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ABSTRACT: Fungal meroterpenoids are a diverse group of hybrid natural products with impressive structural complexity and high 
potential as drug candidates. In this work, we evaluate the promiscuity of the early structure diversity-generating step in fungal 
meroterpenoid biosynthetic pathways: the multibond-forming polyene cyclizations catalyzed by the yet poorly understood family 
of fungal meroterpenoid cyclases. In total, 12 unnatural meroterpenoids were accessed chemoenzymatically using synthetic sub-
strates. Their complex structures were determined by 2D NMR studies as well as crystalline-sponge-based X-ray diffraction analyses. 
The results obtained revealed a high degree of enzyme promiscuity and experimental results which together with quantum chemical 
calculations provided a deeper insight into the catalytic activity of this new family of non-canonical terpene cyclases. The knowledge 
obtained paves the way to design and engineer artificial pathways towards second generation meroterpenoids with valuable bio-
activities based on combinatorial biosynthetic strategies. 

Introduction 

Fungal meroterpenoids have earned significant interest from 
the scientific community as well as from the pharmaceutical 
and chemical industry due to their remarkable structural archi-
tectures and potent bioactivities.[1] Pyripyropene A (1), iso-
lated from Aspergillus fumigatus, is the strongest known inhib-
itor of acyl-CoA:cholesterol acyltransferase and is being devel-
oped for the treatment of atherosclerosis.[2] Additionally, 1 ex-
hibits insecticidal properties and a commercial insecticide 
based on the pyripyropene core structure has been recently 
marketed.[3] Derivatives of mycophenolic acid (2), isolated 
from Penicillium sp., are clinically used immunosuppressant 
drugs and inhibit inosine 5‘-monophosphate dehydrogenase.[4] 
Andrastin A (3) from Penicillium albocoremium is an inhibitor 
of protein farnesyl transferase and a potent anti-cancer 
agent,[5] whereas tropolactone D (4) from Aspergillus sp. is a 

cytotoxic agent against human colon carcinoma (Figure 1A).[6] 
The genetic basis for fungal meroterpenoid biosynthesis has 
only been elucidated in recent years, with the first biosynthetic 
gene cluster reported for pyripyropene A in 2010.[7] Since then, 
the discovery of several related gene clusters revealed a com-
mon modular assembly logic for all meroterpenoid pathways, 
composed of i) building block generation (polyketide synthase, 
oligoprenyl synthase), ii) assembly of building blocks (prenyl-
transferase), iii) early structural diversification by the action of 
a novel family of terpene cyclases in tandem with an epoxidase 
and iv) late stage diversification by tailoring enzymes such as 
cytochrome P450 monooxygenases and a-ketoglutarate-de-
pendent dioxygenases.[8] Their strong biological activities as 
well as the conserved modular logic of their biosynthetic path-
ways make meroterpenoids attractive targets for artificial 



 

 

 

Figure 1. A) Selected examples of fungal meroterpenoids. B) Pro-
posed catalytic mechanism of meroterpenoid cyclases exemplified 
by Pyr4-mediated reaction of epoxyfarnesyl-HPPO (5) to deacetyl 
pyripyropene E (6). The polyketide portion is shown in green, ter-
penoid in blue.  

pathway engineering to generate novel structures with new or 
improved activities. Herein, we set out to evaluate the poten-
tial of meroterpenoid cyclases to generate novel scaffolds by 
employing natural and unnatural synthetic substrate ana-
logues. The results obtained can provide valuable information 
on matching pathway combinations regarding the inter-
changeability of employed meroterpenoid cyclases. At the 
same time, chemoenzymatic access to eight new scaffolds, 
thus far unprecedented from natural sources or chemical, bio-
mimetic polyene cyclizations, could be achieved. 

 

Results and Discussion 

Synthesis of Substrates and Targeted Enzymes 

Non-canonical terpene cyclases involved in meroterpenoid bi-
osynthesis are integral membrane proteins of compact size (ca. 
25 kDa).[7,8] Mutagenesis studies on the model cyclase Pyr4 in-
volved in the pyripyropene biogenesis revealed two highly con-
served acidic amino acid residues (Glu63 and Asp218) crucial 
for enzyme function and proposed to initiate polyene cycliza-
tion by protonation of the priorly introduced terminal epoxide 
function in the prenyl chain, triggering the subsequent polyene 
cyclization (Figure 1B). The mechanism resembles that of type-
II terpene synthases of the 2,3-oxidosqualene-lanosterol 
cyclase type; however, protein structural data to evaluate the 
mechanism of meroterpenoid cyclases is still lacking.[7-9] Phylo-
genetic analysis of characterized meroterpenoid cyclases 
shows a close relation to the group of Pyr4-like synthases in-
volved in fungal indole diterpene biosynthesis (LtmB, AtmB, 
and PaxB) and a distant relation to the bacterial enzymes XiaH 
and DmtA1 (Figure 2).[10]  

The substrates of known meroterpenoid cyclases are com-
posed of a linear epoxyoligoprenyl chain, in most cases derived 
from farnesyl diphosphate (FPP) and a distinct non-terpenoid 
portion usually generated by a designated polyketide synthase 
(Figure 2). 

 

Figure 2. Phylogenetic analysis of reported meroterpenoid 
cyclases and their respective native substrates.  

These biosynthetic intermediates are difficult to obtain from 
the natural producer, since typically low concentrations are 
observed and the frequently employed heterologous expres-
sion host Aspergillus oryzae contains endogenous hydrolases 
producing high amounts of a shunt diol product.[7] To over-
come this limitation, we recently developed a modular synthe-
sis of the widespread 3,5-dimethylorsellinic acid (DMOA)-
containing substrate family. The methodology involves base-
mediated, regioselective dearomatization of DMOA with far-
nesyl electrophiles.[11] We expanded the synthetic scope by 
employing enantiopure (10R)- and (10S)-epoxyfarnesyl build-
ing blocks in this reaction to obtain the naturally occurring sub-
strate (10R)- and (10S)-(2E,6E)-5’-DMOA methylester (7a, 7b), 
as well as (10R)- and (10S)-(2E,6E)-3’-DMOA methylester (8a, 
8b). Additionally, we also accessed the (2Z,6E)-epoxyfarnesyl 
congeners (10R)- and (10S)-(2Z,6E)-5’-DMOA methylester (9a, 
9b) and (10R)- and (10S)-(2Z,6E)-3’-DMOA methylester (10a, 
10b) using the same strategy (Figure S1, Figure 3). As dearoma-
tive alkylation of DMOA leads to formation of two inseparable 
diastereoisomers with respect to 3’ and 5’ ring substitution, 
the substrates obtained were used as diastereomeric mixtures, 
exhibiting fixed stereochemistry for the epoxide moiety (88% 
– 98% ee). With substrates in hand, we targeted nine reported 
meroterpenoid cyclases: Pyr4[7], CdmG[12], AndB[13], AdrI’ [14], 
NvfL[15], PrhH[16], Trt1[17], AscF,[18] and MacJ[19]. As we did not 
gain access to the MacJ producer strain, we cloned the homol-
ogous protein MacJ’ from Penicillium chrysogenum MT-12 
(96% identity). The intron-free genes were expressed in the 
heterologous host Saccharomyces cerevisiae INVSc1 and cell 
free extracts were prepared and utilized for in vitro reactions 
with synthetic substrates 7a/7b – 10a/10b. Monitoring of the 
reactions by HPLC revealed a surprisingly high degree of prom-
iscuity as several new products were detected (Figure S2-S5, 
Table 1). 

 

Substrate Scope of Pyr4 and MacJ’ 

Pyr4, a cyclase which naturally utilizes the (10S)-configured 
epoxide 5 (Figure 1B), was found to accept (10S)-(2E,6E)-5’-
DMOA (7a), (10S)-(2E,6E)-3’-DMOA (8a) as well as  





 

(10R)-9b or (10R)-10b were accepted. This finding indicates a 
strict recognition of the epoxide within the substrate binding 
site of the enzyme.  

In addition, we found that MacJ’ can also produce products 13 
and 14 from (10S)-8a and 15 from (10S,3’R)-10a (Scheme 1B/C). 
MacJ, naturally involved in the biosynthesis of the drimane 
meroterpenoid macrophorin A, is one of the few known Pyr4-
like cyclases which do not require substrate activation by epox-
idation. Instead, MacJ is able to directly protonate the terminal 
double bond to initiate cyclization (Figure 2, Figure S6A). It is 
therefore interesting to note that MacJ also exhibits a clear 
preference for the (10S)-stereoisomers of epoxide substrates 
evaluated (Table 1, Figure S2-5). 

 

Substrate Scope of CdmG and AscF 

A meroterpenoid cyclase which is phylogenetically closely re-
lated to Pyr4 is CdmG (Figure 2), utilized in the biosynthetic 
pathway towards chrodrimanins from Penicillium verrucu-

losum.[12] Chrodrimanins exhibit strong inhibitory activities 
against protein tyrosine phosphatase 1B (PTP1B) and are po-
tential drug candidates for the treatment of type 2 diabetes 
and obesity.[22] CdmG naturally catalyzes the formation of 3-
hydroxypentacecilide A (17) from (S)-configured epoxide 16. In 
contrast to Pyr4, CdmG controls the substrate conformation in 
a chair-boat manner, leading to an inverted stereochemical 
outcome for the trans-configured B/C ring system (Scheme 2A). 
With this apparent change in conformational control, we were 
interested in determining the substrate promiscuity of CdmG 
and the putative differences in product formation. 

When CdmG was incubated with synthetic substrates, a high 
degree of promiscuity was also observed as 7a, 8a, 9a, and 10a 
were accepted by CdmG and led to the production of new 
products (Figure S2-S5, Table 1). Whereas products from sub-
strate (10S)-7a were found to be too unstable for structural 
characterization, products from substrates 8a, 9a, and 10a 
were successfully isolated and structurally characterized. Re-
action with (2E,6E)-configured substrate (10S)-8a led to for-
mation of compound 18, the 8,9-epimer of 13, derived from 
the (10S,3’S)-8a isomer. The structure of 18 was determined 
by 2D NMR analysis and was further supported by X-ray-CS-
diffraction data. The stereochemical outcome of the cycliza-
tion indeed demonstrated a conserved chair-boat conforma-
tional control of the substrate by the enzyme (Scheme 2B).  

Reaction of CdmG with (10S)-9a represents the only case 
where two products were found derived from one substrate 
stereoisomer, in this case (10S,5’S)-9a, leading to the isolation 
of 19 and 20. Whereas 19 is produced from a C-O bond forming 
event, product 20 is derived from C-C bond formation. In both 
cases, the same trans-cis configuration is observed for the 
A/B/C-ring system (Scheme 2C). Compounds 19 and 20 have 
also recently been identified from chemical cyclization where 
it was further shown that 20 can be rearranged to 19 by formic 
acid treatment.[11] To confirm the enzymatic origin of 19, 20 
was incubated under enzyme reaction conditions (KPP pH 7.4, 
16 h, 30°C) but was found to not interconvert to 19. 

 

 
Scheme 2. A) Natural Reaction of CdmG and isolated mero-
terpenoids obtained from CdmG-mediated reactions with B) 
(10S,3’S)-8a; C) (10S,5’S)-9a; D) (10S)-10a. 

Reaction of CdmG with (2Z,6E)-configured substrate 10a pro-
duced the new meroterpenoids 15 and 21 (3:1) derived from a 
chair-boat substrate conformation (major) and a chair-chair 
substrate conformation (minor), respectively. As observed for 
the promiscuity of Pyr4, CdmG also had a strict preference for 
the epoxide stereoconfiguration, as none of the (10R)-epox-
ides were accepted by CdmG. 

AscF from the ascochlorin pathway (Figure S6B) was found to 
also produce 21 from (10S)-10a as the only accepted substrate 
(Table 1, Figure S2-S5) and thus represents a meroterpenoid 
cyclase with very low tolerance towards alternative substrates. 

 

Substrate Scope of AndB 

The meroterpenoid cyclase AndB (Figure 2) from the andi-
tomin pathway[13] utilizes DMOA-derived substrate 22 with an 
(S)-configured epoxide to produce preandiloid A (23) with 
chair-boat conformation. In contrast to the results discussed 
for CdmG, which also controls the conformation in a chair-boat 
manner, AndB was found to exhibit a differing selectivity based 
on the stereocenter at the 3’- and 5’-stereocenters and there-
fore was found to produce different products (Table 1, Figure 
S2-S5). Specifically, AndB was found to accept (10S,3’R)-8a to 
produce the novel meroterpenoid 24 (Scheme 3). Similar to 
CdmG and Pyr4, the native conformational control of the 
prenyl chain was conserved, as a chair-boat substrate arrange-
ment was found leading to 24. AndB also accepted the (2Z,6E)-
configured substrate (10S,5’R)-9a leading to the isolation of 
meroterpenoid 25. The structure elucidation for 25 was chal-
lenging as 2D NMR analysis did not clearly reveal the 
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Scheme 3. A) Natural reaction of AndB and structures of iso-
lated meroterpenoids obtained from AndB-mediated reac-
tions with B) (10S,3’R)-8a; C) (10S,5’R)-9a. 

connectivity between the terpenoid and non-terpenoid por-
tions. Additionally, the relative configuration between the A/B 
and C/D ring systems were difficult to determine due to am-
biguous NOESY correlations. However, we were able to fully 
establish the structure of 25 using crystalline sponge-X-ray 
analysis which revealed the presence of an unprecedented 6-
5-ring system connected to a 5-6 ring system via a single C-C 
bond (Scheme 3C). 

 

DFT Calculations for the Formation of 25, 20, CC and 19 

The latter finding was surprising, as all reactions in this study 
lead to the formation of 6-6-ring systems for the A/B rings and 
also no natural cyclization towards 6-5-ring systems has been 
reported thus far. To gain further insight into the cyclization 
mechanism for the formation of 25 from (10S,5R)-9a by AndB, 
we conducted computational studies using density functional 
theory (DFT) at the B3LYP-D3(BJ)/6-31G(d,p)//B3LYP/6-
31G(d,p) and CPCM(H2O)-B3LYP-D3(BJ)/6-31G(d,p)//B3LYP/6-
31G(d,p) levels[23] (see SI for details). The results (Figure 4) re-
vealed that the first intermediate in the reaction cascade 
(modelled here in the absence of enzyme) is the monocyclic 
tertiary cation A, generated by an endergonic process via tran-
sition state 9a-TS. A is then converted, after a conformational 
change, to 25-H+ by an exergonic concerted process consisting 
of formation of the 5-membered B-ring in tandem with nucle-
ophilic attack of the adjacent oxygen functionality via transi-
tion state A-TS. Inclusion of implicit solvent (CPCM(H2O), in pa-
rentheses; single point calculations on previously optimized 
geometries in gas phase) led to lower barriers (Figure 4).[24],[25] 
With either a nonpolar (gas phase) or polar (water) surroun-
dings, the barrier for initial cyclization is high for a biological re-
action,[26] however, in the absence of enzyme, reactant 
(10S,5R)-9a-H+ relaxes to a non-productive conformation with 
an internal hydrogen-bond between the alcohol and epoxide; 
consequently, conformational preorganization by the enzyme 
should lower the barrier and this could be assisted by specific 

oriented noncovalent interactions with the transition state 
structure.  An alternative mechanism for formation of the sec-
ond ring could involve Markovnikov addition to form a 6-6 in-
termediate, followed by ring-contraction in concert with tetra-
hydrofuran ring formation. We find, however, that Markovni-
kov addition leads directly to a “6-6-6-6” product (C) that is not 
experimentally observed. We were able to optimize tertiary 
carbocation B as a minimum and this species can then undergo 
ring contraction to yield 25-H+, but accessing B would require 
escape from the deep energy well associated with C and a large 
conformational change. The enzyme would, however, have to 
distinguish between A-TS and A’-TS, again by conformational 
biasing and/or well-placed noncovalent interactions with the 
transition state structure. 

Formation mechanisms for 20 and CC from protonated stereo-
isomers of 9a were also subjected to computational analysis. 
For both reactions (Figures 5A and B), we find highly asynchro-
nous but concerted pathways in which no discrete carbo-
cationic intermediates are formed. Similar concerted polycycli-
zations have been reported for related systems.[27] Both reac-
tions also are predicted to be essentially barrierless once pro-
ductive reactant conformations are attained, suggesting that 
preorganization controls which product is formed by a given 
enzyme. Conversion of 20-H+ to 19-H+ is predicted to be an 
endergonic process (Figure 6; neutral19is predicted to be sev-
eral kcal/mol lower in energy than neutral 20, however[11]), but 
an appropriately positioned base in a restricted enzyme active 
could selectively deprotonate 19-H+. The barrier for the 20-
H+ to 19-H+ interconversion is also less certain than others de-
scribed above, since this reaction involves asynchronous bond-
breaking, C–C bond rotation, and bond-making that leads to a 
“loose” transition state for which entropy and the effects of 
externally-imposed conformational constraints are difficult to 
estimate. 

 

Substrate scope of Trt1, AdrI’, PrhH, and NvfL 

Another phylogenetic clade is formed by Trt1, AdrI, AdrI’, AusL, 
and PrhH (Figure 2). These enzymes share the DMOA substrate 
(10R,5’R)-7b, but differ with regard to their product specificity. 
Trt1 catalyzes the formation of preterretonin (27) via a chair-
chair-chair substrate conformation forming intermediary cat-
ion 26, followed by Wagner-Meerwein rearrangement and a 
terminating deprotonation of Ha. AdrI shares the intermediary 
cation 26 and rearrangement, but differs in the terminating 
deprotonation side (Hb) producing andrastin E (28). AusL and 
PrhH both catalyze the formation of protoaustinoid A (29) from 
26 after direct deprotonation of Hc (Scheme 4A). NvfL from the 
novofumigatonin pathway utilizes a highly similar substrate as 
Trt1, AdrI, AusL, and PrhH, carrying a free carboxylic acid in-
stead of the methyl ester in the DMOA-unit. The free acid is 
crucial for enzyme function and the protein catalyzes for-
mation of a spiro-center (Figure S6C). Consistent with the ob-
vious tight recognition of the polyketide portion necessary to 
achieve these sophisticated and distinct reactions, a compara-
ble low promiscuity for this group of integral membrane-
bound enzymes was observed. Whereas PrhH and NvfL did not 
accept any of the tested unnatural substrates, both Trt1 and 
AdrI’ accepted (2Z,6E)-9b, with the natural 5’-substitution  

A)

B)

AndB

AndB

O

OH

O
O

O

O

O
O

O

H
HO

H

23

(S)

22

O

O
O

OH

O

via

(R)

(S)

O

CO2Me

O

HO

(10S,3'R)-8a

O

O

CO2Me

HO
H

H

24

C)

(R)

O

O

CO2Me

OH

(10S,5'R)-9a

AndB

25

HO

O

O CO2Me

H

H

(8% yield)

(20% yield)

CS-X-Ray

CS-X-Ray





 

 
Figure 6. DFT calculations for the interconversion of 20-H+ to 
19-H+. Computed (B3LYP-D3(BJ)/6-31G(d,p)//B3LYP/6-
31G(d,p) (on top), CPCM(H2O)-B3LYP-D3(BJ)/6-
31G(d,p)//B3LYP/6-31G(d,p) (in parentheses) and 
MPW1PW91/6-31G(d,p)//B3LYP/6-31G(d,p) [in brackets]) rel-
ative free energies (kcal/mol, italics) for minima and transition 
state structures (TSSs). Bond distances are in Angstroms (Å). 

 

pattern in the polyketide portion (Table 1, Figure S2-S5). 

However, for these cases products were found to be too un-
stable for structure determination. To our surprise, we found 
that Trt1 as well as AdrI’ were able to convert (10S)-7a, the na-
tive substrate with inverted stereochemistry with respect to 
the epoxide functionality. We succeeded in the isolation of the 
Trt1-mediated product from (10S,5’R)-7a and the structure 
was determined to be 3-epi-preterretonin (30). The formation 
of this product can be envisioned to occur via a boat-chair sub-
strate conformation (Scheme 4B).[28] 

 

Enzyme Kinetics of Trt1  

To shed additional light on the substrate promiscuity of mero-
terpenoid cyclases, we were interested in the comparison of 
the KM values of the natural substrate to unnatural substrate 
analogous. Synthetic (10R,5’R)-7b is the natural substrate of 
Trt1, which was also found to accept unnatural (10S,5’R)-7a, 
and (10R)-9b. Since Trt1 and other meroterpenoid cyclases 
cannot be purified, the integral membrane bound enzyme was 
used as a crude enzyme preparation. To ensure a comparable 
enzyme concentration, Trt1 was freshly prepared and used for 
all kinetic assays on the same day. The results revealed an ap-
parent KM value of 34 µM for the natural substrate 7b, whereas 
a 3-fold (95 µM) and 5-fold (144 µM) higher value was found 
for substrates 7a and 9b, respectively. The Vmax values were 
determined as 22 µM/min, 7 µM/min and 0.5 µM/min, for 7b, 
7a and 9b, respectively. These findings indicate that the unnat-
ural substrates have a lower affinity for the enzyme, but the 
values are of the same order of magnitude and thus further 
demonstrate the promiscuity observed for this enzyme class. 

Summary and Conclusion 

In summary, we have demonstrated chemoenzymatic access 
to twelve complex, unnatural DMOA-derived meroterpenoids 
of which eight represent novel compounds  

 
 

Scheme 4. A) Natural reaction of Trt1, AdrI/AdrI’ and 
AusL/PrhH. B) Isolated meroterpenoids obtained from Trt1-
mediated reactions with (10S,5’R)-7a. 

by exploiting the surprisingly high promiscuity of fungal mero-
terpenoid cyclases. 

Synthetic 3,5-dimethylorsellinic acid (DMOA)-containing sub-
strates were prepared using dearomative alkylation and eval-
uated against nine meroterpenoid cyclases. The results 
demonstrate tight recognition of the epoxide functionality by 
the cyclase panel, but tolerance towards the polyketide por-
tion. The conserved cyclization mechanism initiated by epox-
ide protonation and rigid control of the substrate confor-
mation in the cyclase active site cavity led to the formation of 
several variations of naturally occurring meroterpenoid scaf-
folds, as well as generation of a completely new scaffold, alt-
hough the number of cyclization steps that are concatenated 
into concerted processes appears to be system-dependent. 
The challenging structure elucidation and determination of rel-
ative and absolute configurations for the obtained enzyme 
products was solved by combining 2D NMR data analysis with 
the recently developed method of crystalline-sponge-X-ray dif-
fraction analysis. This method allowed us to access the crystal-
lographic data of non-crystalline enzyme products such as 25 
for unambiguous structure determination and thus represents 
a powerful technique in combination with second generation 
natural product discovery. 

The knowledge obtained in this study can be used for the de-
sign of artificial pathways by recombining biosynthetic genes 
in a suitable heterologous production host. Whereas produc-
tive enzyme combinations with naturally occurring substrates 
such as 7a and 7b provide a straightforward access by recon-
stituting known pathways towards these substrates and inter-
changing the introduced meroterpenoid cyclase, access to 
(2Z,6E)-configured prenyl substrates require further engineer-
ing efforts, for example, by employing a known bacterial 
(2Z,6E)-selective FPP synthase from Mycobacterium[29] and op-
timization of downstream enzymes towards substrates like 9a 
and 9b. Furthermore, the new meroterpenoids obtained can 
be evaluated as substrates for downstream tailoring enzymes 
such as a-ketoglutarate-dependent dioxygenases. Since sev-
eral protein crystal structures have been reported in recent 



 

years, protein engineering by either rational strategies or di-
rected evolution represents an exciting opportunity to create 
novel “unnatural” meroterpenoids with valuable biological 
properties.[30]  
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