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Abstract

Reactions with post-transition state bifurcations (PTSBs) involve an initial ambi-
modal transition-state structures followed by an unstable region leading to two possible
products. PTSBs are seen in many organic, organometallic and biosynthetic reactions,
but analyzing the origins of selectivity for these reactions is challenging, in large part
due to the complex nature of the potential energy surfaces involved, which precludes
analyses based on single intrinsic reaction path (IRP). While selectivity can be pre-
dicted using molecular dynamics simulation, connecting results from such calculations
to the topography of potential energy surfaces is difficult. In the present work, a method
for generating two-dimensional potential energy surfaces for PTSBs is described. The
first dimension starts with the IRP for the first transition-state structure, followed by a

modified reaction coordinate that reaches the second transition-state structure, which



interconverts the two products of a bifurcating reaction path. The IRP for the sec-
ond transition-state structure constitutes the second dimension. In addition, a method
for mapping trajectories from Born-Oppenheimer molecular dynamics simulations onto
these surfaces is described. Both approaches are illustrated with representative ex-
amples from the field of organic chemistry. The 2D-PESs for five asymmetric cases
tested have clear tilted topography after the first transition-state structure, and tilted
direction correlate well with the selectivity observed from previous dynamic simulation.
Instead of selecting reaction coordinates by chemical intuition, our method provides a
general means to construct two-dimensional potential energy surfaces for reactions with

post-transition state bifurcations.

1 Introduction

A reaction with a post-transition state bifurcation (PTSB) is a reaction starting from a
single transition-state structure (T'SS) that leads to two products without any intervening
potential energy surface (PES) minima.? With PTSB, it is no longer possible to predict the
reaction through the canonical transition-state theory,* nor the kinetic controlled products
since the activation energy for the two products are identical. The selectivity of a variety of
reactions — organic, organometallic, biosynthetic — leading to complex organic molecules®”
has been shown to depend on non-statistical dynamic effects®? that influence trajectories as
they approach the region of a PES containing a bifurcation.

Various means of characterizing PESs with unusual features have been discussed in the
literature.' Here we highlight some of those most relevant to PESs and reaction paths with
PTSBs. Kraka extended the idea of a reaction path Hamiltonian (i.e., searching reaction path
with contributions from different normal modes) from Miller!® to use curvature coupling to
recognize ‘hidden intermediates’ of symmetry forbidden pericyclic reactions with PTSBs!! 13
Quapp redefined the concept of reaction path following a reduced gradient (RGF) method,

which he used to calculate bifurcating paths,!* and the tangent search concept (TASC)



1.1% Gill implemented an algorithm to

method, which he used to calculate valley extrema
locate branching points by justifying the change of curvature.'® Wales used gradient lines
to build two-dimensional potential energy surfaces (2D-PESs) for symmetric PTSBs. ! Fol-
lowing up on Maeda’s automatic search method, the artificial force induced reaction (AFIR)
methods!® minimize the so-called ‘AFIR function’ to search for stationary points, and the
difficulty of this approach in connecting PTSBs via intrinsic reaction coordinates is also dis-
cussed. ' Taketsugu proposed an approach that uses the classical multidimensional scaling
(CMDS) method?® to reduce the dimensionality of data sets, allowing for interpretation of
multiple IRPs using low-dimensional representations.

Investigation of PTSBs is intrinsically a multi-dimensional problem;?! at least two degrees-
of-freedom (d.o.f.) are needed. Consequently, it is difficult to describe reactions with PTSBs
using traditional one-dimensional pictures such as minimum-energy paths?? or intrinsic reac-
tion paths/coordinates (IRP/IRC).? Quapp?* explicitly addressed the fact that the solution
of IRP is unique and there cannot be a bifurcation on gradient lines. In recent work, Hare
and co-workers developed a method to determine important structural changes during re-
actions using principle component analysis with their program PathReducer.?® The method
we describe here is complementary to these approaches, in that it does not reduce dimen-
sionality by focusing on a subset of the structural changes that occur during a reaction, but
rather reduces dimensionality by focusing on the IRPs for the initial, pre-PTSB TSS and a
secondary TSS that intercoverts the two products.

In investigating selectivity of organic reactions with PTSBs, ‘pitchfork model” are widely
discussed. 126739 The key features of this model are shown in Figure 1. A reactant (R)
connects to the first transition-state structure (T'SS1), which is referred to as ‘ambimodal’3!
which is followed by a descending valley that leads to an orthogonal ridge connecting to a
second transition-state structure (TSS2) that interconverts the two products (P1 and P2).
In addition to these stationary points, the path from the valley following T'SS1 toward the

TSS2 ridge has a valley-ridge inflection (VRI) point.?43%34 The overall reaction path (not
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Figure 1: The pitchfork model has six important points which include five stationary points
and one non-stationary point, as listed in (a) solid ovals represent three local minima and
dashed ovals represent two T'SSs. The non-stationary point is called valley-ridge inflection
(VRI) point as is represented by a solid rectangle. In panel (b), a three-dimensional view
from the products side is illustrated (see Appendix of Ref. 24).

necessarily the path followed by dynamics trajectories, vide infra) can be represented as R
— TSS1 — VRI — TSS2 — P1/P2.

The presence of a VRI causes a locally flat region that separates the valley that im-
mediately follows the TSS and the ridge that separates two products. A VRI?* has at
least one eigenvalue of the Hessian (H) that is zero ; Hvygr; = 0, and this gradient (gvri)
is orthogonal to the corresponding zero Hessian eigenvector (Lygi); gVg; - Lvrr = 0. Two
types of VRI points are discussed in the literature: symmetric VRI points®® and asym-
metric VRI points,® which leads to symmetric PTSB and asymmetric PTSB, and their
conceptual difference of topography are shown in Figure 2.

2D-PESs for symmetric PTSB have been constructed, but only for small systems by using
selected geometric parameters (e.g. distances, bond angles, dihedral angles or collective

27,29,34,36 or using two gradient lines.?” Using

variables in which some of these are combined),
geometric parameters is inherently biases by chemists’ (pre)conceptions of which structural

parameters are most important. In a PES of a symmetric PTSB, as shown in panel (a) of



Figure 2: Pitchfork model potential for symmetric (a) and asymmetric (b) PTSBs are shown
in their important bifurcated region (similar to Figure 1 (b)). Red and blue points are local
maxima and minima, respectively. Steepest descent path is the red solid line, and blue dash
line is the artificial reaction path. The analytical function is E(x,y) = 3(2y* — ya? — px +
2y) + 5 (2* + ¢*),% and p is 2.0 for symmetric (a) and 1.75 for asymmetric (b) PTSBs.

Figure 2, the reaction coordinate corresponding to TSS1 is orthogonal to that for TSS2, and
the IRP for TSS1 terminates at TSS2. Baker referred to a TSS at which an IRP terminates
as a ‘false minimum’,'® which is similar to Kraka’s ‘hidden transition state’ concept.'? As
will be shown in the present work, the two orthogonal IRPs can be used to construct a
2D-PES for further studies. In any case, dynamics trajectories for a symmetric 2D-PES are
expected to be evenly distribute between both P1 and P2, i.e., such a reaction displays no
selectivity.

In contrast, reactions involving asymmetric PTSB are more general , and the prediction
for selectivity has been difficult, which has led to sustained interest in their 2D-PESs. 1239
The first asymmetric PTSB for real molecule is a reaction mechanism of ketyl anion radical
anions in 1997.3% Selectivity for a reaction with a PTSB associated with an asymmetric
VRI cannot be described /predicted by canonical transition-state theory,? since it depends
on the nature of the PES after passing the first transition-state structure.*® As shown in
panel (b) of Figure 2, the red solid line of IRP starts at TSS1 and then goes to either

P1 or P2 without reaching TSS2. Generally this IRP contains a shoulder near a VRI



point in 1D energy profile, and the shoulder have been taken as potential markers of the

4142 and are related to the concept of ‘hidden intermediates’.'?43 The

presence of PTSBs
tilted topography of the 2D-PES on the product side of TSS1 is associated with unequal
probabilities of forming products P1 and P2 in dynamics trajectories, i.e., selectivity can
be expected from a 2D-PES. Therefore it is important to develop strategies to build the
2D-PES for a general class of systems.

Our approach to building an asymmetric 2D-PES builds on the work of Minyaev and
Wales.!” Since an IRP for a reaction with an asymmetric PTSB does not reach TSS2, it
does not fully capture the VRI and post-VRI region. Nonethless, IRPs may be used as
ingredients to construct 2D-PESs for reactions with PTSBs. As discussed previously, a
useful 2D map should contain two coordinates: one for the reaction where bifurcation would
occur, and another direction for spanning the two bifurcation products.** By analyzing
the gradient for these two reaction coordinates, each associated with an IRP, we define an
artificial reaction coordinate to bridge the gap between VRI and TSS2, as shown in panel
(b) of Figure 2 (blue dashed lines).

In Section 2, we briefly review normal mode analysis and its extension to IRPs. Concep-
tual applications to two subcategories of PTSB - containing systems are presented: symmet-
ric systems in which normal IRPs are used to build a 2D-PES (Section 2.1) and asymmetric
systems in which a modified reaction coordinate is defined (Section 2.2). An approach based
on use of root-mean-square-deviation (RMSD) to map dynamics trajectories onto these nu-
merical PESs is then described (Section 2.3). Chemical applications of the above methods

are shown in Section 3, followed by a discussion of directions for future work in Section 4.

2 Methodology

In this section, we first review normal mode analysis and the development of an approach

that combines IRPs to investigate PTSBs is laid out in Section 2.1 and 2.2.



In the normal mode analysis,*> the potential (V) is expanded near the equilibrium ge-

ometry (geq, such that V(g.,) = V5) in mass-weighted coordinates to the second order,
1
V=W +54'Hq, (1)

where q is a vector containing small displacements in the same reference frame, such that
q = (vVmiAzy, /miAyy, ymiAz; ... ), with Az; = x; — x,,;. H is the Hessian matrix (the
second-order derivatives) evaluated at Vj.

0*V

p— 2
9494, @
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Since the Hessian is a symmetric matrix, we can diagonalize it with a set of orthogonal

eigenvectors, and with real eigenvalues obtained:

H=PTDP, (3)

where D is its diagonal eigenvalue matrix, D;; = \;0;;, with matrix element {\;} being the
eigenvalues. P (P = LLT) is a matrix composed of columns of the eigenvectors of H. From

Eq. (3), we can obtain Eq. (1) as

V=V + ;a"(PTDP)q (4)
=i+ 5(a"PT)D(Pa) )
— 1 +,QDQ @

3N 1
=Vo+ Z 5%’@? (7)
i=1

The new coordinates Q(= Pq) correspond to the projection of atomic positions given by
the Hessian eigenvectors, which are the normal coordinates, (); and i = 1,2,---3N. In this

coordinate, the collective motion of all of the atoms is included.



To define a reaction path, the most common approach uses steepest-descent path in mass-
weighted coordinates.?® This reaction coordinate is called intrinsic reaction coordinate (IRC)
and the corresponding reaction path is intrinsic reaction path (IRP). Its mathematically

definition is
XP(s)  Glx(s)
s TG ®)

x™®F has s as arc length and G as its gradient. It is an initial value problem?®? that requires a
set of initial value to solve. However, when we start from a TSS for finding its corresponding
reaction path, it has a null gradient initially and Eq. (8) would not propagate. Therefore, the
initial step is usually replaced by the Hessian eigenvector, L, with an negative eigenvalue,
scaled by a small positive or negative factor, and the reaction path is now moved towards
the one of the two convex directions of the TSS initially. The path x™F is then propagated
by the nonzero gradient subsequently, until zero gradient is reached, a potential minimum

point in most cases that represent reactant or product of this TSS.

2.1 2D-PES of special cases: symmetric PTSBs

For reactions with symmetric PTSBs, the IRP of TSS1 terminates at TSS2, the molecular
structure has nuclear symmetry and the IRP for TSS2 is symmetric.%6 The eigenvectors
with one and only one negative eigenvalue for TSS1 and TSS2 are orthogonal to each
other. Both P1 and P2 are chemically identical differing only if different atoms of the same
type are numbered differently. Therefore, the 2D-PES is symmetric.

For a symmetric PTSB system, we first obtained the IRPs corresponding to TSS1 and
TSS2. We then build a symmetric 2D-PES with the following three steps. We first translate
and rotate the structures of the IRP of TSS1 if their orientations are different from the
structures of the IRP of TSS2. For a 2D-PES, all the molecular geometries should refer to
the same origin of Cartesian coordinates and aligned to the same orientation. However, for

two independent outputs of electronic structure calculation, the orientation and the origin of



Cartesian coordinates of molecular structures may not be the same. Thus, if two IRPs have
different origin and orientation, we rotate molecular structures via the Kabsch algorithm*’
followed by a translation. (c.f. Python and Fortran source code are given in the following
GitHub URL, https://github.com/HHChuang/align2mole)

Second, we calculate the structural difference between two neighboring molecular struc-
tures along the IRP for TSS2.

Finally, in order to obtain the corresponding structure for the grids of 2D-PES, we shift
all the structures in the IRP for TSS1 by adding the above structure difference derived from
the IRP of TSS2. With the structures defined in the 2-D array, the PES can be obtained
with the calculated energy for each structure.

Therefore, the procedure we employed is:

1. Generate IRP for both TSSs. The IRP for TSS1 leads to TSS2.

2. Align the structures of IRPs;

3. Calculate structures difference;

4. Generate structures on this symmetric 2D-PES grid and obtains the PES accordingly.

We note that our approach is similar to that of Wales,!” and this method can only be

applied to symmetric PTSBs.

2.2 2D-PES of general cases: asymmetric PTSBs

For reactions with asymmetric PTSBs, the above approach does not apply, as the IRP from
TSS1 will not leads to TSS2. Instead it leads to either P1 or P2 dependents on the PES
of the system. The IRP following T'SS1 usually shows a shoulder, which is a characteristic
near a VRI region.#® At this region, we should aim to search for a path that ends at TSS2,

instead of letting the IRP leading the path to P1 or P2. Here, instead of locating the exact



position of VRI points, we simply stop the IRP near the region, and aim to find the path
connection between TSS1 and TSS2. We call this connection the artificial reaction path.
After reaching VRI, the major problem of IRP from TSS1 is that it deviates from the
ridge by following the gradient, reaching one of the products P1 or P2. In order to reach
TSS2, a strategy was developed such that the new reaction path follows the ridge.
Here we aim to modify Eq. (8) such that it follows the ridge without falling to the basin
for P1 or P2. In order to do so, we remove the projection of gradient G that is parallel to

the first Hessian eigenvector of TSS2 with a negative eigenvalue, LTS52 forming GARP.

original | 7 TSS2
G L

ARP original TSS
G =G e W “
The artificial reaction path (ARP), x*RF is defined as
dxARP () GARP [xARP (4)] (10)
ds || GARP[xARP(s)] |

Therefore, for two given IRPs of TSS1 and TSS2, we build a 2D-PES for these systems
through the following processes:

First, from the IRP of TSS1, an initial point is manually selected near the presumed
VRI region (i.e., the shoulder in the IRP for TSS1). The electronic energy of the selected
point should larger than that of TSS2. We note that the structures of the two IRPs of
TSS1 and TSS2 should also be aligned such that they have the same orientation (c.f. step
2 in Section 2.1). Next, the gradient of this point is modified according to Eq. (10), keeping
the component that is perpendicular to LTS52,

In each iterative step, Eq. (10) is propagated by adding the modified gradient to the
structure of the previous point, followed by another electronic structure calculation for the
gradient for the next step, forming a series of structures representing the ARP.

Third, the iteration generates structures until the energy difference between the derivative

molecule and TSS2 is less than 10™* hartree (which conforms to a chemical accuracy of <

10



1 keal /mol).

Finally, a 2D-PES was build for general cases with two reaction coordinates. The first
dimension is composed of part of the IRP for TSS1, combined with the ARP that leads
to TSS2. The other dimension is the IRP for TSS2. Similar to the symmetric case, the
structures on the 2D grid was generated by taking all the structures on the first dimension,
and shifting by the structural difference on the second dimension, i.e., the difference between
any point on the IRP of TSS2. In asymmetric cases, we have also optimized the structures
on the 2D-PES along the the effect from other d.o.f. may deviate the 2D grid that we also
optimized the structures of 2D-PES along modified gradients, where the modified gradients
are the components of gradient which are perpendicular to this surface. In each grid point,
we take its gradient from electronic structure calculation, and then subtract its component
gradient along z direction (from TSS1 to TSS2) and along y direction (from P1 to P2)
on this surface. After that, we shift structure along the remained gradient to perform

constrained optimization.

The process is summarized as : (c.f. GitHub, https://github.com/HHChuang/2DPES PTSB).
1. Select a point near VRI region from IRP of TSS1;

2. Starting from the point selected, obtain the modified gradient with Eq. (9), and proceed

to generate a new structure in ARP.
3. Repeat step 2 until the energy converge to TSS2.

4. Generate structures on this asymmetric 2D-PES by combining the shift in the second

dimension to the first dimension, and a constrained optimization.

2.3 BOMD trajectories and their mapping to 2D-PES

Trajectories were taken from Ref. 41, where they were calculated using the program Prog-
dyn developed by Singleton® for ab initio, specifically Born-Oppenheimer, molecular dy-

namics®?®! (BOMD). To capture rare chemical events, downhill dynamic trajectories were
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perform that they start from TSS1. And then quasi-classical sampling®? was employed such
that the starting points at TSS1 follows the Boltzmann distribution for a given temperature
in their energies. The subsequent structures were generated using normal coordinates (Eq.
(2.23) in Ref. 52). The trajectories were obtained with the Verlet algorithm in solving the
classical equation-of-motion, with step size set to 1 fs in the present work.

A given dynamics trajectory involves time evolution of all d.o.f. It would be possible to
better visualize the trajectories if we can map them onto the 2D-PESs (c.f. Section 2.1 and
2.2). To map structures along trajectories on to the 2D-PES, we first overlap the first point
of a trajectory with the TSS1 structure through translation and rotation. The translation
overlaps the position of centriods. The rotation was performed via Kabsch algorithm.*” The
same rotation matrix applied to all subsequent points in the same trajectory.

Next, we use RMSD to locate the structures at each point of a trajectory on our 2D-PES.

traj.

; aZZD-PES 27 (11)

1 N
RMSD = NZ a

i=1

where N is the amount of atoms. The Cartesian coordinate of molecule is a; with its =z,
y, and z component for atom i. a® and a?P-FFS stand for the structure of trajectory and
2D-PES, respectively.

How to analyse trajectories to observe a meaningful physical picture is a difficult task.
Here, we use RMSD of structure difference to map trajectories on a 2D-PES. Similar method
to compare two distinct objects via a distance function to describe the jump between IRPs
wes proposed before. %3

For the first point of a trajectory, we compare its RMSD with all the structures on the
2D-PES grids and project it to the smallest RMSD, which is also the initial point for the
trajectory. For the subsequent points, we compare its RMSD with an array of 7x7 grids on

the PES, centering at the previous projection, and proceed with the smallest RMSD grid.

This procedure is repeated iteratively until the end of the trajectory.

12



In addition, to improve resolution of trajectories without being constrained by the number
of grid points of the 2D-PES, we search the minimum derivative of RMSD. Starting from the
located coordinate from previous step, we search a unimodal area (i.e., only one extremum
exists) in both the horizontal and vertical direction. After that, we use the Golden-section

search method to locate the minimum derivative of RMSD.

2.4 Electronic structure calculations

All the electronic structure calculations described here were calculated using the GAUS-
SIANOQ9 program.>* For the symmetric case described below, H;CO" isomerization, station-
ary points were optimized using MP2/6-31G(d,p), and the correlation energy was corrected
by QCISD//MP2. The initial structure of TSS1 was taken from the Figure 5 of Ref. 46, and
TSS2 was extracted form the last point of the IRP of TSS1, after constraining the sym-
metry to C,;. For the asymmetric cases described below, NCH1 to NCH5 (nomenclature
used in Ref. 41 for consistency), the BSLYP density functional theory (DFT) method?> 5
was used with the 6-314+G(d,p) basis set. In order to obtain accurate eigenvectors, we added
the Freq=hpmodes keywords in frequency calculations. Coordinates and energies for all

the optimized structures are included in the Supporting information.

3 Results and discussion

Here we demonstrate our approach for constructing 2D-PES described in Section 2 with

symmetric and asymmetric systems.

3.1 Symmetric PTSB: H3CO isomerization

Methoxy radical isomerization (H3CO-—H,C(-)OH) is one of the most widely studied reac-
tions with a PTSB6:2629:46.60 (Scheme 1), the mechanism previously having been examined

using both ab initio methods and DF'T calculations on its electronic structure and symmetric
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PES. In addition, wave packet dynamics simulations were also applied to this reaction.?® We

employ this system for a demonstration for our strategy in constructing a useful 2D-PES.
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Scheme 1: Stationary points involved in methoxy radical isomerization.

The point group of fully optimized methoxy radical (R) is Cy rather than C3, because of
a Jahn-Teller distortion.%" During the reaction in question, a hydrogen atom (H4)migrates to
an oxygen atom (O5) via TSS1. The IRP from TSS1 leads to the second TSS(TSS2; corre-
sponding to rotation around the C—0O bond) without any PES intermediate (R—TSS1—TSS2).
Both TSS1 and TSS2 are of (s symmetry, and thus, C symmetry is conserved along this
path. We took the last point of this IRP as a new initial structure, re-optimized it and then
found that it does have one and only one imaginary frequency.

However, by definition, if this reaction follows the minimum energy path, it will not reach
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TSS2 and will instead go to either P1 or P2 (R—TSS1—P1 or P2), if the initial point or
the search of minimum energy path allows symmetry-breaking. Since in this case P1 and P2
are chemically identical, the difference between P1 and P2 is only in the atomic labels,; i.e.,
which of H2 or H3 ends up near to C1. P1 and P2 are each Cs symmetric, but their symmetry
elements are rotated with respect to those of R, TSS1 and TSS2, and thus this pathway is
a non-totally symmetric pathway, which is inconsistent with the Rodger-Schipper symmetry
rules. %2 Taketsugu addresses this situation by noting that this non-totally symmetric path
has no coupling to the totally symmetric path, which is an ‘unstable intrinsic reaction path’,
i.e., it is a ‘bifurcating reaction path’.26:63

Other than symmetry argument to justify a reaction with PTSB, existence of VRI point
is another clue. VRI point is located between TSS1 and TSS2, and it has two conditions;
one is the small curvature, and the other is the orthogonality between its gradient and the
corresponding Hessian eigenvector. We analyse the IRP between TSS1 and TSS2 at MP2
level. At point 0.47 \/amuBohr (0.0 is the TSS1), its second normal mode has an imaginary

frequency 78.61i cm 1.

Since the frequency is proportional to the square root of Hessian
eigenvalue (w; o< v/\;), and HYRLYR = X\, LY®! thus, we can conclude that this point has
a small curvature at the second normal mode. The second condition of orthogonality is also
fulfilled that (gV®)TLY® = —1.53 x 10~7. Above procedure is similar to Ref. 16.

Following the procedure described in Section 2.1, a 2D-PES for this reaction was built and
shown in Figure 3. The horizontal axis corresponds to the IRP for TSS1 and the vertical
axis corresponds to the IRP of for TSS2. As expected, a symmetric surface with clear
bifurcation character is obtained. Since the barrier associated with TSS2 is approximately
2 kcal/mol, the PES near to it is almost flat at the scale of the Figure 3. Note that we did
not symmetrize our surface; using the IRP allows us to capture this symmetry.

Since VRI position can be located in symmetric PTSB, we do one more test that

(Ly"™HTLTSS2 = 0.99 to show the parallel, where it is a good sign for extension of this

method on asymmetric PTSB. In Eqn. (9), instead of decomposing gradient by its local
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Figure 3: PESs for methoxy radical isomerization. (a) 2D contour PES. (b) 3D hypersurface.
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Hessian eigenvector to force the reaction path follows the ridge, we use the first Hessian
eigenvector of TSS2; LTS52 to reduce the computational cost based on this parallel prop-
erty.

A surface for the same methoxy isomerization constructed previously using empirically
chosen geometric parameters for the two dimensions is shown in the Figure 3 of Ref. 29. In
their work, the two dimensions were defined from internal coordinates of the system. One
dimension was an angle related to the migration of H4. Another dimension consisted of
a combination of two dihedral angles defined with two dummy atoms. The central region
of their 2D-PES is very similar to the PES we constructed (Figure 3a) even though the
definition of two dimensions are different. For the normal coordinate with one and only
one negative eigenvalue of TSS1, the dominant element is the motion of the transferring
proton with a 96% contribution. For TSS2, the dominant elements correspond to C—0O
bond rotation. Nevertheless, for all symmetric PTSBs with given TSS1 and TSS2, our
approach is applicable without advanced knowledge (or intuition) of important geometric

parameters.

3.2 Asymmetric PTSBs: net C—C insertion for nitrenes

The reaction with an asymmetric PTSB to which we applied our methods is shown in
Scheme 2, a serious of reactions involving net C-C insertion for nitrenes, previously designed
to have a PTSB.%" We retained the nomenclature from the previous work (‘NCHn’) for
consistency, with all structures studied defined in Table 1 and Scheme 2. All stationary
points have C; symmetry, and thus, bifurcations must be asymmetric.

It has been demonstrated that an IRP with a shoulder may indicate that a PTSB is
present. 148 All five NCHn systems discussed here have shoulders along the IRP for corre-
sponding TSS1s. All of these IRPs end at the local minima corresponding to P2s.4! The
¢ 6469

second TSS interconverts P1 and P2 via a dyotropic rearrangemen

In Figure 2, all the 2D-PES for the five NCHn systems were included. In these surfaces,
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Scheme 2: Stationary points involved in NCHn systems, n = 1 — 5. Both products (P1/P2)
are bicyclic molecules, and P1 is [3,2,2] and P2 is [4,2,1].

Table 1: Substituents on NCH1 - NCHS5.

Substituents
NCH1 R'=H, R*=H, R’=H
NCH2 R'=F, R*=H, R’=H
NCH3 R'=H, R’=F, R*=H
NCH4 R'=H, R’=H, R’=F
NCH5 R'=CF,, R’=H, R’=H
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Table 2: 2D-PESs for reactions of NCH1 to NCHS5 with asymmetric PTSBs, along with
zoom-ins of their VRI regions (i.e., expansions of regions in red boxes) with color coded
energy. Energies are shown in kcal 'mol relative to reactants.
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the two dimensions/reaction coordinates are defined as follows. The z-axis corresponds to a
modified IRP for TSS1, in which part of the IRP (R — TSS1) is joined with an artificial
reaction coordinate (TSS1 — TSS2), with our approached in Section 3.2. The y-axis
corresponds to the IRP for TSS2 (P2 — TSS2 — P1). On the scale of these plots, the VRI
region is relatively small, with short distance along the x direction, and this characteristic
should affect dynamic behavior, leading to the observed selectivity. The surfaces in the VRI
regions tilt clearly toward P2for NCH1-NCH4, suggesting that the dominant product is
likely to be P2. This simple prediction, which was facilitated by examination ofour 2D-
PESs, and it was consistent to the observation in dynamics trajectories simulations with
P2 formed in 96%, 73%, 84%, 99% of trajectories for NCH1-NCH4, respectively.*! A
relatively symmetric 2D-PES is observed for NCHS5 and little selectivity is observed in
dynamics simulations: 49% P1 and 51% P2. While resonable, and potentially correct,
arguments were made in the previous work to rationalize the selectivity observed in dynamics
simulations,*! tilting of the VRI was not discussed, since 2D-PESs of the type described
here were not available at the time of publication.

In Figure 4, we showed the results of trajectory mapping. If such trajectory mapping
is carried out for particular time intervals, the amount of time spent in the VRI region —
unambiguously visible in our PES plots — can be accessed. We took NCH1 as an example,
and included such time course in Figure 5. 96 % trajectories leads to P1 are red, and the
other 4 % leads to P2 are blue. It is seen that, red trajectories of P1 stay longer near
VRI region which resulting minor product. Doing so for NCH1-NCH4 indicates that
trajectories for NCHS spend more time in the VRI region on average than do trajectories
for other systems (see Supporting Information for details), putting the proposal that the
product selectivity can be modulated by lifetime in the VRI region in Ref. 41 on firmer

footing.
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Figure 4: Direct dynamics trajectories mapped onto numerical 2D-PES for NCH1-NCHS5.
4 Conclusions

In this work, we describe two approaches for generating 2D-PESs for both symmetric and
asymmetric PTSBs. A reaction with a symmetric PTSB has an ambimodal TSS that has
an IRP leading to a secondary TSS. In this case the two IRPs can be used as the two
coordinates to form a 2D-PES. In a reaction with an asymmetric PTSB, we generated an
artificial reaction path (ARP) that connects the ambimodal TSS to the secondary TSS. The
first coordinate for our 2D-PES is the combination of part of the IRP of the ambimodal TSS
and the ARC, and the second coordinate is the IRP of the secondary TSS. In order to connect
the behavior of trajectories to the shape of our 2D-PESs, we developed an approach to map
BOMD trajectories onto our surfaces. Reactions with asymmetric PTSBs have a tilted
topography which is clear visualized in our PESs, and we show that this tilting correlates

with the product selectivity observed from dynamic simulations.
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Figure 5: NCH1’s direct dynamics trajectories mapped onto numerical 2D-PES hyper-
surfaces with time evolution. Unit: fs.
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