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1. Introduction

Consider a degree structure D, a partial order induced by an arithmetically definable 
reducibility on sets of natural numbers. When studying such a structure, we start by 
investigating which first-order facts about the structure are true and which are false. 
Ideally, we would like to characterize the theory of the structure by giving an algorithm 
which decides whether a given sentence (in the language of partial orders) is true or 
not. Unfortunately, most degree structures have first-order theories that are far from 
decidable. Once undecidability is established, two natural questions follow: What is the 
Turing degree of the theory Th(D) of the structure D (viewed as a set of codes for 
sentences), and at what quantifier complexity does decidability break down?

An interesting phenomenon in degree theory is that when we can provide answers 
to the questions above, the answers seem to always follow the same pattern: For the 
partial order of the Turing degrees DT , Simpson [22] proved that Th(DT ) is computably 
isomorphic to the second-order theory of true arithmetic. Shore [20] and Lerman [15]
independently proved that ∀∃-theory of DT is decidable, while Lerman and Schmerl (see 
Lerman [15]) proved that the ∃∀∃-theory of DT is undecidable. For the partial order of the 
many-one degrees Dm, Nerode and Shore [17] proved that Th(Dm) is computably isomor-
phic to the second-order theory of arithmetic; Dëgtev [5] proved that the ∀∃-theory of Dm

is decidable, while Nies [18] proved that the ∃∀∃-theory of Dm is undecidable. For the 
local structure of the Δ0

2-Turing degrees DT (≤ 0′), Shore [21] proved that Th(DT (≤ 0′))
is computably isomorphic to the first-order theory of arithmetic. Shore and Lerman [16]
proved that the ∀∃-theory of DT (≤ 0′) is decidable, while the same proof that is used 
for DT by Lerman and Schmerl showed that the ∃∀∃-theory of DT (≤ 0′) is undecidable. 
Similar results were shown for the arithmetic and hyperarithmetic degrees.

In this paper, we will focus on the structure of the enumeration degrees, where less is 
known. Enumeration reducibility captures a natural relationship between sets of natural 
numbers in which positive information about the first set is used to produce positive 
information about the second set. Friedberg and Rogers [6] introduced enumeration 
reducibility in 1959.

Definition 1.1. A ⊆ ω is enumeration reducible to B ⊆ ω (denoted as A ≤e B) if there is 
a c.e. set W such that

A = {n : (∃e) 〈n, e〉 ∈ W and De ⊆ B},

where De is the eth finite set in a canonical enumeration.

An equivalent way to define this reducibility is to say that A ≤e B if there is a uniform 
way to compute an enumeration of A from every enumeration of B. In fact, Selman [19]
proved that the uniformity condition can be dropped.

The degree structure De induced by ≤e is the partial order of the enumeration de-
grees. De is, in fact, an upper semilattice with a least element 0e (the degree of all c.e. 
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sets) and a jump operator, just like DT . Note that enumeration reducibility is a definable 
relation in second-order arithmetic. Thus it is easy to interpret the partial order De in 
second-order arithmetic. Slaman and Woodin [25] proved that the converse is true as 
well, and so Th(De) is computably isomorphic to second-order arithmetic, just like the 
theory of the Turing degrees. Lagemann [11] proved that every countable partial order 
can be embedded in the enumeration degrees and so the ∃-theory of De is decidable. 
However, it is not known where decidability breaks down.

In this paper, we make several advancements towards a solution of this open question. 
Our main structural result on which the other results rely is the existence of a strong 
interval embedding of every finite distributive lattice—generalizing the embedding of the 
two element lattice as a nonzero degree and its strong minimal cover. This result and an 
application of the Nies Transfer lemma allow us to conclude that the ∃∀∃-theory of De

is not decidable. On the other hand, we show that the extension of embeddings problem
for De is decidable. The extension of embeddings problem captures a nontrivial fragment 
of the ∀∃-theory of a partial order. We also prove that this is the maximal fragment on 
which the Turing degrees and the enumeration degrees are elementarily equivalent.

2. The ∀∃-theory of an upper semilattice

We start by reviewing the algorithm that decides the ∀∃-theory of the Turing degrees 
and the reasons why the same algorithm cannot apply to the structure De. Our first 
step is to rephrase the problem of deciding the ∀∃-theory of an upper semilattice D in 
a structural way. A decision procedure for the following problem is easily seen to be 
equivalent to a decision procedure for ∀∃-Th(D):

Problem 2.1. Given a finite partial order P and finitely many finite extensions Q1, . . . , Qk

of P , does every embedding of P into D extend to an embedding of Qi for at least one 
i ≤ k?

The special case when k = 1 is known as the extension of embeddings problem for D.
Consider the case when D = DT . Lerman [14] showed that every finite lattice P can 

be embedded as an initial segment of the Turing degrees DT . Suppose that P is a lattice 
and Q extends P as a partial order. The embedding of P as an initial segment of DT

can be extended to an embedding of Q only if no new element in Q \ P is bounded by 
any element of P . In addition, Q must respect least upper bounds; i.e., if x ∈ Q \ P is 
above two old elements u, v ∈ P then x must be above u ∨ v. If P is simply a partial 
order, we first extend P to a lattice P ∗ by adding a minimal number of new elements 
(this can be done in a unique way) and then ask that new elements in Q \P either satisfy 
the previous conditions or can be mapped to one of the added elements from P ∗ \ P . 
Shore [20] and Lerman [15] independently proved that these are the only obstacles, 
yielding an algorithm for the solution of an instance of Problem 2.1 in DT : Output 
“Yes” if one of the Qi satisfies the conditions above, and “No” otherwise. The algorithm 
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does not even use the possibility of selecting different possible extensions in different 
situations, it is reduced to its simplest case, the extension of embeddings problem.

The algorithm described above cannot work for a dense structure, such as the partial 
orders of the c.e. Turing degrees R or that of the Σ0

2-enumeration degrees De(≤ 0′
e). 

In both of these cases, we know that the extension of embeddings problem is decidable 
(by work of Slaman and Soare [23] for R, and by Lempp, Slaman, and Sorbi [13] for 
De(≤ 0′)). In both cases, we also know that the ∃∀∃-theory is undecidable (by work of 
Lempp, Nies and Slaman [12] for R, and by Kent [9] for De(≤ 0′)). A decision procedure 
for the more general Problem 2.1, i.e., for the ∀∃-theory, remains out of reach in both 
cases.

In De, the situation is very interesting for the following reasons. Gutteridge [7] showed 
that the enumeration degrees are downward dense. Hence, in this case as well, there can 
be no initial segment embeddings of finite lattices. Cooper [4] proved, however, that 
the enumeration degrees are not dense and Slaman and Calhoun [3] extended Coopers’s 
result by showing that there are empty intervals in the Π0

2-enumeration degrees. Kent, 
Lewis-Pye, and Sorbi [10] showed that there are strong minimal covers in the enumeration 
degrees:

Definition 2.2. A degree b is a strong minimal cover of a degree a if a < b and every 
degree x < b is ≤ a.

Consider the two-element lattice P consisting of two elements u < v. In DT , we can 
embed this lattice as an initial segment: u is mapped to 0T , and v is mapped to some 
minimal degree. The only way that this embedding can be extended to an embedding 
of Q is if every element of Q \ P is incomparable to or above v. In the enumeration 
degrees, the situation is slightly different: The embedding of P to enumeration degrees 
a < b such that b is a strong minimal cover of a extends to an embedding of Q only 
if new elements x ∈ Q \ P that are strictly below v are also below u. The embedding 
of P to degrees 0e < b, on the other hand, extends to an embedding of Q only if all 
new elements x ∈ Q \ P are above u. Slaman and Sorbi [24] show that every countable 
partial order can be embedded below any nonzero enumeration degree. This, along with 
a standard forcing argument, allows us to conclude that these are the only obstacles. 
Thus, for this particular lattice P , we can decide Problem 2.1: Every embedding of P
extends to an embedding of Q1, . . . , Qn, if and only if there is a Qi that places new 
elements strictly below v also below u and there is a (possibly different) Qj that places 
all new elements above u. The decision procedure is already slightly more complicated 
than that for the same lattice in DT .

A first step towards a possible extension of the algorithm outlined above to the general 
case, where P is an arbitrary finite lattice, requires the generalization of embedding the 
two-element lattice to a nonzero degree and a strong minimal cover of it. We introduce 
the notion of a strong interval embedding:
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Definition 2.3. Let P be a finite lattice and D a degree structure. An embedding f : P →
D is a strong interval embedding if the range of the embedding f is an interval [a, b] ⊆ D
and every degree x ≤ b that is not in the range of f is bounded by a.

The main technical result of this paper is the following.

Theorem 2.4. Every finite distributive lattice has a strong interval embedding into De.

We postpone the proof of this theorem until Section 7 and focus first on several 
applications.

3. The undecidability of the ∃∀∃-theory

Recall that a set of sentences Ω in a language L is hereditarily undecidable if no subset 
Φ ⊆ Ω that contains all validities in Ω is decidable. For example, Nies [18] proved that the 
∀∃∀-theory of finite distributive lattices is hereditarily undecidable. In the same paper, he 
gave a general recipe for transferring undecidability between classes of structures. The 
following definition is adapted from Nies [18] to our specific setting. (Here, we adopt 
Nies’s notation of Σ0

k-formulas for ∃k-formulas, and Π0
k-formulas for ∀k-formulas; so, 

e.g., Σ0
3, ∃3 and ∃∀∃ all mean the same.)

Definition 3.1. Let C be a class of structures in a finite relational language L =
{R1, . . . , Rn}. We say that C is Σ0

k-elementarily definable with parameters in De if there 
are Σ0

k-formulas ϕU , ϕRi
, and ϕ¬Ri

for i ≤ n such that for every C ∈ C, there are 
parameters �p ∈ De that make the structure with universe U = {x | De |= ϕU (x, �p)}
and relations Ri defined as {�x | De |= ϕRi

(�x, �p)} = {�x | De |= ¬ϕ¬Ri
(�x, �p)} isomorphic 

to C.

Theorem 2.4 implies that the class of finite distributive lattices is Σ0
1-elementarily 

definable in the partial order De with two parameters: ϕU (x, a, b) is the formula a ≤
x & x ≤ b, and =, �=, ≤ and � are interpreted by =, �=, ≤ and �, respectively. We next 
apply the Nies Transfer Lemma to our setting:

Lemma 3.2 (Nies [18]). Let r ≥ 2 and k ≥ 1. If a class of models C is Σ0
k-elementarily 

definable in De with parameters and the Π0
r+1-theory of C is hereditarily undecidable, 

then the Π0
r+k-theory of De is hereditarily undecidable.

We can now state, using the hereditary undecidability of the Π0
3-theory of finite dis-

tributive lattices mentioned above, the following.

Theorem 3.3. The ∃∀∃-theory of De is (hereditarily) undecidable. �
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This uses the fact that a ∀∃∀-sentence ϕ is true in De if and only if the ∃∀∃-sentence ¬ϕ
is false in De, and so the undecidability of the ∀∃∀-theory of De implies the undecidability 
of the ∃∀∃-theory of De.

4. The extension of embeddings problem

In this section, we give an algorithm to decide the extension of embeddings problem 
for De: Given finite partial orders P ⊆ Q, we give necessary and sufficient conditions 
on P and Q to make the statement “every embedding of P extends to an embedding 
of Q” true.

In addition to Theorem 2.4, we will need to use properties of sufficiently generic sets. 
Recall, that a set G is n-generic relative to B if and only if for every Σ0

n(B)-set S of 
finite binary strings, there is an initial segment G � � of G such that G � � is in S or no 
extension of G � � belongs to S. If {Gi}i<ω is a sequence of sets and F is a set of natural 
numbers, we use 

⊕
i∈F Gi to denote the set {〈i, x〉 | i ∈ F & x ∈ Gi}.

Proposition 4.1. Let G be 2-generic relative to B. Define Gi so that G =
⊕

i<ω Gi. For 
every pair of sets A1, A2 ≤e B, i ∈ ω and finite set F ⊆ ω, we have that A1 ⊕ Gi ≤e

A2 ⊕
⊕

j∈F Gj if and only if i ∈ F and A1 ≤e A2.

Proof. Fix A1, A2 ≤e B, i and F and suppose that A1 ⊕ Gi ≤e A2 ⊕
⊕

j∈F Gj . Let 
Gi = Γ(A2 ⊕

⊕
j∈F Gj). Given a string τ ∈ 2<ω, we let τj be the shortest string such 

that for all 〈j, n〉 < |τ |, we have τ(〈j, n〉) = τj(n). Consider the set U = {τ ∈ 2<ω |
(∃x)[τi(x) = 0 & x ∈ Γ(A2 ⊕

⊕
j∈F τj)]}. This set is Σ0

1(B) (in fact, it is enumeration 
reducible to B) and hence, by our assumption, G must avoid it. Let μ ≺ G be such that 
no extension of μ is in U . As G is generic, the set Gi is infinite, and so there is some 
x > |μ| such that Gi(x) = 1. It follows that x ∈ Γ(A2 ⊕

⊕
j∈F Gj) and so there is some 

finite extension τ � μ such that x ∈ Γ(A2 ⊕
⊕

j∈F τj). If i /∈ F then we can modify the 
〈i, x〉-th bit of τ to get a string τ∗ such that τ∗i (x) = 0 and x ∈ Γ(A2 ⊕

⊕
j∈F τ∗j ), i.e., 

an extension of μ in the set U . It follows that i must be in F .
Now suppose that A1 = Γ(A2 ⊕

⊕
j∈F Gj). Consider the set V = {τ ∈ 2<ω |

(∃x)[A1(x) = 0 & x ∈ Γ(A2 ⊕
⊕

j∈F τj)]}. The set V is Σ0
2(B) (in fact, it is enu-

meration reducible to B′). Once again, we must have some initial segment μ ≺ G with 
no extension in V . But then A1 = {x | ∃τ � μ[x ∈ Γ(A2 ⊕

⊕
j∈F τj)]} and so A1 ≤e A2.

The reverse direction is clearly true. �
Note that a special case of the proposition above gives us that, in particular, the 

degrees of B and each Gi form a minimal pair. Furthermore, since Gi and Gj (for 
distinct i and j) are mutually 2-generic, their degrees also form a minimal pair.

We are now ready to present an algorithm for deciding the extension of embeddings 
problem.

Theorem 4.2. The extension of embedding problem for De is decidable.
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Proof. Fix finite partial orders P ⊆ Q. For any set S ⊆ Q, let

A(S) = {p ∈ P | (∀s ∈ S)[p ≥ s]} and

B(S) = {p ∈ P | (∀s ∈ S)[p ≤ s]}.

We will use A(q) to denote A({q}) and B(q) for B({q}).
We outline several cases in which we can construct an embedding of P that does not 

extend to an embedding of Q.

Case 1: There is q ∈ Q \ P such that A(q) = ∅ and B(q) �= B(A(B(q))).

Suppose that there is q ∈ Q \ P with A(q) = ∅. We will show that we can obstruct 
an extension with such a q if B(q) �= B(A(B(q))). Note that since we always have 
B(q) ⊆ B(A(B(q))), these two conditions imply the existence of some p ∈ B(A(B(q))) \
B(q). (In particular, it follows that B(q) has no greatest element.) We will construct 
an embedding of P such that any degree that is above all elements in the image of 
B(q) is also above the image of p; this embedding will therefore not be extendable to an 
embedding of Q.

If B(q) = ∅ then A(B(q)) = P and hence the element p ∈ B(A(B(q))) is the least 
element in P . Any embedding of P that maps p to 0e will do the job.

Suppose that B(q) �= ∅. Let P = {p0, p1, . . . , pn}. We fix a 2-generic set G and break 
it up into |P | many mutually generic pieces G0, . . . , Gn. We map pi to the degree of the 
set Xpi

=
⊕

pj≤pi
Gj , which we denote as g(pi). By genericity, we have that i � j implies 

Xpi
�e Xpj

. Next we want to modify this embedding to achieve the desired result. Take 
Xp =

⊕
pj≤p Gj and break it up into |B(q)| many pieces Y0, . . . , Yl as follows: break 

up each Gj into |B(q)| many mutually generic pieces for pj ≤ p, and let Yi consist 
of the join of the i-th pieces in the sets Gj for pj ≤ p. Let B(q) = {r0, . . . , rl}. We 
modify our embedding g to an embedding f on the elements s ∈

⋃
r∈B(q) A(r) by setting 

f(s) = g(s) ⊕ dege(
⊕

rj≤s Yj). In this way, we have that the least upper bound of the 
elements in B(q) enumerates all the pieces that make up Xp, preventing an extension 
of f which maps q not above p.

All we need to do is prove that this modification does not change the order. If pi ≤ pj
then f(pi) ≤ f(pj): To see this, first consider the case when pj /∈

⋃
r∈B(q) A(r). Then 

pi /∈
⋃

r∈B(q) A(r) as well, and so f(pi) = g(pi) ≤ g(pj) = f(pj). If, on the other hand, 
pj ∈

⋃
r∈B(q) A(r), then f(pi) is either g(pi) or g(pi) ⊕ dege(

⊕
rk≤pi

Yj) and so

f(pi) ≤ g(pi) ⊕ dege(
⊕

rk≤pi

Yj) ≤e g(pj) ⊕
⊕

rk≤pj

dege(Yk) = f(pj).

Now suppose that pi � pj . Once again, the case when pj /∈
⋃

r∈B(q) A(r) is easy 
because f(pj) = g(pj) and f(pi) ≥ g(pi). So suppose that pj ∈

⋃
r∈B(q) A(r). Recall 

that Gi is part of the image of pi. If pi � p, then Gi �e f(pj) by the properties of 
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mutually generic sets. If pi ≤ p, then there is some rk ∈ B(q) such that rk � pj (since 
otherwise pj ∈ A(B(q)) and hence pj ≥ p ≥ pi). But then the ith column of Yk, which 
was broken off from the set Gi ≤e f(pi), is still mutually generic with all the other pieces 
into which we have broken up G, hence it is not below f(pj).

From now on, in all cases that we consider, let us assume that we have that A(q) �= ∅. 
Our next group of cases examines possible obstructions when B(q) = ∅. We break this 
into three cases, based on whether B(A(q)) is empty or not, and whether B(A(q)) ⊆ A(q)
or not.

Case 2: There is q ∈ Q \ P such that A(q) �= ∅, B(q) = ∅, B(A(q)) = ∅, but q is not the 
least element of Q.

In this case, we know that A(q) is not principal, i.e., does not have a least element. 
We use the columns of a 2-generic to embed P into De. The only degree that is bounded 
by all degrees that are images of the elements of A(q) is then 0e. This embedding of P
can only be extended to an embedding of Q if q is mapped to 0e. So if q is not the least 
element of Q, then we have exhibited an embedding of P that does not extend to an 
embedding of Q.

Case 3: There is q ∈ Q \ P such that A(q) �= ∅, B(q) = ∅, B(A(q)) �= ∅, and B(A(q)) ⊆
A(q).

If B(A(q)) ⊆ A(q) then A(q) is principal above p0 and p0 is a minimal element in P . 
If p0 is the least element in P then we can embed P by sending p0 to 0e and then use 
the columns of a 2-generic as before to embed the rest of P . This embedding of P cannot 
be extended to an embedding of Q because there is no possible image for q strictly 
below 0e.

If p0 is not least, then fix a minimal element p1 ∈ P distinct from p0. Let A0 and A1
form an Ahmad pair, i.e., A0 �e A1 and (∀x)[x < dege(A0) → x < dege(A1)]. The 
existence of such pairs was first proved by Ahmad [1], but also follows from Theorem 2.4. 
Next pick a set G that is 2-generic relative to A0⊕A1. Split G into |P | −2 many mutually 
generic sets. If P = {p0, p1, . . . , pn} then let f(pi) = dege(

⊕
pj≤pi

Xj), where X0 = A0, 
X1 = A1 and Xi+2 = Gi for i < |P | − 2. Once again, it is clear from the definition of f
that if pi ≤ pj then f(pi) ≤ f(pj). On the other hand, by our choice of generics and 
of A0 and A1, we have that Xi ≤e

⊕
pk≤pj

Xk if and only if Xi is one of the elements in 
{Xk | pk ≤ pj} if and only if pi ≤ pj . So if pi � pj then f(pi) � f(pj). This embedding 
cannot be extended to an embedding to Q because any degree that is strictly below the 
image of p0 must also be below the image of p1, so q cannot be embedded.

We are left with the case when B(q) = ∅ and B(A(q)) � A(q). We will be able to 
obstruct this case as well using a slightly more complicated embedding. In short, we 
extend B(A(q)) to a distributive lattice L only adding points if some finite set of points 
in B(A(q)) is missing a least upper bound. Since B(q) is empty, we can argue that no 
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point will be added that will fit the type of q over P in this way. Here by the type of q
over P , we mean the set of atomic facts that describe the position of q with respect 
to the elements of P . We then embed L using a strong embedding, and the rest of P
using 2-generics relative to the image of the top element in L. We argue that any degree 
strictly below all elements in A(q) must be an image of an element in L or bounded 
below the image of the least element in L. No such degree can be the image of q. We use 
the same construction in case B(q) �= ∅ and either B(A(q)) �= B(q) or A(B(q)) �= A(q)
(and so it is inconsistent to place q as the least upper bound of B(q) and the greatest 
lower bound of A(q) at the same time). We combine both of these situations in Case 4 
below.

Case 4: There is q ∈ Q \ P such that A(q) �= ∅ and either

(a) B(q) = ∅ and B(A(q)) � A(q); or
(b) B(q) �= ∅, and either A(B(q)) �= A(q) or B(A(q)) �= B(q).

Since we will build an embedding of P which blocks any extension to P ∪{q}, we may 
assume in this case that Q = P ∪ {q}. As we already hinted in the previous case, this is 
the most complicated case and the one where we will make use of the strong embedding 
of all finite distributive lattices from Theorem 2.4.

We first enlarge P by adding new elements in a minimal way to make S0 = B(A(q))
into an upper semilattice with least element: For each nonempty subset F ⊆ S0 such 
that F has no greatest element and A(F ) has no least element, add a new element sA(F )
and specify that B(sA(F )) = B(A(F )) and A(sA(F )) = A(F ). Note that if F and G are 
distinct such subsets with A(F ) = A(G), then this will add only a single point sA(F ) =
sA(G). We order new points sA(F ) < sA(G) if and only if A(G) ⊂ A(F ). If B(A(q)) has 
no least element then we add one additional point sA(∅) bounded below all elements in 
B(A(q)). Denote by P ′ the union of P and of all the newly added elements sA(F ), and 
let S be the union of S0 and of all the newly added elements sA(F ). We show that S is 
an upper semilattice. It is easy to check that any subset F ⊆ S0 either has a least upper 
bound in P or has a new least upper bound sA(F ). Indeed, if A(F ) has a least element 
(which would be implied by F having a greatest element), then, by definition, this is the 
least upper bound of F in P , and since F ⊆ B(A(q)), we have that A(q) ⊆ A(F ) and 
so the least element of A(F ) is below all elements in A(q), hence in B(A(q)). Now, if 
F ′ ⊆ S has newly added elements, we can transform it into F ⊆ S0 by replacing each 
sA(G) ∈ F ′ by G. Thus the least upper bound of F is the same as the least upper bound 
of F ′.

For future reference, we also note that every element s ∈ S0 can be written uniquely 
as sA(F ) for F = B(s). Fixing such s = sA(F ), note that A(s) = A(F ) and B(s) =
B(A(F )) just like for elements in S \S0. In addition, note that by construction, for such 
s ∈ S0, there cannot be a newly added point s′ ∈ S \ S0 of the form sA(F ) for such a 
set F since A(F ) has a least element.
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We next expand P ′ to make our upper semilattice S into a distributive lattice L in a 
minimal way, avoiding adding any new elements which have the same type over P as q

does. Let MS be the set of meet-irreducible elements of S (i.e., all elements s ∈ S such 
that for no s0, s1 > s in S, s0 ∧ s1 = s). Let L be the set of all nonempty upward closed 
subsets of MS . As S has a greatest element, which is meet-irreducible by definition, L
is closed under union and intersection and thus forms a lattice, in fact, a distributive 
lattice. Note further that S naturally embeds into L by mapping each s ∈ S to the set 
{m ∈ MS | s ≤ m}. Note that an upward closed subset M of MS does not correspond 
to an element s ∈ S under this embedding only if it contains two incomparable meet-
irreducible elements m0, m1 which are minimal in M . We complete the definition of the 
partial ordering on L ∪ P ′ by simply taking the transitive closure, i.e., we define l ≤ p

for l ∈ L and p ∈ P \ S iff there is some s ∈ S with l ≤ s and s < p. Denote by P ′′ the 
union of P ′ and of L.

Suppose, for the sake of a contradiction, that we add an element l ∈ P ′′ \ P of the 
same type over P as q. First consider the case that l = sA(F ) for some F ⊆ S0. Since 
B(q) = B(l) = B(A(F )), we have A(B(q)) = A(B(A(F ))) = A(F ) = A(l) = A(q) (here 
we use the fact that whenever F ⊆ P we have that A(B(A(F ))) = A(F ), which can be 
easily verified just from the definitions); but by our case assumption, we must then have 
B(q) �= B(A(q)) = B(A(l)) = B(A(F )) = B(l), contradicting B(q) = B(l).

Next suppose that l ∈ P ′′ \ P ′; then there is an upward closed subset M of MS

containing two incomparable meet-irreducible elements m1, m2 which are minimal in M

such that l < m0, m1. But now B(q) = B(l) ⊆ B(m0) ∩ B(m1), and so, as explained 
above, m0 = sA(F0) and m1 = sA(F1) for some F0, F1 ⊆ B(A(q)) (even if m0 ∈ S0
or m1 ∈ S0), implying that A(m0) = A(F0) ⊇ A(q) and A(m1) = A(F1) ⊇ A(q). In 
addition, l < m0, m1 implies A(q) = A(l) ⊇ A(m0), A(m1) and thus A(q) = A(l) =
A(m0) = A(m1). But A(m0) = A(F0) and A(m1) = A(F1), and so m0 = m1 by 
construction, a contradiction.

Now we can proceed with our embedding: We embed the distributive lattice L as a 
strong interval [a, b] invoking Theorem 2.4. Note that since we started with the downward 
closed set B(A(q)), we have that elements in P \ L are all above or incomparable with 
elements in L. Extend our embedding to an embedding of P ′′ = P ∪L using the columns 
of a set G that is 2-generic relative to b. In this embedding, we have that any point 
that is below the degrees of the images of all elements in A(q) (which is nonempty by 
assumption) is bounded by the image b of the top element in L. It is therefore bounded 
by a or else equals one of the degrees which are images of L. We ruled out the possibility 
that q takes the place of one of the elements in L and so q must be mapped to a degree 
strictly below a. But then B(A(q)) ⊆ A(q), and since B(A(q)) �= ∅ by assumption, this 
can only happen if B(q) = ∅, contradicting our case assumption.

Suppose that no element in Q satisfies the conditions of the previous four cases. We 
have one more possible obstruction related to the relative type of two elements in Q.

Case 5: There exists q ∈ Q \ P and r ∈ Q, such that A(q) �= ∅, B(q) ⊆ B(r) and q � r.
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Note that by the fact that none of the Cases 2, 3, or 4 applies to q, we know that 
B(q) is nonempty. Since we assume that Case 4 fails, we have that B(A(q)) = B(q)
and A(B(q)) = A(q). (In particular, neither B(q) nor A(q) is principal.) We now embed 
B(q) in some arbitrary way and use a 2-generic relative to the least upper bound of the 
elements in the image of B(q) to complete our embedding of P . Thus the greatest lower 
bound of the degrees in the image of A(q) is the least upper bound of the degrees that 
are images of B(q). The only possible degree that q can be mapped to is the image of ∧

A(q) =
∨
B(q). Since B(q) ⊆ B(r), the image of r can only be above the image of ∨

B(q), but this conflicts with q � r.
We claim that in all other cases, every embedding of P can be extended to an embed-

ding of Q. Fix such P ⊆ Q. To summarize, we have that:

(A) For all q ∈ Q \ P , if A(q) = ∅, then B(q) = B(A(B(q))) by the failure of Case 1.
(B) For all q ∈ Q \ P , if A(q) �= ∅ and B(q) = ∅, then q is the least element of Q and 

B(A(q)) = ∅ by the failure of Cases 2, 3, and 4(a).
(C) For all q ∈ Q \ P , if A(q) �= ∅ and B(q) �= ∅, then A(B(q)) = A(q) and B(A(q)) =

B(q) by the failure of Case 4(b).
(D) For all q ∈ Q \P and r ∈ Q, if A(q) �= ∅ and B(q) ⊆ B(r), then q ≤ r by the failure 

of Case 5.

Let f be an embedding of P in De. Order the elements of Q \P = {q0, . . . , qn} so that

• qi ≤ qj implies i ≤ j, and
• A(qi) �= ∅ and A(qj) = ∅ implies i < j.

We consider qi in turn, and for each, we build f(qi).

(1) If A(qi) �= ∅ and B(qi) = ∅, then by (B), we have that qi is the least element of Q, 
hence we can send qi to f(qi) = 0e.

(2) If A(qi) �= ∅ and B(qi) �= ∅, then send qi to the least upper bound of the image of 
B(qi), setting f(qi) =

∨
p∈B(qi) f(p).

(3) Finally, we are left with {qk, . . . , qn} with A(qi) = ∅ for all i with k ≤ i ≤ n. 
Let G be 2-generic relative to the least upper bound of all degrees in the range 
of our embedding so far. We break G up into columns {Gi}i<ω and map qi to 
dege(Gi) ∨

∨
q<qi

f(q). (If B(qi) = ∅, then 
∨

q<qi
f(q) = 0e.)

Now we need to prove that this embedding works. Suppose first that q ≤ q′. The case 
when q, q′ ∈ P is handled by the assumption that f is an embedding. So we may assume 
that at least one of q or q′ is in Q \ P . We consider the different possibilities:

• If q ∈ P then by our construction we clearly have f(q) ≤ f(q′).
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• If q′ ∈ P then A(q) �= ∅ and so f(q) = 0e or f(q) =
∨

f(B(q)). However, since f is a 
valid embedding of P as a partial order into De, we must have that 

∨
f(B(q)) ≤ f(q′).

• Finally, suppose that q and q′ are both in Q \ P . Then by construction, we build 
the image of q first. Suppose first that A(q′) �= ∅. First, note that A(q) ⊇ A(q′), so 
A(q) �= ∅ as well. If B(q) is empty, then f(q) = 0e, so f(q) ≤ f(q′). If B(q) �= ∅, then 
B(q′) �= ∅ as well since B(q′) ⊇ B(q), so

f(q) =
∨

p∈B(q)

≤
∨

p∈B(q′)

= f(q′).

On the other hand, if A(q′) = ∅, then f(q′) ≥ f(q) by construction.

Suppose now that q � q′. Again, we only need to consider cases when at least one of q
or q′ is in Q \ P .

• If q ∈ P and A(q′) = ∅, then by (A), we have that B(q′) = B(A(B(q′))). Since 
q /∈ B(q′), it must be that q /∈ B(A(B(q′))) and so f(q) �

∨
f(B(q′)). Since we use 

a set that is generic with respect to f(q) ∨
∨

f(B(q′)), and f(q′) is constructed by 
joining 

∨
f(B(q′)) and several columns of that generic set, we have that f(q) � f(q′).

• If q ∈ P and A(q′) �= ∅, then there are two possibilities: If B(q′) = ∅ then by (B), 
we have that f(q′) = 0e and B(A(q′)) = ∅. In that case, P does not have a least 
element (or else that least element would be in B(A(q′))), and so f(q) �= 0e.
Otherwise, B(q′) �= ∅ and so f(q′) =

∨
f(B(q′)). By (C), we have that B(q′) =

B(A(q′)) and so q /∈ B(A(q′)); thus there is some r ∈ A(q′) such that q � r. But 
then f(q) � f(r). On the other hand, 

∨
f(B(q′)) ≤ f(r) and thus f(q) � f(q′).

• If q′ ∈ P and A(q) = ∅, then the use of a generic with respect to f(q′) ensures that 
f(q) � f(q′).

• If q′ ∈ P and A(q) �= ∅, then since q cannot be least in Q as q � q′, by (B) we 
have that B(q) �= ∅. This means that f(q) =

∨
f(B(q)). But then 

∨
f(B(q)) ≤ f(q′)

would imply B(q) ⊆ B(q′) which is impossible by (D).
• If q and q′ are both in Q \ P and A(q) �= ∅, then by (D), we have B(q) � B(q′), so 

there is some p ∈ B(q) \ B(q′). Since p � q′, we have already shown f(p) � f(q′), 
implying f(q) � f(q′).

• If q and q′ are both in Q \P and A(q) = ∅, then the use of a generic guarantees that 
f(q) � f(q′).

This completes the proof. �
5. The common fragment of the theories of the Turing and the enumeration degrees

In this section, we characterize the largest “natural” common fragment of the first-
order theories of the Turing degrees and the enumeration degrees. More precisely, we will 
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show that the ∃∀-theory of the Turing degrees is a supertheory of the ∃∀-theory of the 
enumeration degrees; in fact, it is a proper supertheory since there is an ∃∀-difference 
ϕ ∈ Th(DT ) \ Th(De), namely, the existence of a minimal degree:

∃x∀y(x > 0 & (y < x → y = 0)),

or equivalently, in the language of partial orderings only, without a constant symbol 
for 0:

ϕ : ∃x∃z(z < x & ∀y(z ≤ y & ¬(z < y < x))).

Recall (e.g., from Lerman [15, proof of Theorem VII.4.4]) that any ∃∀-sentence is a 
disjunction of ∃∀-sentences ψ of the format in Problem 2.1: “For some finite partial 
order P and finite extensions Q1, . . . , Qk of P , the sentence ψ states that there is an 
embedding of P that cannot be extended to an embedding of any of the Q1, . . . , Qk.” 
For example, the above sentence ϕ can be expressed as a statement of this format with 
k = 2, setting P = {a < b}, Q1 = {c < a < b} and Q2 = {a < d < b}.

We first give a model-theoretic characterization of the ∃∀-theory of the Turing degrees.

Definition 5.1. Let U be an upper semilattice with least element. We say that U exhibits 
end-extensions if for every pair of a finite lattice P and a finite partial order Q ⊇ P such 
that if x ∈ Q \P then x is not below any element of P and x respects least upper bounds 
from P , every embedding of P into U extends to an embedding of Q into U .

Note that both DT and De are upper semilattices with least element that exhibit 
end-extensions. We claim that for the Turing degrees, this property characterizes its 
∃∀-theory:

Theorem 5.2. Let ϕ be an ∃∀-sentence in the language of partial orders. Then the sen-
tence ϕ is true in DT if and only if there is an upper semilattice U with least element 
that exhibits end-extensions such that ϕ is true in U . Thus the ∃∀-theory of the Turing 
degrees is a supertheory of the ∃∀-theory of the enumeration degrees.

Proof. Note that this theorem is implicit in the proof of the decidability of the ∃∀-theory 
of DT by Shore [20] and Lerman [15], rephrased in our language.

Suppose that ϕ is true in some upper semilattice U with least element that exhibits 
end-extensions. By the remark above, we can fix a disjunct ψ of ϕ which has the format 
“For some finite partial order P and finite extensions Q1, . . . , Qk of P , there is an em-
bedding of P that cannot be extended to an embedding of any of the Q1, . . . , Qk” and 
holds in U . Fix an embedding f of P into U witnessing this. Let P ∗ be the upper semi-
lattice with least element generated by the range of f in U , taking least upper bounds 
as in U and adding a least element into P ∗ if the least element of U is not already in the 
range of f . Then P ∗ is a finite lattice, and so by Lerman [14], we can embed P ∗ as an 
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initial segment of DT via a mapping g. Any finite extension of the embedding g of P ∗

into DT satisfies the end-extension requirements: No new element is below any member 
of the range of g since this range is an initial segment, and new elements respect least 
upper bounds of elements in the range since DT is an upper semilattice. As U exhibits 
end-extensions, it follows that any extension g into DT can be pulled back to an isomor-
phic extension of P ∗ (and hence of P ) into U . It follows that g cannot be extended to 
an embedding of any of the partial orders Q1, . . . , Qk into DT . Thus DT |= ψ and so 
DT |= ϕ.

The reverse direction is trivially true since DT is an upper semilattice with least 
element that exhibits end-extensions. �
Definition 5.3. We denote by E the set of ∃∀-sentences ψ from the extension of em-
beddings problem: “For some finite partial order P and finite extension Q of P , the 
sentence ψ states that there is an embedding of P that cannot be extended to an em-
bedding of Q.”

We can now state precisely what the “natural” common fragment of the first-order 
theories of the Turing degrees and the enumeration degrees is in the following.

Theorem 5.4. For the above set E of ∃∀-sentences,

E ∩ Th(De) = E ∩ Th(DT ).

Recall from the minimal degree example above that even loosening the restriction in 
the extension of embeddings problem from k = 1 to k = 2 results in an ∃∀-difference.

Proof. Suppose first that ϕ ∈ E ∩ Th(De). The structure De is an upper semilattice 
with least element that exhibits end-extensions. Note that ϕ is an ∃∀-sentence and so, 
by Theorem 5.2, if ϕ is true in De, then it must be true in DT as well. It follows that ϕ

is true in DT and hence ϕ ∈ E ∩ Th(DT ).
Now suppose that ϕ ∈ E \ Th(De). Suppose that ϕ is the statement that expresses 

that some embedding of the finite partial order P does not extend to an embedding of the 
partial order Q. If ¬ϕ is true in De (and so every embedding of P extends to an embedding 
of Q), then the properties (A), (B), (C), and (D) from the proof of Theorem 4.2 apply to 
the pair P, Q. To prove that ϕ also fails in DT , we essentially use the same construction 
as in Theorem 4.2:

Fix some embedding f of P into DT . Order the elements of Q \ P = {q0, . . . , qn} so 
that

• qi ≤ qj implies i ≤ j and
• A(qi) �= ∅ and A(qj) = ∅ implies i < j.
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We consider qi in turn. We define f(qi) using the fact that the four properties (A), 
(B), (C), and (D) are true:

(1) If B(qi) = ∅ and A(qi) �= ∅, then by property (B), we have that qi is the least element 
of Q and B(A(qi)) = ∅. It follows that P = A(qi) does not have a least element, 
hence we can send qi to f(qi) = 0T .

(2) If B(qi) �= ∅ and A(qi) �= ∅, then by (C), we have that B(qi) = B(A(qi)). By (D), we 
know that for every j < i, B(qi) = B(qj) implies that qi = qj (since A(qj) �= ∅), so 
we can send qi to the least upper bound of the image of B(qi): f(qi) =

∨
p∈B(qi) f(p)

without violating injectivity of f .
(3) Finally, we are left with {qk, . . . , qn} with A(qi) = ∅ for all i with k ≤ i ≤ n. Let G be 

generic relative to the least upper bound of all degrees in the range of our embedding 
so far. In the Turing case, even 1-genericity suffices. We break up G into columns 
{Gi}i<ω and map qi to degT (Gi) ∨

∨
q<qi

f(q).

Mutually generic sets have similar properties with respect to Turing reducibility as to 
enumeration reducibility. If A1, A2 ≤T B and G is 1-generic with respect to B and ⊕

i<ω Gi = G, then for any i ∈ ω and any finite set F , we have that A1 ⊕ Gi ≤T

A2⊕
⊕

j∈F Gj if and only if A1 ≤T A2 and i ∈ F . Thus, the same argument as was used 
in Theorem 4.2 will prove that f is an embedding as required. �
6. Conjectures and open problems

The most glaring open problem is, of course, the decidability of the ∃∀-theory of the 
enumeration degrees. Our work opens up two related problems that we would like to 
explicitly state.

The first question asks whether we can extend the work presented in the next section 
by removing the distributivity requirement from our statement. We conjecture that this 
is possible:

Conjecture 6.1. Every finite lattice has a strong interval embedding in De.

Confirming the above conjecture will not lead to an algorithm for deciding the ∃∀-
theory of De in a straightforward way. What we would like to have is a model-theoretic 
characterization of the ∃∀-theory of De along the lines of Theorem 5.2. One possible 
attempt at getting such a characterization is to incorporate the theorem of Slaman and 
Sorbi [24], which proves a strong form of downward density. Consider the statement:

An ∃∀-sentence ϕ is true in De if and only if there is an upper semilattice U with 
least element that exhibits end-extensions and strong downward density such that ϕ

is true in U ,
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where U exhibits strong downward density if every countable partial order can be em-
bedded below any nonzero element of U .

Consider the ∃∀-sentence ϕ that states that there is an embedding of the diamond 
lattice P = {d < a, b < c} that cannot be extended to an embedding of any of Q1, . . . , Q4, 
where Q1 puts a new element below a, b and above d, Q2 puts a new element below c, 
above d but incomparable to each of a and b, Q3 puts a new element below in the interval 
(a, c) and Q4 puts a new element in the interval (b, c). We can easily imagine an upper 
semilattice that makes ϕ true: In it, a and b would be mapped to a minimal pair {a, b}, d
to the least element, and c would be mapped to the least upper bound of a and b, which 
has the additional property that every element of U strictly bounded by a ∨ b is either 
below a or below b.

Unfortunately, ϕ is not true in De. Jacobsen-Grocott and Soskova (see Jacobsen-
Grocott [8]) prove that strong interval embedding cannot be combined with minimal 
pairs:

Theorem 6.2 (Jacobsen-Grocott, Soskova). If a and b are enumeration degrees such that 
every degree x < a ∨ b is bounded by a or bounded by b, then {a, b} is not a minimal 
pair.

This leaves open the following

Question 6.3. Is there a natural class of upper semilattices U so that an ∃∀-sentence ϕ

is true in De if and only if it is true in some upper semilattice U ∈ U?

7. Strong interval embeddings

We will devote this section to the rather technical proof of the existence of a strong 
interval embedding of any finite distributive lattice. Recall that a strong interval em-
bedding of a lattice L is a bijective map f between L and some interval of enumeration 
degrees [a, b] such that for any degree x ≤ b that is not in the range of f we have that 
x < a. We came to this definition by generalizing the notion of a strong minimal cover, 
which gives an example of a strong interval embedding of the two-element lattice. Kent, 
Lewis-Pye, and Sorbi [10] proved the existence of degrees with strong minimal covers. 
We start by giving an alternative proof of their result.

7.1. A strong minimal cover in the Π0
2-enumeration degrees

The construction of Kent, Lewis-Pye, and Sorbi [10] yields a Δ0
3-degree b with a Π0

2-
strong minimal cover a. Our plan is to extend this theorem to a strong embedding of 
arbitrary finite distributive lattices, so we will need some more uniformity for the images 
constructed. We start by giving a slightly different construction of a strong minimal 
cover that extends the previous result. We will then extend the ideas in this subsection 
to obtain our general theorem.
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Theorem 7.1. There are Π0
2-enumeration degrees a and b such that a is a strong minimal 

cover of b in the enumeration degrees.

We will build Π0
2-sets A and B so that dege(A ⊕ B) is a strong minimal cover 

of dege(B). We need to satisfy the following two groups of requirements:

Me : ∃Γ[Ψe(A⊕B) = Γ(B)] ∨ ∃Δ[A⊕B = Δ(Ψe(A⊕B))],

where Γ and Δ are enumeration operators we construct and {Ψe}e<ω lists all enumeration 
operators, and

Te : Φe(B) �= A,

where {Φe}e<ω lists all enumeration operators.
We will build A and B as Π0

2-sets as follows: We approximate them stage by stage via 
finite sets {As}s<ω, {Bs}s<ω. We use X to denote A or B. Ultimately, X consists of the 
elements that are enumerated into Xs at infinitely many stages s. The construction will 
take place on a tree of strategies. We use lower-case Greek letters α, β, etc., to denote 
nodes on the tree. The nodes are ordered by setting α ≺ β iff α is a strict predecessor of β
on the tree (and α � β iff α = β or α ≺ β). Each node on the tree works towards satisfying 
a requirement. We associate outcomes to each node, which represent different ways in 
which we may satisfy the requirement and which determine its immediate successors. 
The outcomes are linearly ordered by <L. This ordering extends to a different partial 
ordering on the nodes: We say that α <L β (α is to the left of β) if α and β have a 
common predecessor γ, say, with outcomes o1 <L o2 such that γ ô1 � α and γ ô2 � β. 
We combine the two partial orders on nodes into a total order: We say that α has higher 
priority than β (and write α < β) if α <L β or α ≺ β. If we identify nodes on the tree 
with strings in the alphabet of outcomes, then this is just the lexicographical order on 
such strings. During our construction, we will visit nodes on the tree and activate their 
strategy which works to satisfy their associated requirement. (We will often identify a 
node with its strategy.) Which node we activate next depends on the outcome currently 
representing our best guess as to how the requirement will be satisfied. Nodes of higher 
priority may injure the work done by lower-priority nodes, but lower-priority nodes must 
respect the work done so far by higher-priority nodes. The intention is that there will 
be a true path of nodes visited at infinitely many stages and injured only finitely many 
times, which can therefore implement their strategies successfully. Before we give a formal 
construction, we first consider the two types of strategies in the context of the tree.

A node α working on an M-requirement (an M-strategy α) first tries to build Γα

by associating an axiom location and a promise to every axiom enumerated into Ψα. 
(For simplicity, we use the index α to refer to the operators involved in the requirement 
associated with α.) If 〈x, F 〉 enters Ψα, the strategy selects a suitable element b as an 
axiom location from a stream of numbers SB handed down to α by its predecessor on 
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the tree at each stage at which α is active. This number b is then taken out of the stream 
before that stream is handed down. (We will define “suitability” in a precise way later in 
the construction.) The strategy α then enumerates the axiom 〈x, {b}〉 into Γα and makes 
the promise (b, x, F ) by recording it in a list of promises Pα. The intent of the promise 
is that if there is ever evidence that F is a subset of A ⊕ B, then the axiom location b

will be enumerated into B. Lower-priority strategies are asked to respect the promises 
that higher-priority strategies make.

Now let’s consider a node β working on a T -requirement (a T -strategy β). It starts 
by selecting a witness z from a stream SA (which is also handed down to it by its 
predecessor on the tree at every stage at which the node is visited). At every stage that 
this strategy β is visited while z /∈ Φβ(B), it enumerates z into A and takes its wait 
outcome w. The strategy must ensure that promises made by higher-priority nodes are 
kept, so z entering A might set off a chain reaction of numbers being enumerated into B. 
As there are only finitely many promises made at any given moment, this process is 
finitary. Furthermore, when evaluating B, the strategy takes into account what strategies 
below the outcome w might enumerate into the sets A and B, along with the chain 
reaction that higher-priority promises require. If it ever sees that z can be realized via 
an axiom 〈z, D〉, then it would like to keep D ⊆ B and stop enumerating z into A. The 
elements that are enumerated into the stream of strategies below outcome w are dumped 
into dump sets UA and UB . These sets are enumerated into A and B, respectively, at 
every future stage, so they will not cause problems. If there are no higher-priority M-
strategies, then this leads us to a successful diagonalization denoted by outcome d to 
the left of outcome w. An actual problem might arise if there are higher-priority M-
strategies. Suppose that there is just one higher-priority M-strategy α ≺ β for simplicity. 
Consider the following situation:

It is possible that α has a promise (b, x, FA ⊕ FB), where z ∈ FA and b ∈ D. Enu-
merating z into A might cause b to enter B, but if we stop enumerating z into A, then b

must leave B. Thus our goal of taking z out of A while keeping D ⊆ B is in conflict with 
a promise of the higher-priority strategy α. There might be a way around this conflict 
in certain situations: If z /∈ A does not cause x to leave Ψα(A ⊕B), then we can afford 
to break the promise (b, x, FA ⊕ FB), as this will not cause an error in Γα, i.e., we will 
have Γα(B)(x) = Ψα(A ⊕B)(x).

If, on the other hand, z leaving A causes x to leave Ψα(A ⊕ B), we should be more 
careful. We use this relationship instead to switch α to a backup strategy: We start 
building an enumeration operator Δα by enumerating its first axiom which relies on this 
relationship between z and x. This situation will be marked by a visit to an outcome ∞
between outcome d and outcome w. We restart the strategy β with a new witness z′. 
The stream for A that is passed on to strategies below outcome ∞ is reduced to the 
realized witnesses z, z′, . . . . That is, if βˆ∞ is on the true path, then, using Δα, we can 
enumerate A from Ψα(A ⊕ B). All natural numbers that are in A and that are not 
in the stream SA below βˆ∞ are dumped into A by strategies γ � β and form a c.e. 
set. Recall that to satisfy the requirement M, we need to ensure that B can also be 
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enumerated by Ψα(A ⊕ B) and so Δα cannot quite serve as the operator Δ required 
to satisfy α’s requirement. We use every other element of the stream SA below βˆ∞
to code B into A. We do this through a list Hβ of attachments (z, u), which is similar 
to the list of promises: It requires from lower-priority strategies to ensure that if u

enters B, then z is enumerated into A. So if ∞ is the true outcome, then we will have 
A = Δα(Ψα(A ⊕ B)) and B ≤e A, and so we can produce the required operator Δ to 
satisfy α’s requirement. If the connection between z and x is lost due to more axioms 
entering Ψα, then we say that z is cleared by α, and we can revert to our original plan 
to diagonalize to satisfy β’s requirement.

The rest of the mechanics of the construction is standard. If β extends more than one 
M-strategy above it, say, α0 ≺ α1 ≺ · · · ≺ αk−1 ≺ β, then in order to diagonalize with 
a witness z, it must be cleared by all αi. We try to clear it in turn, starting with αk−1

and ending with α0, with the possibility of switching each αi to its backup strategy with 
an outcome ∞i if we cannot clear the witness. The outcomes of β are:

d <L ∞0 <L ∞1 <L · · · <L ∞k−1 <L w.

The full construction will give the precise details on how this is organized.

The tree of strategies. Our tree of strategies will be a partial function T : {w, d, ∞i :
i < ω}<ω → R, where R is the set of all requirements. We will define T (α) along with 
the set C(α) of active M-strategies along α. Let T (∅) = M0 and C(∅) = ∅. Suppose 
T (α) = Mα, then T (α d̂) is defined and equals the least T -requirement that has not 
been assigned to any node β � α; we also set C(α d̂) = C(α) ∪ {α}. On the other hand, 
suppose that T (α) = Tα and C(α) = {α0 ≺ α1 ≺ · · · ≺ αk−1}. We set T (αˆw) and T (α d̂)
to be the least M-requirement that has not yet been assigned to any node β � α, and 
we set C(αˆw) = C(α d̂) = C(α). For every l < k, we set T (αˆ∞l) = T (α), and we set 
C(αˆ∞l) = C(α) \ {αl}.

Approximating X. Recall that X stands for either the set A or the set B. At stage s

of the construction, we build a finite path fs of length s in the (domain of the) tree of 
strategies. Strategies to the right of fs are initialized at (the end of) stage s. The set Xs

is constructed in substages Xt
s where t ≤ s, starting with X−1

s = ∅ and letting Xt
s be 

the set Xt−1
s along with all elements enumerated into X by fs � t at stage s. We will 

omit reference to specific substages when they are understood from the context. As we 
said before, we will have that n ∈ X if and only if n ∈ Xs at infinitely many stages s. At 
first sight, this means that for a finite set F , we might have F ⊆ X but F � Xs at any 
stage s. We will ensure that the leftmost path f of strategies visited at infinitely many 
stages is the true path, i.e., it correctly approximates the true outcome of every strategy. 
We will prove that n ∈ X if and only if n is enumerated into X by a unique strategy σ

along the true path at all but finitely many stages s at which σ is visited. And so for 
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finite sets F , we will have as well that F ⊆ A if and only if F ⊆ As for infinitely many 
stages s.

Let β be a T -strategy with active M-strategies C(β) = {α0, α1, . . . , αk−1} and suppose 
that β0, . . . , βm−1 are all predecessors of β so that βlˆ∞u � β for some u. When we 
visit β, we must take into account the promises and attachments that these strategies 
have made whenever β enumerates a number into the set A. For finite sets Y and Z, 
we define gAβ (Y, Z) formally as 

⋃
n Yn and gBβ (Y, Z) as 

⋃
Zn, where Y0 = UA ∪ Y , 

Z0 = UB ∪ Z and

• Yn+1 = Yn ∪ {a | (∃l < m)[(a, b) is an attachment of βl & b ∈ Zn]};
• Zn+1 = Zn ∪ {b | (∃l < k)[(b, x, F ) is a promise of αl & F ⊆ Yn+1 ⊕ Zn]}.

Suitability. The streams SA
α and SB

α are defined inductively during the construction. We 
list all strategies in order type ω and associate to each a unique number α̂ corresponding 
to α′s position in this list. We will say that x is suitable for α if x > |α| and x is 
the 〈α̂, j〉-th number among all elements that are in the stream SX(α) and not used in 
attachments for some j. For every α ≺ f , we will ensure that SX

α is infinite and so there 
are infinitely many numbers suitable for α.

The construction. At stage 0, all strategies are in initial state: We set UA = UB = ∅; for 
each M-strategy α, we set Γα = ∅ and the list of promises Pα = ∅; for each T -strategy β

with C(β) = {α0, . . . , αk−1}, we set Δβ
l = ∅ for all l < k, the list of attachments 

Hβ
l = ∅ for l < k, and let the current witness zβ be undefined. During the construction, 

initializing a strategy will mean that we restore it to its initial state.
At stage s > 0, we build fs of length at most s, activating strategies along fs. We 

begin by enumerating UX into X.
We then start at the root and let SX

∅,s = SX
∅,s−1 ∪ {s} = [0, s]. Suppose we have 

constructed fs � n, along with SX
fs�n,s = SX

fs�n,s−1 ∪ {yX} and As and Bs (or rather An
s

and Bn
s , the approximation to the sets A and B at substage n of stage s). If n = s, then 

we end this stage and move on to the next stage. If n < s, then we activate fs � n and let 
it pick its outcome o. Then fs � n + 1 = (fs � n)̂ o unless fs ends the stage prematurely. 
At the end of stage s, we initialize all strategies σ such that fs <L σ.

Case 1. If fs � n = α is an M-strategy and α did not end the previous stage at 
which it was visited prematurely, then we scan Ψα for new axioms that have not yet 
been assigned axiom locations. If such axioms exist, then we pick the oldest such, say, 
〈x, FA ⊕ FB〉. (Here by oldest we mean the one that was enumerated into Ψα first.) If 
b = yB is suitable for α and b > max(FA ∪ FB), then we assign b to the axiom and 
enumerate the promise (b, x, FA⊕FB) into Pα as well as the axiom 〈x, {b}〉 into Γα. We 
end this stage prematurely (note we do not initialize strategies β � α, only strategies 
β >L α). Otherwise (in particular if α did end the previous stage at which it was visited 
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prematurely), we enumerate yX into SX(α d̂). In all cases, we enumerate into X the set 
gXα (As, Bs), and if we don’t end the stage, we let d be α’s outcome.

Case 2. If fs � n = β is a T -strategy with C(β) = {α0 ≺ · · · ≺ αk−1}, then we pick the 
first case which applies:

(1) The strategy β was successful via a realized witness z and had outcome d at the 
previous stage at which β was active: In that case, enumerate Dz into B and then 
gXβ (As, Bs) into X, the number yX into SX

βˆd, and let the outcome be d.
(2) The current witness zβ is not defined: If yA = a is defined and suitable for β, then 

let zβ = a be the current witness and end the stage prematurely. Otherwise, if a is 
not suitable, then enumerate yX into SX

βˆw and let the outcome be w. In both cases, 
we enumerate gXβ (As, Bs) into X.

(3) zβ /∈ Φβ(V ), where V = gBβ (As ∪ SA
βˆw,s ∪ {zβ}, Bs ∪ SB

βˆw,s): We then enumerate 
gXβ (As ∪ {zβ}, Bs) into X, the number yX into SX

βˆw, and let the outcome be w.
(4) Otherwise: Call the witness zβ is realized. This is the only case in which we grow the 

dump sets. We start by enumerating SX
βˆw,s into UX . Let Dzβ be the set of axiom 

locations in the finite subset of the axiom that puts zβ into Φβ(B) which are not 
enumerated into B if z /∈ A:

Dzβ = gBβ (As ∪ {zβ}, Bs) \ gBβ (As, Bs).

For every l < k, let

E
zβ
l = Ψαl

(gAβ (As ∪ {zβ}, Bs) ⊕ gBβ (As ∪ {zβ}, Bs)) \

Ψαl
(gAβ (As, Bs) ⊕ gBβ (As, Bs)).

Make the current witness zβ undefined.
Now, for every realized witness z and every l < k, let

GX
l,z = gXβ ((As ∪

⋃

l≤j<k

SA
βˆ∞j

) \ {z}, Bs ∪
⋃

l≤j<k

SB
βˆ∞j

).

We say that z is αl-cleared if Ez
l ⊆ Ψαl

(GA
l,z⊕GB

l,z). We search for the least pair (l, z)
(in the lexicographical order) such that z is a realized witness, z /∈ SA

βˆ∞j
for j < l, 

z /∈ UA, and z is j-cleared for all j > l. (Note that the pair (k− 1, zβ) satisfies these 
conditions, so such (l, z) must exist.) We enumerate (

⋃
l<j<k SA

βˆ∞j
) \ {z} into UA, ⋃

l<j<k SB
βˆ∞j

into UB , and set Δj = Hj = ∅ for all j > l.
(a) If l ≥ 0, then enumerate the axiom 〈z, Ez

l 〉 into Δl, the set gXβ (As, Bs) into X, 
the number yB into SB(βˆ∞l), and z into SA(βˆ∞l). If z is the 2n-th number 
in SA(βˆ∞l), then we enumerate (z, n) into Hl and end this stage. Otherwise, 
we let the outcome be ∞l.
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(b) Otherwise, we have a witness z that is αl-cleared for all l < k. We say that z is 
successful and that the numbers in Dz are associated with z at β. Enumerate Dz

into B, as well as gXβ (As, Bs ∪Dz) into X. Let the outcome be d.

7.1.1. The verification
As mentioned before, we define the infinite true path f by

f(n) = lim inf
s>n

fs(n).

It is straightforward to see that the strategies σ along f are visited at infinitely many 
stages and initialized at only finitely many stages. For σ ≺ f , we say that s is a true 
stage if σ is visited at stage s. Let sσ be the least stage after which σ is not initialized. 
Let SX(σ) =

⋃
s>sσ

SX
σ,s. A simple induction on the length of σ proves that SX(σ) is 

infinite. Furthermore, if σ is visited at consecutive stages s > t > sσ, then A|σ|
s ⊇ A

|σ|
t , 

as in order for a strategy above σ to stop enumerating an element into A, it must move 
its outcome left of σ and hence initialize σ. We now verify the important claims about 
enumeration into A and B that we made earlier. Once again, X denotes either the set A
or the set B.

Lemma 7.2. If a number x is in X, then it is either eventually dumped into X at almost 
every stage, or there is a strategy σ ≺ f such that at all but finitely many stages at 
which x is enumerated into X, σ is the least strategy that enumerates x into X, and σ

does so at cofinitely many stages at which σ takes its true outcome.

Proof. Suppose x ∈ X. If x is dumped into UX at stage s, then it is enumerated into X

at the beginning of all stages t > s. So suppose that x is not dumped.
Consider first the case when X = B and denote x by b for convenience. Note that 

when an M-strategy α picks a number b as an axiom location, that number is taken out 
of the stream, and it is never returned to the stream, so no other strategy can use it. If b
is not an axiom location for any strategy, then it is not enumerated into B at any stage 
unless it is dumped, so let α be the unique strategy that uses b as an axiom location for 
the axiom 〈x, F 〉. If α is ever initialized, then b is dumped into UB . So, by assumption, α
is never initialized after b is chosen.

There are infinitely many stages at which b is enumerated into B. At stage s, this 
could be because a T -strategy σ with α ∈ C(σ) causes F ⊆ As ⊕ Bs, or because b is 
associated with a witness z at a successful T -strategy β that is visited at stage s.

First, note that there can be only finitely many strategies at which b is associated 
with a witness. This is because if z ∈ A causes b ∈ B and z /∈ A causes b /∈ B, then 
there is a sequence of promises and attachments witnessing the recursive relationship 
between z and b that drives the definition of gβ . The sequence starts with a promise 
(b0, x0, F 0

A ⊕ F 0
B) such that z ∈ F 0

A and ends with a promise (b, xk, F k
A ⊕ F k

B). In every 
promise (bi, xi, F i

A ⊕ F i
B), we have that bi > max(F i

A ⊕ F i
B), and in every attachment 
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(zi, bi), we have that zi > bi, and so z < b. Furthermore, once b is associated with a 
witness z at β, we have that z is out of A at all further stages unless β is initialized. It 
keeps z out of A, and so b is an element of Bs only if we visit β at stage s. In particular, 
this means that unless β is initialized, b will not be associated at any other strategy. If β
is initialized, then the witness z is either dumped or moved to a stream to the left of β, 
and so β will never have z as its witness again. There are finitely many numbers z < b, 
and each is suitable for finitely many T -strategies, namely, the ones of length smaller 
than z, hence there can be only finitely many associations, and never more than one at 
a time.

So, to sum up, b can be associated with z at β only for finitely many pairs (β, z). If 
at stage s, the number b is associated with z at β, then β is the only strategy that b is 
associated with at stage s, and b ∈ Bs if and only if β � fs and enumerates it into Bs. 
So there are two cases: Either some strategy β is associated with b at all but finitely 
many stages, in which case it is never initialized and as b ∈ B, it is visited infinitely 
often, in which case β ≺ f and satisfies the conditions. Otherwise, at all but finitely 
many stages s, we have that b is enumerated into Bs only if F ⊆ As⊕Bs. It follows that 
F ⊂ A ⊕ B, and since b > maxF , by induction, for every element in F , some strategy 
along the true path enumerates it into the corresponding set. Pick the longest such σ. 
It follows that F ⊆ As ⊕Bs only if σ � fs. So, as b ∈ B, it must be that α ∈ C(σ), and 
hence σ enumerates b into Bs when visited, or σ � α and then b ∈ Bs whenever we visit 
α d̂.

Now consider the case when X = A and denote x by a. We are assuming that a ∈ A. 
At every stage s, there is at most one T -strategy βs ôs such that a is an unrealized 
witness of βs and os = w, or such that a is a realized witness of βs and βs uses a as 
an attachment to code whether some n is in B below outcome os = ∞i for some i < k. 
There are only finitely many strategies β that can ever fulfill this role, as a must be 
suitable for β, hence β is of length less than a. If at stage t > s, such a strategy for a

changes, then βt ôt <L βs ôs. On the other hand, this role is filled by some strategy 
and outcome visited at infinitely many stages, as those are the situations in which a is 
enumerated into A. So fix β such that β ô is least and hence the same at all but finitely 
many stages. If o = w, then a enters A only at stages at which we visit β and β has 
outcome w. It follows that βˆw ≺ f .

If o = ∞i, then (a, n) ∈ Hβ
i and hence the only way that a can enter As is if some 

strategy compatible with βˆ∞i enumerates n into B. As n < a, we have by induction 
that there is a least strategy σ ≺ f that causes this. So either σ � β, in which case 
βˆ∞i ≺ f and a ∈ A at all but finitely many βˆ∞i-true stages, or else βˆ∞i � σ and σ

enumerates a ∈ A along with n via the function gσ. �
Lemma 7.3. Every T -requirement is satisfied.

Proof. Fix a requirement Te. Let β ≺ f be the longest strategy such that T (β) = Te. 
Such a strategy exists because once T A

e is assigned to a node σ with |CA(δ)| = k, Te can 
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be assigned at most k many more times along any path through σ. It follows that β d̂ ≺ f

or βˆw ≺ f .
If βˆw ≺ f , then there is an unrealized witness zβ ∈ A such that at every β-true 

stage s, zβ /∈ Φβ(Vs), where Vs = gBβ (As ∪ SA
βˆw,s ∪ {zβ}, Bs ∪ SB

βˆw,s). By Lemma 7.2, 
B ⊆

⋃
s Vs since the true path passes through βˆw. So zβ /∈ Φβ(B).

If β d̂ ≺ f , then there is a successful witness z that is αi-cleared for all i < k at all 
stages t > sz. As the strategy β enumerates all elements of Dz into B at all true stages 
t > sz, we have that z ∈ Φβ(B). On the other hand, z is never enumerated into At for 
t > sz by β or any other strategy, so z /∈ A. �
Lemma 7.4. Every M-requirement is satisfied.

Proof. Fix e. There is a unique strategy α ≺ f associated with Me. Suppose that α

is switched to a backup strategy by some β � α along the true path. Then βˆ∞i ≺
f , C(β) = {α0, . . . , αk−1}, and α = αi. There are three types of elements that make 
up the set A in this case: elements that are eventually dumped (a c.e. set), elements 
that belong to the stream SA(βˆ∞i), and elements that are used by higher-priority T -
strategies for coding purposes. We will show that Ψ(A ⊕B) can enumerate the elements 
in A ∩ SA(βˆ∞i). Once we have that, we will show that Ψ(A ⊕ B) can enumerate 
the set B. Knowing B will then let Ψ(A ⊕ B) figure out which of the elements of the 
third kind, the ones used for attachments by higher-priority strategies, end up in the 
set A.

For all elements z ∈ SA(βˆ∞i), we have that z ∈ A if and only if z ∈ Δi(Ψα(A ⊕B)). 
This is because if we ever see an axiom stop being valid, we would move to an outcome 
to the left of ∞i. First of all, we claim that B ≤e Δi(Ψα(A ⊕ B)). By Lemma 7.2, we 
have that b ∈ B if and only if a least strategy σ ≺ f enumerates b at all but finitely many 
stages at which σ takes its true outcome. The strategy β forms the association (z, b) ∈ Hi

for some z ∈ SA(βˆ∞i), and so if b ∈ B, then at all stages s at which we visit the longer 
of the strategies σ and βˆ∞i, we have z ∈ As. On the other hand, z is enumerated 
into As only if b ∈ Bs, so we have that B = {b | (z, b) ∈ Hi & z ∈ Δ(Ψα(A ⊕B))}.

Next, we claim that

A =
⋃

s:βˆ∞i�fs

gAβˆ∞i
(A|β|

s ∪ Δi(Ψα(A⊕B)), B)

and hence is as well enumeration reducible to Δi(Ψα(A ⊕B)). First, suppose that a ∈ A. 
By Lemma 7.2, a is either dumped into A, or is enumerated into A by some least σ ≺ f

at all but finitely many stages at which σ takes its true outcome. If σ � β, then a ∈ A
|β|
s

at all but finitely stages s at which β is active. If βˆ∞i � σ, then a ∈ SA(βˆ∞i), 
or else a is the attachment at some δ ≺ β and so a is enumerated into A at stages 
at which some fixed number b is enumerated into B. It follows that b ∈ B and hence 
a ∈

⋃
s:βˆ∞ �f gAβˆ∞ (A|β|

s ∪ Δi(Ψα(A ⊕B)), B).

i s i
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On the other hand, if

a ∈
⋃

s:βˆ∞i�fs

gAβˆ∞i
(A|β|

s ∪ Δi(Ψα(A⊕B)), B),

then for some βˆ∞i-true stage s, we have that a ∈ gAβˆ∞i
(A|β|

s ∪Δi(Ψα(A ⊕B)), B). But 
then, since whether a enters this set depends only on numbers smaller than a, and all 
numbers in A|β|

s are in A (since A|β|
s only grows at βˆ∞i-true stages), it follows that 

a ∈ A.
Finally, suppose that α is never switched to a backup strategy. We claim that Γ(B) =

Ψα(A ⊕ B). Suppose that x ∈ Ψα(A ⊕ B); then there is a valid axiom 〈x, FA ⊕ FB〉
in Ψα. This axiom is assigned a marker b, and the axiom 〈x, {b}〉 is enumerated into Γ. 
By Lemma 7.2, we have that FA ⊕ FB ⊆ As ⊕ Bs at all σ-true stages for some least 
α � σ ≺ f . As α is active at σ and σ respects α’s promises (see the definition of gσ), it 
follows that b ∈ B, and so x ∈ Γ(B).

On the other hand, suppose that an axiom location b ∈ B is associated with the axiom 
〈x, FA⊕FB〉 in Ψα and this axiom is not valid. After a fixed stage in the construction, b
is enumerated into B only at stages at which some strategy β such that b is associated 
with a witness z at β is visited. As z is α-cleared, we know that x ∈ Ψα(As ⊕Bs) (even 
though z /∈ A results in that the original axiom is invalid). As we discussed in the proof 
of Lemma 7.2, b is associated to at most one unique pair (β, z) at any stage, and there 
are only finitely many possibilities. It follows that if b ∈ B, then one of the finitely many 
axioms that cause x ∈ Ψα(As ⊕Bs) must be valid. �
7.2. Building up the intuition for the general case

We would like to generalize the previous construction to the general case of an ar-
bitrary distributive lattice. To build up to that, we first consider two special cases: the 
three-element lattice and the diamond lattice.

7.2.1. The three-element lattice
Suppose first that we want to construct Π0

2-enumeration degrees a > b > c such 
that a is a strong minimal cover of b and b is a strong minimal cover of c. We can 
approach this by building three Π0

2-sets A, B, C so that c = dege(C), b = dege(B ⊕ C)
and dege(A ⊕ B ⊕ C). Now we will have two groups of requirements: MA and MB

mirroring the M-requirements but for the pairs of sets (A, B) and (B, C), respectively, 
along with T A and T B , proving that we have a strictly increasing sequence of degrees. 
One complication that arises immediately is that the set B now plays two roles: On the 
one hand, it serves as a set that supplies coding locations for the requirements of the 
form MA, and on the other hand, it supplies T B-requirements with witnesses. To keep 
things tidy, we will treat B = Ba ⊕ Bw as consisting of two parts: Ba will be used by 
MA-requirements, and Bw will be used by T B-requirements. With this idea in mind, 
we have the following list of requirements:
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MA
e : ∃Γ[Ψe(A⊕B ⊕ C) = Γ(Ba)] ∨ ∃Δ[A⊕B ⊕ C = Δ(Ψ(A⊕B ⊕ C))],

MB
e : ∃Γ[Ψe(B ⊕ C) = Γ(C)] ∨ ∃Δ[B ⊕ C = Δ(Ψ(B ⊕ C))],

where Γ and Δ are enumeration operators we construct and {Ψe}e<ω lists all enumeration 
operators, and

T A
e : Φe(B ⊕ C) �= A,

T B
e : Φe(C) �= Bw,

where {Φe}e<ω lists all enumeration operators.
The T -requirements ensure that C <e B ⊕ C <e A ⊕ B ⊕ C, the MA-requirements 

ensure that if X <e A ⊕ B ⊕ C then X ≤e Ba ≤e B ⊕ C, and the MB-requirements 
ensure that if X <e B ⊕ C then X ≤e C.

We will have streams associated with each set that we are constructing which are 
handed off from strategy to strategy much like in the previous construction: Every strat-
egy σ has streams SA

σ , SBa

σ , SBw

σ , and SC
σ .

The actions of MA- and MB-strategies are very similar to the actions of the M-
strategy from the previous construction. The only difference is that MA-strategies pick 
coding locations out of the stream SBa , and MB-strategies pick coding locations out of 
the stream SC .

A T A-strategy β will pick a witness z from SA. This witness is enumerated into A while 
z /∈ Φβ(B⊕C). When evaluating B⊕C, the strategy takes into account which numbers 
strategies below the outcome w might enumerate into each of the sets A, B and C, and 
the reaction that higher-priority MA-strategies and MB-strategies might have. If it ever 
sees that z can be realized via an axiom 〈z, D〉, then it would like to keep D ⊆ B⊕C and 
stop enumerating z into A. This could be in conflict with higher-priority MA-strategies 
directly because of coding locations in Ba, but there is no direct conflict with higher-
priority MB-strategies: We would like to change the approximation to A, which does 
not directly interfere with Ψ(B ⊕ C) that an MB-strategy is working on. There could, 
however, be an indirect interaction: Suppose that a higher-priority MA-strategy α has 
a promise (b, x, F1) where z ∈ F1, and a higher-priority MB-strategy γ has a promise 
(c, y, F2) where b ∈ F2 and c ∈ D. Now even though α’s axiom location is not directly in 
the set D, the chain reaction starting with z /∈ A would still cause a problem as then b

would need to leave Ba, and then c would need to leave C, causing D � B⊕C. If we are 
able to clear b via another axiom for x entering Ψα, then enumerating b into B will have 
the effect of enumerating c into C, so we can still get the desired result. The conclusion 
is that the strategy β can switch higher-priority MA-strategies to their backup versions 
(and need not consider the active MB-strategies). However, when clearing a witness z, 
it needs to take into account all elements b that may leave B once we remove z, not just 
the ones in the finite set of a realizing axiom 〈z, D〉.

Another modification to this strategy is needed in case the strategy has one of its 
infinite outcomes. In the simpler case, we reserved half of the stream below an infinite 
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outcome to code the set B. Now we need to ensure that each of Ba, Bw and C is reducible 
to Δ(A ⊕ B ⊕ C). We take a similar approach: We split up the stream generated into 
four parts: one to code Ba, one for Bw, one to code C, and the last one is reserved for 
lower-priority T A-strategies to pick witnesses.

A T B-strategy δ selects its witness z from the stream SBw and tries to clear it with 
respect to all MB-strategies. Once again, not enumerating a witness z into the set B can 
cause a chain reaction involving all kinds of axiom locations for MA- or MB-strategies, 
and even coding locations for higher-priority T A-strategies that have an infinite outcome. 
Nevertheless, the only thing that is important to δ is to free up the axiom locations from 
the realizing axiom 〈z, D〉 that stop being enumerated into C if z is not enumerated 
into Bw. For this reason, δ takes into account higher-priority MB-strategies and tries to 
get their clearance to diagonalize or switches them to a backup version. Below an infinite 
outcome, it codes the sets Ba and C with a portion of the stream SBw .

7.2.2. The diamond lattice
Suppose next that we want to construct Π0

2-enumeration degrees a > b, c > d such 
that a = b ∨ c and for all x ≤ a we have that x �= a, c, b implies that x ≤ d. We will 
build three Π0

2-sets B = Ba ⊕ Bw, C = Ca ⊕ Cw and D so that a = dege(B ⊕ C ⊕D), 
b = dege(B ⊕ D), c = dege(C ⊕ D), and d = dege(D). We will need to satisfy the 
following list of requirements:

MB,C
e : ∃Γ[Ψe(B ⊕ C ⊕D) = Γ(Ba)] ∨ ∃Δ[C ⊕D = Δ(Ψe(B ⊕ C ⊕D))],

MC,B
e : ∃Γ[Ψe(B ⊕ C ⊕D) = Γ(Ca)] ∨ ∃Δ[B ⊕D = Δ(Ψe(B ⊕ C ⊕D))],

MD,B
e : ∃Γ[Ψe(B ⊕D) = Γ(D)] ∨ ∃Δ[B ⊕D = Δ(Ψe(B ⊕D))],

MD,C
e : ∃Γ[Ψe(C ⊕D) = Γ(D)] ∨ ∃Δ[C ⊕D = Δ(Ψe(C ⊕D))],

where Γ and Δ are enumeration operators we construct and {Ψe}e<ω lists all enumeration 
operators, and

T C
e : Φe(B ⊕D) �= Cw,

T B
e : Φe(C ⊕D) �= Bw,

where again {Φe}e<ω lists all enumeration operators.
The T -requirements ensure that B ⊕ D and C ⊕ D are incomparable and hence 

D <e B⊕D, C ⊕D <e B⊕C ⊕D. The MD,B-requirements ensure that if X <e B⊕D

then X ≤e D, similarly the MD,C -requirements ensure that if X <e C⊕D then X ≤e D. 
The new idea comes from the combined use of the MC,B and MD,B requirement: Fix 
X ≤e B⊕C⊕D. If X �e B⊕D then by the MB,C requirements we have that C⊕D ≤e X. 
On the other hand if X �e C ⊕D then C ⊕D ≤e X and so X ≡e B ⊕ C ⊕D.
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As usual, we attach a stream SX to every set X ∈ {Ba, Bw, Ca, Cw, D}. The M-
strategies function in a similar way as before. The only difference is that they pick 
coding locations from different streams.

A T C-strategy selects its witnesses from SCw and tries to clear them with respect 
to two kinds of higher-priority M-strategies: MB,C- and MD,C-strategies. It can also 
switch these strategies to a backup version. To see why this is reasonable, note that the 
goal of this strategy, once it has a realized witness z, is to keep a finite set in B ⊕ D. 
Extracting z from Cw can cause axiom locations to leave Ba via an MB,C-strategy 
and D via an MD,C -strategy directly. The change in Ba can then cause axiom locations 
to leave the set D also via an MD,B-strategy. However, if we are able to re-enumerate 
all such axiom locations into Ba, then that will erase the indirect change in D. Thus 
when we ask for clearance, we consider all axiom locations that leave Ba if z leaves Cw, 
not just the ones involved in the realizing axiom. Below an infinite outcome, we code the 
sets Ca and D using a portion of the stream SCw .

Similarly, a T B-strategy works primarily with the stream SBw and with respect to 
higher-priority MC,B- and MD,B-strategies. Below its infinite outcome, it codes the 
sets Ba and D.

7.3. Embedding finite distributive lattices

In this section, we generalize the ideas from the previous two subsections to prove our 
main technical result:

Theorem 2.4. Every finite distributive lattice has a strong interval embedding into 
the enumeration degrees. (In fact, the range of the embedding will be inside the Π0

2-
enumeration degrees.)

Fix a finite distributive lattice L. Suppose that a0 is the least element and a1, . . . , an
are the nonzero join-irreducible elements, i.e., the nonzero elements which cannot be 
represented as the join of strictly smaller elements. Then every element of the lattice 
has a unique representation as aF =

∨∨
i∈F ai, where F ⊆ {0, 1, . . . , n} has the property 

that if ai ≤L aj and j ∈ F then i ∈ F . (We will call such F downward closed.) This is 
easily seen as follows: If F, G ⊆ {0, 1, 2, . . . , n} are downward closed sets, then aF ≤L aG
if and only if F ⊆ G. One direction is obvious: If F ⊆ G, then, of course, aF ≤L aG. 
On the other hand, if aF ≤L aG then fix i ∈ F . We have that ai ≤L aF ≤L aG and so 
ai = ai ∧ aG. By distributivity, ai =

∨∨
j∈G(ai ∧ aj). Since ai is join-irreducible, we have 

ai ∧ aj = ai for some j ∈ G, and so ai ≤L aj . Since G is downward closed, this implies 
i ∈ G as desired.

It is worth pointing out that this property is characteristic of distributive lattices. 
Consider the lattice M3 consisting of incomparable elements a, b, c, their least upper 
bound 1, and their meet 0. The top element has three different downward closed rep-
resentations: 0 ∨ a ∨ b, 0 ∨ a ∨ c, and 0 ∨ b ∨ c. Consider the lattice N5 consisting of 
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elements 0 <N5 a <N5 b <N5 1 and 0 <N5 c <N5 1, where c is incomparable with both a

and b. Here the top element has two different downward closed representations: 0 ∨a ∨ c

and 0 ∨ a ∨ b ∨ c. It is well-known (see Birkhoff [2, Theorems I.12 and II.13]) that every 
non-distributive lattice embeds at least one of M3 and N5.

Requirements. We will build sets X0, X1, . . . , Xn, and let the enumeration degree of 
AF =

⊕
i∈F Xi be the image of the element aF in the lattice L under the embedding 

into the enumeration degrees. This automatically ensures that aF ≤L aG implies (F ⊆ G

and hence) AF ≤e AG. (We will sometimes abuse notation and write AF for the set AF∗ , 
where F ∗ is the downward closure of F with respect to L.)

To ensure that we have strict inequality, i.e., that if aF �L aG then AF �e AG, we 
will have T -requirements. The T -requirements will be assigned to pairs (i, Fi) where 
i ∈ {1, . . . , n} and Fi = {j | ai �L aj}. We claim that aFi

is the greatest element in L
that is not above ai: Note that Fi is downward closed by definition. By the argument 
above, since i /∈ Fi, we have ai �L aFi

. And aFi
is greatest not above ai since, if 

aG �L aFi
, then G \F �= ∅, but then G contains the index of some aj ≥L ai and hence i.

For every i ≤ n, the set Xi will consist of two parts, Xa
i ⊕ Xw

i . For each such pair 
(i, Fi), we have the requirements

Ti,e : Xw
i �= Φe(AFi

).

Let’s check that this ensures what we want. Suppose that aF �L aG. Then F � G, so 
fix i ∈ F \G. Since i /∈ G and G is downward closed, we have that G ⊆ Fi and so from 
Xi �e AFi

, Xi ≤e AF , and AG ≤e AFi
we conclude AF �e AG.

Next, we need to ensure that a set U that is enumeration reducible to the top element 
A{0,1,2,...,n} is either enumeration equivalent to AF for some downward closed set F or 
else is enumeration reducible to the set X0. For this reason, we need a requirement MF,G

for every pair of elements (aF , aG) such that aG is minimal above aF . It follows that 
G = F ∪ {i} for some i. Indeed if i, j ∈ G \ F and i �= j, then the downward closure 
of F ∪ {i} and the downward closure of F ∪ {j} represent two different elements in the 
interval (aF , aG], contradicting minimality. The requirement will say that a set U ≤e AG

is either below AF or else is above the set A{j|aj≤Lai} = AG\F (Recall that, by our 
convention, G \ F denotes the downward closure of the set {i}.) Note that aG\F is the 
least element below aG that is not below aF . Indeed, if aH is below aG and not below aF , 
then H � F and H ⊆ G, hence i ∈ H and, by downward closure, G \ F ⊆ H.

To see that this set of requirements ensures what we want, fix U ≤e AG. We will have 
one requirement for every possible F ⊂ G representing an element aF such that aG is 
minimal above aF . If all requirements turn out with outcome AG\F ≤e U , then we claim 
that U ≡e AG. Fix a maximal join-irreducible element aj ≤L aG. Then F = G \ {j} is 
downward closed and aG is minimal above aF , hence U ≥e AG\F = A{i|ai≤Laj}. As aG
is the join of all maximal join-irreducible elements aj ≤L aG, it follows that U ≥e AG.
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On the other hand, for this G, consider a specific pair (F, G) and let G = {j} ∪ F . 
Furthermore, recall that, for every i, the set Xi will consist of two parts, Xa

i ⊕Xw
i . Denote 

by Aa
F the set 

⊕
i∈F Xa

i . Suppose that AG\F �e U ; then we will want U ≤e Aa
F ≤e AF

so that we can continue with “pushing” the degree of U down. Collectively, we thus end 
up, for all such pairs (F, G), with the requirements

MF,G
e : (∃Γ)[Ψe(AG) = Γ(Aa

F )] ∨ (∃Δ)[AG\F = Δ(Ψe(AG))],

which will ensure that U either has the same degree as some AF or else is reducible 
to X0, as desired.

Conflicts. A Ti-strategy β wants to change Xi and restrain AFi
. It will be in conflict 

with an MF,G-strategy α ≺ β only if G = F ∪ {i} (and hence F ⊆ Fi). Indeed, if i /∈ G, 
then enumerating and then extracting a witness from Xw

i does not affect Ψ(AG). On the 
other hand, if F � Fi, then the enumeration of a witness w into Xw

i may make an axiom 
in Ψ for some number x valid and so cause the M-strategy to enumerate markers mj

into Aj for j ∈ F to make an axiom for x in Γ valid; now later, the extraction of 
the witness w may mean that x leaves Ψ(AG); however, we can still restrain in Aj the 
markers mj for all j ∈ Fi ∩ F because there is a marker mj for some j ∈ F \ Fi that 
can be used to extract x from Γ(Aa

F ). This means that all MF,G-strategies that are in 
conflict with Ti have G = F ∪ {i} and hence the same set AG\F = A{j|aj≤Lai}.

Streams, approximations, and parameters. For every i ≤ n and for every Xi, we have 
two streams Sia

δ and Siw

δ at every strategy δ. The streams at the root strategy ∅ at stage s
consist of the interval [0, s]. For the other strategies, we will define them recursively 
during the construction. When an M-strategy α chooses axiom locations for Xi, it picks 
them out of the stream Sia

α . When a Ti-strategy β picks witnesses, it picks them out of 
the stream Siw

β . An element from a stream is suitable for a strategy δ if it is the 〈δ̂, x〉-th 

element that is not used in an attachment for some x ∈ ω, where δ �→ δ̂ is a computable 
injective function that maps a strategy δ to a natural number.

We will also have dump sets Ua
i and Uw

i for all i ≤ n.
Next, an MF,G-strategy α has as parameters the enumeration operator Γα that it 

builds, and a list of promises Pα. A promise is of the form ({mj}j∈F , x, D), where 〈x, D〉
is an axiom in Ψα and mj is an axiom location picked from the stream Sja

α and targeted 
for Xa

j .
A Ti-strategy β has a parameter Cβ = {α0, . . . , αk−1} in which we list in order of pri-

ority all M-strategies of higher priority that are in conflict with β and still active along β

(i.e., no T -strategy of higher priority has switched them to a backup strategy). The in-
finite outcomes of β are determined by the number k. Below each infinite outcome ∞u, 
say, the strategy β will build an operator Δβ

u that enumerates Xw
i from Ψαu

(AGαu
), and 

we will code into Xw
i all sets Xa

j where aj ≤L ai as well as all sets Xw
j where aj <L ai. 

For each such X, we will have an attachment set at outcome ∞u denoted by HX
u,β. The 
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entries in this set are of the form (z, y), where z is a witness of β enumerated into the 
stream Siw

βˆ∞u
. The strategy β will also have a current witness zβ as well as other minor 

parameters that we will define during the construction.
The M-strategies make promises; the T -strategies make attachments. Whenever a 

new number is enumerated into a set by a strategy α, this sets off a chain reaction in 
which higher-priority strategies respond by possibly enumerating more elements. At any 
moment, the set of their promises or attachments are all finite, so this process is finitary. 
We define functions gα to explain formally how this process works. The function gα has 
2(n +1) arguments �Da = Da

0 , D
a
1 , . . . , D

a
n and �Dw = Dw

0 , D
w
1 , . . . , D

w
n , where Da

i and Dw
i

are finite sets targeted for Xa
i and Xw

i , respectively. The function gα outputs a vector 
of 2(n + 1) sets in turn:

gα( �Da, �Dw) = (
⋃

l

Da
0,l, . . . ,

⋃

l

Da
n,l,

⋃

l

Dw
0,l, . . . ,

⋃

l

Dw
n,l),

where Da
i,0 = Da

i ∪ Ua
i and Dw

i,0 = Dw
i ∪ Uw

i , and where

Dw
i,l+1 = Dw

i,l ∪ {z | (∃σ, u, j)(∃y)[σ assigned to Ti, σˆ∞u � α, and

[[(z, y) ∈ H
Xa

j
u,σ and y ∈ Da

j,l] or [(z, y) ∈ H
Xw

j
u,σ and y ∈ Dw

j,l]]]}

and

Da
i,l+1 = Da

i,l ∪ {mi| (∃F,G, e, σ)(∃x,D)[i ∈ F , σ � α is active at α,

σ is assigned to MF,G
e , ({mj}j∈F , x,D) ∈ Pσ, and D ⊆

⊕

j∈G

(Da
j,l ⊕Dw

j,l)]}.

Tree of strategies. The set of outcomes is, as before, {w, d, ∞l : l < ω}, ordered by:

d <L ∞0 <L ∞1 <L · · · <L w.

The tree of strategies will be a partial computable function

T : {w, d,∞l : l < ω}<ω → R,

where R is an effective listing of all M- and T -requirements. We will define T (α) and Cα

by induction: Set T (∅) = M0. If T (α) = Mα, then T (α d̂) is defined and equals the least 
T -requirement that has not been assigned to any node β � α, and we set Cα d̂ = Cα∪{α}. 
If T (α) = Tα and Cα = {α0 ≺ α1 ≺ · · · ≺ αk−1}, then we set T (αˆw) and T (α d̂) to be 
the least M-requirement that has not yet been associated to any node β � α. For every 
l < k, we set T (αˆ∞l) = T (α). Note that in that case C(αˆ∞l) = C(α) \ {αl}, hence a 
specific T -requirement can only be assigned finitely often along each branch. It follows 
that every requirement is assigned along each infinite path, and furthermore, that it is 
assigned only a finite number of times.
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Construction. At stage 0, the global dump sets Ua
i and Uw

i are empty, and all strategies 
are in initial state: For an M-strategy α, we have that Γα = ∅ and Pα = ∅; for a Ti-
strategy β with |Cβ | = k, we have that Δβ

l = HX
l,β = ∅ for all l < k and all X ∈ {Xa

j |
aj ≤L ai} ∪ {Xw

j | aj <L ai}, and that the current witness zβ is undefined.
At stage s > 0, we build fs of length at most s, activating strategies along fs. We 

begin by enumerating Ua
i and Uw

i into Xa
i and Xw

i for all i ≤ n, respectively. We then 
start at the root and let Six

∅,s = Six

∅,s−1 ∪ {s}, for x ∈ {a, w} and i ≤ n. Suppose we have 
constructed fs � t, along with Six

fs�t,s = Six

fs�t,s−1 ∪ {yxi } and Xa
i,s, Xw

i,s (or rather, the 
approximations to these sets at substage t of stage s). If t = s, then we end this stage 
and move on to the next. We initialize all strategies on the tree that are to the right of fs
by returning them to their initial state as defined at stage 0. If t < s, then we activate 
fs � t and let it pick its outcome o. Then fs � (t + 1) = (fs � t)̂ o:

Case 1: Suppose fs � t = α is an MF,G-strategy. If α did not end the previous stage 
at which it was visited prematurely, and there is an axiom in Ψα which has not yet 
been assigned all axiom locations mj for j ∈ F , then pick the oldest such axiom 〈x, D〉, 
i.e., the one that was first enumerated into Ψα. For every j ∈ F such that mj is not yet 
defined, check whether yaj is suitable and larger than max(D). If so, we take yaj out of the 
stream, set mj = yaj , and end this stage of the construction prematurely. If we now have 
a suitable mj for all j ∈ F , then we enumerate the promise ({mj}j∈F , x, D) into Pα and 
the axiom 〈x, 

⊕
j∈F {mj}〉 into Γα. Otherwise (if α ended the previous stage at which it 

was visited prematurely, if no yaj is suitable, or if all axioms in Ψα have been assigned 

axiom locations), then we enumerate each yxj into the stream Sjx

αˆd and let d be α’s 
outcome. In either case, we enumerate gα( �Xa

j,s, �X
w
j,s) for j ≤ n into the sets ( �Xa

j , �X
w
j ).

Case 2: If fs � t = β is a T i-strategy and Cβ = {α0 ≺ · · · ≺ αk−1} is the list of active 
M-strategies of higher priority in conflict with β, then we pick the first case which 
applies:

(1) The strategy β was successful via a realized witness z and had outcome d at the 
previous stage at which it was active. In that case, for all j ∈ Fi, enumerate Dj

z

into Xa
j . (Here, Dj

z consists of axiom locations that belong to higher-priority MF,G-
strategies still active at β such that i ∈ G, and these Dj

z were defined when the 
witness became realized.) For all j ≤ n, enumerate yxj into Sjx

βˆd. We enumerate 

gβ( �Xa
j,s, �X

w
j,s) into the corresponding sets ( �Xa

j , �X
w
j ) for j ≤ n, and let the outcome 

be d.
(2) The current witness zβ is not defined. If ywi is suitable for β, and larger than |β|

and larger than the last stage when β was initialized, then let the current witness
be zβ = ywi and end this stage. Otherwise, enumerate yxj into Sjx

βˆw for all j ≤ n. We 

enumerate gβ( �Xa
j,s, �X

w
j,s) into the corresponding sets ( �Xa

j , �X
w
j ) and let the outcome 

be w.
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(3) The witness zβ is not realized, i.e., zβ /∈ Φβ(
⊕

j∈Fi
(V a

j ⊕ V w
j )), where

(�V a
j , �V

w
j ) = gβ(

−−−−−−−−−−→
(Xa

j,s ∪ Sja

βˆw,s)j≤n,
−−−−−−−−−−→
(Xw

j,s ∪ Sjw

βˆw,s)j<i,

Xw
i ∪ {zβ} ∪ Siw

βˆw,
−−−−−−−−−−→
(Xw

j,s ∪ Sjw

βˆw,s)i<j≤n).

We then enumerate

gβ(( �Xa
j,s)j≤n, ( �Xw

j,s)j<i, X
w
i,s ∪ {zβ}, ( �Xw

j,s)j>i)

into (( �Xa
j,s)j≤n, ( �Xw

j )j≤n), the numbers yxj into the corresponding stream Sjx

βˆw, and 
let the outcome be w.

(4) The witness zβ is realized. Enumerate the numbers from the stream Sjx

βˆw,s into Uxj . 
For every j ∈ Fi, let Dj

zβ
be the set of axiom locations m of higher-priority active 

MF,G-strategies with i ∈ G and targeted for Xa
j such that if zβ is in Xw

i , then 
those axiom locations are enumerated into Xa

j via the function gβ , but if zβ /∈ Xw
i , 

then they are not enumerated. (We will argue that axiom locations that have the 
same behavior but belong to other types of MF,G-strategies, i.e., with i /∈ G but 
Fi∩F �= ∅, are automatically enumerated into their respective set once all Dj

zβ
are.) 

For every u < k, let Ezβ
u be the set of numbers that enter Ψαu

(AGαu
) when zβ is 

enumerated into Xw
i but leave Ψαu

(Gαu
) when zβ is taken out. Make the current 

witness zβ undefined.
Now, for every realized witness z, x ∈ {a, w}, j ≤ n, and every u < k, let

M
Xw

i
u,z =Xw

i,s ∪
⋃

u≤v≤k

Siw

βˆ∞v
\ {z}, and

M
Xx

j
u,z =Xx

j,s ∪
⋃

u≤v≤k

Sjx

βˆ∞v
for (x, j) �= (w, i).

Let

(�LXa
j

u,z , �L
Xw

j
u,z ) = gβ( �MXa

j
u,z , �M

Xw
j

u,z ).

We say that z is αu-cleared if Ez
u ⊆ Ψαu

(
⊕

j∈Gαu
L
Xa

j
u,z ⊕ L

Xw
j

u,z ). We search for the 

(lexicographically) least pair (u, z) such that z is a realized witness, z /∈ SXw
i

βˆ∞v
for 

v < u, z /∈ Uw
i and z is αv-cleared for all v > u. Note that the pair (k−1, zβ) satisfies 

these conditions.
For all j ≤ n, we enumerate 

⋃
u<v<k M

Xa
j

v,z into Ua
j , and 

⋃
u<v<k M

Xw
j

v,z into Uw
j . We 

set Δv = HY
v = ∅ for v > u and all Y ∈ {Xa

j | aj ≤L ai} ∪ {Xw
j | aj <L ai}.

(a) If u ≥ 0, then we enumerate the axiom 〈z, Ez
u〉 into Δu, the sets gβ( �Xa

j,s, �X
w
j,s)

into the corresponding sets ( �Xa
j , �X

w
j ), the number z into the stream Siw(βˆ∞u), 

the numbers yxj (for (x, j) �= (w, i)) into the corresponding streams Sjx

βˆ∞ , and 

u



34 S. Lempp et al. / Advances in Mathematics 383 (2021) 107686
let the outcome be ∞u. List the set {Xa
j | aj ≤L ai} ∪ {Xw

j | aj <L ai}
as {Y0, Y1, . . . , Ym−1}. If z is the (m · q + v − 1)-st number enumerated into 
Siw(βˆ∞i) for v < m, then we enumerate the attachment (z, q) ∈ HYv

β,u and end 
this stage. If z is the (m ·q+m −1)-st number enumerated into the stream, then 
we do not end the stage and let the next strategy act.

(b) Otherwise, we have a witness z that is αv-cleared for all v < k. We say that z

is successful. We enumerate Dj
z into Xa

j and then gβ( �Xa
j,s, �X

w
j,s) into ( �Xa

j , �X
w
j ). 

We let the outcome be d.

Verification. We define the infinite path f by f(t) = lim infs>t fs(t). It is straightfor-
ward to see that strategies σ along f are visited at infinitely many stages and initialized 
at only finitely many stages. Let sσ be the least stage after which σ is not initialized. 
Let X ∈ {ia, iw}i≤n. Let SX

σ =
⋃

s>sσ
SX
σ,s. A simple induction on the length of σ proves 

that SX
σ is infinite. Furthermore, if a strategy σ is visited at two consecutive σ-stages 

s > t > sσ, then Xa
i,s ⊇ Xa

i,t and Xw
i,s ⊇ Xw

i,t (as seen at substage |σ|), as in order for 
a strategy above σ to stop enumerating an element, it must move its outcome left of σ
and hence initialize σ. Our next lemma holds the key to the way numbers may enter the 
sets Xa

i and Xw
i for i ≤ n.

Lemma 7.5. If a number m ∈ Xa
i or z ∈ Xw

i where i ≤ n, then either m or z is dumped 
into Xa

i or Xw
i , respectively, starting at some stage, or there is a strategy σ ≺ f such 

that at all but finitely many stages, σ is the least strategy that enumerates m or z into 
its corresponding set, and it does so at cofinitely many stages at which σ takes its true 
outcome.

Proof. First note that if a number ever enters a dump set Ux
i for x ∈ {a, w} and i ≤ n

at stage s, say, then it is enumerated into Xx
i at the beginning of every stage t > s.

So suppose that m ∈ Xa
i , but is never dumped into Ua

i . Note that when an MF,G-
strategy picks a number as an axiom location, then that number is taken out of the 
stream. It is never returned to any stream, so no other strategy can use it. If m is not 
the axiom location to any strategy then it is not enumerated into Xa

i at any stage unless 
it is dumped, so let α be the unique MF,G-strategy that uses m as an axiom location, 
say, for the axiom 〈y, D〉. It follows that i ∈ F . If α is ever initialized, then m is dumped. 
Indeed, if α is initialized, then a higher-priority T -strategy σ with σ ô � α moves to 
an outcome o′ that is to the left of o. Every time a T -strategy moves its outcome to 
the left, it dumps all elements into the streams associated with outcomes to the right 
unless the element is a specific witness (but then this element is in a different stream). 
In particular, it dumps Sia

α ⊆ Sia

σ ô. So, by assumption, α is never initialized.
There are infinitely many stages at which m is enumerated into Xa

i . At stage s, this 
could be because a strategy σ � α such that α is active at σ causes D ⊆ AG or because 
a successful Tj-strategy β has m ∈ Di

z for some realized cleared witness z and is visited 
at stage s. We first claim that there are only finitely many possible strategies β that can 
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have m ∈ Di
z for a realized witness z. This is because if z entering Xw

j causes D ⊆ AG, 
and z not entering Xw

j does not cause D ⊆ AG, there is a sequence of promises and 
attachments that realize this. This sequence is triggered by z and ends in D ⊆ AG. It 
follows that z ≤ max(D) < m. This is because every time we pick axiom locations for an 
axiom, we require that they are larger than all elements in the finite set associated with 
the axiom, and every time we make an attachment (z, n), we have that n < z. There are 
finitely many T -strategies that can have a witness z < m, because the witness for β is 
always selected to be larger than |β|. Once a strategy β succeeds with a witness z with 
m ∈ Di

z, it will keep z /∈ Xw
j at all further stages unless it is initialized. This means that 

while β is not initialized, no other strategy will have a reason to enumerate m into Xa
i , 

as in order for m to enter Xa
i (and that needs to happen in order for m to possibly 

enter another Di
z′ for the realized witness of a different strategy), we must have that 

z ∈ Xw
j . This means that unless β is initialized, m will be enumerated into Xa

i only at 
stages at which β is visited. If β is initialized, then it will have witnesses of size greater 
than the stage at which it is initialized. It follows that there are only finitely many pairs 
(β, z) such that m ∈ Di

z and z is a successful witness for β. If there is such a strategy β

that is never initialized, then we have argued that β must be visited infinitely often (as 
m ∈ Xa

i ), and so β is on the true path. It enumerates m along with Di
z every time it is 

visited after z’s success.
If no such strategy remains uninitialized, then after some stage s0, the axiom loca-

tion m can only be enumerated into Xa
i via the promise at α and the function gσ for 

some σ extending α. It follows that at infinitely many stages s, D ⊆ AG,s, and thus 
D ⊆ AG. Now, since max(D) < m, we can use the induction hypothesis: For every ele-
ment u ∈ D, there is a strategy σu ≺ f that enumerates u into its respective set at all 
stages at which it is visited after some fixed stage su. Pick the longest such σu. Then at 
all stages t > max{su | u ∈ D} at which σu is visited, it will enumerate m into Xa

i via 
the function gσu

.
Now suppose z ∈ Xw

i and is never dumped. At every stage s, there is at most one 
strategy γs = β ô visited at stage s such that z is an unrealized witness of β and o = w, 
or such that z is a realized witness of β and β uses z in an attachment below outcome 
o = ∞u for some u < k. There are only finitely many strategies β that can ever fulfill 
this role, as z must be suitable for β and β has length no more than z. If between stages 
s < t, such a strategy for z changes, then γt <L γs. So let β be such that β ô is least 
among all such γt, and hence equal to γt at all but finitely many stages t. If o = w, 
then z enters Xw

i only at stages at which we visit β and β has outcome w. It follows 
that βˆw ≺ f .

If o = ∞u, then (z, y) ∈ HY
β,u and hence the only way that z can enter Xw

i is if some 
strategy compatible with βˆ∞u enumerates y into Y . As y < z, we have by induction 
that there is a unique strategy σ ≺ f that causes this. So either σ � β, in which case 
βˆ∞u ≺ f and z ∈ Xw

i at all but finitely many βˆ∞u-true stages, or else βˆ∞u � σ

and σ enumerates z ∈ Xw
i along with y via the function gσ. �
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Lemma 7.6. Every T -requirement is satisfied.

Proof. Fix a requirement Ti,e. Let β ≺ f be the longest strategy that is assigned to 
requirement Ti,e. Such a strategy exists because once Ti,e is assigned to a node σ with 
|Cσ| = k, Ti,e can be assigned at most k many more times along any path through σ. It 
follows that β d̂ ≺ f or βˆw ≺ f .

If βˆw ≺ f , then there is an unrealized witness z such that at every β-true stage s, 
z /∈ Φe(

⊕
j∈Fi

(V a
j ⊕ V w

j )), where

(�V a
j ,

�V w
j ) = gβ(

−−−−−−−−−−→
(Xa

j,s ∪ Sja

βˆw,s)j≤n,
−−−−−−−−−−→
(Xw

j,s ∪ Sjw

βˆw,s)j<i,

Xw
i ∪ {z} ∪ Siw

βˆw,
−−−−−−−−−−→
(Xw

j,s ∪ Sjw

βˆw,s)i<j≤n).

By Lemma 7.5, we have that Xa
j ⊆

⋃
s V

a
j,s and Xw

j ⊆
⋃

s V
w
j,s, where s ranges over all 

βˆw-true stages. This is because the true path passes through βˆw and so any element 
enumerated into any set Y is either enumerated by a strategy of higher priority than β

and hence in the set Ys by the time we reach β, enumerated by β and hence it is a 
member of the corresponding set in the sequence (�V a

j , �V
w
j ), or else it is enumerated by 

a strategy extending βˆw and hence belongs to the stream SY
βˆw at some β-true stage s. 

It follows that z /∈ Φe(
⊕

j∈Fi
Xj). On the other hand, z is enumerated into Xw

i at every 
sufficiently large β-true stage, so z ∈ Xw

i .
If β d̂ ≺ f , then there is a successful witness z that is αu-cleared for all u < k. This 

means that z was realized, and so at some earlier stage, we saw z ∈ Φe(
⊕

j∈Fi
(V a

j ⊕V w
j )). 

The strategy β then proceeded to dump into the respective stream all elements that 
contribute to the definition of the sets V a

j and V w
j apart from the witness z. This leaves 

out numbers that enter AFi
when z is enumerated into Xw

i , but are not enumerated 
into AFi

when z is left out of Xw
i via the function gβ . From those numbers, the axiom 

locations that are used by higher-priority active MF,G-strategies with i ∈ G enter the 
set Dj

z (where j ∈ Fi) and are enumerated into their corresponding set when β is visited. 
This leaves axiom locations for MF,G-strategies where i /∈ G, and attachments.

We reason by induction. We will show that any axiom location targeted for Xa
j or 

attachment targeted for Xw
j , where aj �L ai, that is enumerated when z is enumerated, 

and is not enumerated if z is not enumerated at the stage when z became realized is 
enumerated into its targeted set when we visit β. Fix an axiom location m targeted 
for Xa

j by α � β where j ∈ Fi. The strategy α is an MF,G-strategy. If i ∈ G, then 
m ∈ Dj

z, so suppose that i /∈ G. This means that m is part of a promise ({mi}i∈F , x, D)
at α and D is enumerated into the set that it is targeted for if z enters Xw

i . Since i /∈ G, 
we have that the set D consists of axiom locations and attachments targeted for Xw

k , 
where k �= j. Since G is downward closed, we even have that ak �L ai. As m > max(D), 
we can apply the induction hypothesis, namely, that D is enumerated into its targeted 
set at every stage at which we visit β, and so we enumerate m via the function gβ as 
well.
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Now consider an attachment y targeted for Xw
j , where aj �L ai. Then it belongs 

to a Tj-strategy β′ � β. The Tj-strategy codes all Y x
k , where ak <L aj , as well as Y a

j , 
so y is a part of an attachment (y, q) where q < y is targeted for one of these Y x

k or 
Y a
j . Since ak ≤L aj and aj �L ai, it follows that ak �L ai. Once again, the induction 

hypothesis applies, and so q ∈ Y x
k at all sufficiently large β-true stages. The definition 

of the function gβ then ensures that y ∈ Xw
j at all sufficiently large β-true stages. �

Lemma 7.7. Every M-requirement is satisfied.

Proof. Fix e and let F ⊂ G ⊆ {0, 1, . . . , n} be downward closed sets in L such that F

represents aF , G represents aG, and aG is minimal above aF . Then there is a unique 
strategy α ≺ f assigned to the requirement MF,G

e . Suppose first that α is switched 
to a backup strategy by some Ti-strategy β � α along the true path. We know that 
G = F ∪ {i} and hence we have that F ⊆ Fi and G \ F = {aj | aj ≤L ai} under our 
convention. We have that βˆ∞u ≺ f , C(β) = {α0, . . . , αk−1} and α = αu. It follows that 
for all elements z ∈ SXw

i (βˆ∞u), we have that z ∈ Xw
i if and only if z ∈ Δu(Ψα(AG)). 

This is because if we ever see an axiom stop being valid, we would move to an outcome 
to the left of ∞u. First of all, we claim that 

⊕
aj<Lai

(Xa
j ⊕Xw

j ) ⊕Xa
i ≤e Δu(Ψα(AG)). 

By Lemma 7.5, we have that y ∈ Y (where Y ∈ {Xa
i } ∪ {Xa

j , X
w
j | aj <L ai}) if and 

only if a there is a strategy σ ≺ f that enumerates y at all but finitely many σ-true 
stages. The strategy β has an attachment (z, y) ∈ HY

u for some z ∈ Sxw
i (βˆ∞u), and 

so if y ∈ Y then at all max(σ, βˆ∞u)-true stages, z would be enumerated into Xw
i . On 

the other hand, z is enumerated into Xw
i at stage s only if y ∈ Ys, so we have that 

Y = {y | (z, y) ∈ HY
u & z ∈ Δu(Ψα(AG))}.

Next, we note that Xw
i consists of three types of elements: the elements that are 

enumerated into Xw
i by strategies of higher priority than β at β-true stages s (which is a 

c.e. set); the elements in Xw
i ∩ (

⋃
s Siw

βˆ∞u
) = Δu(Ψα(AG)); and the set of all numbers z

such that (z, y) is an attachment at some Ti-strategy σ � β coding some Y ∈ {Xa
i } ∪

{Xa
j , X

w
j | aj <L ai} and y ∈ Y . We have already argued that Y ≤e Δu(Ψα(AG)), 

and so the last part of Xw
i is also reducible to Δu(Ψα(AG)). Altogether, we obtain that 

AG\F ≤e Ψα(AG)), and so the requirement MF,G
e is satisfied.

On the other hand, suppose that α is never switched to a backup strategy. We claim 
that Γα(Aa

F ) = Ψα(AG). If x ∈ Ψα(AG), then there is a valid axiom 〈x, D〉 in Ψα. This 
axiom is assigned a set of axiom locations {mj}j∈F , and the axiom 〈x, 

⊕
j∈F {mj}〉 is 

enumerated into Γα. By Lemma 7.5, we have that D ⊆ AG,s at cofinitely many σ-true 
stages s for some sufficiently long σ ≺ f . As α is active at all of its successor nodes 
along the true path, it follows that gmax(σ,α) enumerates 

⊕
j∈F {mj} into Aa

F , and so 
x ∈ Γα(Aa

F ).
Now suppose that x ∈ Γα(Aa

F ) via an axiom 〈x, 
⊕

j∈F {mj}〉, associated with an 
axiom 〈x, D〉 ∈ Ψα. If the axiom 〈x, D〉 ∈ Ψα is not valid, then after finitely many 
stages, the axiom locations can only be enumerated into Aa

F if they enter sets Dj
z for 

some witness z and are enumerated by a T -strategy. By Lemma 7.5, we have that if any 
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axiom location m is in Aa
F , then there is a least strategy σ ≺ f that enumerates it at 

cofinitely many σ-true stages. Fix such an axiom location m and the corresponding σ. 
If σ is a Ti-strategy, where F ∪ {i} = G, then z is a realized witness that is cleared 
by α, meaning that σ has found evidence that all x associated with axiom locations 
that are enumerated if z is enumerated, and not enumerated if z is not enumerated, and 
that belong to strategies in conflict with α, are in Ψα(AG) even when z is not in Xw

i . 
The number x associated with m is one of these numbers. The strategy σ ensures that 
x ∈ Ψα(AG) remains true at further true stages by dumping relevant elements, and so 
in this case, x ∈ Ψα(AG).

If σ is a Tk-strategy such that k /∈ G, then m cannot end up in Dj
z. So suppose that 

k ∈ G and F � Fk. Let m′ be an axiom location from the same promise as m but which 
is targeted for some Xa

l with l ∈ F \ Fk. If the axiom associated with m and m′ is 
invalid, then m′ is not enumerated into Xa

l via the function gρ by any strategy ρ along 
the true path. We need to show that m′ cannot enter Dl

z′ via a different strategy τ ≺ f . 
Assuming that m is the axiom location associated with x that enters its corresponding 
set first, it follows that τ � σ. Strategies extending σ d̂ are visited for the first time 
after m′ is already defined, so their witnesses are larger than m′ and cannot influence 
whether m′ is enumerated or not, so m′ can never enter the set Dl

z′ for a witness z′. It 
follows that m′ remains out of Xa

l , contradicting the assumptions.
Thus x ∈ Γα(Aa

F ) must imply that x ∈ Ψα(AG), and so MF,G is once again satis-
fied. �
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