. Let A Ď ω. Call U Ď 2ω a Σ0
1xAy class if there is a set W ďe A,

such that U “ rW să “ tX P 2ω : pDσ P W q X ľ σu. A Π0
1xAy class is the

complement of a Σ0
1xAy class.

Note that a Π0
1

@

A‘A
D

class is just a Π0
1rAs class in the usual sense. Further,

note that the elements of a Π0
1xAy class are infinite binary sequences, hence total

objects. Thus, when we say that a set enumerates a member of a Π0
1 class, we

mean that the set enumerates X ‘X, for some X such that the binary sequences
representing X is in the Π0

1 class.

Definition 2.8. A set A Ď ω is codable if there is a nonempty Π0
1xAy class P Ď 2ω

such that for every X P P , A is c.e. relative to X.

Theorem 2.9 (Andrews, Igusa, Miller, Soskova [2]). Fix A Ď ω. The following
are equivalent

(1) The enumeration degree of A is almost total;
(2) A is codable;
(3) A has continuous enumeration degree.

2.3. Kalimullin pairs. Consider once again the definition of a relativized Kalimullin
pair.

Definition 2.10 (Kalimullin [10]). A pair of sets of natural numbers tA,Bu is a
Kalimullin pair (K-pair) relative to a set U if there is a set W ďe U such that
AˆB ĎW and AˆB ĎW .
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It is very easy to come up with an example of a K-pair relative to any U : if
B ďe U , then for every set A we have that tA,Bu is a K-pair relative to U as
witnessed by ω ˆ B. Similarly, if A ďe U . K-pairs of this sort are not interesting;
we call the trivial. Nontrivial K-pairs exist: a standard example of a K-pair relative
to H is given by a the pair tA,Au, where A is any semi-computable set. Semi-
computable sets were introduced and studied by Jockusch [9]. He showed that A is
semi-computable if and only if A is a left cut in some computable linear ordering on
ω. He also showed that every nonzero Turing degree contains a semi-computable
set that is neither c.e. nor co-c.e.

K-pairs have many interesting properties. For example, if we fix A and consider
the set KpAq “ tB : tA,Bu is a K-pairu, then KpAq is an ideal with respect to
ďe. In particular, being half of a K-pair is a degree notion. We summarize the
properties that we will use in the following theorem.

Theorem 2.11 (Kalimullin [10]). Let tA,Bu be a nontrivial K-pair relative to U
as witnessed by W .

(1) A ďe B ‘W and B ďe A‘W .
(2) A ďe B ‘W and B ďe A‘W .
(3) depA‘ Uq and depB ‘ Uq are strong quasiminimal covers of depUq

We will also need the structural definition of K-pairs as robust minimal pairs.

Theorem 2.12 (Kalimullin [10]). A pair of sets tA,Bu are a K-pair relative to U
if and only if their enumeration degrees a, b and u satisfy:

p@x ě uqrpa_ xq ^ pb_ xq “ xs.

3. Functions that are codable by extensions

Our first characterization of the continuous enumeration degrees, and the one
that motivated this work, concerns the notion of a function codable by its exten-
sions.

Definition 3.1. A function f : ω Ñ ω is codable by extensions if for every extension
h Ě f we have that Gf ďe Gh, where Gx denotes the graph of x.

Clearly, every total function is codable by extensions, because its only extension
is the function itself. The notion becomes interesting when one considers graphs
of nontotal functions. We prove below that the enumeration degrees of the graphs
of functions that are codable by extensions are exactly the continuous enumeration
degrees.

Theorem 3.2. An enumeration degree is continuous if and only if it contains the
graph of a function that is codable by extensions.

Proof. Suppose that a is continuous and fix an element of the Hilbert cube α P
r0, 1sω so that a “ depCαq, where

Cα “
à

nPω

tq P Q : q ă αpnqu ‘ tq P Q : q ą αpnqu.

Consider the function f : ω Ñ ω such that

fpxn, qyq “

#

0, if q ă αpnq;

1, if αpnq ă q.
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Note, that if αpnq “ q then fpxn, qyq is undefined. Clearly, Cα ”e Gf . Furthermore,
for any extension h of f , we have that

Cα “
à

nPω

tq P Q : pDr ą qq hpxn, ryq “ 0u ‘ tq P Q : pDr ă qq hpxn, ryq “ 1u.

Hence Gf ”e Cα ďe Gh, and so f is codable by extensions.
For the reverse direction, let f be a function that is codable by extensions.

Consider the set P of the graphs of all extensions of f . Then P is a Π0
1xGf y class,

as P “ 2ωrS, where S is the set of finite binary strings that are not initial segments
of the characteristic function of the graph of some extension of f . In other words,
σ P S if and only if

pDx, y, zq rσpxx, yyq “ σpxx, zyq “ 1 & y ‰ zs

or pDx, yq rxx, yy P Gf & σpxx, yyq “ 0s .

Every member of the class P can enumerate Gf , hence Gf is codable and so Gf
has continuous degree by Theorem 2.9. �

The characterizations of the continuous degrees via functions that are codable
by extensions leads to a connection with the notion of a nontrivial K-pair, or rather
the opposite: a continuous degree can never be a part of a nontrivial K-pair relative
to any set U .

Proposition 3.3. If f is codable by extensions, then Gf is not half of any relativized
nontrivial K-pair.

Proof. Suppose towards a contradiction that Gf is codable by extensions and the
pair tGf , Bu is a nontrivial K-pair relative to some set U . LetW ďe U witness this.
If for some b we find that xxx, yy, by P W and xxx, zy, by P W , where y ‰ z, then
GfˆB ĎW ensures that b P B. Since B ęe W , there must be some b P B for which
the above is not true and hence txx, yy : xxx, yy, by P W u is the graph of a function
h, and Gh ďe W . As Gf ˆ B Ď W , it follows that f Ď h, so Gf ďe Gh ďe U ,
contrary to our assumption that tGf , Bu is nontrivial relative to U . �

A natural questions arises: does this property characterize the continuous de-
grees? This will be proved in Section 5.

4. Array-avoiding sets

Towards a positive answer to the question posed at the end of the previous
section, we explore a combinatorial characterization of the continuous degrees.

Definition 4.1. We say that A is array-avoiding if A ‰ ω and for every computable
sequence of finite sets tDnunPω such that for every n we have that Dn Ę A, there
is some C Ě A such that for every n we still have Dn Ę C, but also A ęe C.

The property above is trivially satisfied by ω, just because there cannot be a
sequence of finite sets tDnunPω such that for every n we have that Dn Ę ω; for
that reason we exclude it from the definition. Array-avoiding sets capture the
non-continuous degrees.

Theorem 4.2. The enumeration degree a is continuous if and only if some set in
a is not array-avoiding, if and only if no set in a is array-avoiding.
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Proof. Suppose first that a is continuous and fix a partial function f such that
Gf P a and f is codable by extensions. We will build a computable sequence of
finite sets tDnunPω that ensures Gf is not array-avoiding. The sequence is quite
simple: it is just a computable listing of all pairs txx, yy, xx, zyu where y ‰ z. Any
C Ě Gf that retains the property that Dn Ę C for every n is the graph of some
extension of f , and hence Gf ďe C.

We can extend this idea to every set in the degree a. Fix A P a and let Γ be
such that Gf “ ΓpAq. Consider the sequence tDnunPω that lists finite sets F Y E,
such that xxx, yy, F y P Γ and xxx, zy, Ey P Γ for some y ‰ z. (Note that, assuming
A ‰ ω, we can ensure that this is a nonempty sequence by finitely modifying Γ.)
Clearly, Dn Ę A for every n. On the other hand, if C Ě A and C still has the
property that Dn Ę C for all n, then ΓpCq is the graph of a function h Ě g and
hence A ďe Gf ďe Gh ďe C.

For the reverse direction, suppose that A is not array-avoiding. Let tDnunPω be
a computable sequence of sets that witnesses this. In other words, if C Ě A has
the property that Dn Ę C for all n, then A ďe C. Then A is easily seen to be
codable because the set of all supersets C Ě A that satisfy Dn Ę C for all n is a
Π0

1xAy class P “ 2ω r rSsă, where σ P S if and only if σpxq “ 0 for some x P A
or Dn Ď tx : σpxq “ 1u for some n. It is nonempty as A P P , and by assumption,
every member of P enumerates A. �

We will not give a direct proof that being array-avoiding implies being half of
a nontrivial K-pair, although it will follow from the work in the next section. For
now, as a warm-up, we will prove that an apparent strengthening of array-avoiding
is equivalent to being half of a nontrivial K-pair.

Definition 4.3. We say that A is uniformly array-avoiding if A ‰ ω and there is
a Z such that A ęe Z and for every computable sequence of finite sets tDnunPω

such that Dn Ę A for every n, there is a C Ě A such that we still have Dn Ę C for
every n, but also C ďe Z.

The proof of the nontrivial direction in the theorem below outlines the main
ideas that ultimately lead to the full characterization of non-continuous enumeration
degrees as halves of nontrivial K-pairs.

Theorem 4.4. A is half of a nontrivial K-pair if and only if A is uniformly array-
avoiding.

Proof. Suppose first that tA,Bu is a nontrivial K-pair relative to some set U as
witnessed by W . We will show that A is uniformly array-avoiding with Z “ W .
Nontriviality ensures that A ęe W . Now let tDnunPω be a computable sequence of
finite sets such that Dn Ę A for all n. Consider the set

B0 “ tb : pDnq Dn ˆ tbu ĎW u.

Then B0 Ď B and B0 ďe W . But B ęe W , so we can pick some element b P BrB0.
Now, consider the set C “ ta : xa, by P W u. The set C extends A and satisfies the
property that for every n the set Dn Ę C (or else b P B0). On the other hand,
C ďe W . Hence A is uniformly array-avoiding.

Now let A be uniformly array-avoiding as witnessed by Z. We will build sets B
and W such that A,B ęe W , A ˆ B Ď W , and A ˆ B Ď W . The construction
proceeds by stages. At stage n, we build finite sets Bn, B´n , and Wn satisfying the
following four conditions:
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(1) Bn Ď Bn`1, B´n Ď B´n`1, Wn ĎWn`1;
(2) Bn XB´n “ H;
(3) A ænˆBn ĎWn;
(4) xa, by PWn ñ pa P A_ b P Bnq.

We let B “
Ť

nBn and W “
Ť

nWn. Properties (1), (3), and (4) ensure that
tA,Bu is a K-pair relative to W . What remains is to ensure that A,B ęe W . In
order to do this, we ensure that our construction of the sets B and W satisfies
the requirements A ‰ ΓkpW q and B ‰ ΓkpW q for every k, where tΓkukăω is some
effective listing of all enumeration operators. During the construction to every
element x P Bn we will associate a superset Cx Ě A such that Cx ďe Z. Unless
otherwise stated Cx “ ω. The set Cx may be shrunk infinitely many times, but
will always be a superset of A. We will also associate to every y P B´n a finite set
Ty Ď A. Once defined, Ty will not be changed. (In fact, Ty will be the yth column
of W . We will not use this fact here, but it will be needed in Proposition 6.3.)

We start the construction by setting B0 “ B´0 “ W0 “ H. Suppose we have
constructed Bn, B´n , and Wn and consider the set

Xn “
ď

xPBn

Cx ˆ txu Y
ď

yPB´
n

Ty ˆ tyu Y
ď

zRBnYB
´
n

ω ˆ tzu.

By property p1q, it follows that for every n we have thatXn`1 Ď Xn. We will ensure
that Wn`1 Ď Xn, and so W Ď Xn for every n. We have two cases, depending on
whether we are at an even or an odd stage.

Suppose that n “ 2k. We ensure that A ‰ ΓkpW q, where tΓkukPω is some
effective listing of all enumeration operators. Note that Xn ďe

À

xPBn
Cx ďe Z, so

A ‰ ΓkpXnq. Fix an element a that witnesses this difference.
Case 1. If a P A, then we set W˚

n “Wn. Note, that W Ď Xn ensures that we have
satisfied our requirement.
Case 2. If a P ΓkpXnq, fix an axiom xa,Dy P Γk such that D Ď Xn. We set
W˚
n “ Wn YD. We will ensure that W˚

n Ď Wn`1, hence once again we will have
satisfied our requirement.

We set Bn`1 “ Bn Y tx : pDa P Aq xa, xy PW˚
n rWnu. Note that Bn`1 does not

contain any element from B´n , because if xa, yy P Xn and y P B´n then a P Ty Ď A.
We set B´n`1 “ B´n and set Wn`1 “W˚

n YA æpn` 1qˆBn`1. It is straightforward
to check that properties (1)–(4) still hold.

Suppose that n “ 2k` 1. In this case, we would like to ensure that B ‰

ΓkpW q. If ΓkpXnq is finite, then we do not need to do anything; by a close inspection
of the even stages, B will be infinite. So suppose that ΓkpXnq is infinite and fix
z P ΓkpXnq r Bn Y B´n . We would like to use this z to create a difference. Pick
an axiom xz,Dy P Γk such that D Ď Xn. If we can enumerate z into B´n`1 and D
into Wn`1 then this would accomplish the desired difference. Unfortunately, this
might be in conflict with our desire to preserve properties p2q and p4q, namely it
could be that xa, zy P D for some a P A. So, we will be more careful and consider
the following two cases:
Case 1. There is an axiom xz,Dy P Γk such that for all xa, xy P D:

(1) if x P Bn Y tzu, then xa, xy PWn or a P A;
(2) if x P B´n , then a P Tx.
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Note that these conditions ensure that D Ď Xn. In this case, we can proceed with
our original plan: we set W˚

n “WnYD and Bn`1 “ BnYtb : pDxa, by P Dq a R Au.
We set B´n`1 “ B´n Y tzu and Tz “ ta : xa, zy P W˚

n u. Note that Tz Ď A by our
choice of D. Finally, we set Wn`1 “W˚

n YA æpn`1qˆBn`1. Once again it is easy
to see that properties (1)–(4) still hold.
Case 2. Every axiom xz,Dy P Γk such that

p@x P B´n q if xa, xy P D, then a P Tx,

has the property that ta : pDx P Bn Y tzuq xa, xy P D rWnu Ę A. In that case,
the sequence tFmumPω listing all such sets—which is nonempty as z P ΓkpXnq—is
a computable sequence of finite sets such that for all m, we have that Fm Ę A. By
the uniform array-avoidance of A, there is a C Ě A such that C ďe Z and C still
has the property that Fm Ę C for all m. We set Cz “ C and for every x P Bn we
give the parameter Cx a new value namely pCx XCq Y ta : xa, xy PWnu and we set
Bn`1 “ BnYtzu. This ensures that z R ΓkpXn`1q, as every axiom for z in Γk that
satisfies the restriction imposed by B´n on Xn`1 contains an element xa, xy such
that x P Bn`1 and xa, xy R Wn Y C. We have thus satisfied our requirement. We
set B´n`1 “ B´n and Wn`1 “Wn YA æpn` 1q ˆBn`1. �

5. Forcing with Π0
1xAy classes

We use the main ideas from the proof of Theorem 4.4 to show the link between
K-pairs and the noncontinuous degrees.

Theorem 5.1. If A does not have continuous degree, then A is half of a nontrivial
relativized K-pair.

Proof. We will use a forcing notion F to construct B and W , so that B ˆA ĎW ,
B ˆ A Ď W , and A,B ęe W . A forcing condition p has the form xβ, tσiuiPω, P y,
where β P 2ăω, tσiuiPω is a sequence of finite binary strings such that for all i ě |β|,
σi “ H, and P is a nonempty Π0

1xAy class, satisfying a certain list of properties
that we describe below. We think of P as subset of p2ωqω, i.e., every element X P P
codes a sequence of sets tXkukPω (in fact, X “

À

kXk). We let Pi consist of the
i-th projection of the elements in P , i.e.,

Pi “ tXi : pDX0, . . . , Xi´1, Xi`1, . . . q
à

kPω

Xk P P u.

It is not difficult to see that each Pi is also a Π0
1xAy class, although that will not

be relevant for the construction. We think of each element X P P as providing a
bound on W , in the sense that W Ď X for some X P P . We think of β as an
initial segment of the set B. Every σi codes a finite set Di “ tx : σipxq “ 1u. We
approximate W by Wp “

Ť

iPωtiuˆDi “
Ť

iă|β|tiuˆDi. We ask that, in addition,
forcing conditions satisfy the following properties:

(1) If βpiq “ 0, then Di Ď A and Pi “ tσi0ωu.
(2) If βpiq ‰ 0, then for every X P Pi, we have that σi ĺ X and A Ď X.
(3) If X P P and Y Ď X is such that if we write Y as

À

i Yi, then for every i
we have that the above two conditions hold, i.e.,
‚ if βpiq “ 0, then Yi “ σi0

ω and
‚ if βpiq ‰ 0, then σi ĺ Yi and A Ď Yi;

then Y P P .
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Note that the forcing condition ensures that Wp Ď X for all X P P .
We say that a condition q “ xγ, tτiuiPω, Qy extends a condition p “ xβ, tσiuiPω, P y,

written as q ď p, if
‚ β ĺ γ;
‚ for all i, σi ĺ τi;
‚ each X P Q is a subset of some Y P P .

We build a sequence of conditions p0 ě p1 ě p2 ě ¨ ¨ ¨ . In the end, B “
Ť

nPω βpn
and W “

Ť

nWpn will be the required sets. Note that property (2) of a condition
ensures that if i P B, then σi is an initial segment of a superset of A. Hence if we
ensure that σi grows unboundedly in length for all i P B, then we automatically
get that B ˆ A Ď W . On the other hand, property (1) ensures that B ˆ A Ď W .
We only need to further ensure that A,B ęe W .

The initial condition is p0 “ pH, pH,H, . . . q, Sqq, where S is the Π0
1xAy class

consisting of all supersets of A. Suppose that we have built pn “ xβn, tσiuiPω, P y.
We describe how to extend pn to pn`1 “ xβn`1, tτiuiPω, Qy. We have two cases
depending on the parity of n.

Suppose that n “ 2k. We ensure that A ‰ ΓkpW q. We first check if there is
an a P A such that Qa “ tX P P : a R ΓkpXqu is nonempty. If there is such an a
then we let βn`1 “ βn, τi “ σi for all i, and Q “ Qa. It is straightforward to see
that pn`1 is a condition: Q is a Π0

1xAy subclass of P so properties (1) and (2) are
trivially satisfied. Property (3) is satisfied because if a R ΓkpXq and Y Ď X then
a R ΓkpY q. Furthermore, this condition forces a P Ar ΓpW q.

If there is no a P A such that Qa is nonempty, then A is a subset of ΓkpXq for
every X P P . Since A does not have continuous degree and hence by Theorem 2.9
is not codable, there must be some element X P P that does not enumerate A via
Γk. So A Ă ΓkpXq and we can fix a P ΓkpXq r A. Fix s such that a P ΓkpX æ sq.
We can think of X æ s as

À

iăm τi, where m ą |βn| and pick s large enough so
that for every i ă |βn| we have that σi ă τi. Let βn`1 be the string of length m
obtained by appending 1’s to βn and let τi “ H for i ě m. Notice that here we are
ensuring that |τi| ą |σi|. Since this case will definitely be the true case every time
ΓkpXq “ ω for all X, we will ensure that B ˆ A Ď W as discussed above. Finally
we set Q to be the subclass of P , subject to the restraints in properties (1) and (2),
namely Q “ tY P P : X æ s ĺ Y u. This is nonempty Π0

1xAy class because X P Q.
The resulting pn`1 is easily seen to be a condition. Furthermore, for all q ď pn`1

we have that a P ΓkpWqq, hence this ensures that A ‰ ΓkpW q, as promised.
Suppose that n “ 2k` 1. We ensure that B ‰ ΓkpW q. We first check if there

is a b ą |βn| and X P P such that b P ΓkpXq. If not, we do not need to make any
changes to pn at this stage, so we set pn`1 “ pn. The even steps ensure that B is
an infinite set, hence the requirement is automatically satisfied. So suppose that
there is a b ą |βn| such that b P ΓkpXq for some X P P . We would like to define
βn`1 so that βn`1pbq “ 0 and Q so that every element in Q enumerates b via Γk.
Just like in the proof of Theorem 2.9, this might not be possible because it could be
that every axiom in Γk for b contains an element xb, ay, where a P A, so we cannot
build Q satisfying condition p1q. This is why we consider two cases.

Case 1. There is an axiom xb,Dy P Γk, such that D Ď X for some X and for
every pair xi, ay P D we have that σipaq “ 1 or a P A. (Note that if βpiq “ 0 and
xi, ay P D, then σipaq “ 1 because D Ď X.) In that case we can proceed with
our original plan: first to ensure property (1) fix τb to be the initial segment of A
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covering all a such that xb, ay P D. Next we trim the elements of the Π0
1xAy class P

to get P 1 so that P 1b “ tτb0
ωu and for all i ‰ b we have that P 1i “ Pi. Note, that we

still have D Ď X 1, where X 1 is obtained by this trimming process from X, by our
choice of τb. Furthermore, P 1 is a Π0

1xAy class. To see this, write P “ 2ω r rU să
where U ďe A. We may assume that U is closed upward. Then P 1 “ 2ω r rV să
where ρ P V if when we write ρ “

À

i ρi, we have that either ρb is incompatible
with τb, or if all strings ρ˚ that we get by replacing ρb by strings of the same length
are in U . It is straightforward to see that P 1 Ď 2ω r rV să. On the other hand, if
X R P 1, but Xb “ σb0

ω, then by compactness there must be some level s such that
all possible strings ρ˚ obtained as above from the string ρ “ X æ s must be thrown
into U and so X R 2ω r rV să. The set V is clearly enumeration reducible to A.

We now fix s large enough so that D Ď X 1 æ s and X 1 æ s can be written as
À

iăm τi, where m ą b and σi ĺ τi for all i ă |βn| or i “ b. We extend βn to βn`1

of length m, so that βn`1pbq “ 0 and for all i ‰ b such that |βn| ď i ă m, we set
βn`1piq “ 1. We set τi “ H if i ě m. We set Q “ tY P P 1 : X 1 æ s ĺ Y u. Thus we
have ensured that b R B and b P ΓkpWqq for every q ď pn.

Case 2. For every X P P , if xb,Dy P Γk and D Ď X, then there is a pair xi, ay P D
such that σipaq ‰ 1 (so it is either undefined or equals 0) and a R A. Consider
the Π0

1xAy class Q “ tX P P : b R ΓkpXqu. This is a nonempty class because
by property (3) of P the sequence Y “

À

Yi where Yi “ σi0
ω if βnpiq “ 0 and

otherwise

Yipxq “

#

σipxq, if x ă |σi|;
Apxq, if x ě |σi|

must be a member of Q. We set βn`1 to be the string of length b ` 1 obtained
by adding 1’s to βn and leave τi “ σi for all i. Once again, since Q Ď P and we
have added no new 0’s to βn`1, it is easy to see that Q satisfies properties (1) and
(2). To see that it satisfies (3), we again note that if Y Ď X and b R ΓkpXq then
b R ΓkpY q and hence pn`1 is a condition. This condition forces b P BrΓkpW q. �

Putting everything together, we get:

Theorem 5.2. For a set A Ď ω, the following are equivalent:

(1) A has continuous enumeration degree.
(2) The degree of A contains the graph of function that is codable by extensions.
(3) A is not array-avoiding.
(4) A is not uniformly array-avoiding.
(5) A is not half of a nontrivial relativized K-pair.

Combining the characterization of the continuous degrees in terms of K-pairs
with the characterization as the almost total degrees from [2], we get the promised
structural dichotomy in the enumeration degrees.

Theorem 1.1. For every enumeration degree a, exactly one of the following two
properties holds:

(1) The degree x is continuous, so for every total enumeration degree x ę a,
a_ x is total.

(2) There is a total enumeration degree x ę a such that a _ x is a strong
quasiminimal cover of x.
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Proof. The first property is exactly the definition of almost totality. If a is not
continuous, then by Theorem 5.2, we get that a is half of a nontrivial K-pair; let b
and u be such that ta,bu is a nontrivial K-pair relative to u. Using forcing, it is
not hard to build a total enumeration degree x ě u such that a ę x and b ę x.
(For example, this follows from a much more general theorem of Soskov [21] about
jump inversion in De.) Note that ta,bu is a nontrivial K-pair relative to x. By
Theorem 2.11, a_ x is a strong quasiminimal cover of x. �

6. Cototal sets and K-pairs

In this section, we briefly examine the connection between cototal sets and K-
pairs, ending with a conjectured definition of cototality in the enumeration degrees.

Definition 6.1. A set A is cototal if A ďe A. An enumeration degree is cototal if
it contains a cototal set.

Andrews et al. [1] note that if A has cototal enumeration degree, then KA is
cototal representative of that degree. In fact, they show that the operator that maps
depAq to depKAq is degree invariant and call it the skip operator. The skip of depAq
is denoted by depAq♦, so we have that A is cototal if and only if depAq ďe depAq♦.

It is straightforward to see that every total enumeration degree is cototal, as
A‘A “ A ‘ A ”e A ‘ A. More generally, every continuous degree is cototal.
Recall that an enumeration degree is continuous if it contains a set of the form
Cα “

À

iPω tq P Q : q ăQ αpiqu ‘ tq P Q : q ąQ αpiqu, for some α P r0, 1sω. It
follows that every continuous degree is cototal as, 2xi, qy P Cα if and only if there
is an r ą q such that 2xi, ry ` 1 P Cα, and similarly, 2xi, qy ` 1 P Cα if and only if
there is an r ă q such that 2xi, ry P Cα.

The class of cototal enumeration degrees is strictly bigger than the continuous
degrees. For example, cototal enumeration degrees can be halves of nontrivial K-
pairs. One way to see this is to note that every Σ0

2 enumeration degree is cototal [1].
As we already saw, if A is semi-computable, then tA,Au is a K-pair, and A can be
chosen as a non-c.e. and non-co-c.e. member of any nonzero Turing degree. On the
other hand, the kind of K-pairs that cototal sets can be part of is restricted, as can
be seen by the following result.

Proposition 6.2. If A is of cototal enumeration degree and tA,Bu is a nontrivial
K-pair relative to U , then A ďe U

1.

Proof. Suppose that A has cototal enumeration degree and that tA,Bu is a nontriv-
ial K-pair relative to U . Then as A ”e KA, it follows that tKA, Bu is a nontrivial K-
pair relative to U . LetW ďe U be such thatKAˆB ĎW andKAˆB ĎW . By the
properties of K-pairs outlined in Theorem 2.11, we have that KA ďe KA ďe B‘W .
Of course KA ďe A‘W , so

depKAq ďe depKA ‘W ‘ Uq ^ depB ‘W ‘ Uq “ depW ‘ Uq ďe depUq
1.

Hence A ďe U 1. �

Ideally, we would hope that the reverse statement is true as well: if A is not
cototal then there are sets B and U such that A ęe U 1 and tA,Bu are a nontrivial
K-pair relative to U . Unfortunately, our current methods do not suffice to prove
this statement. What we can show is much weaker.
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Proposition 6.3. If A is not cototal, then there are sets B and W such that
A ęe W and tA,Bu are a nontrivial K-pair relative to W .

Proof. Let A ęe A. Then A is not of continuous degree and hence by Theorem 5.2
it is uniformly array-avoiding. Let Z witness that. We will build sets B and W
such that A,B ęe W , A ęe W , AˆB ĎW , and AˆB ĎW . The construction is
a slight modification of the one in Theorem 4.4. At stage n we build finite sets Bn,
B´n , and Wn satisfying the following four conditions:

(1) Bn Ď Bn`1, B´n Ď B´n`1, Wn ĎWn`1;
(2) Bn XB´n “ H;
(3) A ænˆBn ĎWn;
(4) xa, by PWn ñ pa P A_ b P Bnq.

We let B “
Ť

nBn and W “
Ť

nWn. Properties (1), (3), and (4) ensure that
tA,Bu is a K-pair relative to W . What remains is to ensure that A,B ęe W and
A ęe W . In order to do this, to every x P Bn we will associate a superset Cx Ě A
such that Cx ďe Z. Unless otherwise stated, Cx “ ω. The set Cx may be shrunk
infinitely many times, but will always be a superset of A. We will also associate to
every y P B´n a finite set Ty Ď A. Once defined, Ty will not be changed and will be
the yth column of W .

We start the construction by setting B0 “ B´0 “ W0 “ H. Suppose we have
constructed Bn, B´n , and Wn. As before, we ensure that Wn`1 Ď Xn, where

Xn “
ď

xPBn

Cx ˆ txu Y
ď

yPB´
n

Ty ˆ tyu Y
ď

zRBnYB
´
n

ω ˆ tzu.

From what we have said so far, it follows that we will also ensure that thatWn`1 Ď

Yn, where

Yn “Wn X

˜

ď

xPBn

Aˆ txu Y
ď

yPB´
n

Ty ˆ tyu Y
ď

zRBnYB
´
n

ω ˆ tzu

¸

.

In this case as well we have that Yn`1 Ď Yn, and so W Ď Yn for all n.
Fix an effective listing of all enumeration operators tΓkukPω. We have three cases

depending on the stage.

If n “ 3k, then we ensure that A ‰ ΓkpW q in exactly the same way as we did
in Theorem 4.4. If n “ 3k` 1, then we ensure that B ‰ ΓkpW q, again using the
same steps as in Theorem 4.4.

Suppose that n “ 3k` 2. We ensure that A ‰ ΓkpW q. Note that Yn ďe A,
so A ‰ ΓkpYnq. Fix an a witnessing this difference.
Case 1. If a P A, then we do not need to do anything, as W Ď Yn ensures that we
have satisfied our requirement. We just move on to the next stage.
Case 2. If a P ΓkpYnq, then fix an axiom xa,Dy P Γk such that D Ď Yn. We would
like to add D to W . We do this by shrinking the sets Cx and by adding elements to
B´n`1: For all xb, xy P D such that x P Bn, we have that b R A and xb, xy R Wn, so
we can remove b from Cx (without interfering with the requirements that A Ď Cx
and Wn`1 Ď Xn`1). For all xb, yy such that y P B´n , we have that b P Ty and
since Ty does not change, we can be sure that xb, yy PW . Finally, if xb, zy P D and
z R Bn Y B´n , we enumerate z P B´n`1 and set Tz “ tc : xc, zy P Wnu, which is safe
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because D Ď Wn. We set Bn`1 “ Bn and Wn`1 “ Wn. It is straightforward to
check that properties (1)–(4) still hold. �

There seem to be serious obstacles to modifying the construction above to get
A ęe W

1 “ KW ‘KW . Nevertheless, we conjecture that the reverse is still true.

Conjecture 6.4. A degree a is cototal if and only if, whenever ta,bu is a nontrivial
K-pair relative to u we have that a ď u1

7. PA relative to an enumeration oracle

In this final section of our paper, we propose two more properties that relate to
the continuous and to the cototal enumeration degree. Both properties rely on the
extension of the relation “PA above” to enumeration oracle.

Definition 7.1 (Miller, Soskova [16]). xBy is PA above xAy if B enumerates a
member of every Π0

1xAy class.

Note that this relation is degree invariant. We write depAq ! depBq if xBy is PA
above xAy. Furthermore, it is an extension of the usual relation on Turing degrees,
because if x and y are Turing degrees, then x ! y if and only if ιpxq ! ιpyq, i.e.,
the relation is preserved under the embedding ι : DT ãÑ De. (Recall, that ι maps
dT pAq to depA‘Aq.) On nontotal enumeration degrees, however, the relation “PA
above” can behave strikingly differently.

Definition 7.2. A set A is xself y-PA if xAy is PA above xAy.

Miller and Soskova [16] prove the existence of ∆0
2 xselfy-PA sets. Furthermore,

they show that the set of total degrees below a xselfy-PA set A forms a Scott set,
i.e., an ideal closed with respect to the relation “PA above”.

We consider the following two new properties.

Definition 7.3. Let A Ď ω.
(1) Say that A is PA bounded if for every set B, if xBy is PA above xAy, then

A ďe B.
(2) Say that there is a universal Π0

1xAy class if there is a Π0
1xAy class U such

that for every member X P U we have that
@

X ‘X
D

is PA above xAy.

Both properties clearly hold for total enumeration degrees, and so they exhibit
the “expected” behavior of sets with respect to the relation “PA above”. We show
that the two properties together characterize the continuous degrees, while the first
property implies cototality.

Proposition 7.4. Fix A Ď ω.
(1) A is PA bounded and there is a universal Π0

1xAy class if and only if A has
continuous degree.

(2) If A is PA bounded, then A has cototal degree.

Proof. (1) If A is continuous, then A is codable; fix a Π0
1xAy class P such that every

member in P enumerates A. To see that A is PA bounded, note that every set
B such that xBy is PA above xAy enumerates a member of the Π0

1xAy class P and
hence enumerates A.

To see that there is a universal Π0
1xAy class, we build a new class R by joining

each X P P with DNCX2 , the standard Π0
1rXs class consisting of all t0, 1u-valued
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diagonally non-computable functions relative to X. Recall that a function f is
diagonally non-computable relative to X if for every e, we have that ϕXe peq ‰ fpeq.
It is not hard to see that if f is t0, 1u-valued, then it (is the characteristic function
of a set that) is PA above X.

Fix S ďe A such that P “ 2ω r rSsă. We let

R “ tσ ‘ τ : σ P S _ Dn pτpnq “ ϕσn,|σ|pnqqu.

Then U “ 2ω r R is a Π0
1xAy class and every member of this class has the form

Z “ X ‘ Y , where A is c.e. in X (equivalently A ďe X ‘X) and Y is PA above
X (in the Turing sense). It follows that

@

Z ‘ Z
D

is PA above xAy for every Z P U ,
and so U is a universal Π0

1xAy class.
For the reverse direction, suppose that A is PA bounded and that there is a

universal Π0
1xAy class U . Every member of U is PA relative to xAy, and so by

boundedness enumerates A. It follows that A is codable, hence by Theorem 2.9, it
has continuous degrees.

(2) Suppose that A is PA bounded. Consider a total set X‘X above the skip of
A, i.e., such that KA ďe X ‘X. We claim that

@

X ‘X
D

is PA above xAy. To see
this, consider a nonempty Π0

1xAy class P “ 2ωrrSsă. We may assume that S ďe A
is closed upward. Consider the set E “ tσ : @nDτ p|τ | “ n & τ Ě σ & τ R Squ of
strings that can be extended to an element of P . Note that E ďe KA, and so it
is c.e. in X. It follows that X ‘ X can enumerate an element in P , proving that
@

X ‘X
D

is PA above xAy. By PA boundedness, A ďe X ‘X. This holds for any
total set X ‘X above KA, so by Selman’s theorem, A ďe KA. Therefore, A has
cototal degree. �

It is not clear that PA boundedness characterizes the cototal enumeration de-
grees. We do know, at least, that cototality does not imply the existence of a
universal class. As noted previously, there are ∆0

2 sets, hence sets of cototal degree,
that are xselfy-PA. This combined with the following proposition yields the desired
conclusion.

Proposition 7.5. If A is xself y-PA, then A does not have a universal Π0
1xAy class.

Proof. Fix a xselfy-PA set A. If there were a Π0
1xAy class consisting of sets that

are PA above xAy, then A would enumerate a set X ‘X such that
@

X ‘X
D

is PA
above xAy. In that case, X would be PA (in the Turing sense) above every Y such
that Y ‘ Y ďe A. In particular, X would be PA above X. But this is impossible,
as the “PA above” relation is strict when restricted to Turing oracles. �

The statement above gives an alternative, though similar, proof that the degrees
of xselfy-PA sets are disjoint from the continuous degrees. This was originally
proved by Miller and Soskova [16], who show that there is a universal Martin-Löf
test relative to every continuous degree, but not relative to any xselfy-PA degree.

We are left with the following questions:

(1) Are there cototal degrees that are not PA bounded?
(2) Are there PA bounded degrees that are not of continuous degree? In par-

ticular, can a xselfy-PA degree be PA bounded?
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In very recent work Franklin, Lempp, Miller, Schweber, and Soskova2 have an-
swered both of these questions by showing that the PA bounded degrees are exactly
the continuous enumeration degrees. On the other hand, they reveal that the class
of degrees whose members have universal Π0

1 classes is nontrivial and worth further
investigation.
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