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Abstract

Reactions with post-transition state bifurcations (PTSBs) involve an initial ambi-

modal transition-state structures followed by an unstable region leading to two possible

products. PTSBs are seen in many organic, organometallic and biosynthetic reactions,

but analyzing the origins of selectivity for these reactions is challenging, in large part

due to the complex nature of the potential energy surfaces involved, which precludes

analyses based on single intrinsic reaction path (IRP). While selectivity can be pre-

dicted using molecular dynamics simulation, connecting results from such calculations

to the topography of potential energy surfaces is difficult. In the present work, a method

for generating two-dimensional potential energy surfaces for PTSBs is described. The

first dimension starts with the IRP for the first transition-state structure, followed by a

modified reaction coordinate that reaches the second transition-state structure, which
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interconverts the two products of a bifurcating reaction path. The IRP for the sec-

ond transition-state structure constitutes the second dimension. In addition, a method

for mapping trajectories from Born-Oppenheimer molecular dynamics simulations onto

these surfaces is described. Both approaches are illustrated with representative ex-

amples from the field of organic chemistry. The 2D-PESs for five asymmetric cases

tested have clear tilted topography after the first transition-state structure, and tilted

direction correlate well with the selectivity observed from previous dynamic simulation.

Instead of selecting reaction coordinates by chemical intuition, our method provides a

general means to construct two-dimensional potential energy surfaces for reactions with

post-transition state bifurcations.

1 Introduction

A reaction with a post-transition state bifurcation (PTSB) is a reaction starting from a

single transition-state structure (TSS) that leads to two products without any intervening

potential energy surface (PES) minima.1,2 With PTSB, it is no longer possible to predict the

reaction through the canonical transition-state theory,3,4 nor the kinetic controlled products

since the activation energy for the two products are identical. The selectivity of a variety of

reactions — organic, organometallic, biosynthetic — leading to complex organic molecules5–7

has been shown to depend on non-statistical dynamic effects8,9 that influence trajectories as

they approach the region of a PES containing a bifurcation.

Various means of characterizing PESs with unusual features have been discussed in the

literature.1 Here we highlight some of those most relevant to PESs and reaction paths with

PTSBs. Kraka extended the idea of a reaction path Hamiltonian (i.e., searching reaction path

with contributions from different normal modes) from Miller10 to use curvature coupling to

recognize ‘hidden intermediates’ of symmetry forbidden pericyclic reactions with PTSBs11–13

Quapp redefined the concept of reaction path following a reduced gradient (RGF) method,

which he used to calculate bifurcating paths,14 and the tangent search concept (TASC)
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method, which he used to calculate valley extremal.15 Gill implemented an algorithm to

locate branching points by justifying the change of curvature.16 Wales used gradient lines

to build two-dimensional potential energy surfaces (2D-PESs) for symmetric PTSBs.17 Fol-

lowing up on Maeda’s automatic search method, the artificial force induced reaction (AFIR)

methods18 minimize the so-called ‘AFIR function’ to search for stationary points, and the

difficulty of this approach in connecting PTSBs via intrinsic reaction coordinates is also dis-

cussed.19 Taketsugu proposed an approach that uses the classical multidimensional scaling

(CMDS) method20 to reduce the dimensionality of data sets, allowing for interpretation of

multiple IRPs using low-dimensional representations.

Investigation of PTSBs is intrinsically a multi-dimensional problem;21 at least two degrees-

of-freedom (d.o.f.) are needed. Consequently, it is difficult to describe reactions with PTSBs

using traditional one-dimensional pictures such as minimum-energy paths22 or intrinsic reac-

tion paths/coordinates (IRP/IRC).23 Quapp24 explicitly addressed the fact that the solution

of IRP is unique and there cannot be a bifurcation on gradient lines. In recent work, Hare

and co-workers developed a method to determine important structural changes during re-

actions using principle component analysis with their program PathReducer .25 The method

we describe here is complementary to these approaches, in that it does not reduce dimen-

sionality by focusing on a subset of the structural changes that occur during a reaction, but

rather reduces dimensionality by focusing on the IRPs for the initial, pre-PTSB TSS and a

secondary TSS that intercoverts the two products.

In investigating selectivity of organic reactions with PTSBs, ‘pitchfork model’ are widely

discussed.1,26–30 The key features of this model are shown in Figure 1. A reactant (R)

connects to the first transition-state structure (TSS1), which is referred to as ‘ambimodal’31

which is followed by a descending valley that leads to an orthogonal ridge connecting to a

second transition-state structure (TSS2) that interconverts the two products (P1 and P2).

In addition to these stationary points, the path from the valley following TSS1 toward the

TSS2 ridge has a valley-ridge inflection (VRI) point.24,32–34 The overall reaction path (not
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point in 1D energy profile, and the shoulder have been taken as potential markers of the

presence of PTSBs41,42 and are related to the concept of ‘hidden intermediates’.12,43 The

tilted topography of the 2D-PES on the product side of TSS1 is associated with unequal

probabilities of forming products P1 and P2 in dynamics trajectories, i.e., selectivity can

be expected from a 2D-PES. Therefore it is important to develop strategies to build the

2D-PES for a general class of systems.

Our approach to building an asymmetric 2D-PES builds on the work of Minyaev and

Wales.17 Since an IRP for a reaction with an asymmetric PTSB does not reach TSS2, it

does not fully capture the VRI and post-VRI region. Nonethless, IRPs may be used as

ingredients to construct 2D-PESs for reactions with PTSBs. As discussed previously, a

useful 2D map should contain two coordinates: one for the reaction where bifurcation would

occur, and another direction for spanning the two bifurcation products.44 By analyzing

the gradient for these two reaction coordinates, each associated with an IRP, we define an

artificial reaction coordinate to bridge the gap between VRI and TSS2, as shown in panel

(b) of Figure 2 (blue dashed lines).

In Section 2, we briefly review normal mode analysis and its extension to IRPs. Concep-

tual applications to two subcategories of PTSB - containing systems are presented: symmet-

ric systems in which normal IRPs are used to build a 2D-PES (Section 2.1) and asymmetric

systems in which a modified reaction coordinate is defined (Section 2.2). An approach based

on use of root-mean-square-deviation (RMSD) to map dynamics trajectories onto these nu-

merical PESs is then described (Section 2.3). Chemical applications of the above methods

are shown in Section 3, followed by a discussion of directions for future work in Section 4.

2 Methodology

In this section, we first review normal mode analysis and the development of an approach

that combines IRPs to investigate PTSBs is laid out in Section 2.1 and 2.2.
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In the normal mode analysis,45 the potential (V ) is expanded near the equilibrium ge-

ometry (qeq, such that V (qeq) = V0) in mass-weighted coordinates to the second order,

V = V0 +
1

2
qᵀHq, (1)

where q is a vector containing small displacements in the same reference frame, such that

q = (
√
m1∆x1,

√
m1∆y1,

√
m1∆z1 . . . ), with ∆xi = xi − xeq,i. H is the Hessian matrix (the

second-order derivatives) evaluated at V0.

Hij =
∂2V

∂qi∂qj

∣

∣

∣

∣

q=0

(2)

Since the Hessian is a symmetric matrix, we can diagonalize it with a set of orthogonal

eigenvectors, and with real eigenvalues obtained:

H = PᵀDP, (3)

where D is its diagonal eigenvalue matrix, Dij = λiδij, with matrix element {λi} being the

eigenvalues. P (P = LLᵀ) is a matrix composed of columns of the eigenvectors of H. From

Eq. (3), we can obtain Eq. (1) as

V = V0 +
1

2
qᵀ(PᵀDP)q (4)

= V0 +
1

2
(qᵀPᵀ)D(Pq) (5)

= V0 +
1

2
QᵀDQ (6)

= V0 +
3N
∑

i=1

1

2
λiQ

2

i (7)

The new coordinates Q(≡ Pq) correspond to the projection of atomic positions given by

the Hessian eigenvectors, which are the normal coordinates, Qi and i = 1, 2, · · · 3N . In this

coordinate, the collective motion of all of the atoms is included.
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To define a reaction path, the most common approach uses steepest-descent path in mass-

weighted coordinates.23 This reaction coordinate is called intrinsic reaction coordinate (IRC)

and the corresponding reaction path is intrinsic reaction path (IRP). Its mathematically

definition is

dxIRP(s)

ds
= − G[x(s)]

‖ G[x(s)] ‖ (8)

xIRP has s as arc length and G as its gradient. It is an initial value problem32 that requires a

set of initial value to solve. However, when we start from a TSS for finding its corresponding

reaction path, it has a null gradient initially and Eq. (8) would not propagate. Therefore, the

initial step is usually replaced by the Hessian eigenvector, L1, with an negative eigenvalue,

scaled by a small positive or negative factor, and the reaction path is now moved towards

the one of the two convex directions of the TSS initially. The path xIRP is then propagated

by the nonzero gradient subsequently, until zero gradient is reached, a potential minimum

point in most cases that represent reactant or product of this TSS.

2.1 2D-PES of special cases: symmetric PTSBs

For reactions with symmetric PTSBs, the IRP of TSS1 terminates at TSS2, the molecular

structure has nuclear symmetry and the IRP for TSS2 is symmetric.46 The eigenvectors

with one and only one negative eigenvalue for TSS1 and TSS2 are orthogonal to each

other. Both P1 and P2 are chemically identical differing only if different atoms of the same

type are numbered differently. Therefore, the 2D-PES is symmetric.

For a symmetric PTSB system, we first obtained the IRPs corresponding to TSS1 and

TSS2. We then build a symmetric 2D-PES with the following three steps. We first translate

and rotate the structures of the IRP of TSS1 if their orientations are different from the

structures of the IRP of TSS2. For a 2D-PES, all the molecular geometries should refer to

the same origin of Cartesian coordinates and aligned to the same orientation. However, for

two independent outputs of electronic structure calculation, the orientation and the origin of
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Cartesian coordinates of molecular structures may not be the same. Thus, if two IRPs have

different origin and orientation, we rotate molecular structures via the Kabsch algorithm47

followed by a translation. (c.f. Python and Fortran source code are given in the following

GitHub URL, https://github.com/HHChuang/align2mole)

Second, we calculate the structural difference between two neighboring molecular struc-

tures along the IRP for TSS2.

Finally, in order to obtain the corresponding structure for the grids of 2D-PES, we shift

all the structures in the IRP for TSS1 by adding the above structure difference derived from

the IRP of TSS2. With the structures defined in the 2-D array, the PES can be obtained

with the calculated energy for each structure.

Therefore, the procedure we employed is:

1. Generate IRP for both TSSs. The IRP for TSS1 leads to TSS2.

2. Align the structures of IRPs;

3. Calculate structures difference;

4. Generate structures on this symmetric 2D-PES grid and obtains the PES accordingly.

We note that our approach is similar to that of Wales,17 and this method can only be

applied to symmetric PTSBs.

2.2 2D-PES of general cases: asymmetric PTSBs

For reactions with asymmetric PTSBs, the above approach does not apply, as the IRP from

TSS1 will not leads to TSS2. Instead it leads to either P1 or P2 dependents on the PES

of the system. The IRP following TSS1 usually shows a shoulder, which is a characteristic

near a VRI region.1,48 At this region, we should aim to search for a path that ends at TSS2,

instead of letting the IRP leading the path to P1 or P2. Here, instead of locating the exact
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position of VRI points, we simply stop the IRP near the region, and aim to find the path

connection between TSS1 and TSS2. We call this connection the artificial reaction path.

After reaching VRI, the major problem of IRP from TSS1 is that it deviates from the

ridge by following the gradient, reaching one of the products P1 or P2. In order to reach

TSS2, a strategy was developed such that the new reaction path follows the ridge.

Here we aim to modify Eq. (8) such that it follows the ridge without falling to the basin

for P1 or P2. In order to do so, we remove the projection of gradient G that is parallel to

the first Hessian eigenvector of TSS2 with a negative eigenvalue, LTSS2

1
, forming GARP.

GARP = Goriginal − Goriginal · LTSS2

1

‖LTSS2
1

‖2 LTSS2

1
(9)

The artificial reaction path (ARP), xARP, is defined as

dxARP(s)

ds
= − GARP[xARP(s)]

‖ GARP[xARP(s)] ‖ (10)

Therefore, for two given IRPs of TSS1 and TSS2, we build a 2D-PES for these systems

through the following processes:

First, from the IRP of TSS1, an initial point is manually selected near the presumed

VRI region (i.e., the shoulder in the IRP for TSS1). The electronic energy of the selected

point should larger than that of TSS2. We note that the structures of the two IRPs of

TSS1 and TSS2 should also be aligned such that they have the same orientation (c.f. step

2 in Section 2.1). Next, the gradient of this point is modified according to Eq. (10), keeping

the component that is perpendicular to LTSS2

1
.

In each iterative step, Eq. (10) is propagated by adding the modified gradient to the

structure of the previous point, followed by another electronic structure calculation for the

gradient for the next step, forming a series of structures representing the ARP.

Third, the iteration generates structures until the energy difference between the derivative

molecule and TSS2 is less than 10−4 hartree (which conforms to a chemical accuracy of ≤
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1 kcal/mol).

Finally, a 2D-PES was build for general cases with two reaction coordinates. The first

dimension is composed of part of the IRP for TSS1, combined with the ARP that leads

to TSS2. The other dimension is the IRP for TSS2. Similar to the symmetric case, the

structures on the 2D grid was generated by taking all the structures on the first dimension,

and shifting by the structural difference on the second dimension, i.e., the difference between

any point on the IRP of TSS2. In asymmetric cases, we have also optimized the structures

on the 2D-PES along the the effect from other d.o.f. may deviate the 2D grid that we also

optimized the structures of 2D-PES along modified gradients, where the modified gradients

are the components of gradient which are perpendicular to this surface. In each grid point,

we take its gradient from electronic structure calculation, and then subtract its component

gradient along x direction (from TSS1 to TSS2) and along y direction (from P1 to P2)

on this surface. After that, we shift structure along the remained gradient to perform

constrained optimization.

The process is summarized as : (c.f. GitHub, https://github.com/HHChuang/2DPES_PTSB).

1. Select a point near VRI region from IRP of TSS1;

2. Starting from the point selected, obtain the modified gradient with Eq. (9), and proceed

to generate a new structure in ARP.

3. Repeat step 2 until the energy converge to TSS2.

4. Generate structures on this asymmetric 2D-PES by combining the shift in the second

dimension to the first dimension, and a constrained optimization.

2.3 BOMD trajectories and their mapping to 2D-PES

Trajectories were taken from Ref. 41, where they were calculated using the program Prog-

dyn developed by Singleton49 for ab initio, specifically Born-Oppenheimer, molecular dy-

namics50,51 (BOMD). To capture rare chemical events, downhill dynamic trajectories were
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perform that they start from TSS1. And then quasi-classical sampling52 was employed such

that the starting points at TSS1 follows the Boltzmann distribution for a given temperature

in their energies. The subsequent structures were generated using normal coordinates (Eq.

(2.23) in Ref. 52). The trajectories were obtained with the Verlet algorithm in solving the

classical equation-of-motion, with step size set to 1 fs in the present work.

A given dynamics trajectory involves time evolution of all d.o.f. It would be possible to

better visualize the trajectories if we can map them onto the 2D-PESs (c.f. Section 2.1 and

2.2). To map structures along trajectories on to the 2D-PES, we first overlap the first point

of a trajectory with the TSS1 structure through translation and rotation. The translation

overlaps the position of centriods. The rotation was performed via Kabsch algorithm.47 The

same rotation matrix applied to all subsequent points in the same trajectory.

Next, we use RMSD to locate the structures at each point of a trajectory on our 2D-PES.

RMSD =

√

√

√

√

1

N

N
∑

i=1

∣

∣

∣
a

traj.
i − a2D-PES

i

∣

∣

∣

2

, (11)

where N is the amount of atoms. The Cartesian coordinate of molecule is ai with its x,

y, and z component for atom i. atraj. and a2D-PES stand for the structure of trajectory and

2D-PES, respectively.

How to analyse trajectories to observe a meaningful physical picture is a difficult task.

Here, we use RMSD of structure difference to map trajectories on a 2D-PES. Similar method

to compare two distinct objects via a distance function to describe the jump between IRPs

wes proposed before.53

For the first point of a trajectory, we compare its RMSD with all the structures on the

2D-PES grids and project it to the smallest RMSD, which is also the initial point for the

trajectory. For the subsequent points, we compare its RMSD with an array of 7×7 grids on

the PES, centering at the previous projection, and proceed with the smallest RMSD grid.

This procedure is repeated iteratively until the end of the trajectory.
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In addition, to improve resolution of trajectories without being constrained by the number

of grid points of the 2D-PES, we search the minimum derivative of RMSD. Starting from the

located coordinate from previous step, we search a unimodal area (i.e., only one extremum

exists) in both the horizontal and vertical direction. After that, we use the Golden-section

search method to locate the minimum derivative of RMSD.

2.4 Electronic structure calculations

All the electronic structure calculations described here were calculated using the GAUS-

SIAN09 program.54 For the symmetric case described below, H3CO isomerization, station-

ary points were optimized using MP2/6-31G(d,p), and the correlation energy was corrected

by QCISD//MP2. The initial structure of TSS1 was taken from the Figure 5 of Ref. 46, and

TSS2 was extracted form the last point of the IRP of TSS1, after constraining the sym-

metry to Cs. For the asymmetric cases described below, NCH1 to NCH5 (nomenclature

used in Ref. 41 for consistency), the B3LYP density functional theory (DFT) method55–59

was used with the 6-31+G(d,p) basis set. In order to obtain accurate eigenvectors, we added

the Freq=hpmodes keywords in frequency calculations. Coordinates and energies for all

the optimized structures are included in the Supporting information.

3 Results and discussion

Here we demonstrate our approach for constructing 2D-PES described in Section 2 with

symmetric and asymmetric systems.

3.1 Symmetric PTSB: H3CO isomerization

Methoxy radical isomerization (H3CO ·→H2C( · )OH) is one of the most widely studied reac-

tions with a PTSB16,26,29,46,60 (Scheme 1), the mechanism previously having been examined

using both ab initio methods and DFT calculations on its electronic structure and symmetric
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TSS2 and will instead go to either P1 or P2 (R→TSS1→P1 or P2), if the initial point or

the search of minimum energy path allows symmetry-breaking. Since in this case P1 and P2

are chemically identical, the difference between P1 and P2 is only in the atomic labels, i.e.,

which of H2 or H3 ends up near to C1. P1 and P2 are each Cs symmetric, but their symmetry

elements are rotated with respect to those of R, TSS1 and TSS2, and thus this pathway is

a non-totally symmetric pathway, which is inconsistent with the Rodger-Schipper symmetry

rules.62 Taketsugu addresses this situation by noting that this non-totally symmetric path

has no coupling to the totally symmetric path, which is an ‘unstable intrinsic reaction path’,

i.e., it is a ‘bifurcating reaction path’.26,63

Other than symmetry argument to justify a reaction with PTSB, existence of VRI point

is another clue. VRI point is located between TSS1 and TSS2, and it has two conditions;

one is the small curvature, and the other is the orthogonality between its gradient and the

corresponding Hessian eigenvector. We analyse the IRP between TSS1 and TSS2 at MP2

level. At point 0.47
√
amuBohr (0.0 is the TSS1), its second normal mode has an imaginary

frequency 78.61i cm−1. Since the frequency is proportional to the square root of Hessian

eigenvalue (ωi ∝
√
λi), and HVRILVRI

2
= λ2L

VRI
2

, thus, we can conclude that this point has

a small curvature at the second normal mode. The second condition of orthogonality is also

fulfilled that (gVRI)ᵀLVRI
2

= −1.53× 10−7. Above procedure is similar to Ref. 16.

Following the procedure described in Section 2.1, a 2D-PES for this reaction was built and

shown in Figure 3. The horizontal axis corresponds to the IRP for TSS1 and the vertical

axis corresponds to the IRP of for TSS2. As expected, a symmetric surface with clear

bifurcation character is obtained. Since the barrier associated with TSS2 is approximately

2 kcal/mol, the PES near to it is almost flat at the scale of the Figure 3. Note that we did

not symmetrize our surface; using the IRP allows us to capture this symmetry.

Since VRI position can be located in symmetric PTSB, we do one more test that

(LVRI
2

)ᵀLTSS2

1
= 0.99 to show the parallel, where it is a good sign for extension of this

method on asymmetric PTSB. In Eqn. (9), instead of decomposing gradient by its local
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Hessian eigenvector to force the reaction path follows the ridge, we use the first Hessian

eigenvector of TSS2; LTSS2

1
, to reduce the computational cost based on this parallel prop-

erty.

A surface for the same methoxy isomerization constructed previously using empirically

chosen geometric parameters for the two dimensions is shown in the Figure 3 of Ref. 29. In

their work, the two dimensions were defined from internal coordinates of the system. One

dimension was an angle related to the migration of H4. Another dimension consisted of

a combination of two dihedral angles defined with two dummy atoms. The central region

of their 2D-PES is very similar to the PES we constructed (Figure 3a) even though the

definition of two dimensions are different. For the normal coordinate with one and only

one negative eigenvalue of TSS1, the dominant element is the motion of the transferring

proton with a 96% contribution. For TSS2, the dominant elements correspond to C O

bond rotation. Nevertheless, for all symmetric PTSBs with given TSS1 and TSS2, our

approach is applicable without advanced knowledge (or intuition) of important geometric

parameters.

3.2 Asymmetric PTSBs: net C C insertion for nitrenes

The reaction with an asymmetric PTSB to which we applied our methods is shown in

Scheme 2, a serious of reactions involving net C-C insertion for nitrenes, previously designed

to have a PTSB.41 We retained the nomenclature from the previous work (‘NCHn’) for

consistency, with all structures studied defined in Table 1 and Scheme 2. All stationary

points have C1 symmetry, and thus, bifurcations must be asymmetric.

It has been demonstrated that an IRP with a shoulder may indicate that a PTSB is

present.1,48 All five NCHn systems discussed here have shoulders along the IRP for corre-

sponding TSS1s. All of these IRPs end at the local minima corresponding to P2s.41 The

second TSS interconverts P1 and P2 via a dyotropic rearrangement.64–69

In Figure 2, all the 2D-PES for the five NCHn systems were included. In these surfaces,
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the two dimensions/reaction coordinates are defined as follows. The x-axis corresponds to a

modified IRP for TSS1, in which part of the IRP (R → TSS1) is joined with an artificial

reaction coordinate (TSS1 → TSS2), with our approached in Section 3.2. The y-axis

corresponds to the IRP for TSS2 (P2 → TSS2 → P1). On the scale of these plots, the VRI

region is relatively small, with short distance along the x direction, and this characteristic

should affect dynamic behavior, leading to the observed selectivity. The surfaces in the VRI

regions tilt clearly toward P2for NCH1-NCH4, suggesting that the dominant product is

likely to be P2. This simple prediction, which was facilitated by examination ofour 2D-

PESs, and it was consistent to the observation in dynamics trajectories simulations with

P2 formed in 96%, 73%, 84%, 99% of trajectories for NCH1-NCH4, respectively.41 A

relatively symmetric 2D-PES is observed for NCH5 and little selectivity is observed in

dynamics simulations: 49% P1 and 51% P2. While resonable, and potentially correct,

arguments were made in the previous work to rationalize the selectivity observed in dynamics

simulations,41 tilting of the VRI was not discussed, since 2D-PESs of the type described

here were not available at the time of publication.

In Figure 4, we showed the results of trajectory mapping. If such trajectory mapping

is carried out for particular time intervals, the amount of time spent in the VRI region –

unambiguously visible in our PES plots – can be accessed. We took NCH1 as an example,

and included such time course in Figure 5. 96 % trajectories leads to P1 are red, and the

other 4 % leads to P2 are blue. It is seen that, red trajectories of P1 stay longer near

VRI region which resulting minor product. Doing so for NCH1-NCH4 indicates that

trajectories for NCH5 spend more time in the VRI region on average than do trajectories

for other systems (see Supporting Information for details), putting the proposal that the

product selectivity can be modulated by lifetime in the VRI region in Ref. 41 on firmer

footing.
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