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ABsTrRACT. We give several new characterizations of the continuous enumer-
ation degrees. The main one proves that an enumeration degree is continuous
if and only if it is not half of a nontrivial relativized K-pair. This leads to a
structural dichotomy in the enumeration degrees.

1. INTRODUCTION

The Turing degrees, Dr, measure the computability-theoretic complexity of sets
of natural numbers. By coding, they can be used to measure the complexity of
other mathematical objects. For example, a real number r in the unit interval
can be coded by a function n, : Q* — Q that takes as input a positive ¢ and
outputs a rational number ¢ within ¢ of . We call n,. a name for r. A real
number is thus associated with a set of names, which are discrete objects and
hence have Turing degree. It is not difficult to see that every real number has a
name of least Turing degree: the degree of its binary expansion. In this way, we
can associate a Turing degree to every real number r. In many cases, however,
the Turing degrees are not sufficient to measure the compexity of objects studied
in effective mathematics. An early example of this phenomenon was given by
Richter [19], who proved that we cannot associate a Turing degree to every countable
linear ordering. In fact, the only countable linear orderings that have a Turing
degree are the ones with computable presentations. In search for an answer to
a similar question—“Does every continuous function on the unit interval have a
name of least Turing degree?”—Miller [I5] introduced the continuous degrees to
measure of the complexity of continuous functions, and, more generally, points in
computable metric spaces. He proved that the Turing degrees properly embed into
the continuous degrees, and that the continuous degrees, in turn, properly embed
into the enumeration degrees.

Enumeration reducibility, <., and the enumeration degrees, D., were introduced
by Friedberg and Rogers [5]. They form a natural extension of the Turing degrees:
by mapping the Turing degree of a set A to the enumeration degree of A @ A
we get an embedding ¢ of Dy into D.. The image of a Turing degree is called a

Date: November 30, 2020.

2010 Mathematics Subject Classification. Primary 03D30; Secondary 03D78.

The first and fourth authors were partially supported by National Science Fund of Bulgaria
grant #01/18 from 23.07.2017 and by grant #02/16 from 19.12.2016. The fourth author was also
supported by National Science Foundation grant DMS-1762648. The second author was supported
by RFBR grant #17-51-18083. Also he is supported as federal professor in mathematics (project
#1.451.2016/1.4) in Russia. The third author was partially supported by grant #358043 from the
Simons Foundation.



2 GANCHEV, KALIMULIN, MILLER, AND SOSKOVA

total enumeration degree. So, the enumeration degrees turn out to be sufficient to
capture the effective content of a continuous function on the unit interval: there is
a least enumeration degree such that the total degrees bounding it are exactly (the
images of ) the Turing degrees of names of the continuous function. The enumeration
degrees of continuous functions give us a proper subclass of the enumeration degrees:
the continuous enumeration degrees.

The study of the continuous enumeration degrees has revealed an important
connection between degree theory and topology. All proofs that nontotal contin-
uous enumeration degrees exists—in other words, that the continuous degrees are
a proper extension of the Turing degrees—have used nontrivial topological theo-
rems. Miller’s original proof [15] uses a variant of Brouwer’s fixed point theorem
for multivalued functions on the Hilbert cube. Levin’s construction of a neutral
measure [13] uses Sperner’s Lemma and was shown by Day and Miller [4] to also
produce a nontotal continuous degree. More recently, Kihara and Pauly [12] and
independently Hoyrup (unpublished) use facts from topological dimension theory
to prove the existence of a nontotal continuous enumeration degree. The connection
can be followed in the reverse direction as well. For example, a structural property
of the continuous enumeration degrees was the main tool in Kihara and Pauly’s [12]
solution to the Second level Borel isomorphism problem; they constructed an un-
countable Polish space which is neither second-level Borel isomorphic to the unit
interval nor to the Hilbert cube.

Andrews, Igusa, Miller, and Soskova [2] have recently given several character-
izations of the continuous enumeration degrees as a subclass of the enumeration
degrees, including a chracterization via a simple structural property: an enumer-
ation degree a is almost total if and only if for every total enumeration degree
x € a we have that x v a is a total degree. An enumeration degree is continuous
if and only if it is almost total. The total enumeration degrees were shown to be
definable by Cai, Ganchev, Lempp, Miller, and Soskova [3], and so the continuous
enumeration degrees also form a definable subclass of the enumeration degrees.

Another class of enumeration degrees that has been studied extensively is the
class of Kalimullin pairs or K—pairsﬂ introduced by Kalimullin [TI0]. A pair of sets
{A, B} form a C-pair relative to U if and only if there is some set W <. U such that
Ax Bc W and A x B< W. K-pairs lie at the heart of most natural definability
results in the enumeration degrees. Kalimulin [I0] proved that they have a natural
structural definition—they are the degrees {a, b} that form a robust minimal pair
relative to a degree u: for all x > u we have that x = (avx) A (bvx). He then used
them to define the enumeration jump operator. Ganchev and Soskova [6] proved
that K-pairs are definable in D(< 0.), the substructure of the X9 enumeration
degrees, and used them to prove the first order definability of a series of subclasses
of D(< 0,), including the total AY enumeration degrees [7], the downwards properly
%9 enumeration degrees, the upwards properly ¥9 enumeration degrees [6], and the
Low,, and High,, enumeration degrees, for all n € w [8]. A special type of K-pairs—
the maximal K-pairs—were used by Cai, Ganchev, Lempp, Miller, and Soskova [3]
to define the total enumeration degrees.

In this paper we study the relationship between the continuous degrees and K-
pairs more closely. We give several new characterizations of continuous degrees,

1lC—paLirs were called e-ideal pairs in Kalimullin’s paper. Ganchev and Soskova established the
new name.
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leading up to our main new characterization: an enumeration degree is continuous
if and only if it is not half of a nontrivial K-pair relative to any enumeration degree.
This new characterization gives a simpler first order definition of the continuous
enumeration degrees in terms of quantifier complexity. In the language with < and
v, the definition via almost total degrees is II3, while the definition via K-pairs
is IIy. It also allows for an interesting structural dichotomy in the enumeration
degrees. Recall that an enumeration degree a is a strong quasiminimal cover of b if
and only if a > b and for all total enumeration degrees x, if x < a then x < b. The
characterization of the continuous degrees as almost total, along with properties of
nontrivial IC-pairs allow us to derive the following:

Theorem 1.1. For every enumeration degree a, exactly one of the following two
properties holds:

(1) The degree x is continuous, so for every total enumeration degree x £ a,
a v x is total.

(2) There is a total enumeration degree x £ a such that a v x is a strong
quasiminimal cover of x.

A subclass of the enumeration degrees that is larger than the continuous enu-
meration degrees is the cototal degrees. A degree is cototal if it contains a cototal
set, i.e., a set A, such that A <. A. This class arises naturally in many areas
of effective mathematics, including graph theory [I], symbolic dynamics [14] and
computable structure theory [I4]. The cototal enumeration degrees also reveal a
topological connection: Kihara et al. [I1] showed that the cototal enumeration de-
grees are the degrees of points in computably G topological spaces. Miller and
Soskova [I7] prove that they form a dense substructure of the enumeration degrees,
viewed as an upper-semilaltice with jump operation. We study the connection be-
tween cototal sets and K-pairs. Our investigation leads us to a conjecture that,
if true, would yield the first order definability of the cototal enumeration degrees
within the structure of the enumeration degrees.

We end with an alternative characterization of the continuous degrees in terms
of the relation “PA above” extended to enumeration oracles, introduced by Miller
and Soskova [16]. This new characterization opens up many questions for future
work on this topic.

2. PRELIMINARIES

We start by giving formal definitions of standard notions used throughout this
paper. For a more thorough exposition on degree theory, we refer the reader to
Odifreddi [18].

2.1. Enumeration reducibility and the enumeration degrees.

Definition 2.1 (Friedberg, Rogers [3]). A <. B if and only if there is a c.e. set W
such that

A=W(B)={z: (Jv){z,vyeW & D, < B}.
Here D, denotes the finite set with code v in the standard coding of finite sets. The

set W is called an enumeration operator and the pair (x, D, ) is called an aziom for

zin W.
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We will abuse notation and think of an enumeration operator interchangeably
as a c.e. set of numbers or as a set of axioms {(x, D), where D is a finite set.

Enumeration reducibility gives rise to a degree structure as usual: A is enu-
meration equivalent, =., to B if A <. B and B <. A; the enumeration degree
of a set A is d.(A) = {B: A =, B}. The preorder <. on sets induces a partial
order on the enumeration degrees, D.. The least enumeration degree 0. consists
of all c.e. sets. We can supply D, with a least upper bound operation by setting
de(A) v de(B) = de(A® B), where A@B ={2n: ne Ay u{2n+1: ne B}. We
can also define a jump operator: d.(A) = de(Ka®Ka), where K4 = @, We(4)
and {W,}cew is some fixed computable enumeration of all c.e. sets, or equivalently
enumeration operators.

As mentioned above, the Turing degrees can be embedded into the enumeration
degrees. The reason should now be clear: it follows easily from the definition of
enumeration reducibility that A < B if and only if A ®A<,B®B.

Definition 2.2. A set A is total if A <. A (i.e., if A® A=, A). An enumeration
degree is total if it contains a total set.

The set of total enumeration degrees as an upper semi-lattice with jump opera-
tion is an isomorphic copy of the Turing degrees.

Selman [20] provided a useful alternative way to think about enumeration re-
ducibility. An enumeration of a set A is a total function f : w — w with range
equal to A. The definition of enumeration reducibility given above can be restated
as follows: A is enumeration reducible to B if there is a uniform way to compute an
enumeration of A from an enumeration of B. Selman proved that the uniformity
condition is not necessary.

Theorem 2.3 (Selman [20]). A <. B if and only if every enumeration of B com-
putes an enumeration of A

2.2. The continuous degrees. A computable presentation of a metric space M
consists of a fixed dense sequence Q™ = {¢,, }new on which the metric is computable
as a function on indices. Metric spaces with computable presentations include
Cantor space 2, Baire space w®, the continuous functions on the unit interval
C[0,1], the Hilbert cube [0, 1]¥, and many others. For a computable presentation
of C[0,1], for example, we fix an effective enumeration of the polygonal functions
having segments with rational endpoints. A name for a point x in a computable
metric space is a function n,: Q-9 — w that gives a way to approximate x via the
sequence QM: it takes a rational number ¢ > 0 as input and produces an index
nz(g) such that da(x, ¢y, )) < . Such names can easily be coded as elements
of Baire space. For points z,y in (possibly different computably presented metric
spaces), we say that x reduces to y if every name for y uniformly computes a
name for x. This reducibility induces a degree structure, the continuous degrees.
Miller [I5] proves that there are universal computably presented metric spaces:
every continuous degree contains an element of C[0,1] and, more importantly for
our purposes, also an element of [0,1]%.

In order to understand the embedding of the continuous degrees into the enu-
meration degrees, we use the fact that the Hilbert cube [0, 1] is universal. We take
the usual metric on the Hilbert cube: d(o, 8) = 3., 27 "|a(n) — B(n)]. A dense
set witnessing that [0, 1] is computable is, for example, a computable enumeration
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of the rational sequences with finite support. Given « € [0, 1]*, consider the set

C, = 6—) {geQ:g<an)}®{geQ: ¢ > a(n)}.
new
Miller [I5] proved that enumerating C,, is just as difficult as computing a name for
«. Thus the map a — C,, induces an embedding of the continuous degrees into the
enumeration degrees.

Definition 2.4. An enumeration degree a is continuous if it contains a set of the
form C,,, where « € [0, 1]“.

Note that the i-th component of C, is very close to a total set in structure:
{geQ:qg<ga(i)}®{geQ:q>ga(i)} = X ®X, unless (i) is rational. The
nonuniformity introduced by the rational components of some « € [0, 1]* suffice to
produce nontotal enumeration degrees:

Theorem 2.5 (Miller [I5]). There are nontotal continuous degrees.

We will use two of the three characterizations of continuous enumeration degrees
proved in [2]. We restate the definition of an almost total degree for convenience:

Definition 2.6. We say that an enumeration degree a is almost total if whenever
b £ a is total, a v b is also total.

The second characterization relies on an extension of the notion of a IT{ class to
an enumeration oracle. We will use (A) to indicate that we are treating A as an
enumeration oracle rather than a Turing oracle.

Definition 2.7. Let A C w. Call U € 2 a X0(A) class if there is a set W <, A4,
such that U = [W]< = {X € 2¥: 30 € W) X > o}. A II{A) class is the
complement of a ©(A) class.

Note that a I9{A@ A) class is just a II{[A] class in the usual sense. Further,
note that the elements of a I1{{A) class are infinite binary sequences, hence total
objects. Thus, when we say that a set enumerates a member of a I class, we
mean that the set enumerates X @ X, for some X such that the binary sequences
representing X is in the II9 class.

Definition 2.8. A set A C w is codable if there is a nonempty I19(A) class P < 2
such that for every X € P, A is c.e. relative to X.

Theorem 2.9 (Andrews, Igusa, Miller, Soskova [2]). Fiz A € w. The following
are equivalent

(1) The enumeration degree of A is almost total;
(2) A is codable;
(3) A has continuous enumeration degree.

2.3. Kalimullin pairs. Consider once again the definition of a relativized Kalimullin
pair.

Definition 2.10 (Kalimullin [I0]). A pair of sets of natural numbers {A, B} is a
Kalimullin pair (K-pair) relative to a set U if there is a set W <. U such that
AxBcWand Ax BSW.
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It is very easy to come up with an example of a C-pair relative to any U: if
B <. U, then for every set A we have that {4, B} is a K-pair relative to U as
witnessed by w x B. Similarly, if A <. U. K-pairs of this sort are not interesting;
we call the trivial. Nontrivial K-pairs exist: a standard example of a C-pair relative
to J is given by a the pair {A, A}, where A is any semi-computable set. Semi-
computable sets were introduced and studied by Jockusch [9]. He showed that A is
semi-computable if and only if A is a left cut in some computable linear ordering on
w. He also showed that every nonzero Turing degree contains a semi-computable
set that is neither c.e. nor co-c.e.

K-pairs have many interesting properties. For example, if we fix A and consider
the set KK(A) = {B: {A, B} is a K-pair}, then K(A) is an ideal with respect to
<. In particular, being half of a I-pair is a degree notion. We summarize the
properties that we will use in the following theorem.

Theorem 2.11 (Kalimullin [I0]). Let {A, B} be a nontrivial K-pair relative to U
as witnessed by W.

(1) A<, BOW and B<, A@W.

(2) A<, B®W and B<. A@W.

(3) de(A®U) and d.(B@®U) are strong quasiminimal covers of d.(U)

We will also need the structural definition of IC-pairs as robust minimal pairs.

Theorem 2.12 (Kalimullin [I0]). A pair of sets {A, B} are a K-pair relative to U
if and only if their enumeration degrees a, b and u satisfy:

(vx=u)[(avx) A (bvx)=x]

3. FUNCTIONS THAT ARE CODABLE BY EXTENSIONS

Our first characterization of the continuous enumeration degrees, and the one
that motivated this work, concerns the notion of a function codable by its exten-
sions.

Definition 3.1. A function f : w — w is codable by extensions if for every extension
h 2 f we have that Gy <. G}, where G, denotes the graph of x.

Clearly, every total function is codable by extensions, because its only extension
is the function itself. The notion becomes interesting when one considers graphs
of nontotal functions. We prove below that the enumeration degrees of the graphs
of functions that are codable by extensions are exactly the continuous enumeration
degrees.

Theorem 3.2. An enumeration degree is continuous if and only if it contains the
graph of a function that is codable by extensions.

Proof. Suppose that a is continuous and fix an element of the Hilbert cube « €
[0,1]“ so that a = d.(C,), where
C, = (—D {geQ:qg<an)}®{geQ: ¢ > a(n)}.
new

Consider the function f:w — w such that

fln, @) = {

0, if ¢ < a(n);
1, if a(n) <q.
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Note, that if a(n) = ¢ then f({n, ¢)) is undefined. Clearly, C,, =. G;. Furthermore,
for any extension h of f, we have that
Co=@P{qeQ: 3r>q) h((n,r)) =0} @ {q e Q: (3r < q) h({(n,r)) = 1}.
new
Hence Gy =, C, <. G}, and so f is codable by extensions.

For the reverse direction, let f be a function that is codable by extensions.
Consider the set P of the graphs of all extensions of f. Then P is a II9{G) class,
as P = 295, where S is the set of finite binary strings that are not initial segments
of the characteristic function of the graph of some extension of f. In other words,
o € S if and only if

(F,y,2) [0((2,9)) = 0((2,2)) = L& y # 2]
or (3z,y) [(z,y) € Gy & o ((z,y)) = 0].

Every member of the class P can enumerate Gy, hence Gy is codable and so Gy
has continuous degree by Theorem |2.9 [

The characterizations of the continuous degrees via functions that are codable
by extensions leads to a connection with the notion of a nontrivial C-pair, or rather
the opposite: a continuous degree can never be a part of a nontrivial C-pair relative
to any set U.

Proposition 3.3. If f is codable by extensions, then Gy is not half of any relativized
nontrivial K-pair.

Proof. Suppose towards a contradiction that Gy is codable by extensions and the
pair {Gy, B} is a nontrivial K-pair relative to some set U. Let W <. U witness this.
If for some b we find that {{(z,y),b) € W and {(z,2),b) € W, where y # z, then
G xB < W ensures that b € B. Since B &, W, there must be some b € B for which
the above is not true and hence {{z,y): {{z,y),b) € W} is the graph of a function
h, and G, < W. As Gy x B < W, it follows that f < h, so Gy <. G), <. U,
contrary to our assumption that {G, B} is nontrivial relative to U. (]

A natural questions arises: does this property characterize the continuous de-
grees? This will be proved in Section

4. ARRAY-AVOIDING SETS

Towards a positive answer to the question posed at the end of the previous
section, we explore a combinatorial characterization of the continuous degrees.

Definition 4.1. We say that A is array-avoiding if A # w and for every computable
sequence of finite sets {D,,} e, such that for every n we have that D,, & A, there
is some C' 2 A such that for every n we still have D,, &£ C, but also A £, C.

The property above is trivially satisfied by w, just because there cannot be a
sequence of finite sets {D,, }ne, such that for every n we have that D, & w; for
that reason we exclude it from the definition. Array-avoiding sets capture the
non-continuous degrees.

Theorem 4.2. The enumeration degree a is continuous if and only if some set in
a is not array-avoiding, if and only if no set in a is array-avoiding.
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Proof. Suppose first that a is continuous and fix a partial function f such that
Gy € a and f is codable by extensions. We will build a computable sequence of
finite sets {D, }ne. that ensures Gy is not array-avoiding. The sequence is quite
simple: it is just a computable listing of all pairs {{z, y),{x, 2)} where y # z. Any
C 2 Gy that retains the property that D, & C for every n is the graph of some
extension of f, and hence G <. C.

We can extend this idea to every set in the degree a. Fix A € a and let I" be
such that Gy = I'(A). Consider the sequence {D,,} e, that lists finite sets F' U E,
such that ((z,y), F) € T and {((z,z), E) € T for some y # z. (Note that, assuming
A # w, we can ensure that this is a nonempty sequence by finitely modifying T'.)
Clearly, D,, € A for every n. On the other hand, if C 2 A and C still has the
property that D,, & C for all n, then I'(C) is the graph of a function h 2 g and
hence A <. Gy <. G, <. C.

For the reverse direction, suppose that A is not array-avoiding. Let {D,, }nec. be
a computable sequence of sets that witnesses this. In other words, if C 2 A has
the property that D, & C for all n, then A <. C. Then A is easily seen to be
codable because the set of all supersets C' 2 A that satisfy D,, & C for all n is a
9 A) class P = 2 \ [S]<, where ¢ € S if and only if o(z) = 0 for some = € A
or D, € {z: o(x) = 1} for some n. It is nonempty as A € P, and by assumption,
every member of P enumerates A. O

We will not give a direct proof that being array-avoiding implies being half of
a nontrivial C-pair, although it will follow from the work in the next section. For
now, as a warm-up, we will prove that an apparent strengthening of array-avoiding
is equivalent to being half of a nontrivial /C-pair.

Definition 4.3. We say that A is uniformly array-avoiding if A # w and there is
a Z such that A €, Z and for every computable sequence of finite sets {Dp }new
such that D,, € A for every n, there is a C' 2 A such that we still have D,, £ C for
every n, but also C' <, Z.

The proof of the nontrivial direction in the theorem below outlines the main
ideas that ultimately lead to the full characterization of non-continuous enumeration
degrees as halves of nontrivial K-pairs.

Theorem 4.4. A is half of a nontrivial KC-pair if and only if A is uniformly array-
avoiding.

Proof. Suppose first that {A, B} is a nontrivial K-pair relative to some set U as
witnessed by W. We will show that A is uniformly array-avoiding with Z = W.
Nontriviality ensures that A £, W. Now let {D,,},e., be a computable sequence of
finite sets such that D,, & A for all n. Consider the set
By = {b: (In) D,, x {b} € W}.

Then By € B and By <. W. But B €. W, so we can pick some element b € B\ By.
Now, consider the set C' = {a: {a,b) € W}. The set C extends A and satisfies the
property that for every n the set D,, € C (or else b € By). On the other hand,
C <. W. Hence A is uniformly array-avoiding.

Now let A be uniformly array-avoiding as witnessed by Z. We will build sets B
and W such that A, B <. W, Ax B< W, and A x B < W. The construction
proceeds by stages. At stage n, we build finite sets B,,, B, , and W,, satisfying the
following four conditions:
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(1) B, € Buyr, B, € B, 1, Wy € Wiga;
(2) B, n B, =J;

(3) Alnx B, © Wy;

(4) {a,byeW,, = (ac Avbe B,).

We let B = |J,, B, and W = J,, W,,. Properties (1), (3), and (4) ensure that
{A, B} is a K-pair relative to W. What remains is to ensure that A, B €. W. In
order to do this, we ensure that our construction of the sets B and W satisfies
the requirements A # I'y (W) and B # 'y (W) for every k, where {I'y}r<,, is some
effective listing of all enumeration operators. During the construction to every
element x € B,, we will associate a superset C,, 2 A such that C, <. Z. Unless
otherwise stated C; = w. The set C, may be shrunk infinitely many times, but
will always be a superset of A. We will also associate to every y € B, a finite set
T, < A. Once defined, T}, will not be changed. (In fact, T}, will be the yth column
of W. We will not use this fact here, but it will be needed in Proposition )

We start the construction by setting By = By = Wy = J. Suppose we have
constructed B, B, , and W,, and consider the set

Xn:Ume{x}uUTyx{y}u U w x {z}.

z€By yeB, 2¢ B, UB,

By property (1), it follows that for every n we have that X, 1 < X,,. We will ensure
that W11 € X,,, and so W < X,, for every n. We have two cases, depending on
whether we are at an even or an odd stage.

Suppose that n = 2k. We ensure that A # I'y (W), where {I'x}re. is some
effective listing of all enumeration operators. Note that X,, <. @, B, Cp <. Z,s0
A # T',(X,,). Fix an element a that witnesses this difference. /

Case 1. If a € A, then we set W* = W,,. Note, that W < X,, ensures that we have
satisfied our requirement.
Case 2. If a € Ty(X,), fix an axiom {(a,D) € Ty such that D < X,,. We set
Wk =W, uD. We will ensure that W* < W,,11, hence once again we will have
satisfied our requirement.

We set By,41 = B, u{z: 3a€ A) {a,z) e W*W,}. Note that B, 41 does not
contain any element from B, , because if {a,y) € X,, and y € B;, then a € T;, < A.
We set B, ., = B,, and set Wy, 41 = W U A (n+1) x Byy1. It is straightforward
to check that properties (1)—(4) still hold.

Suppose that n = 2k + 1. In this case, we would like to ensure that B #
Tk (W). If T, (X,,) is finite, then we do not need to do anything; by a close inspection
of the even stages, B will be infinite. So suppose that T'y(X,,) is infinite and fix
z € Tx(X,) N\ B, u B;,. We would like to use this z to create a difference. Pick
an axiom (z, D) € 'y such that D < X,,. If we can enumerate z into B, ; and D
into Wy, 41 then this would accomplish the desired difference. Unfortunately, this
might be in conflict with our desire to preserve properties (2) and (4), namely it
could be that {(a,z) € D for some a € A. So, we will be more careful and consider
the following two cases:

Case 1. There is an axiom (z, D) € T’ such that for all {a,z) € D:

(1) if x € B, U {z}, then {(a,z) e W,, or a € A;
(2) if x € B, then a € T,.
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Note that these conditions ensure that D € X,,. In this case, we can proceed with
our original plan: we set W* = W,, u D and B,+1 = B, u {b: (Ia,bye D) a ¢ A}.
We set B, ,, = B, u{z} and T, = {a: {a,z) € W}¥}. Note that T, < A by our
choice of D. Finally, we set W,,11 = WX U A [(n+1) X Bp41. Once again it is easy
to see that properties (1)—(4) still hold.

Case 2. Every axiom {z, D) € ', such that

(Vx € B;)) if {a,z) € D, then a € Ty,

has the property that {a: (3x € B, u {z}) {a,z) € D\ W,} € A. In that case,
the sequence {F,,}mew listing all such sets—which is nonempty as z € 'y (X,,)—is
a computable sequence of finite sets such that for all m, we have that F,,, £ A. By
the uniform array-avoidance of A, there is a C' 2 A such that C' <. Z and C still
has the property that F,, & C for all m. We set C, = C' and for every = € B,, we
give the parameter C,, a new value namely (C, n C) u {a: {a,z) € W, } and we set
B, +1 = B, u{z}. This ensures that z ¢ I'y(X,,+1), as every axiom for z in T that
satisfies the restriction imposed by B; on X, 1 contains an element {a,z) such
that € By,4+1 and {(a,z) ¢ W,, U C. We have thus satisfied our requirement. We
set B, ., =B, and W41 = W,, UA(n+1) x Byy1. O

5. FORCING WITH I1{{A) CLASSES

We use the main ideas from the proof of Theorem [£.4] to show the link between
K-pairs and the noncontinuous degrees.

Theorem 5.1. If A does not have continuous degree, then A is half of a nontrivial
relativized KC-pair.

Proof. We will use a forcing notion F to construct B and W, so that B x A € W,
BxAcCW,and A,B £, W. A forcing condition p has the form (8, {;}icw, P),
where 3 € 2<%, {0, }ic., is a sequence of finite binary strings such that for all i > |3,
o; = &, and P is a nonempty I19(A) class, satisfying a certain list of properties
that we describe below. We think of P as subset of (2¢)%, i.e., every element X € P
codes a sequence of sets {Xj}rew (in fact, X = @, Xi). We let P; consist of the
i-th projection of the elements in P, i.e.,

Pi = {Xz (HX(),...,X,L‘,l,XiJrl,...) @Xk € P}
kew
It is not difficult to see that each P; is also a I19(A) class, although that will not
be relevant for the construction. We think of each element X € P as providing a
bound on W, in the sense that W < X for some X € P. We think of 8 as an
initial segment of the set B. Every o; codes a finite set D; = {z: o;(z) = 1}. We
approximate W by W, = U, {i} x Di = U, g/{i} x Di. We ask that, in addition,
forcing conditions satisfy the following properties:
(1) If () = 0, then D; € A and P; = {0,0¥}.
(2) If B(i) # 0, then for every X € P;, we have that 0; < X and A € X.
(3) If X € P and Y < X is such that if we write Y as @, Y;, then for every i
we have that the above two conditions hold, i.e.,
e if 5(i) = 0, then Y; = 0,0 and
o if B(i) # 0, then 0; <Y; and A C Y};
then Y € P.
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Note that the forcing condition ensures that W, < X for all X € P.

We say that a condition g = (v, {7; }icw, @) extends a condition p = {5, {0} }icw, P),

written as ¢ < p, if

e B

e for all i, o; < 7;;

e cach X € () is a subset of some Y € P.
We build a sequence of conditions pg = p1 = p = ---. In the end, B =, Bp..
and W = | J,, Wp,, will be the required sets. Note that property (2) of a condition
ensures that if ¢ € B, then o; is an initial segment of a superset of A. Hence if we
ensure that ¢; grows unboundedly in length for all ¢ € B, then we automatically
get that B x A € W. On the other hand, property (1) ensures that B x A < W.
We only need to further ensure that A, B £, W.

The initial condition is py = (&, (F, J,...),S)), where S is the I1{(A) class
consisting of all supersets of A. Suppose that we have built p,, = {8, {0} }icw, P)-
We describe how to extend p, to pni1 = {Bnt1, {Ti}iew, @). We have two cases
depending on the parity of n.

Suppose that n = 2k. We ensure that A # I'y,(W). We first check if there is
an a € A such that Q, = {X € P: a ¢ T'x(X)} is nonempty. If there is such an a
then we let 8,11 = Bn, 7 = o; for all i, and Q = Q,. It is straightforward to see
that p,1 is a condition: @ is a TI9{A) subclass of P so properties (1) and (2) are
trivially satisfied. Property (3) is satisfied because if a ¢ I'y(X) and Y € X then
a ¢ T'y(Y). Furthermore, this condition forces a € A N T'(W).

If there is no a € A such that @, is nonempty, then A is a subset of I'y,(X) for
every X € P. Since A does not have continuous degree and hence by Theorem
is not codable, there must be some element X € P that does not enumerate A via
T'k. So A c T'k(X) and we can fix a € T'y(X) \ A. Fix s such that a € Ty (X | s).
We can think of X s as @,_,, 7i, where m > |f3,| and pick s large enough so
that for every i < |f3,| we have that o; < 7;. Let 8,41 be the string of length m
obtained by appending 1’s to 3,, and let 7; = J for i = m. Notice that here we are
ensuring that |7;| > |o;|. Since this case will definitely be the true case every time
I (X) = w for all X, we will ensure that B x A € W as discussed above. Finally
we set @ to be the subclass of P, subject to the restraints in properties (1) and (2),
namely Q = {Y € P: X | s < Y}. This is nonempty I19(A) class because X € Q.
The resulting p,1 is easily seen to be a condition. Furthermore, for all ¢ < p, 11
we have that a € I'y,(W,;), hence this ensures that A # I'y, (W), as promised.

Suppose that n = 2k + 1. We ensure that B # T'y(W). We first check if there
isab> |8, and X € P such that b € T'y(X). If not, we do not need to make any
changes to p, at this stage, so we set p,4+1 = pn. The even steps ensure that B is
an infinite set, hence the requirement is automatically satisfied. So suppose that
there is a b > |8,| such that b € T'y(X) for some X € P. We would like to define
Br+1 so that B,11(b) = 0 and @Q so that every element in () enumerates b via T'j.
Just like in the proof of Theorem [2:9] this might not be possible because it could be
that every axiom in I'y for b contains an element (b, a), where a € A, so we cannot
build @ satisfying condition (1). This is why we consider two cases.

Case 1. There is an axiom <b, D) € Ty, such that D < X for some X and for
every pair {i,ay € D we have that o;(a) = 1 or a € A. (Note that if 5(i) = 0 and
(i,ay € D, then o;(a) = 1 because D < X.) In that case we can proceed with
our original plan: first to ensure property (1) fix 7, to be the initial segment of A
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covering all a such that (b,a) € D. Next we trim the elements of the I1{{A) class P
to get P’ so that P} = {7,0¥} and for all i # b we have that P, = P;. Note, that we
still have D < X', where X’ is obtained by this trimming process from X, by our
choice of 7,. Furthermore, P’ is a I19(A) class. To see this, write P = 2¢ \ [U]~
where U <, A. We may assume that U is closed upward. Then P’ = 2% \ [V]*
where p € V' if when we write p = @, p;, we have that either p; is incompatible
with 73, or if all strings p* that we get by replacing p, by strings of the same length
are in U. It is straightforward to see that P’ = 2¢ < [V]=. On the other hand, if
X ¢ P/, but X}, = 0,0“, then by compactness there must be some level s such that
all possible strings p* obtained as above from the string p = X | s must be thrown
into U and so X ¢ 2¥ ~ [V]~<. The set V is clearly enumeration reducible to A.

We now fix s large enough so that D € X’ s and X’ |s can be written as
@i~ Ti» where m > b and o; < 7; for all i < [3,] or i = b. We extend (3, to 8,41
of length m, so that 3,41(b) = 0 and for all ¢ # b such that |3,| < i < m, we set
Brni1(i)=1. Weset 7, = g ifi =m. Weset Q ={Y e P: X' | s <Y}. Thus we
have ensured that b ¢ B and b e I'y(W,) for every ¢ < py,.

Case 2. For every X € P, if (b, D) € I'y, and D < X, then there is a pair {(i,ay € D
such that o;(a) # 1 (so it is either undefined or equals 0) and a ¢ A. Consider
the TI9¢(A) class Q = {X € P:b ¢ I'y(X)}. This is a nonempty class because
by property (3) of P the sequence Y = @Y, where Y; = 0,0 if 5,(¢) = 0 and
otherwise

Yi(x) oi(x), if x <loyl;
i(x) =
A(x), if z = |0y

must be a member of Q. We set 3,11 to be the string of length b + 1 obtained
by adding 1’s to ,, and leave 7; = o; for all . Once again, since Q < P and we
have added no new 0’s to (3,41, it is easy to see that @) satisfies properties (1) and
(2). To see that it satisfies (3), we again note that if Y € X and b ¢ I'y(X) then
b¢ 't (Y) and hence p,41 is a condition. This condition forces be BN\T(W). O

Putting everything together, we get:

Theorem 5.2. For a set A € w, the following are equivalent:

(1) A has continuous enumeration degree.

(2) The degree of A contains the graph of function that is codable by extensions.
(3) A is not array-avoiding.

(4) A is not uniformly array-avoiding.

(5) A is not half of a nontrivial relativized K-pair.

Combining the characterization of the continuous degrees in terms of K-pairs
with the characterization as the almost total degrees from [2], we get the promised
structural dichotomy in the enumeration degrees.

Theorem 1.1. For every enumeration degree a, exactly one of the following two
properties holds:

(1) The degree x is continuous, so for every total enumeration degree x < a,
a v x is total.

(2) There is a total enumeration degree x € a such that a v x is a strong
quasiminimal cover of X.
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Proof. The first property is exactly the definition of almost totality. If a is not
continuous, then by Theorem we get that a is half of a nontrivial -pair; let b
and u be such that {a, b} is a nontrivial K-pair relative to u. Using forcing, it is
not hard to build a total enumeration degree x > u such that a € x and b € x.
(For example, this follows from a much more general theorem of Soskov [2I] about
jump inversion in D..) Note that {a,b} is a nontrivial K-pair relative to x. By
Theorem 211} a v x is a strong quasiminimal cover of x. O

6. COTOTAL SETS AND KC-PAIRS

In this section, we briefly examine the connection between cototal sets and K-
pairs, ending with a conjectured definition of cototality in the enumeration degrees.

Definition 6.1. A set A is cototal if A <, A. An enumeration degree is cototal if
it contains a cototal set.

Andrews et al. [I] note that if A has cototal enumeration degree, then K, is
cototal representative of that degree. In fact, they show that the operator that maps
d.(A) to d.(K4) is degree invariant and call it the skip operator. The skip of d.(A)
is denoted by d.(A)?, so we have that A is cototal if and only if d.(A) <. d.(A4)°.

It is straightforward to see that every total enumeration degree is cototal, as

APA = APA =, A® A More generally, every continuous degree is cototal.
Recall that an enumeration degree is continuous if it contains a set of the form
Co = @je, 1€ Q:q <g i)} ®{qg € Q: ¢ > afi)}, for some o € [0,1]¥. It
follows that every continuous degree is cototal as, 2(i,qy € C, if and only if there
is an 7 > ¢ such that 2{i,r) + 1 € C,, and similarly, 2(i,¢) + 1 € C,, if and only if
there is an r < ¢ such that 2(i,r) € C,.

The class of cototal enumeration degrees is strictly bigger than the continuous
degrees. For example, cototal enumeration degrees can be halves of nontrivial K-
pairs. One way to see this is to note that every X9 enumeration degree is cototal [I].
As we already saw, if A is semi-computable, then {4, A} is a K-pair, and A can be
chosen as a non-c.e. and non-co-c.e. member of any nonzero Turing degree. On the
other hand, the kind of KC-pairs that cototal sets can be part of is restricted, as can
be seen by the following result.

Proposition 6.2. If A is of cototal enumeration degree and {A, B} is a nontrivial
K-pair relative to U, then A <, U’.

Proof. Suppose that A has cototal enumeration degree and that {A, B} is a nontriv-
ial K-pair relative to U. Then as A =, K 4, it follows that {K 4, B} is a nontrivial -
pair relative to U. Let W <. U be such that K4 x B < W and K4 xB < W. By the
properties of C-pairs outlined in T heorem we have that K4 <. K4 <. BOW.
Of course K4 <. A®W, so

de(Kp) e de(KaA@W QU) Ade(BEWQU) =d.(WDU) <. d(U)'.
Hence A <. U’. O

Ideally, we would hope that the reverse statement is true as well: if A is not
cototal then there are sets B and U such that A €. U’ and {4, B} are a nontrivial
K-pair relative to U. Unfortunately, our current methods do not suffice to prove
this statement. What we can show is much weaker.
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Proposition 6.3. If A is not cototal, then there are sets B and W such that
A £ W and {A, B} are a nontrivial K-pair relative to W.

Proof. Let A €. A. Then A is not of continuous degree and hence by Theorem
it is uniformly array-avoiding. Let Z witness that. We will build sets B and W
such that A, B £, W, A€, W, Ax BC W, and A x B < W. The construction is
a slight modification of the one in Theorem [4.4] At stage n we build finite sets B,,,
B, , and W, satistying the following four conditions:

(1) Bn € Bpy1, B, € B, 1, Wy © Wig1;
(2) B, n B, =J;

(3) Alnx B, < Wy;

(4) {a,bye W, = (a€ Avbe B,).

We let B = |J,, B, and W = J,, W,,. Properties (1), (3), and (4) ensure that
{A, B} is a K-pair relative to W. What remains is to ensure that A, B €. W and
A £, W. In order to do this, to every = € B,, we will associate a superset C, 2 A
such that C, <. Z. Unless otherwise stated, C;, = w. The set C, may be shrunk
infinitely many times, but will always be a superset of A. We will also associate to
every y € By a finite set T, = A. Once defined, T}, will not be changed and will be
the yth column of W.

We start the construction by setting By = B, = Wy = J. Suppose we have
constructed B, B, , and W,,. As before, we ensure that W,,,; € X,,, where

Xo=J Cexfau | Tyxfypo |J wxi{z}

z€By yeB;, 2¢Bn,UB;,

From what we have said so far, it follows that we will also ensure that that W, .1 S
Y., where

Yn—V[/}Lm<UAx{x}uU%><{y}u U wx{z}).

z€By yeB, 2¢B,, UB,,

In this case as well we have that Y,,,; Y, and so W C Y, for all n.
Fix an effective listing of all enumeration operators {T'y }rc. We have three cases
depending on the stage.

If n = 3k, then we ensure that A # ['y(W) in exactly the same way as we did
in Theorem If n = 3k + 1, then we ensure that B # I'y(W), again using the
same steps as in Theorem [4.4]

Suppose that n = 3k + 2. We ensure that A # I'y(W). Note that Y,, <. A,
so A # I't(Y,,). Fix an a witnessing this difference.
Case 1. If a € A, then we do not need to do anything, as W < Y,, ensures that we
have satisfied our requirement. We just move on to the next stage.
Case 2. If a € Ty (Y,,), then fix an axiom {a, D) € 'y such that D < Y;,. We would
like to add D to W. We do this by shrinking the sets C,, and by adding elements to
41: Forall (b,x) € D such that z € B,,, we have that b ¢ A and {(b,x) ¢ W, so
we can remove b from C, (without interfering with the requirements that A < C,
and W41 S X,41). For all ¢b,y) such that y € B,;, we have that b € T, and
since T, does not change, we can be sure that (b,y) € W. Finally, if (b, z) € D and

z ¢ B, u B, we enumerate z € B, | and set T, = {c: {c, z) € W, }, which is safe
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because D € W,,. We set B, = B,, and W,, .1 = W,,. It is straightforward to
check that properties (1)—(4) still hold. O

There seem to be serious obstacles to modifying the construction above to get
A £ W' = Ky ® K. Nevertheless, we conjecture that the reverse is still true.

Conjecture 6.4. A degree a is cototal if and only if, whenever {a, b} is a nontrivial
KC-pair relative to u we have that a < u’

7. PA RELATIVE TO AN ENUMERATION ORACLE

In this final section of our paper, we propose two more properties that relate to
the continuous and to the cototal enumeration degree. Both properties rely on the
extension of the relation “PA above” to enumeration oracle.

Definition 7.1 (Miller, Soskova [16]). {B) is PA above (A) if B enumerates a
member of every I1{(A) class.

Note that this relation is degree invariant. We write d.(A) « d.(B) if (B) is PA
above (A). Furthermore, it is an extension of the usual relation on Turing degrees,
because if x and y are Turing degrees, then x « y if and only if ((x) « «(y), i.e.,
the relation is preserved under the embedding ¢: Dy — D.. (Recall, that + maps
dr(A) to de(A® A).) On nontotal enumeration degrees, however, the relation “PA
above” can behave strikingly differently.

Definition 7.2. A set A is {self )-PA if (A) is PA above (A).

Miller and Soskova [I6] prove the existence of AJ (self)-PA sets. Furthermore,
they show that the set of total degrees below a (self)-PA set A forms a Scott set,
i.e., an ideal closed with respect to the relation “PA above”.

We consider the following two new properties.

Definition 7.3. Let A C w.

(1) Say that A is PA bounded if for every set B, if (B) is PA above (A), then
A<, B.

(2) Say that there is a universal IIY{A) class if there is a II{{A) class U such
that for every member X € U we have that (X @ X ) is PA above (A).

Both properties clearly hold for total enumeration degrees, and so they exhibit
the “expected” behavior of sets with respect to the relation “PA above”. We show
that the two properties together characterize the continuous degrees, while the first
property implies cototality.

Proposition 7.4. Fiz A € w.

(1) A is PA bounded and there is a universal II{{A) class if and only if A has
continuous degree.
(2) If A is PA bounded, then A has cototal degree.

Proof. If A is continuous, then A is codable; fix a II{{A) class P such that every
member in P enumerates A. To see that A is PA bounded, note that every set
B such that (B) is PA above (A) enumerates a member of the I1{{A) class P and
hence enumerates A.

To see that there is a universal TI9(A) class, we build a new class R by joining
each X € P with DNCZ, the standard T19[X] class consisting of all {0, 1}-valued
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diagonally non-computable functions relative to X. Recall that a function f is
diagonally non-computable relative to X if for every e, we have that pX (e) # f(e).
It is not hard to see that if f is {0, 1}-valued, then it (is the characteristic function
of a set that) is PA above X.

Fix S <. A such that P = 2¥ ~\ [S]~. We let

R={o@r:0€S8vIn(r(n) =} ,(n)}

Then U = 2 \ R is a I${A4) class and every member of this class has the form
Z =X @Y, where A is c.e. in X (equivalently A <. X ® X) and Y is PA above
X (in the Turing sense). It follows that {Z @ Z) is PA above (A) for every Z € U,
and so U is a universal I19(A) class.

For the reverse direction, suppose that A is PA bounded and that there is a
universal I19(A) class U. Every member of U is PA relative to (A), and so by
boundedness enumerates A. It follows that A is codable, hence by Theorem [2.9] it
has continuous degrees.

Suppose that A is PA bounded. Consider a total set X @ X above the skip of
A, i.e., such that K4 <. X ® X. We claim that <X @Y> is PA above (A). To see
this, consider a nonempty I1{(A) class P = 2%\ [S]~. We may assume that S <. A
is closed upward. Consider the set E = {o: Vnir (|[7| =n & 720 & 7 ¢ S)} of
strings that can be extended to an element of P. Note that £ <. K4, and so it
is c.e. in X. It follows that X @ X can enumerate an element in P, proving that
<X ®Y> is PA above (A). By PA boundedness, A <, X ® X. This holds for any
total set X @ X above K 4, so by Selman’s theorem, A <. K4. Therefore, A has
cototal degree. |

It is not clear that PA boundedness characterizes the cototal enumeration de-
grees. We do know, at least, that cototality does not imply the existence of a
universal class. As noted previously, there are AJ sets, hence sets of cototal degree,
that are (self)-PA. This combined with the following proposition yields the desired
conclusion.

Proposition 7.5. If A is {self )-PA, then A does not have a universal II{{A) class.

Proof. Fix a (self)-PA set A. If there were a II9(A) class consisting of sets that
are PA above (A), then A would enumerate a set X ® X such that <X &) Y> is PA
above (A). In that case, X would be PA (in the Turing sense) above every Y such
that Y @Y <. A. In particular, X would be PA above X. But this is impossible,
as the “PA above” relation is strict when restricted to Turing oracles. [l

The statement above gives an alternative, though similar, proof that the degrees
of (self)-PA sets are disjoint from the continuous degrees. This was originally
proved by Miller and Soskova [16], who show that there is a universal Martin-Lof
test relative to every continuous degree, but not relative to any {(self)-PA degree.

We are left with the following questions:

(1) Are there cototal degrees that are not PA bounded?
(2) Are there PA bounded degrees that are not of continuous degree? In par-
ticular, can a (self)-PA degree be PA bounded?
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In very recent work Franklin, Lempp, Miller, Schweber, and Soskovaﬂ have an-
swered both of these questions by showing that the PA bounded degrees are exactly
the continuous enumeration degrees. On the other hand, they reveal that the class
of degrees whose members have universal IIY classes is nontrivial and worth further
investigation.
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