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1. Introduction

Consider a degree structure D, a partial order induced by an arithmetically definable
reducibility on sets of natural numbers. When studying such a structure, we start by
investigating which first-order facts about the structure are true and which are false.
Ideally, we would like to characterize the theory of the structure by giving an algorithm
which decides whether a given sentence (in the language of partial orders) is true or
not. Unfortunately, most degree structures have first-order theories that are far from
decidable. Once undecidability is established, two natural questions follow: What is the
Turing degree of the theory Th(D) of the structure D (viewed as a set of codes for
sentences), and at what quantifier complexity does decidability break down?

An interesting phenomenon in degree theory is that when we can provide answers
to the questions above, the answers seem to always follow the same pattern: For the
partial order of the Turing degrees Dz, Simpson [22] proved that Th(Dr) is computably
isomorphic to the second-order theory of true arithmetic. Shore [20] and Lerman [15]
independently proved that V3-theory of Dy is decidable, while Lerman and Schmerl (see
Lerman [15]) proved that the 3V3-theory of Dy is undecidable. For the partial order of the
many-one degrees D,,, Nerode and Shore [17] proved that Th(D,,) is computably isomor-
phic to the second-order theory of arithmetic; Dégtev [5] proved that the V3-theory of D,,
is decidable, while Nies [18] proved that the 3v3-theory of D,, is undecidable. For the
local structure of the AS-Turing degrees Dr(< 0'), Shore [21] proved that Th(Dr(< 0'))
is computably isomorphic to the first-order theory of arithmetic. Shore and Lerman [16]
proved that the V3-theory of Dr(< 0') is decidable, while the same proof that is used
for Dr by Lerman and Schmerl showed that the 3V3-theory of Dz (< 0’) is undecidable.
Similar results were shown for the arithmetic and hyperarithmetic degrees.

In this paper, we will focus on the structure of the enumeration degrees, where less is
known. Enumeration reducibility captures a natural relationship between sets of natural
numbers in which positive information about the first set is used to produce positive
information about the second set. Friedberg and Rogers [6] introduced enumeration
reducibility in 1959.

Definition 1.1. A C w is enumeration reducible to B C w (denoted as A <., B) if there is
a c.e. set W such that

A={n: (3e) (n,e) € W and D, C B},
where D, is the eth finite set in a canonical enumeration.

An equivalent way to define this reducibility is to say that A <. B if there is a uniform
way to compute an enumeration of A from every enumeration of B. In fact, Selman [19]
proved that the uniformity condition can be dropped.

The degree structure D, induced by <. is the partial order of the enumeration de-
grees. D, is, in fact, an upper semilattice with a least element 0. (the degree of all c.e.
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sets) and a jump operator, just like Dr. Note that enumeration reducibility is a definable
relation in second-order arithmetic. Thus it is easy to interpret the partial order D, in
second-order arithmetic. Slaman and Woodin [25] proved that the converse is true as
well, and so Th(D,) is computably isomorphic to second-order arithmetic, just like the
theory of the Turing degrees. Lagemann [11] proved that every countable partial order
can be embedded in the enumeration degrees and so the 3-theory of D, is decidable.
However, it is not known where decidability breaks down.

In this paper, we make several advancements towards a solution of this open question.
Our main structural result on which the other results rely is the existence of a strong
interval embedding of every finite distributive lattice—generalizing the embedding of the
two element lattice as a nonzero degree and its strong minimal cover. This result and an
application of the Nies Transfer lemma allow us to conclude that the 3vV3-theory of D,
is not decidable. On the other hand, we show that the extension of embeddings problem
for D, is decidable. The extension of embeddings problem captures a nontrivial fragment
of the V3-theory of a partial order. We also prove that this is the maximal fragment on
which the Turing degrees and the enumeration degrees are elementarily equivalent.

2. The V3-theory of an upper semilattice

We start by reviewing the algorithm that decides the V3-theory of the Turing degrees
and the reasons why the same algorithm cannot apply to the structure D.. Our first
step is to rephrase the problem of deciding the V3-theory of an upper semilattice D in
a structural way. A decision procedure for the following problem is easily seen to be
equivalent to a decision procedure for V3-Th(D):

Problem 2.1. Given a finite partial order P and finitely many finite extensions @1, . .., Qk
of P, does every embedding of P into D extend to an embedding of @); for at least one
1 < k7

The special case when k = 1 is known as the extension of embeddings problem for D.

Consider the case when D = Dr. Lerman [14] showed that every finite lattice P can
be embedded as an initial segment of the Turing degrees Dr. Suppose that P is a lattice
and ) extends P as a partial order. The embedding of P as an initial segment of Dp
can be extended to an embedding of @ only if no new element in @ \ P is bounded by
any element of P. In addition, @ must respect least upper bounds; i.e., if x € Q \ P is
above two old elements u,v € P then x must be above u V v. If P is simply a partial
order, we first extend P to a lattice P* by adding a minimal number of new elements
(this can be done in a unique way) and then ask that new elements in @\ P either satisfy
the previous conditions or can be mapped to one of the added elements from P*\ P.
Shore [20] and Lerman [15] independently proved that these are the only obstacles,
yielding an algorithm for the solution of an instance of Problem 2.1 in Dz: Output
“Yes” if one of the @Q; satisfies the conditions above, and “No” otherwise. The algorithm
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does not even use the possibility of selecting different possible extensions in different
situations, it is reduced to its simplest case, the extension of embeddings problem.

The algorithm described above cannot work for a dense structure, such as the partial
orders of the c.e. Turing degrees R or that of the ¥3-enumeration degrees D.(< 0.).
In both of these cases, we know that the extension of embeddings problem is decidable
(by work of Slaman and Soare [23] for R, and by Lempp, Slaman, and Sorbi [13] for
D (< 0%)). In both cases, we also know that the Iv3-theory is undecidable (by work of
Lempp, Nies and Slaman [12] for R, and by Kent [9] for D.(< 0”)). A decision procedure
for the more general Problem 2.1, i.e., for the Y3-theory, remains out of reach in both
cases.

In D,, the situation is very interesting for the following reasons. Gutteridge [7] showed
that the enumeration degrees are downward dense. Hence, in this case as well, there can
be no initial segment embeddings of finite lattices. Cooper [4] proved, however, that
the enumeration degrees are not dense and Slaman and Calhoun [3] extended Coopers’s
result by showing that there are empty intervals in the II3-enumeration degrees. Kent,
Lewis-Pye, and Sorbi [10] showed that there are strong minimal covers in the enumeration
degrees:

Definition 2.2. A degree b is a strong minimal cover of a degree a if a < b and every
degree x < b is < a.

Consider the two-element lattice P consisting of two elements u < v. In D, we can
embed this lattice as an initial segment: u is mapped to Op, and v is mapped to some
minimal degree. The only way that this embedding can be extended to an embedding
of Q is if every element of @ \ P is incomparable to or above v. In the enumeration
degrees, the situation is slightly different: The embedding of P to enumeration degrees
a < b such that b is a strong minimal cover of a extends to an embedding of @ only
if new elements z € @ \ P that are strictly below v are also below u. The embedding
of P to degrees 0. < b, on the other hand, extends to an embedding of @) only if all
new elements x € @ \ P are above u. Slaman and Sorbi [24] show that every countable
partial order can be embedded below any nonzero enumeration degree. This, along with
a standard forcing argument, allows us to conclude that these are the only obstacles.
Thus, for this particular lattice P, we can decide Problem 2.1: Every embedding of P
extends to an embedding of Q1,...,Q,, if and only if there is a @Q; that places new
elements strictly below v also below u and there is a (possibly different) Q; that places
all new elements above u. The decision procedure is already slightly more complicated
than that for the same lattice in Dr.

A first step towards a possible extension of the algorithm outlined above to the general
case, where P is an arbitrary finite lattice, requires the generalization of embedding the
two-element lattice to a nonzero degree and a strong minimal cover of it. We introduce
the notion of a strong interval embedding:
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Definition 2.3. Let P be a finite lattice and D a degree structure. An embedding f : P —
D is a strong interval embedding if the range of the embedding f is an interval [a,b] C D
and every degree x < b that is not in the range of f is bounded by a.

The main technical result of this paper is the following.
Theorem 2.4. Fvery finite distributive lattice has a strong interval embedding into De.

We postpone the proof of this theorem until Section 7 and focus first on several
applications.

3. The undecidability of the 3V3-theory

Recall that a set of sentences (2 in a language L is hereditarily undecidable if no subset
® C Q) that contains all validities in € is decidable. For example, Nies [18] proved that the
VaV-theory of finite distributive lattices is hereditarily undecidable. In the same paper, he
gave a general recipe for transferring undecidability between classes of structures. The
following definition is adapted from Nies [18] to our specific setting. (Here, we adopt
Nies’s notation of Eg—formulas for dj-formulas, and Hg—formulas for Vj-formulas; so,
e.g., ©9, 33 and 3v3 all mean the same.)

Definition 3.1. Let C be a class of structures in a finite relational language L =
{R4,...,R,}. We say that C is X0 -elementarily definable with parameters in D, if there
are Zg—formulas YU, ¢Yr;, and @_g, for i < n such that for every C' € C, there are
parameters p € D, that make the structure with universe U = {x | D. = ¢u(x,P)}
and relations R; defined as {X | D. = ¢gr,;(X,D)} = {X | De E ~¢-g,(X,P)} isomorphic
to C.

Theorem 2.4 implies that the class of finite distributive lattices is X{-elementarily
definable in the partial order D, with two parameters: @y (x,a,b) is the formula a <
x & x < b, and =, #, < and £ are interpreted by =, #, < and %, respectively. We next
apply the Nies Transfer Lemma to our setting:

Lemma 3.2 (Nies [18]). Let v > 2 and k > 1. If a class of models C is X9 -elementarily
definable in D, with parameters and the H2+1—theory of C is hereditarily undecidable,
then the H9+k-theory of D, is hereditarily undecidable.

We can now state, using the hereditary undecidability of the TI3-theory of finite dis-
tributive lattices mentioned above, the following.

Theorem 3.3. The IV3-theory of D, is (hereditarily) undecidable. O
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This uses the fact that a V3V-sentence ¢ is true in D, if and only if the FV3-sentence —¢
is false in D, and so the undecidability of the V3V-theory of D, implies the undecidability
of the 3v3-theory of D..

4. The extension of embeddings problem

In this section, we give an algorithm to decide the extension of embeddings problem
for D.: Given finite partial orders P C @), we give necessary and sufficient conditions
on P and @ to make the statement “every embedding of P extends to an embedding
of Q7 true.

In addition to Theorem 2.4, we will need to use properties of sufficiently generic sets.
Recall, that a set G is n-generic relative to B if and only if for every X0 (B)-set S of
finite binary strings, there is an initial segment G | ¢ of G such that G [ £ is in S or no
extension of G | £ belongs to S. If {G;}i<. is a sequence of sets and F' is a set of natural
numbers, we use @, G; to denote the set {(i,z) |i € F & = € G;}.

Proposition 4.1. Let G' be 2-generic relative to B. Define G; so that G = @, _,, G;. For
every pair of sets A1, Ay <. B, i € w and finite set F' C w, we have that A1 ® G; <,
Ao @ @jeF Gj if and only ifi € F and Ay <. As.

Proof. Fix Ay, Ay <. B, i and F' and suppose that A; & G; <., As & @jEF G;. Let
Gi =T'(A2 & Pjcp Gj). Given a string 7 € 2, we let 7; be the shortest string such
that for all (j,n) < |7|, we have 7((j,n)) = 7j(n). Consider the set U = {r € 2<% |
(Fz)[ri(z) = 0 & z € I'(A2 & D, 75)|}. This set is ¥9(B) (in fact, it is enumeration
reducible to B) and hence, by our assumption, G must avoid it. Let u < G be such that
no extension of u is in U. As G is generic, the set G; is infinite, and so there is some
z > |p| such that G;(z) = 1. It follows that « € I'(A2 ® @, G;) and so there is some
finite extension 7 = p such that € I'(A2 & P 75)- If i € F' then we can modify the
(i, x)-th bit of 7 to get a string 7" such that 77(z) =0 and x € T'(A2 & P 77), e,
an extension of u in the set U. It follows that ¢ must be in F.

Now suppose that A; = T'(A2 ® @;cp Gj). Consider the set V. = {r € 2°¢ |
(F2)[A1(z) = 0 & v € (A2 ® @jcp7j)]} The set V is ¥9(B) (in fact, it is enu-
meration reducible to B’). Once again, we must have some initial segment p < G with
no extension in V. But then A; = {z |37 = plr € T(A2 B D7)} and so 41 <. As.

The reverse direction is clearly true. O

jeF

Note that a special case of the proposition above gives us that, in particular, the
degrees of B and each G; form a minimal pair. Furthermore, since G; and G; (for
distinet ¢ and j) are mutually 2-generic, their degrees also form a minimal pair.

We are now ready to present an algorithm for deciding the extension of embeddings
problem.

Theorem 4.2. The extension of embedding problem for D, is decidable.
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Proof. Fix finite partial orders P C Q). For any set S C @, let

A(S)={pe P| (Vs S)[p=>s]} and
B(S)={pe P | (Vs S)p<sl}.

We will use A(g) to denote A({q}) and B(q) for B({q}).
We outline several cases in which we can construct an embedding of P that does not
extend to an embedding of Q.

Case 1: There is ¢ € Q \ P such that A(q) = 0 and B(q) # B(A(B(q))).

Suppose that there is ¢ € @ \ P with A(q) = 0. We will show that we can obstruct
an extension with such a ¢ if B(q) # B(A(B(q))). Note that since we always have
B(q) € B(A(B(q))), these two conditions imply the existence of some p € B(A(B(q))) \
B(q). (In particular, it follows that B(q) has no greatest element.) We will construct
an embedding of P such that any degree that is above all elements in the image of
B(q) is also above the image of p; this embedding will therefore not be extendable to an
embedding of Q.

If B(q) = 0 then A(B(q)) = P and hence the element p € B(A(B(q))) is the least
element in P. Any embedding of P that maps p to 0. will do the job.

Suppose that B(q) # 0. Let P = {po, p1,-..,Pn}- We fix a 2-generic set G and break
it up into |P| many mutually generic pieces Gy, ..., G,. We map p; to the degree of the
set Xp, = @m <p. Gj» which we denote as g(pi). By genericity, we have that ¢ £ j implies
Xy, £e Xp,. Next we want to modify this embedding to achieve the desired result. Take
X, = EBijp G; and break it up into |B(g)| many pieces Yp,...,Y; as follows: break
up each G; into |B(q)| many mutually generic pieces for p; < p, and let Y; consist
of the join of the i-th pieces in the sets G; for p; < p. Let B(q) = {ro,...,m}. We
modify our embedding ¢ to an embedding f on the elements s € UTGB(q A(r) by setting
f(s) = g(s) ® deg,(D,,<, Y;)- In this way, we have that the least upper bound of the
elements in B(q) enumerates all the pieces that make up X,,, preventing an extension
of f which maps ¢ not above p.

All we need to do is prove that this modification does not change the order. If p; < p;
then f(p;) < f(p;): To see this, first consider the case when p; ¢ UreB(q) A(r). Then
pi & U,ep(q) Alr) as well, and so f(pi) = g(pi) < g(p;) = f(p;). If, on the other hand,
15 € Use g A(r), then f(p;) is either g(p;) or g(ps) & deg, (€D, <, ¥;) and so

f(pi) < g9(pi) @ deg (D Y)) <c 9(p;) & €D deg. (Vi) = f(p;).

e <pi L <D;

Now suppose that p; £ p;. Once again, the case when p; ¢ UTEB(q A(r) is easy

because f(p;) = g(p;) and f(p;) = g(p;i). So suppose that p; € U, cp(,) A(r). Recall
that G; is part of the image of p;. If p; £ p, then G; £. f(p;) by the properties of
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mutually generic sets. If p; < p, then there is some 7, € B(q) such that r;, £ p; (since
otherwise p; € A(B(q)) and hence p; > p > p;). But then the ¢th column of Y}, which
was broken off from the set G; <. f(p;), is still mutually generic with all the other pieces
into which we have broken up G, hence it is not below f(p;).

From now on, in all cases that we consider, let us assume that we have that A(q) # 0.
Our next group of cases examines possible obstructions when B(q) = §). We break this
into three cases, based on whether B(A(q)) is empty or not, and whether B(A(q)) C A(q)
or not.

Case 2: There is ¢ € Q \ P such that A(q) # 0, B(q) =0, B(A(q)) = 0, but q is not the
least element of Q.

In this case, we know that A(q) is not principal, i.e., does not have a least element.
We use the columns of a 2-generic to embed P into D.. The only degree that is bounded
by all degrees that are images of the elements of A(q) is then O.. This embedding of P
can only be extended to an embedding of @ if ¢ is mapped to O.. So if ¢ is not the least
element of @, then we have exhibited an embedding of P that does not extend to an
embedding of Q.

Case 3: There is ¢ € Q \ P such that A(q) # 0, B(q) =0, B(A(q)) # 0, and B(A(q)) C
A(g)-

If B(A(q)) C A(q) then A(q) is principal above py and pg is a minimal element in P.
If pg is the least element in P then we can embed P by sending py to 0. and then use
the columns of a 2-generic as before to embed the rest of P. This embedding of P cannot
be extended to an embedding of ) because there is no possible image for ¢ strictly
below O..

If po is not least, then fix a minimal element p; € P distinct from pgy. Let Ag and A;
form an Ahmad pair, ie., Ag £. A1 and (Vx)[x < deg.(Ap) — x < deg.(A1)]. The
existence of such pairs was first proved by Ahmad [1], but also follows from Theorem 2.4.
Next pick a set G that is 2-generic relative to Ag@ A;. Split G into |P|—2 many mutually
generic sets. If P = {pg, p1,...,pn} then let f(p;) = dege(@pjépi X;), where Xy = Ay,
X1 = A and X0 = G, for i < |P| — 2. Once again, it is clear from the definition of f
that if p; < p; then f(p;) < f(p;). On the other hand, by our choice of generics and
of Ag and Ay, we have that X; <, EBpk <p; X, if and only if X; is one of the elements in
{Xk | pr < p;} if and only if p; < p;. So if p; £ p; then f(p;) £ f(p;). This embedding
cannot be extended to an embedding to ) because any degree that is strictly below the
image of py must also be below the image of p;, so ¢ cannot be embedded.

We are left with the case when B(q) = (0 and B(A(q)) € A(g). We will be able to
obstruct this case as well using a slightly more complicated embedding. In short, we
extend B(A(q)) to a distributive lattice L only adding points if some finite set of points
in B(A(q)) is missing a least upper bound. Since B(q) is empty, we can argue that no
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point will be added that will fit the type of ¢ over P in this way. Here by the type of q
over P, we mean the set of atomic facts that describe the position of ¢ with respect
to the elements of P. We then embed L using a strong embedding, and the rest of P
using 2-generics relative to the image of the top element in L. We argue that any degree
strictly below all elements in A(g) must be an image of an element in L or bounded
below the image of the least element in L. No such degree can be the image of q. We use
the same construction in case B(q) # 0 and either B(A(q)) # B(q) or A(B(q)) # A(q)
(and so it is inconsistent to place ¢ as the least upper bound of B(q) and the greatest
lower bound of A(g) at the same time). We combine both of these situations in Case 4
below.

Case 4: There is g € Q \ P such that A(q) # 0 and either

(a) B(q)

=0 and B(A(q)) € A(q);
(b) Blg) #

0
0, and ezther A(B(q)) # ( ) or B(A(q)) # B(q).

Since we will build an embedding of P which blocks any extension to PU{q}, we may
assume in this case that @ = P U {q}. As we already hinted in the previous case, this is
the most complicated case and the one where we will make use of the strong embedding
of all finite distributive lattices from Theorem 2.4.

We first enlarge P by adding new elements in a minimal way to make Sy = B(A(q))
into an upper semilattice with least element: For each nonempty subset F' C Sy such
that F' has no greatest element and A(F') has no least element, add a new element s 4(r)
and specify that B(sa(r)) = B(A(F)) and A(s4(r)) = A(F). Note that if F' and G are
distinct such subsets with A(F') = A(G), then this will add only a single point s4(ry =
54(a)- We order new points s4(p) < sa(q) if and only if A(G) C A(F). If B(A(q)) has
no least element then we add one additional point s4(p) bounded below all elements in
B(A(q)). Denote by P’ the union of P and of all the newly added elements s4(r), and
let S be the union of Sy and of all the newly added elements s 4(ry. We show that S is
an upper semilattice. It is easy to check that any subset F' C Sy either has a least upper
bound in P or has a new least upper bound s (). Indeed, if A(F') has a least element
(which would be implied by F having a greatest element), then, by definition, this is the
least upper bound of F in P, and since F' C B(A(q)), we have that A(g) C A(F) and
so the least element of A(F') is below all elements in A(g), hence in B(A(q)). Now, if
F’ C S has newly added elements, we can transform it into F' C Sy by replacing each
sa(e) € F' by G. Thus the least upper bound of F' is the same as the least upper bound
of F'.

For future reference, we also note that every element s € Sy can be written uniquely
as s4(r) for F' = B(s). Fixing such s = s(p), note that A(s) = A(F) and B(s) =
B(A(F)) just like for elements in S\ Sp. In addition, note that by construction, for such
5 € Sp, there cannot be a newly added point s" € S\ Sy of the form s,y for such a
set F' since A(F') has a least element.
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We next expand P’ to make our upper semilattice S into a distributive lattice L in a
minimal way, avoiding adding any new elements which have the same type over P as q
does. Let Mg be the set of meet-irreducible elements of S (i.e., all elements s € S such
that for no sg,s1 > sin S, sg A sy = s). Let L be the set of all nonempty upward closed
subsets of Mg. As S has a greatest element, which is meet-irreducible by definition, L
is closed under union and intersection and thus forms a lattice, in fact, a distributive
lattice. Note further that S naturally embeds into L by mapping each s € S to the set
{m € Mg | s < m}. Note that an upward closed subset M of Mg does not correspond
to an element s € S under this embedding only if it contains two incomparable meet-
irreducible elements mg, m, which are minimal in M. We complete the definition of the
partial ordering on L U P’ by simply taking the transitive closure, i.e., we define | < p
forl € L and p € P\ S iff there is some s € S with [ < s and s < p. Denote by P” the
union of P’ and of L.

Suppose, for the sake of a contradiction, that we add an element [ € P”\ P of the
same type over P as g. First consider the case that | = s4(p) for some F C Sp. Since
B(q) = B(l) = B(A(F)), we have A(B(q)) = A(B(A(F))) = A(F) = A(l) = A(q) (here
we use the fact that whenever FF C P we have that A(B(A(F))) = A(F), which can be
easily verified just from the definitions); but by our case assumption, we must then have
B(q) # B(A(q)) = B(A(l)) = B(A(F)) = B(l), contradicting B(q) = B(l).

Next suppose that [ € P”\ P’; then there is an upward closed subset M of Mg
containing two incomparable meet-irreducible elements m1, ms which are minimal in M
such that I < mg,mi. But now B(q) = B(l) C B(mg) N B(my), and so, as explained
above, mg = sa(r,) and my = su(p) for some Iy, F1 € B(A(q)) (even if mg € Sp
or my € Sy), implying that A(mg) = A(Fp) 2 A(g) and A(my) = A(F1) 2 A(g). In
addition, | < mg,m; implies A(q) = A(l) 2 A(myg), A(mq) and thus A(q) = A(l) =
A(mg) = A(my). But A(mg) = A(Fp) and A(my) = A(F1), and so mg = my by
construction, a contradiction.

Now we can proceed with our embedding: We embed the distributive lattice L as a
strong interval [a, b] invoking Theorem 2.4. Note that since we started with the downward
closed set B(A(q)), we have that elements in P\ L are all above or incomparable with
elements in L. Extend our embedding to an embedding of P = PU L using the columns
of a set G that is 2-generic relative to b. In this embedding, we have that any point
that is below the degrees of the images of all elements in A(g) (which is nonempty by
assumption) is bounded by the image b of the top element in L. It is therefore bounded
by a or else equals one of the degrees which are images of L. We ruled out the possibility
that g takes the place of one of the elements in L and so ¢ must be mapped to a degree
strictly below a. But then B(A(q)) C A(q), and since B(A(q)) # 0 by assumption, this
can only happen if B(q) = (), contradicting our case assumption.

Suppose that no element in @ satisfies the conditions of the previous four cases. We
have one more possible obstruction related to the relative type of two elements in Q.

Case 5: There exists g € Q\ P and r € Q, such that A(q) # 0, B(q) C B(r) and ¢ £ r.
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Note that by the fact that none of the Cases 2, 3, or 4 applies to ¢, we know that
B(q) is nonempty. Since we assume that Case 4 fails, we have that B(A(q)) = B(q)
and A(B(q)) = A(q). (In particular, neither B(q) nor A(q) is principal.) We now embed
B(q) in some arbitrary way and use a 2-generic relative to the least upper bound of the
elements in the image of B(g) to complete our embedding of P. Thus the greatest lower
bound of the degrees in the image of A(q) is the least upper bound of the degrees that
are images of B(q). The only possible degree that ¢ can be mapped to is the image of
N A(g) = V B(q). Since B(q) C B(r), the image of r can only be above the image of
\/ B(q), but this conflicts with ¢ £ 7.

We claim that in all other cases, every embedding of P can be extended to an embed-
ding of Q. Fix such P C ). To summarize, we have that:

(A) Forall g e Q\ P, if A(q) =0, then B(q) = B(A(B(q))) by the failure of Case 1.

(B) For all ¢ € Q\ P, if A(q) # 0 and B(g) = 0, then ¢ is the least element of @ and
B(A(q)) = 0 by the failure of Cases 2, 3, and 4(a).

(C) For all g € Q\ P, if A(q) # 0 and B(q) # 0, then A(B(q)) = A(q) and B(A(q)) =
B(q) by the failure of Case 4(b).

(D) Forallge Q\ P and r € Q, if A(q) # 0 and B(q) C B(r), then ¢ < r by the failure
of Case 5.

Let f be an embedding of P in D.. Order the elements of Q\ P = {qo, ..., ¢n} so that

e ¢; < q; implies 7 < j, and
o A(qi) # 0 and A(g;) = 0 implies i < j.

We consider ¢; in turn, and for each, we build f(g;).

(1) If A(q;) # 0 and B(g;) = 0, then by (B), we have that ¢; is the least element of Q,
hence we can send ¢; to f(g;) = 0.

(2) If A(q;) # @ and B(q;) # @, then send ¢; to the least upper bound of the image of
B(gi), setting f(q;) = \/pEB(qi) f(p).

(3) Finally, we are left with {qx,...,qn} with A(g;) = 0 for all ¢ with &k < i < n.
Let G be 2-generic relative to the least upper bound of all degrees in the range
of our embedding so far. We break G up into columns {G;}i<, and map ¢; to

deg (Gi)V Vyey f(@)- (I B(g) = 0, then V/,_, f(g) = 0..)

Now we need to prove that this embedding works. Suppose first that ¢ < ¢’. The case
when ¢, ¢’ € P is handled by the assumption that f is an embedding. So we may assume
that at least one of ¢ or ¢’ is in @ \ P. We consider the different possibilities:

o If ¢ € P then by our construction we clearly have f(q) < f(¢').
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o If ¢ € P then A(q) # 0 and so f(q) = 0. or f(q) =V f(B(q)). However, since f is a
valid embedding of P as a partial order into D., we must have that \/ f(B(q)) < f(¢).

¢ Finally, suppose that ¢ and ¢’ are both in @ \ P. Then by construction, we build
the image of ¢ first. Suppose first that A(q’) # 0. First, note that A(q) 2 A(q’), so
A(q) # 0 as well. If B(q) is empty, then f(q) = O, so f(q) < f(¢'). If B(q) # 0, then
B(q') # 0 as well since B(q') 2 B(q), so

o=\ < V =1

p€B(q) peB(q’)

On the other hand, if A(¢") =0, then f(¢') > f(g) by construction.

Suppose now that g £ ¢’. Again, we only need to consider cases when at least one of ¢
or ¢ isin Q\ P.

e If ¢ € P and A(q') = (), then by (A), we have that B(¢') = B(A(B( "))). Since
q ¢ B(q'), it must be that ¢ ¢ B(A(B(¢'))) and so f(q) <V f(B . Since we use
a set that is generic with respect to f(q) V'V f(B(g ’)), and f(q ) is Constructed by
joining \/ f(B(¢')) and several columns of that generic set, we have that f(¢) £ f(q

e If g € P and A(q’') # 0, then there are two possibilities: If B(¢') = @ then by (B )7
we have that f(¢’) = 0. and B(A(¢")) = 0. In that case, P does not have a least
element (or else that least element would be in B(A(q’))), and so f(q) # 0.
Otherwise, B(¢') # 0 and so f(¢') = V f(B(¢')). By (C), we have that B(¢') =
B(A(q ’)) and so q ¢ B(A(q')); thus there is some r € A(q’') such that ¢ ﬁ r. But
then f(g) £ f(r). On the other hand, \/ f(B(¢')) < f(r) and thus f(q) £ f(q

e If ¢ € P and A( ) = 0, then the use of a generic with respect to f(q’) ensures that

q) £ f(d)

o If ¢ € P and A(q) # 0, then since g cannot be least in Q as ¢ £ ¢/, by (B) we
have that B(q) # 0. This means that f(q) =\ f(B(q)). But then \/ f(B(q)) < f(¢')
would imply B(q) C B(q’) which is impossible by (D).

o If g and ¢’ are both in Q \ P and A(q) # 0, then by (D), we have B(q ,@ B(q
there is some p € B( )\ B(¢'). Since p £ ¢/, we have already shown f ﬁ f
implying f(q) £ f(g

e If g and ¢’ are both in Q \ P and A(q) = 0, then the use of a generic guarantees that

q9) £ f(d)

This completes the proof. O
5. The common fragment of the theories of the Turing and the enumeration degrees

In this section, we characterize the largest “natural” common fragment of the first-
order theories of the Turing degrees and the enumeration degrees. More precisely, we will
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show that the 3V-theory of the Turing degrees is a supertheory of the dV-theory of the
enumeration degrees; in fact, it is a proper supertheory since there is an 3V-difference
¢ € Th(Dr) \ Th(D,), namely, the existence of a minimal degree:

JaVy(z >0 & (y <z —y=0)),

or equivalently, in the language of partial orderings only, without a constant symbol
for 0O:

p:rIrIz(z <z & Vy(z <y & (2 <y < x))).

Recall (e.g., from Lerman [15, proof of Theorem VII.4.4]) that any IV-sentence is a
disjunction of JFV-sentences 1 of the format in Problem 2.1: “For some finite partial
order P and finite extensions @1, ...,Q, of P, the sentence v states that there is an
embedding of P that cannot be extended to an embedding of any of the Qq,..., Q.
For example, the above sentence ¢ can be expressed as a statement of this format with
k =2, setting P = {a < b}, Q1 ={c<a<b} and Q2 = {a < d < b}.

We first give a model-theoretic characterization of the FV-theory of the Turing degrees.

Definition 5.1. Let U be an upper semilattice with least element. We say that U ezxhibits
end-extensions if for every pair of a finite lattice P and a finite partial order @) 2 P such
that if x € @\ P then z is not below any element of P and x respects least upper bounds
from P, every embedding of P into U extends to an embedding of ) into U.

Note that both Dy and D, are upper semilattices with least element that exhibit
end-extensions. We claim that for the Turing degrees, this property characterizes its
3V-theory:

Theorem 5.2. Let ¢ be an IV-sentence in the language of partial orders. Then the sen-
tence ¢ is true in Dy if and only if there is an upper semilattice U with least element
that exhibits end-extensions such that ¢ is true in U. Thus the 3Y-theory of the Turing
degrees is a supertheory of the IV-theory of the enumeration degrees.

Proof. Note that this theorem is implicit in the proof of the decidability of the 3V-theory
of Dr by Shore [20] and Lerman [15], rephrased in our language.

Suppose that ¢ is true in some upper semilattice U with least element that exhibits
end-extensions. By the remark above, we can fix a disjunct ¢ of ¢ which has the format
“For some finite partial order P and finite extensions Q1,...,Q of P, there is an em-
bedding of P that cannot be extended to an embedding of any of the Q1,...,Q%” and
holds in U. Fix an embedding f of P into U witnessing this. Let P* be the upper semi-
lattice with least element generated by the range of f in U, taking least upper bounds
as in U and adding a least element into P* if the least element of U is not already in the
range of f. Then P* is a finite lattice, and so by Lerman [14], we can embed P* as an
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initial segment of D via a mapping g. Any finite extension of the embedding g of P*
into D satisfies the end-extension requirements: No new element is below any member
of the range of g since this range is an initial segment, and new elements respect least
upper bounds of elements in the range since D is an upper semilattice. As U exhibits
end-extensions, it follows that any extension g into Dy can be pulled back to an isomor-
phic extension of P* (and hence of P) into U. It follows that g cannot be extended to
an embedding of any of the partial orders Q1,...,Qy into Dp. Thus Dr = ¢ and so
DT ’: ®.

The reverse direction is trivially true since Dr is an upper semilattice with least
element that exhibits end-extensions. 0O

Definition 5.3. We denote by E the set of JV-sentences 1 from the extension of em-
beddings problem: “For some finite partial order P and finite extension @) of P, the
sentence 1 states that there is an embedding of P that cannot be extended to an em-
bedding of Q.

We can now state precisely what the “natural” common fragment of the first-order
theories of the Turing degrees and the enumeration degrees is in the following.

Theorem 5.4. For the above set E of IV-sentences,
ENTh(D,) = ENTh(Dr).

Recall from the minimal degree example above that even loosening the restriction in
the extension of embeddings problem from k =1 to & = 2 results in an 3V-difference.

Proof. Suppose first that ¢ € E N Th(D,). The structure D, is an upper semilattice
with least element that exhibits end-extensions. Note that ¢ is an 3V-sentence and so,
by Theorem 5.2, if ¢ is true in D, then it must be true in Dr as well. It follows that ¢
is true in Dy and hence ¢ € ENTh(Dr).

Now suppose that ¢ € E\ Th(D,.). Suppose that ¢ is the statement that expresses
that some embedding of the finite partial order P does not extend to an embedding of the
partial order Q. If —¢ is true in D, (and so every embedding of P extends to an embedding
of @), then the properties (A), (B), (C), and (D) from the proof of Theorem 4.2 apply to
the pair P, Q. To prove that ¢ also fails in D, we essentially use the same construction
as in Theorem 4.2:

Fix some embedding f of P into Dr. Order the elements of @\ P = {qo,...,qn} so
that

e ¢; < q; implies ¢ < j and
o A(gq;) # 0 and A(g;) = 0 implies i < j.
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We consider ¢; in turn. We define f(g;) using the fact that the four properties (A),
(B), (C), and (D) are true:

(1) If B(¢;) = 0 and A(q;) # 0, then by property (B), we have that g¢; is the least element
of @ and B(A(g;)) = 0. It follows that P = A(q;) does not have a least element,
hence we can send ¢; to f(g;) = Or.

(2) If B(g;) # 0 and A(g;) # 0, then by (C), we have that B(g;) = B(A(g)). By (D), we
know that for every j < i, B(g;) = B(q;) implies that ¢; = ¢; (since A(g;) # 0), so
we can send ¢; to the least upper bound of the image of B(q;): f(¢;) = \/peB(qi) f(p)
without violating injectivity of f.

(3) Finally, we are left with {q, ..., q,} with A(¢;) = 0 for all ¢ with k <4 < n. Let G be
generic relative to the least upper bound of all degrees in the range of our embedding
so far. In the Turing case, even 1-genericity suffices. We break up G into columns

{Gi}i<w and map q; to degT(Gl) \ \/q<qi f(q)

Mutually generic sets have similar properties with respect to Turing reducibility as to
enumeration reducibility. If A;, Ao <p B and G is l-generic with respect to B and
@Kw G; = G, then for any ¢ € w and any finite set F', we have that A & G; <r
Ay @ @jeF G; if and only if A; <7 Ay and i € F. Thus, the same argument as was used
in Theorem 4.2 will prove that f is an embedding as required. 0O

6. Conjectures and open problems

The most glaring open problem is, of course, the decidability of the 3V-theory of the
enumeration degrees. Our work opens up two related problems that we would like to
explicitly state.

The first question asks whether we can extend the work presented in the next section
by removing the distributivity requirement from our statement. We conjecture that this
is possible:

Conjecture 6.1. Every finite lattice has a strong interval embedding in D..

Confirming the above conjecture will not lead to an algorithm for deciding the 3V-
theory of D, in a straightforward way. What we would like to have is a model-theoretic
characterization of the 3V-theory of D, along the lines of Theorem 5.2. One possible
attempt at getting such a characterization is to incorporate the theorem of Slaman and
Sorbi [24], which proves a strong form of downward density. Consider the statement:

An JV-sentence ¢ is true in D, if and only if there is an upper semilattice U with
least element that exhibits end-extensions and strong downward density such that ¢
is true in U,
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where U ezhibits strong downward density if every countable partial order can be em-
bedded below any nonzero element of U.

Consider the JV-sentence ¢ that states that there is an embedding of the diamond
lattice P = {d < a,b < ¢} that cannot be extended to an embedding of any of @1, ..., Q4,
where ()1 puts a new element below a,b and above d, Qo puts a new element below c,
above d but incomparable to each of a and b, Q3 puts a new element below in the interval
(a,c) and Q4 puts a new element in the interval (b, c). We can easily imagine an upper
semilattice that makes ¢ true: In it, a and b would be mapped to a minimal pair {a, b}, d
to the least element, and ¢ would be mapped to the least upper bound of a and b, which
has the additional property that every element of U strictly bounded by a Vv b is either
below a or below b.

Unfortunately, ¢ is not true in D.. Jacobsen-Grocott and Soskova (see Jacobsen-
Grocott [8]) prove that strong interval embedding cannot be combined with minimal
pairs:

Theorem 6.2 (Jacobsen-Grocott, Soskova). If a and b are enumeration degrees such that
every degree x < a 'V b is bounded by a or bounded by b, then {a,b} is not a minimal
pair.

This leaves open the following

Question 6.3. Is there a natural class of upper semilattices U so that an JV-sentence ¢
is true in D, if and only if it is true in some upper semilattice U € U?

7. Strong interval embeddings

We will devote this section to the rather technical proof of the existence of a strong
interval embedding of any finite distributive lattice. Recall that a strong interval em-
bedding of a lattice L is a bijective map f between L and some interval of enumeration
degrees [a, b] such that for any degree x < b that is not in the range of f we have that
x < a. We came to this definition by generalizing the notion of a strong minimal cover,
which gives an example of a strong interval embedding of the two-element lattice. Kent,
Lewis-Pye, and Sorbi [10] proved the existence of degrees with strong minimal covers.
We start by giving an alternative proof of their result.

7.1. A strong minimal cover in the I13-enumeration degrees

The construction of Kent, Lewis-Pye, and Sorbi [10] yields a AJ-degree b with a I19-
strong minimal cover a. Our plan is to extend this theorem to a strong embedding of
arbitrary finite distributive lattices, so we will need some more uniformity for the images
constructed. We start by giving a slightly different construction of a strong minimal
cover that extends the previous result. We will then extend the ideas in this subsection
to obtain our general theorem.
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Theorem 7.1. There are I19-enumeration degrees a and b such that a is a strong minimal
cover of b in the enumeration degrees.

We will build T19-sets A and B so that deg,(A @& B) is a strong minimal cover
of deg,(B). We need to satisfy the following two groups of requirements:

M, : 30U (A® B) = T(B)] VIA[A® B = A(T.(A& B)),

where I and A are enumeration operators we construct and {¥.}.«,, lists all enumeration
operators, and

Te : (I)E(B) # A,

where {®}.<, lists all enumeration operators.

We will build A and B as I19-sets as follows: We approximate them stage by stage via
finite sets {As}s<w, {Bs}s<w- We use X to denote A or B. Ultimately, X consists of the
elements that are enumerated into X at infinitely many stages s. The construction will
take place on a tree of strategies. We use lower-case Greek letters «, 3, etc., to denote
nodes on the tree. The nodes are ordered by setting a < § iff « is a strict predecessor of 8
on the tree (and o < S iff « = S or @ < ). Each node on the tree works towards satisfying
a requirement. We associate outcomes to each node, which represent different ways in
which we may satisfy the requirement and which determine its immediate successors.
The outcomes are linearly ordered by <. This ordering extends to a different partial
ordering on the nodes: We say that a <p, § (« is to the left of 8) if a and 8 have a
common predecessor 7, say, with outcomes 01 < 0y such that v"0; < a and 70y = f.
We combine the two partial orders on nodes into a total order: We say that « has higher
priority than 8 (and write a < 8) if @ <, 8 or a < B. If we identify nodes on the tree
with strings in the alphabet of outcomes, then this is just the lexicographical order on
such strings. During our construction, we will visit nodes on the tree and activate their
strategy which works to satisfy their associated requirement. (We will often identify a
node with its strategy.) Which node we activate next depends on the outcome currently
representing our best guess as to how the requirement will be satisfied. Nodes of higher
priority may injure the work done by lower-priority nodes, but lower-priority nodes must
respect the work done so far by higher-priority nodes. The intention is that there will
be a true path of nodes visited at infinitely many stages and injured only finitely many
times, which can therefore implement their strategies successfully. Before we give a formal
construction, we first consider the two types of strategies in the context of the tree.

A node « working on an M-requirement (an M-strategy «) first tries to build T,
by associating an axiom location and a promise to every axiom enumerated into V.
(For simplicity, we use the index « to refer to the operators involved in the requirement
associated with «.) If (z, F') enters ¥, the strategy selects a suitable element b as an
axiom location from a stream of numbers S handed down to a by its predecessor on
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the tree at each stage at which « is active. This number b is then taken out of the stream
before that stream is handed down. (We will define “suitability” in a precise way later in
the construction.) The strategy « then enumerates the axiom (z,{b}) into ', and makes
the promise (b, x, F') by recording it in a list of promises P,. The intent of the promise
is that if there is ever evidence that F' is a subset of A @ B, then the axiom location b
will be enumerated into B. Lower-priority strategies are asked to respect the promises
that higher-priority strategies make.

Now let’s consider a node § working on a T-requirement (a T-strategy (). It starts
by selecting a witness z from a stream S (which is also handed down to it by its
predecessor on the tree at every stage at which the node is visited). At every stage that
this strategy f§ is visited while z ¢ ®5(B), it enumerates z into A and takes its wait
outcome w. The strategy must ensure that promises made by higher-priority nodes are
kept, so z entering A might set off a chain reaction of numbers being enumerated into B.
As there are only finitely many promises made at any given moment, this process is
finitary. Furthermore, when evaluating B, the strategy takes into account what strategies
below the outcome w might enumerate into the sets A and B, along with the chain
reaction that higher-priority promises require. If it ever sees that z can be realized via
an axiom (z, D), then it would like to keep D C B and stop enumerating z into A. The
elements that are enumerated into the stream of strategies below outcome w are dumped
into dump sets U4 and UP. These sets are enumerated into A and B, respectively, at
every future stage, so they will not cause problems. If there are no higher-priority M-
strategies, then this leads us to a successful diagonalization denoted by outcome d to
the left of outcome w. An actual problem might arise if there are higher-priority M-
strategies. Suppose that there is just one higher-priority M-strategy a < /3 for simplicity.
Consider the following situation:

It is possible that « has a promise (b,x, Fa ® Fg), where z € Fy and b € D. Enu-
merating z into A might cause b to enter B, but if we stop enumerating z into A, then b
must leave B. Thus our goal of taking z out of A while keeping D C B is in conflict with
a promise of the higher-priority strategy «. There might be a way around this conflict
in certain situations: If z ¢ A does not cause x to leave ¥, (A @ B), then we can afford
to break the promise (b, z, F4 @ Fg), as this will not cause an error in T, i.e., we will
have T'y(B)(z) = ¥, (A & B)(z).

If, on the other hand, z leaving A causes = to leave ¥,(A @ B), we should be more
careful. We use this relationship instead to switch a to a backup strategy: We start
building an enumeration operator A, by enumerating its first axiom which relies on this
relationship between z and x. This situation will be marked by a visit to an outcome co
between outcome d and outcome w. We restart the strategy S with a new witness z’.
The stream for A that is passed on to strategies below outcome oo is reduced to the
realized witnesses z,z’,.... That is, if 3%co is on the true path, then, using A,, we can
enumerate A from ¥,(A & B). All natural numbers that are in A and that are not
in the stream S below $"co are dumped into A by strategies v < § and form a c.e.
set. Recall that to satisfy the requirement M, we need to ensure that B can also be
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enumerated by ¥,(A & B) and so A, cannot quite serve as the operator A required
to satisfy a’s requirement. We use every other element of the stream S below 3°co
to code B into A. We do this through a list Hg of attachments (z,u), which is similar
to the list of promises: It requires from lower-priority strategies to ensure that if
enters B, then z is enumerated into A. So if co is the true outcome, then we will have
A=AL(P,(A® B)) and B <, A, and so we can produce the required operator A to
satisfy a’s requirement. If the connection between z and z is lost due to more axioms
entering ¥, then we say that z is cleared by «, and we can revert to our original plan
to diagonalize to satisfy 8’s requirement.

The rest of the mechanics of the construction is standard. If 8 extends more than one
M-strategy above it, say, g < a3 < -+ < ag—1 < 8, then in order to diagonalize with
a witness z, it must be cleared by all o;. We try to clear it in turn, starting with ajx_1
and ending with aq, with the possibility of switching each «; to its backup strategy with
an outcome oo; if we cannot clear the witness. The outcomes of 8 are:

d<p oog <p ooy <p < Op_1 <[ W.
The full construction will give the precise details on how this is organized.

The tree of strategies. Our tree of strategies will be a partial function T : {w,d, co; :
i < w}<¥ — R, where R is the set of all requirements. We will define T'(«) along with
the set C(a) of active M-strategies along a. Let T(0) = Mgy and C(@) = (. Suppose
T(a) = Mg, then T(a’d) is defined and equals the least T-requirement that has not
been assigned to any node 8 < «a; we also set C(a"d) = C(a)) U {a}. On the other hand,
suppose that T'(a) = T and C(a) = {ap < a1 < -+ < ag_1}. We set T'(’w) and T'(«"d)
to be the least M-requirement that has not yet been assigned to any node 8 < «, and
we set C(aw) = C(a’d) = C(a). For every | < k, we set T'(a"00;) = T(«), and we set
Cla’oor) = C(a) \ {au}.

Approzimating X. Recall that X stands for either the set A or the set B. At stage s
of the construction, we build a finite path fs of length s in the (domain of the) tree of
strategies. Strategies to the right of f, are initialized at (the end of) stage s. The set X
is constructed in substages X! where ¢t < s, starting with X! = () and letting X! be
the set X!~! along with all elements enumerated into X by fs [ t at stage s. We will
omit reference to specific substages when they are understood from the context. As we
said before, we will have that n € X if and only if n € X at infinitely many stages s. At
first sight, this means that for a finite set F', we might have FF C X but F ¢ X, at any
stage s. We will ensure that the leftmost path f of strategies visited at infinitely many
stages is the true path, i.e., it correctly approximates the true outcome of every strategy.
We will prove that n € X if and only if n is enumerated into X by a unique strategy o
along the true path at all but finitely many stages s at which o is visited. And so for
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finite sets F', we will have as well that FF C A if and only if FF C A, for infinitely many
stages s.

Let 8 be a T-strategy with active M-strategies C(8) = {ap, a1, ..., ag_1} and suppose
that B, ..., Bm—1 are all predecessors of 5 so that f;"co, =< [ for some u. When we
visit B, we must take into account the promises and attachments that these strategies
have made whenever 8 enumerates a number into the set A. For finite sets Y and Z,
we define g?(Y, Z) formally as |J, Y, and g5 (Y,Z) as |JZ,, where Yy = Uutuy,
Zy=UPUZ and

e Vo1 =Y, U{a| (3l <m)[(a,b) is an attachment of §; & b € Z,]};
o Zpr1=2,U{b]| (3l <k)[(b,x, F) is a promise of oy & FF C Y, 11 ® Z,]}.

Suitability. The streams S and S are defined inductively during the construction. We
list all strategies in order type w and associate to each a unique number & corresponding
to o’s position in this list. We will say that z is suitable for a if z > |a| and z is
the (&, j)-th number among all elements that are in the stream S*(«) and not used in
attachments for some j. For every a < f, we will ensure that SX is infinite and so there
are infinitely many numbers suitable for «.

The construction. At stage 0, all strategies are in initial state: We set U4 = UP = {); for
each M-strategy o, we set I', = () and the list of promises P, = 0; for each T-strategy 3
with C(8) = {ag,...,ar-1}, we set Alﬁ = ( for all I < k, the list of attachments
H lﬁ = () for I < k, and let the current witness z3 be undefined. During the construction,
initializing a strategy will mean that we restore it to its initial state.

At stage s > 0, we build f; of length at most s, activating strategies along fs. We
begin by enumerating U¥ into X.

We then start at the root and let SX:S = 8(5’(571 U {s} = [0,s]. Suppose we have
constructed fs | n, along with S}i s = S;f tns—1 U {y*} and A, and B, (or rather A?
and BT, the approximation to the sets A and B at substage n of stage s). If n = s, then
we end this stage and move on to the next stage. If n < s, then we activate fs [ n and let
it pick its outcome o. Then fs [ n+1 = (fs [ n)"o unless f, ends the stage prematurely.
At the end of stage s, we initialize all strategies o such that f; <p, o.

Case 1. If fs | n = a is an M-strategy and « did not end the previous stage at
which it was visited prematurely, then we scan ¥, for new axioms that have not yet
been assigned axiom locations. If such axioms exist, then we pick the oldest such, say,
(x,Fy & Fp). (Here by oldest we mean the one that was enumerated into ¥,, first.) If
b= yB is suitable for o and b > max(F4 U F), then we assign b to the axiom and
enumerate the promise (b, x, Fia @ Fp) into P, as well as the axiom (z, {b}) into I',,. We
end this stage prematurely (note we do not initialize strategies 8 > «, only strategies
B >1, «). Otherwise (in particular if « did end the previous stage at which it was visited
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prematurely), we enumerate yX into S*(a’d). In all cases, we enumerate into X the set

gX(As, By), and if we don’t end the stage, we let d be a’s outcome.

Case 2. If fs | n = f is a T-strategy with C(8) = {ag < -+ < ag—1}, then we pick the
first case which applies:

(1)

(2)

The strategy B was successful via a realized witness z and had outcome d at the
previous stage at which 8 was active: In that case, enumerate D, into B and then
g? (A, By) into X, the number y*X into Sg{d, and let the outcome be d.

The current witness zg is not defined: If y? = a is defined and suitable for 3, then
let zg = a be the current witness and end the stage prematurely. Otherwise, if a is
not suitable, then enumerate y* into Sg°,, and let the outcome be w. In both cases,
we enumerate gff (Aq, Bs) into X.

zg ¢ ®p(V), where V = g}?(AS U Séms U {zs}, Bs U S/?w,s)'. We then enumerate
95 (AsU{zs}, Bs) into X, the number y* into S5, and let the outcome be w.
Otherwise: Call the witness zg is realized. This is the only case in which we grow the
dump sets. We start by enumerating Sg{w,s into UX. Let D., be the set of axiom
locations in the finite subset of the axiom that puts zg into ®3(B) which are not
enumerated into B if z ¢ A:

D., = gg(As U {25}, Bs) \Q,BB(ASv By).

For every | < k, let

E[” =V, (g5 (As U{z3}, Bs) @ gf (As U {25}, Bs)) \
‘Pal(gg(As’ Bs) S2] gg(As, Bs))-

Make the current witness zz undefined.
Now, for every realized witness z and every | < k, let

1<j<k I<j<k

We say that z is oy-cleared if Ef C W, (Gf}z@sz). We search for the least pair (I, z)
(in the lexicographical order) such that z is a realized witness, z ¢ Séooj for j < I,
z ¢ U4, and z is j-cleared for all j > I. (Note that the pair (k — 1, z5) satisfies these
conditions, so such (/, z) must exist.) We enumerate (U, Séoo,-) \ {2z} into U4,
Ul<j<k86300j into UP, and set A; = H; = () for all j > L.

(a) If I > 0, then enumerate the axiom (z, Ef) into A;, the set gé((As, By) into X,
the number y? into SB(%o0;), and z into S4(B°0c0;). If 2 is the 2n-th number
in S4(%00;), then we enumerate (z,n) into H; and end this stage. Otherwise,
we let the outcome be oo;.
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(b) Otherwise, we have a witness z that is oy-cleared for all I < k. We say that z is
successful and that the numbers in D, are associated with z at . Enumerate D,
into B, as well as gg( (As, Bs U D.) into X. Let the outcome be d.

7.1.1. The verification
As mentioned before, we define the infinite true path f by

f(n) = liminf f(n).
s>n
It is straightforward to see that the strategies o along f are visited at infinitely many
stages and initialized at only finitely many stages. For ¢ < f, we say that s is a true
stage if o is visited at stage s. Let s, be the least stage after which o is not initialized.
Let $¥(0) = U,s,, SX,- A simple induction on the length of o proves that S¥ (o) is

infinite. Furthermore, if ¢ is visited at consecutive stages s > t > s,, then Alsal ) ALU‘,
as in order for a strategy above ¢ to stop enumerating an element into A, it must move
its outcome left of o and hence initialize 0. We now verify the important claims about
enumeration into A and B that we made earlier. Once again, X denotes either the set A
or the set B.

Lemma 7.2. If a number x is in X, then it is either eventually dumped into X at almost
every stage, or there is a strateqy o < f such that at all but finitely many stages at
which x is enumerated into X, o is the least strategy that enumerates x into X, and o
does so at cofinitely many stages at which o takes its true outcome.

Proof. Suppose z € X. If z is dumped into UX at stage s, then it is enumerated into X
at the beginning of all stages ¢ > s. So suppose that x is not dumped.

Consider first the case when X = B and denote = by b for convenience. Note that
when an M-strategy « picks a number b as an axiom location, that number is taken out
of the stream, and it is never returned to the stream, so no other strategy can use it. If b
is not an axiom location for any strategy, then it is not enumerated into B at any stage
unless it is dumped, so let « be the unique strategy that uses b as an axiom location for
the axiom (x, F'). If a is ever initialized, then b is dumped into UZ. So, by assumption, a
is never initialized after b is chosen.

There are infinitely many stages at which b is enumerated into B. At stage s, this
could be because a T-strategy o with a € C(0) causes FF C A, @ By, or because b is
associated with a witness z at a successful T-strategy § that is visited at stage s.

First, note that there can be only finitely many strategies at which b is associated
with a witness. This is because if z € A causes b € B and z ¢ A causes b ¢ B, then
there is a sequence of promises and attachments witnessing the recursive relationship
between z and b that drives the definition of gg. The sequence starts with a promise
(bo, 0, F§ & F3) such that z € F§ and ends with a promise (b, zy, F% & FE). In every
promise (b;, z;, Fy & F), we have that b; > max(F% & F%), and in every attachment
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(zi,b;), we have that z; > b;, and so z < b. Furthermore, once b is associated with a
witness z at [, we have that z is out of A at all further stages unless [ is initialized. It
keeps z out of A, and so b is an element of B, only if we visit 8 at stage s. In particular,
this means that unless § is initialized, b will not be associated at any other strategy. If 8
is initialized, then the witness z is either dumped or moved to a stream to the left of 3,
and so S will never have z as its witness again. There are finitely many numbers z < b,
and each is suitable for finitely many 7 -strategies, namely, the ones of length smaller
than z, hence there can be only finitely many associations, and never more than one at
a time.

So, to sum up, b can be associated with z at 5 only for finitely many pairs (8, z). If
at stage s, the number b is associated with z at /3, then 3 is the only strategy that b is
associated with at stage s, and b € By if and only if 5 < f; and enumerates it into Bg.
So there are two cases: Either some strategy [ is associated with b at all but finitely
many stages, in which case it is never initialized and as b € B, it is visited infinitely
often, in which case 8 < f and satisfies the conditions. Otherwise, at all but finitely
many stages s, we have that b is enumerated into B, only if F' C A, &® By. It follows that
F C A® B, and since b > max F', by induction, for every element in F', some strategy
along the true path enumerates it into the corresponding set. Pick the longest such o.
It follows that FF C A, @ B, only if 0 < fs. So, as b € B, it must be that a € C(0), and
hence o enumerates b into B, when visited, or 0 < « and then b € B, whenever we visit
a’d.

Now consider the case when X = A and denote x by a. We are assuming that a € A.
At every stage s, there is at most one T-strategy (s 0s such that a is an unrealized
witness of 85 and o; = w, or such that a is a realized witness of 35 and (s uses a as
an attachment to code whether some n is in B below outcome o5 = 0o; for some i < k.
There are only finitely many strategies 5 that can ever fulfill this role, as a must be
suitable for 8, hence f§ is of length less than a. If at stage ¢t > s, such a strategy for a
changes, then (;"0; <5 Bs"0s. On the other hand, this role is filled by some strategy
and outcome visited at infinitely many stages, as those are the situations in which a is
enumerated into A. So fix 8 such that 5”0 is least and hence the same at all but finitely
many stages. If o = w, then a enters A only at stages at which we visit § and £ has
outcome w. It follows that g w < f.

If o = ooy, then (a,n) € Hf and hence the only way that a can enter Ay is if some
strategy compatible with $°0co; enumerates n into B. As n < a, we have by induction
that there is a least strategy o < f that causes this. So either ¢ < 3, in which case
B"o0; < f and a € A at all but finitely many S oco;-true stages, or else f700; < ¢ and o
enumerates a € A along with n via the function g,. O

Lemma 7.3. Every T -requirement is satisfied.

Proof. Fix a requirement 7.. Let 8 < f be the longest strategy such that T(8) = Te.
Such a strategy exists because once T2 is assigned to a node o with |C4(0)| = k, T. can
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be assigned at most £ many more times along any path through o. It follows that 5°d < f
or ffw < f.

If B"w < f, then there is an unrealized witness zg € A such that at every S-true
stage s, z5 ¢ ®p(Vs), where V, = gF (A, USéw’s U{zs}, Bs USE, ,). By Lemma 7.2,
B C |, Vs since the true path passes through g"w. So zg ¢ ®5(B).

If 8°d < f, then there is a successful witness z that is «a;-cleared for all i < k at all
stages t > s,. As the strategy /5 enumerates all elements of D, into B at all true stages
t > s., we have that z € ®3(B). On the other hand, z is never enumerated into A, for
t > s, by 8 or any other strategy, so z ¢ A. O

Lemma 7.4. Fvery M-requirement is satisfied.

Proof. Fix e. There is a unique strategy a < f associated with M.. Suppose that «
is switched to a backup strategy by some 3 > « along the true path. Then ["oco; <
f, C(B) = {ao,...,ax_1}, and @ = «;. There are three types of elements that make
up the set A in this case: elements that are eventually dumped (a c.e. set), elements
that belong to the stream S#(%cc;), and elements that are used by higher-priority 7-
strategies for coding purposes. We will show that (A @ B) can enumerate the elements
in AN S4(B°00;). Once we have that, we will show that ¥(A @ B) can enumerate
the set B. Knowing B will then let ¥(A & B) figure out which of the elements of the
third kind, the ones used for attachments by higher-priority strategies, end up in the
set A.

For all elements z € S4(3"00;), we have that z € A if and only if z € A; (¥, (A® B)).
This is because if we ever see an axiom stop being valid, we would move to an outcome
to the left of oo;. First of all, we claim that B <. A;(¥,(A @ B)). By Lemma 7.2, we
have that b € B if and only if a least strategy o < f enumerates b at all but finitely many
stages at which o takes its true outcome. The strategy (3 forms the association (z,b) € H*
for some z € S4(8°00;), and so if b € B, then at all stages s at which we visit the longer
of the strategies ¢ and ["0co;, we have z € A,. On the other hand, z is enumerated
into A, only if b € By, so we have that B = {b| (2,b) € H' & 2 € A(V,(A® B))}.

Next, we claim that

A= U gngoi(ALm UAZ(\PQ(A@B))aB)
s:8700; = fs

and hence is as well enumeration reducible to A;(¥,(A® B)). First, suppose that a € A.
By Lemma 7.2, a is either dumped into A, or is enumerated into A by some least o < f
at all but finitely many stages at which o takes its true outcome. If o < /3, then a € ALB !
at all but finitely stages s at which 3 is active. If 8°00; < o, then a € S4(8°0c0;),
or else a is the attachment at some § <  and so a is enumerated into A at stages
at which some fixed number b is enumerated into B. It follows that b € B and hence
0 € Uyi5 00, <1, Iboe, (AU MU0 (A ® B)), B).
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On the other hand, if

ac |J 95, (APIUA(VL(A®B)),B),
5:3700; X fs

then for some 3"co;-true stage s, we have that a € 92?»001. (AISB| UA;(T,(A® B)), B). But
then, since whether a enters this set depends only on numbers smaller than a, and all
numbers in Alsﬁ | are in A (since ALB | only grows at "co;-true stages), it follows that
a € A.

Finally, suppose that « is never switched to a backup strategy. We claim that I'(B) =
U,(A @ B). Suppose that € ¥,(A @ B); then there is a valid axiom (z,Fa & Fp)
in ¥,,. This axiom is assigned a marker b, and the axiom (z, {b}) is enumerated into T
By Lemma 7.2, we have that Fa & Fg C A; & B, at all o-true stages for some least
a =0 < f. As « is active at o and o respects a’s promises (see the definition of g,), it
follows that b € B, and so x € I'(B).

On the other hand, suppose that an axiom location b € B is associated with the axiom
(x,Fy ® Fp) in ¥, and this axiom is not valid. After a fixed stage in the construction, b
is enumerated into B only at stages at which some strategy [ such that b is associated
with a witness z at 3 is visited. As z is a-cleared, we know that = € U, (A & Bs) (even
though z ¢ A results in that the original axiom is invalid). As we discussed in the proof
of Lemma 7.2, b is associated to at most one unique pair (3, z) at any stage, and there
are only finitely many possibilities. It follows that if b € B, then one of the finitely many
axioms that cause x € U, (As ® Bs) must be valid. O

7.2. Building up the intuition for the general case

We would like to generalize the previous construction to the general case of an ar-
bitrary distributive lattice. To build up to that, we first consider two special cases: the
three-element lattice and the diamond lattice.

7.2.1. The three-element lattice

Suppose first that we want to construct I13-enumeration degrees a > b > ¢ such
that a is a strong minimal cover of b and b is a strong minimal cover of c. We can
approach this by building three I19-sets A, B, C so that ¢ = deg,(C), b = deg, (B @ C)
and deg,(A @ B @ C). Now we will have two groups of requirements: M# and M?B
mirroring the M-requirements but for the pairs of sets (A4, B) and (B, C), respectively,
along with 74 and 72, proving that we have a strictly increasing sequence of degrees.
One complication that arises immediately is that the set B now plays two roles: On the
one hand, it serves as a set that supplies coding locations for the requirements of the
form M#, and on the other hand, it supplies 7 Z-requirements with witnesses. To keep
things tidy, we will treat B = B* & B" as consisting of two parts: B® will be used by
MA-requirements, and B" will be used by T B-requirements. With this idea in mind,
we have the following list of requirements:
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MAATW (A®BaC)=T(BY)|VIA[AGBaC =AY (AeBa(0))),
MB AW . (BoC)=T(C)]VIABaC =A(¥(Bo C)),

where I' and A are enumeration operators we construct and {¥.}.,, lists all enumeration
operators, and

T 0. (BaC) # 4,
7;B : (I)E(C) 7& Bwv

where {®,}.<, lists all enumeration operators.

The T-requirements ensure that C <, B® C <, A® B @ C, the M“-requirements
ensure that if X <. A® B @ C then X <. B* <. B @ C, and the MPB-requirements
ensure that if X <, B® C then X <, C.

We will have streams associated with each set that we are constructing which are
handed off from strategy to strategy much like in the previous construction: Every strat-
egy o has streams S2, SZ*, SP" and S¢.

The actions of M#- and MPB-strategies are very similar to the actions of the M-
strategy from the previous construction. The only difference is that M“-strategies pick
coding locations out of the stream SB”, and MPB-strategies pick coding locations out of
the stream S¢.

A TA-strategy B will pick a witness z from S4. This witness is enumerated into A while
z ¢ ®g(B @ C). When evaluating B @ C, the strategy takes into account which numbers
strategies below the outcome w might enumerate into each of the sets A, B and C, and
the reaction that higher-priority M 4-strategies and M p-strategies might have. If it ever
sees that z can be realized via an axiom (z, D), then it would like to keep D C B®C and
stop enumerating z into A. This could be in conflict with higher-priority M“-strategies
directly because of coding locations in B?, but there is no direct conflict with higher-
priority MB-strategies: We would like to change the approximation to A, which does
not directly interfere with (B @ C) that an MPE-strategy is working on. There could,
however, be an indirect interaction: Suppose that a higher-priority M“-strategy o has
a promise (b, z, Fy) where z € F|, and a higher-priority MP-strategy v has a promise
(¢,y, Fy) where b € F5 and ¢ € D. Now even though «’s axiom location is not directly in
the set D, the chain reaction starting with z ¢ A would still cause a problem as then b
would need to leave B%, and then ¢ would need to leave C, causing D ¢ B® C. If we are
able to clear b via another axiom for = entering ¥, then enumerating b into B will have
the effect of enumerating ¢ into C, so we can still get the desired result. The conclusion
is that the strategy (3 can switch higher-priority M 4-strategies to their backup versions
(and need not consider the active M pg-strategies). However, when clearing a witness z,
it needs to take into account all elements b that may leave B once we remove z, not just
the ones in the finite set of a realizing axiom (z, D).

Another modification to this strategy is needed in case the strategy has one of its
infinite outcomes. In the simpler case, we reserved half of the stream below an infinite
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outcome to code the set B. Now we need to ensure that each of B*, B and C is reducible
to A(A@® B @ (). We take a similar approach: We split up the stream generated into
four parts: one to code B%, one for BY, one to code C, and the last one is reserved for
lower-priority 7 “4-strategies to pick witnesses.

A TB-strategy § selects its witness z from the stream SZ” and tries to clear it with
respect to all M g-strategies. Once again, not enumerating a witness z into the set B can
cause a chain reaction involving all kinds of axiom locations for M“- or MPB-strategies,
and even coding locations for higher-priority 7“-strategies that have an infinite outcome.
Nevertheless, the only thing that is important to J is to free up the axiom locations from
the realizing axiom (z, D) that stop being enumerated into C' if z is not enumerated
into B". For this reason, ¢ takes into account higher-priority M P-strategies and tries to
get their clearance to diagonalize or switches them to a backup version. Below an infinite
outcome, it codes the sets B* and C' with a portion of the stream S5 .

7.2.2. The diamond lattice

Suppose next that we want to construct I19-enumeration degrees a > b,c > d such
that a = b V c and for all x < a we have that x # a, c,b implies that x < d. We will
build three I19-sets B = B* @ B, C = C*@® C™ and D so that a = deg, (B & C & D),
b = deg, (B ® D), ¢ = deg,(C & D), and d = deg,(D). We will need to satisfy the
following list of requirements:

MEC . Arw . (BeCo® D) =T(B*)]V3A[C®D=A(V.(BaCo® D)),

MEB IV (Be C @ D)=T(C")|V3AB& D =A(V.(BaCao D)),

Ue(
We(
MPB 3T W . (B@ D) =T(D)]V3A[B® D = A(V.(B & D)),
MDPC L I0[w, (C @ D) =T(D)] V3A[C & D = AV, (C @ D)),

where I and A are enumeration operators we construct and {¥.}.«,, lists all enumeration
operators, and

7°: 0. (B® D) #CY,
77 : ®.(C ® D) # B,

where again {®}.<. lists all enumeration operators.

The T-requirements ensure that B @ D and C & D are incomparable and hence
D<.,B&D,C&D <. B®C&D. The MP-B_requirements ensure that if X <. B& D
then X <. D, similarly the MP-C-requirements ensure that if X <. C®D then X <. D.
The new idea comes from the combined use of the M®B and MP-B requirement: Fix
X <, B®eCoD.If X ﬁe B®D then by the M B¢ requirements we have that C&D <. X.
On the other hand if X £, C & D then C® D <. X andso X =, B& C & D.
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As usual, we attach a stream S¥ to every set X € {B% BY,C?% C% D}. The M-
strategies function in a similar way as before. The only difference is that they pick
coding locations from different streams.

A TC-strategy selects its witnesses from S¢” and tries to clear them with respect
to two kinds of higher-priority M-strategies: MP ¢~ and MP:C_strategies. It can also
switch these strategies to a backup version. To see why this is reasonable, note that the
goal of this strategy, once it has a realized witness z, is to keep a finite set in B & D.
Extracting z from C™ can cause axiom locations to leave B® via an M C-strategy
and D via an MP-C_strategy directly. The change in B® can then cause axiom locations
to leave the set D also via an MP-B_strategy. However, if we are able to re-enumerate
all such axiom locations into B®, then that will erase the indirect change in D. Thus
when we ask for clearance, we consider all axiom locations that leave B® if z leaves C'",
not just the ones involved in the realizing axiom. Below an infinite outcome, we code the
sets C® and D using a portion of the stream S .

Similarly, a 7 B-strategy works primarily with the stream SP" and with respect to
higher-priority M B- and MP-B_strategies. Below its infinite outcome, it codes the
sets B* and D.

7.8. Embedding finite distributive lattices

In this section, we generalize the ideas from the previous two subsections to prove our
main technical result:

Theorem 2.4. Every finite distributive lattice has a strong interval embedding into
the enumeration degrees. (In fact, the range of the embedding will be inside the 13-
enumeration degrees.)

Fix a finite distributive lattice £. Suppose that ag is the least element and a4, ..., a,
are the nonzero join-irreducible elements, i.e., the nonzero elements which cannot be
represented as the join of strictly smaller elements. Then every element of the lattice
has a unique representation as ar = \{/,cp @i, where F' C {0,1,...,n} has the property
that if a; <, a; and j € F then i € F'. (We will call such F' downward closed.) This is
easily seen as follows: If F,G C {0,1,2,...,n} are downward closed sets, then ar <, ag
if and only if F' C @. One direction is obvious: If FF C G, then, of course, ar </ ag.
On the other hand, if ar <, ag then fix i € F. We have that a; <, ar <, ag and so
a; = a; N ag. By distributivity, a; = \)(/jeG(ai A aj). Since a; is join-irreducible, we have
a; \ a; = a; for some j € G, and so a; <. a;. Since G is downward closed, this implies
1 € G as desired.

It is worth pointing out that this property is characteristic of distributive lattices.
Consider the lattice M3 consisting of incomparable elements a, b, ¢, their least upper
bound 1, and their meet 0. The top element has three different downward closed rep-
resentations: 0V a Vb, 0VaVece and 0V bV c. Consider the lattice N5 consisting of
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elements 0 <n, a <y, b <y, 1 and 0 <y, ¢ <n, 1, where c is incomparable with both a
and b. Here the top element has two different downward closed representations: 0V aV c
and 0V a VbV e It is well-known (see Birkhoff [2, Theorems 1.12 and I1.13]) that every
non-distributive lattice embeds at least one of M3 and Ns.

Requirements. We will build sets X, X1,...,X,, and let the enumeration degree of
Ap = GaieF X, be the image of the element ar in the lattice £ under the embedding
into the enumeration degrees. This automatically ensures that ar <, ag implies (F C G
and hence) Ap <. Ag. (We will sometimes abuse notation and write Ag for the set Ap~,
where F™* is the downward closure of F' with respect to L.)

To ensure that we have strict inequality, i.e., that if ap f r ag then Ap ﬁe Aqg, we
will have T-requirements. The 7-requirements will be assigned to pairs (i, F;) where
ie{l,....,n}and F; = {j | a; £ a;}. We claim that ap, is the greatest element in £
that is not above a;: Note that F; is downward closed by definition. By the argument
above, since ¢ ¢ F;, we have qa; ﬁﬁ arp,. And ap, is greatest not above a; since, if
ag fg ar,, then G\ F # (), but then G contains the index of some a; >/ a; and hence i.

For every i < n, the set X; will consist of two parts, X @ X/”. For each such pair
(i, F;), we have the requirements

7;,6 X # (I)e(AFf,)'

Let’s check that this ensures what we want. Suppose that ar £, ag. Then F € G, so
fix i € F'\ G. Since i ¢ G and G is downward closed, we have that G C F; and so from
Xi %e Ap,, X; <. Ap, and Ag <. Ap, we conclude Ap £, Ag.

Next, we need to ensure that a set U that is enumeration reducible to the top element
Afo0,1,2,....n} 18 either enumeration equivalent to Ap for some downward closed set F' or
else is enumeration reducible to the set Xj. For this reason, we need a requirement M
for every pair of elements (ar,aq) such that ag is minimal above ap. It follows that
G = F U {i} for some i. Indeed if 4,5 € G\ F and i # j, then the downward closure
of F U {i} and the downward closure of F'U {j} represent two different elements in the
interval (ap, agl, contradicting minimality. The requirement will say that a set U <. Ag
is either below Ap or else is above the set Agjja;<.a,1 = Ao\F (Recall that, by our
convention, G\ F' denotes the downward closure of the set {i}.) Note that ag\p is the
least element below ag that is not below ap. Indeed, if ay is below ag and not below ap,
then H ¢ F and H C G, hence i € H and, by downward closure, G\ F C H.

To see that this set of requirements ensures what we want, fix U <. Ag. We will have
one requirement for every possible F' C G representing an element ar such that ag is
minimal above ag. If all requirements turn out with outcome Ag\p <. U, then we claim
that U =, Ag. Fix a maximal join-irreducible element a; </ ag. Then F = G\ {j} is
downward closed and a¢ is minimal above ap, hence U >¢ Ag\r = A(jja;< a,}- AS aG
is the join of all maximal join-irreducible elements a; <. ag, it follows that U >, Ag.
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On the other hand, for this G, consider a specific pair (F,G) and let G = {j} U F.
Furthermore, recall that, for every ¢, the set X; will consist of two parts, X{*@®X;". Denote
by A% the set @iEF X' Suppose that Ac\ £ U; then we will want U <., A% <, Ap
so that we can continue with “pushing” the degree of U down. Collectively, we thus end
up, for all such pairs (F,G), with the requirements

MES : (AD)[W.(Ag) = T(AR)]V GA) Ay r = A(Te(Ac))],

which will ensure that U either has the same degree as some Ap or else is reducible
to Xo, as desired.

Conflicts. A T;-strategy [ wants to change X; and restrain Ap,. It will be in conflict
with an MTC-strategy a < 8 only if G = F U {i} (and hence F C F;). Indeed, if i ¢ G,
then enumerating and then extracting a witness from X does not affect ¥(Ag). On the
other hand, if F ¢ Fj, then the enumeration of a witness w into X may make an axiom
in ¥ for some number = valid and so cause the M-strategy to enumerate markers m;
into A; for j € F to make an axiom for x in I' valid; now later, the extraction of
the witness w may mean that = leaves W(Ag); however, we can still restrain in A; the
markers m; for all j € F; N F' because there is a marker m; for some j € F'\ F; that
can be used to extract = from T'(4%). This means that all MFC_strategies that are in
conflict with 7; have G = F'U {i} and hence the same set Ag\r = A{jja,< a,}-

Streams, approximations, and parameters. For every i < n and for every X;, we have
two streams Sga and Sgw at every strategy d. The streams at the root strategy () at stage s
consist of the interval [0, s]. For the other strategies, we will define them recursively
during the construction. When an M-strategy « chooses axiom locations for X;, it picks
them out of the stream S’ . When a T;-strategy (3 picks witnesses, it picks them out of
the stream SE An element from a stream is suitable for a strategy 4 if it is the (§, z)-th
element that is not used in an attachment for some x € w, where § — Sisa computable
injective function that maps a strategy ¢ to a natural number.

We will also have dump sets U and U;" for all ¢ < n.

Next, an MG strategy a has as parameters the enumeration operator I', that it
builds, and a list of promises P,. A promise is of the form ({m;};cr,z, D), where (z, D)
is an axiom in ¥, and m; is an axiom location picked from the stream Sg’j and targeted
for X7.

A T;-strategy § has a parameter Cg = {aw, ..., ax—1} in which we list in order of pri-
ority all M-strategies of higher priority that are in conflict with 8 and still active along 3
(i.e., no T-strategy of higher priority has switched them to a backup strategy). The in-
finite outcomes of § are determined by the number k. Below each infinite outcome oo,
say, the strategy 3 will build an operator A? that enumerates X} from ¥, (Ag, ), and
we will code into X7 all sets X7 where a; <. a; as well as all sets X where a; <. a;.
For each such X, we will have an attachment set at outcome oo, denoted by H ff 5- The
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entries in this set are of the form (z,y), where z is a witness of § enumerated into the
stream Si“foo“, The strategy 3 will also have a current witness z3 as well as other minor
parameters that we will define during the construction.

The M-strategies make promises; the T-strategies make attachments. Whenever a
new number is enumerated into a set by a strategy «, this sets off a chain reaction in
which higher-priority strategies respond by possibly enumerating more elements. At any
moment, the set of their promises or attachments are all finite, so this process is finitary.
We define functions g, to explain formally how this process works. The function g, has
2(n+1) arguments Do = &, D¢, ..., D% and Dv = ¢, DY, ..., DY, where D¢ and DY’
are finite sets targeted for X and Xlw ,
of 2(n + 1) sets in turn:

(B, B UDO“..,,UD;“UD&Z,...,UD,?,Z)
/ ! !

where D}, = D UU;" and D}, = D;" UU;", and where

respectively. The function g, outputs a vector

Dy = D U{z | (30,u,7)(Jy)[o assigned to T;, 0700, < @, and

X¢ Xw
[[(2,y) € Huz and y € D] or [(2,y) € Hu,z and y € D7}]]]}
and

D}y = Dy u{my| (3F,G,e,0)(Fz, D)[i € F, 0 = «a is active at a,

o is assigned to MY, ({m;};er,z,D) € Py, and D C @ ¢ © DY
JjEG

Tree of strategies. The set of outcomes is, as before, {w, d, c0; : | < w}, ordered by:
d<p oog <p ooy <p -+ <pw.

The tree of strategies will be a partial computable function
T:{w,d,oo;: 1l <w}<¥ — R,

where R is an effective listing of all M- and T-requirements. We will define T'(«) and C,,
by induction: Set T'(0) = M. If T(a) = M, then T'(a"d) is defined and equals the least
T-requirement that has not been assigned to any node § < «, and we set Co-g = CoU{a}.
If T(a) =Ty and Co = {ag < @1 < -+ < ag—1}, then we set T'(«"w) and T(ad) to be
the least M-requirement that has not yet been associated to any node g < a. For every
I <k, we set T'(ao0;) = T'(v). Note that in that case C(a’o0;) = C(a) \ {ay}, hence a
specific T-requirement can only be assigned finitely often along each branch. It follows
that every requirement is assigned along each infinite path, and furthermore, that it is
assigned only a finite number of times.
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Construction. At stage 0, the global dump sets U/* and U} are empty, and all strategies
are in initial state: For an M-strategy «, we have that I', = () and P, = 0; for a 7;-
strategy 8 with |Cg| = k, we have that AIB = Hl)fﬁ = foralll <kandal X € {X{|
aj < a;} U{X}" | a; <z a;}, and that the current witness 23 is undefined.

At stage s > 0, we build f, of length at most s, activating strategies along f,. We
begin by enumerating U and U}” into X{ and X" for all i < n, respectively. We then
start at the root and let S, = S, U{s}, for = € {a,w} and i < n. Suppose we have
constructed fs [ ¢, along with S}I s = S}z i1 Uiyl and X7, X} (or rather, the
approximations to these sets at substage ¢ of stage s). If ¢ = s, then we end this stage
and move on to the next. We initialize all strategies on the tree that are to the right of f
by returning them to their initial state as defined at stage 0. If ¢ < s, then we activate
fs It and let it pick its outcome o. Then fs [ (t+1) = (fs [ t)%0:

Case 1: Suppose fs | t = a is an M C-strategy. If a did not end the previous stage
at which it was visited prematurely, and there is an axiom in ¥, which has not yet
been assigned all axiom locations m; for j € F, then pick the oldest such axiom (x, D),
i.e., the one that was first enumerated into ¥,. For every j € F' such that m; is not yet
defined, check whether y; is suitable and larger than max (D). If so, we take yj out of the
stream, set m; =y, and end this stage of the construction prematurely. If we now have
a suitable m; for all j € F', then we enumerate the promise ({m;};cr,z, D) into P, and
the axiom (z, P;crp{m;}) into I'a. Otherwise (if o ended the previous stage at which it
was visited prematurely, if no y§ is suitable, or if all axioms in ¥, have been assigned
axiom locations), then we enumerate each yj into the stream Sg:d and let d be a’s

—

outcome. In either case, we enumerate go (X7, X;”S) for j < n into the sets (Xf, X;")
Case 2: If fs | t = B is a T'i-strategy and Cs = {ag < -+ < ag_1} is the list of active
M-strategies of higher priority in conflict with 3, then we pick the first case which
applies:

(1) The strategy B was successful via a realized witness z and had outcome d at the
previous stage at which it was active. In that case, for all j € F;, enumerate DJ
into X7 (Here, DI consists of axiom locations that belong to higher-priority M G-
strategies still active at 8 such that ¢ € G, and these DJ were defined when the
witness became realized.) For all j < n, enumerate yj into Séfd. We enumerate

gg()?@ st) into the corresponding sets ()2;,)?;”) for j < n, and let the outcome

7,87

be d.

(2) The current witness zg is not defined. If y}¥ is suitable for 3, and larger than |5
and larger than the last stage when [ was initialized, then let the current witness
be z3 = y;" and end this stage. Otherwise, enumerate yj into S Qw for all j <n. We

—

enumerate gg (X7, XJ“’S) into the corresponding sets (XJ“, X;") and let the outcome

be w.
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The witness zg is not realized, i.e., 25 ¢ ®3(D,cp, (VS ® V")), where

(Vo V) = gp((XE U8y ) j<ns (X3 USS, j<in
S

w

XU {2} UShs (XJ, USS, icj<n)-

We then enumerate

— —

96(()(ﬁs)j§nv( %;)j<i7)(52 LJ{ZB}’( qﬁ;)j>i)

—

into ((Xf)j<n, ()Z;“)Jgn), the numbers y7 into the corresponding stream ngw, and
let the outcome be w.

The witness zg is realized. Enumerate the numbers from the stream Sf;ms into U%3.
For every j € F;, let DJ 5 be the set of axiom locations m of higher-priority active
MFEC strategies with ¢ € G and targeted for X7 such that if z is in X}", then
those axiom locations are enumerated into X¢ via the function gg, but if z5 ¢ X}*,
then they are not enumerated. (We will argue that axiom locations that have the
same behavior but belong to other types of M C_strategies, i.e., with i ¢ G but
F;NF # (), are automatically enumerated into their respective set once all DJ 5 are.)
For every u < k, let Ey” be the set of numbers that enter ¥, (Ag, ) when zg is
enumerated into X’ but leave ¥, (G,,) when zg is taken out. Make the current
witness zg undefined.

Now, for every realized witness z, € {a,w}, j < n, and every u < k, let

Mt =Xx2U | Sha, \ {2}, and
u<v<k
Xe i . .
M.l =X7 U U Sé*oov for (z,7) # (w,1).
u<v<k
Let
SXO SX W S X0 XY

(LuéaLuJ) ::gﬁ(Almz,AImz)~

We say that z is ay-cleared if Ef C Vo, (B;cq, Li{; ® Lffz ). We search for the

(lexicographically) least pair (u, z) such that z is a realized witness, z ¢ SXZO _ for
v <u,z ¢ U and z is a,-cleared for all v > u. Note that the pair (k—1, z3) satisfies
these conditions. o o

For all j <n, we enumerate {J, ., My,? into Uf, and U, ., o4, Mo,? into U}’. We
set A, = HY =0 forv>wandall Y € {X{ | a; <p a;} U{X} | a; <r a;}.

—

(a) If uw > 0, then we enumerate the axiom (z, EZ) into A, the sets gg(X?¢ st)

7,87

into the corresponding sets (XZ”, )?}“), the number z into the stream S (8 00, ),

the numbers y¥ (for (z,j) # (w,4)) into the corresponding streams ngoou, and
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let the outcome be oo,. List the set {X¢ | a; < a;} U{X}" | a; < a;}
as {Yy,Y1,...,Y,,_1}. If z is the (m - q + v — 1)-st number enumerated into
S (B 00;) for v < m, then we enumerate the attachment (z,q) € H;Z and end
this stage. If z is the (m-¢+m —1)-st number enumerated into the stream, then
we do not end the stage and let the next strategy act.

(b) Otherwise, we have a witness z that is a,-cleared for all v < k. We say that z
is successful. We enumerate D? into X7 and then gg()z;s,ffs) into (X;, XJ’"”)
We let the outcome be d.

Verification. We define the infinite path f by f(¢) = liminfys; f5(¢). It is straightfor-
ward to see that strategies o along f are visited at infinitely many stages and initialized
at only finitely many stages. Let s, be the least stage after which o is not initialized.
Let X € {i% i%}i<p. Let SX = Usss, SX,.
that SX is infinite. Furthermore, if a strategy o is visited at two consecutive o-stages
s>t > sy, then X0 O X¢ and X%, O X} (as seen at substage |o]), as in order for

a strategy above ¢ to stop enumerating an element, it must move its outcome left of o

A simple induction on the length of o proves

and hence initialize 0. Our next lemma holds the key to the way numbers may enter the
sets X and X;” for i <n.

Lemma 7.5. If a number m € X{ or z € X;* where ¢ < n, then either m or z is dumped
into X2 or XV, respectively, starting at some stage, or there is a strateqgy o < f such
that at all but finitely many stages, o is the least strategy that enumerates m or z into
its corresponding set, and it does so at cofinitely many stages at which o takes its true

outcome.

Proof. First note that if a number ever enters a dump set U for z € {a,w} and i <n
at stage s, say, then it is enumerated into X7 at the beginning of every stage ¢t > s.

So suppose that m € X, but is never dumped into U{. Note that when an MEG.
strategy picks a number as an axiom location, then that number is taken out of the
stream. It is never returned to any stream, so no other strategy can use it. If m is not
the axiom location to any strategy then it is not enumerated into X{* at any stage unless
it is dumped, so let a be the unique M*G-strategy that uses m as an axiom location,
say, for the axiom (y, D). It follows that ¢ € F. If « is ever initialized, then m is dumped.
Indeed, if « is initialized, then a higher-priority 7-strategy ¢ with ¢"0 < « moves to
an outcome o' that is to the left of 0. Every time a 7-strategy moves its outcome to
the left, it dumps all elements into the streams associated with outcomes to the right
unless the element is a specific witness (but then this element is in a different stream).
In particular, it dumps S’ C Sgio. So, by assumption, « is never initialized.

There are infinitely many stages at which m is enumerated into X{. At stage s, this
could be because a strategy o = « such that « is active at o causes D C Ag or because
a successful T;-strategy 3 has m € D! for some realized cleared witness z and is visited
at stage s. We first claim that there are only finitely many possible strategies 8 that can
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have m € D! for a realized witness z. This is because if z entering X3 causes D C Ag,
and z not entering X} does not cause D C Ag, there is a sequence of promises and
attachments that realize this. This sequence is triggered by z and ends in D C Ag. It
follows that z < max(D) < m. This is because every time we pick axiom locations for an
axiom, we require that they are larger than all elements in the finite set associated with
the axiom, and every time we make an attachment (z,n), we have that n < z. There are
finitely many T -strategies that can have a witness z < m, because the witness for 3 is
always selected to be larger than |3]. Once a strategy /3 succeeds with a witness z with
m € D', it will keep z ¢ X3 at all further stages unless it is initialized. This means that
while 3 is not initialized, no other strategy will have a reason to enumerate m into X,
as in order for m to enter X2 (and that needs to happen in order for m to possibly
enter another D!, for the realized witness of a different strategy), we must have that
z € X}”. This means that unless B is initialized, m will be enumerated into X only at
stages at which 3 is visited. If g is initialized, then it will have witnesses of size greater
than the stage at which it is initialized. It follows that there are only finitely many pairs
(B, 2) such that m € D and z is a successful witness for 3. If there is such a strategy 3
that is never initialized, then we have argued that 8 must be visited infinitely often (as
m € X¢), and so 3 is on the true path. It enumerates m along with D! every time it is
visited after z’s success.

If no such strategy remains uninitialized, then after some stage sg, the axiom loca-
tion m can only be enumerated into X via the promise at o and the function g, for
some o extending o. It follows that at infinitely many stages s, D C Ag,s, and thus
D C Ag. Now, since max(D) < m, we can use the induction hypothesis: For every ele-
ment u € D, there is a strategy o, < f that enumerates u into its respective set at all
stages at which it is visited after some fixed stage s,. Pick the longest such o,. Then at
all stages t > max{s, | v € D} at which o, is visited, it will enumerate m into X? via
the function g,, .

Now suppose z € X;” and is never dumped. At every stage s, there is at most one
strategy vs = B0 visited at stage s such that z is an unrealized witness of 5 and o0 = w,
or such that z is a realized witness of 8 and 8 uses z in an attachment below outcome
0 = 00, for some u < k. There are only finitely many strategies S that can ever fulfill
this role, as z must be suitable for 5 and § has length no more than z. If between stages
s < t, such a strategy for z changes, then v; < 7s. So let 5 be such that % is least
among all such <, and hence equal to ; at all but finitely many stages ¢. If o = w,
then z enters X;” only at stages at which we visit § and  has outcome w. It follows
that 8w < f.

If 0 = 00y, then (z,y) € H};u and hence the only way that z can enter X" is if some
strategy compatible with §°co, enumerates y into Y. As y < z, we have by induction
that there is a unique strategy o < f that causes this. So either ¢ < 3, in which case
B oo, < f and z € X[” at all but finitely many ["co,-true stages, or else oo, = o
and o enumerates z € XV along with y via the function g,. O
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Lemma 7.6. Fvery T -requirement is satisfied.

Proof. Fix a requirement 7; .. Let § < f be the longest strategy that is assigned to
requirement 7; .. Such a strategy exists because once 7; . is assigned to a node ¢ with
|Co| =k, Ti e can be assigned at most k¥ many more times along any path through o. It
follows that 5°d < f or f"w < f.

If p"w < f, then there is an unrealized witness z such that at every p-true stage s,
2 ¢ B(@e, (V} ® V")), whero

(V}a7 ijw) = g@((X;,s U ngw,s)jg’f“ (X;l,}s U S[]-}Aw,s)j<i7
_—

w

XP ULz USE,, (X, USh, Dicj<n)-

By Lemma 7.5, we have that X§ C (J, V% and X3 C |J, V},, where s ranges over all
B w-true stages. This is because the true path passes through §™w and so any element
enumerated into any set Y is either enumerated by a strategy of higher priority than £
and hence in the set Y, by the time we reach 3, enumerated by [ and hence it is a
member of the corresponding set in the sequence (‘7]-“, 17]7“”), or else it is enumerated by
a strategy extending 8"w and hence belongs to the stream Sé(w at some p-true stage s.
It follows that z ¢ (D¢, X;)- On the other hand, 2 is enumerated into X;" at every
sufficiently large S-true stage, so z € X*.

If 5°d < f, then there is a successful witness z that is «a,-cleared for all © < k. This
means that z was realized, and so at some earlier stage, we saw z € ®c (D, (VS OV)).
The strategy /S then proceeded to dump into the respective stream all elements that
contribute to the definition of the sets V;* and V;* apart from the witness z. This leaves
out numbers that enter Ap, when z is enumerated into X;’, but are not enumerated
into A, when z is left out of X” via the function gs. From those numbers, the axiom
locations that are used by higher-priority active MF'C-strategies with i € G enter the
set DJ (where j € F;) and are enumerated into their corresponding set when f is visited.
This leaves axiom locations for M*C_strategies where i ¢ G, and attachments.

We reason by induction. We will show that any axiom location targeted for X7 or
attachment targeted for X", where a; #r a;, that is enumerated when z is enumerated,
and is not enumerated if z is not enumerated at the stage when z became realized is
enumerated into its targeted set when we visit 5. Fix an axiom location m targeted
for X7 by a < 3 where j € F;. The strategy a is an MFEG strategy. If i € G, then
m € D, so suppose that ¢ ¢ G. This means that m is part of a promise ({m; };cr,z, D)
at a and D is enumerated into the set that it is targeted for if z enters X}*. Since i ¢ G,
we have that the set D consists of axiom locations and attachments targeted for X;’,
where k # j. Since G is downward closed, we even have that ar 2. a;. As m > max(D),
we can apply the induction hypothesis, namely, that D is enumerated into its targeted
set at every stage at which we visit 5, and so we enumerate m via the function gg as
well.
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Now consider an attachment y targeted for X°, where a; #c a;. Then it belongs
to a Tj-strategy ' < . The T,-strategy codes all Y}*, where a, <. a;, as well as Yy,
so y is a part of an attachment (y,q) where ¢ < y is targeted for one of these Y;* or
Y} Since ay <. aj and a; %. ai, it follows that ax #, a;. Once again, the induction
hypothesis applies, and so ¢ € Y}’ at all sufficiently large S-true stages. The definition
of the function gg then ensures that y € X7* at all sufficiently large S-true stages. O

Lemma 7.7. Fvery M-requirement is satisfied.

Proof. Fix e and let FF C G C {0,1,...,n} be downward closed sets in £ such that F
represents ar, G represents ag, and ag is minimal above ap. Then there is a unique
strategy a < f assigned to the requirement MZC. Suppose first that « is switched
to a backup strategy by some 7T;-strategy S > « along the true path. We know that
G = F U {i} and hence we have that F C F; and G\ F = {a; | a; < a;} under our
convention. We have that 5%co, < f, C(8) = {ao,...,ar_1} and a = ay,. It follows that
for all elements z € S¥' (8"00,,), we have that z € X* if and only if z € A, (V. (Ag)).
This is because if we ever see an axiom stop being valid, we would move to an outcome
to the left of oo,,. First of all, we claim that @a,¢<cai (X§f@ X))o X <. Au(Va(Ag))-
By Lemma 7.5, we have that y € Y (where Y € {X?} U{X?, X} | a; < a;}) if and
only if a there is a strategy ¢ < f that enumerates y at all but finitely many o-true
stages. The strategy 3 has an attachment (z,y) € HY for some z € 8% (800, ), and
so if y € Y then at all max(o, 5700, )-true stages, z would be enumerated into X”. On
the other hand, z is enumerated into X;’ at stage s only if y € Y;, so we have that
V={yl|(2y) € H) &z¢€A,(Val(Ag))}-

Next, we note that X/’ consists of three types of elements: the elements that are
enumerated into X by strategies of higher priority than 8 at S-true stages s (which is a
c.e. set); the elements in X* N (|, Silfoou) = A,(V4(Ag)); and the set of all numbers z
such that (z,y) is an attachment at some T;-strategy o < § coding some ¥ € {X#} U
{X§, X3 [ aj <¢ a;} and y € Y. We have already argued that Y <. A, (¥4 (Ag)),
and so the last part of X is also reducible to A, (¥, (Ag)). Altogether, we obtain that
A r <e ¥a(Ag)), and so the requirement M is satisfied.

On the other hand, suppose that « is never switched to a backup strategy. We claim
that Ty (A%) = U (Ag). If z € U, (Ag), then there is a valid axiom (z, D) in ¥,. This
axiom is assigned a set of axiom locations {m;};er, and the axiom (z,P;cp{m;}) is
enumerated into I'y. By Lemma 7.5, we have that D C Ag s at cofinitely many o-true
stages s for some sufficiently long o < f. As « is active at all of its successor nodes
along the true path, it follows that gmax(s,a) enumerates @jeF{mj} into A%, and so
x € To(A%).

Now suppose that x € I'a(A%) via an axiom (z,D;cp{m;}), associated with an
axiom (z,D) € U,. If the axiom (z,D) € V¥, is not valid, then after finitely many
stages, the axiom locations can only be enumerated into A% if they enter sets DI for
some witness z and are enumerated by a T-strategy. By Lemma 7.5, we have that if any
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axiom location m is in A%, then there is a least strategy o < f that enumerates it at
cofinitely many o-true stages. Fix such an axiom location m and the corresponding o.
If o is a T;-strategy, where F' U {i} = G, then z is a realized witness that is cleared
by «, meaning that ¢ has found evidence that all z associated with axiom locations
that are enumerated if z is enumerated, and not enumerated if z is not enumerated, and
that belong to strategies in conflict with «, are in ¥,(Ag) even when z is not in X}.
The number x associated with m is one of these numbers. The strategy o ensures that
x € U, (Ag) remains true at further true stages by dumping relevant elements, and so
in this case, x € U, (Ag).

If o is a Tj-strategy such that k ¢ G, then m cannot end up in DJ. So suppose that
k € G and F ¢ Fy. Let m’ be an axiom location from the same promise as m but which
is targeted for some X with | € F \ Fj. If the axiom associated with m and m’ is
invalid, then m' is not enumerated into X;* via the function g, by any strategy p along
the true path. We need to show that m’ cannot enter D!, via a different strategy 7 < f.
Assuming that m is the axiom location associated with x that enters its corresponding
set first, it follows that 7 £ o. Strategies extending o’d are visited for the first time
after m’ is already defined, so their witnesses are larger than m’ and cannot influence
whether m’ is enumerated or not, so m’ can never enter the set D!, for a witness 2’. It
follows that m’ remains out of X/*, contradicting the assumptions.

Thus = € T'»(A%) must imply that z € U, (Ag), and so MPC is once again satis-
fied. O
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