Exploiting the Potential of Meroterpenoid Cyclases to Expand the
Chemical Space of Fungal Meroterpenoids
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ABSTRACT: Fungal meroterpenoids are a diverse group of hybrid natural products with impressive structural complexity and high
potential as drug candidates. In this work, we evaluate the promiscuity of the early structure diversity-generating step in fungal
meroterpenoid biosynthetic pathways: the multibond-forming polyene cyclizations catalyzed by the yet poorly understood family
of fungal meroterpenoid cyclases. In total, 12 unnatural meroterpenoids were accessed chemoenzymatically using synthetic sub-
strates. Their complex structures were determined by 2D NMR studies as well as crystalline-sponge-based X-ray diffraction analyses.
The results obtained revealed a high degree of enzyme promiscuity and experimental results which together with quantum chemical
calculations provided a deeper insight into the catalytic activity of this new family of non-canonical terpene cyclases. The knowledge
obtained paves the way to design and engineer artificial pathways towards second generation meroterpenoids with valuable bio-
activities based on combinatorial biosynthetic strategies.

Introduction

Fungal meroterpenoids have earned significant interest from
the scientific community as well as from the pharmaceutical
and chemical industry due to their remarkable structural archi-
tectures and potent bioactivities.!!! Pyripyropene A (1), iso-
lated from Aspergillus fumigatus, is the strongest known inhib-
itor of acyl-CoA:cholesterol acyltransferase and is being devel-
oped for the treatment of atherosclerosis.!? Additionally, 1 ex-
hibits insecticidal properties and a commercial insecticide
based on the pyripyropene core structure has been recently
marketed.?! Derivatives of mycophenolic acid (2), isolated
from Penicillium sp., are clinically used immunosuppressant
drugs and inhibit inosine 5‘-monophosphate dehydrogenase.*!
Andrastin A (3) from Penicillium albocoremium is an inhibitor
of protein farnesyl transferase and a potent anti-cancer
agent, whereas tropolactone D (4) from Aspergillus sp. is a

cytotoxic agent against human colon carcinoma (Figure 1A).[6
The genetic basis for fungal meroterpenoid biosynthesis has
only been elucidated in recent years, with the first biosynthetic
gene cluster reported for pyripyropene A in 2010.”! Since then,
the discovery of several related gene clusters revealed a com-
mon modular assembly logic for all meroterpenoid pathways,
composed of i) building block generation (polyketide synthase,
oligoprenyl synthase), ii) assembly of building blocks (prenyl-
transferase), iii) early structural diversification by the action of
a novel family of terpene cyclases in tandem with an epoxidase
and iv) late stage diversification by tailoring enzymes such as
cytochrome P450 monooxygenases and o-ketoglutarate-de-
pendent dioxygenases.!®! Their strong biological activities as
well as the conserved modular logic of their biosynthetic path-
ways make meroterpenoids attractive targets for artificial
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Figure 1. A) Selected examples of fungal meroterpenoids. B) Pro-
posed catalytic mechanism of meroterpenoid cyclases exemplified
by Pyr4-mediated reaction of epoxyfarnesyl-HPPO (5) to deacetyl
pyripyropene E (6). The polyketide portion is shown in green, ter-
penoid in blue.

pathway engineering to generate novel structures with new or
improved activities. Herein, we set out to evaluate the poten-
tial of meroterpenoid cyclases to generate novel scaffolds by
employing natural and unnatural synthetic substrate ana-
logues. The results obtained can provide valuable information
on matching pathway combinations regarding the inter-
changeability of employed meroterpenoid cyclases. At the
same time, chemoenzymatic access to eight new scaffolds,
thus far unprecedented from natural sources or chemical, bio-
mimetic polyene cyclizations, could be achieved.

Results and Discussion
Synthesis of Substrates and Targeted Enzymes

Non-canonical terpene cyclases involved in meroterpenoid bi-
osynthesis are integral membrane proteins of compact size (ca.
25 kDa).[”8l Mutagenesis studies on the model cyclase Pyr4 in-
volved in the pyripyropene biogenesis revealed two highly con-
served acidic amino acid residues (Glu63 and Asp218) crucial
for enzyme function and proposed to initiate polyene cycliza-
tion by protonation of the priorly introduced terminal epoxide
function in the prenyl chain, triggering the subsequent polyene
cyclization (Figure 1B). The mechanism resembles that of type-
Il terpene synthases of the 2,3-oxidosqualene-lanosterol
cyclase type; however, protein structural data to evaluate the
mechanism of meroterpenoid cyclases is still lacking.®! Phylo-
genetic analysis of characterized meroterpenoid cyclases
shows a close relation to the group of Pyr4-like synthases in-
volved in fungal indole diterpene biosynthesis (LtmB, AtmB,
and PaxB) and a distant relation to the bacterial enzymes XiaH
and DmtA1 (Figure 2).19

The substrates of known meroterpenoid cyclases are com-
posed of a linear epoxyoligoprenyl chain, in most cases derived
from farnesyl diphosphate (FPP) and a distinct non-terpenoid
portion usually generated by a designated polyketide synthase
(Figure 2).
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Figure 2. Phylogenetic analysis of reported meroterpenoid
cyclases and their respective native substrates.

These biosynthetic intermediates are difficult to obtain from
the natural producer, since typically low concentrations are
observed and the frequently employed heterologous expres-
sion host Aspergillus oryzae contains endogenous hydrolases
producing high amounts of a shunt diol product.[”? To over-
come this limitation, we recently developed a modular synthe-
sis of the widespread 3,5-dimethylorsellinic acid (DMOA)-
containing substrate family. The methodology involves base-
mediated, regioselective dearomatization of DMOA with far-
nesyl electrophiles.'Y We expanded the synthetic scope by
employing enantiopure (10R)- and (10S)-epoxyfarnesyl build-
ing blocks in this reaction to obtain the naturally occurring sub-
strate (10R)- and (10S)-(2E,6E)-5'-DMOA methylester (7a, 7b),
as well as (10R)- and (10S)-(2E,6E)-3’-DMOA methylester (8a,
8b). Additionally, we also accessed the (2Z,6E)-epoxyfarnesyl
congeners (10R)- and (10S)-(2Z,6E)-5’-DMOA methylester (9a,
9b) and (10R)- and (10S)-(2Z,6E)-3’-DMOA methylester (10a,
10b) using the same strategy (Figure S1, Figure 3). As dearoma-
tive alkylation of DMOA leads to formation of two inseparable
diastereoisomers with respect to 3’ and 5’ ring substitution,
the substrates obtained were used as diastereomeric mixtures,
exhibiting fixed stereochemistry for the epoxide moiety (88%
—98% ee). With substrates in hand, we targeted nine reported
meroterpenoid cyclases: Pyr4”), CdmG!12, AndB3, Adrl’ 4],
NVfLES], PrhHI®, Trt1l7] AscF,[8 and Mac)™. As we did not
gain access to the MacJ producer strain, we cloned the homol-
ogous protein Mac)’ from Penicillium chrysogenum MT-12
(96% identity). The intron-free genes were expressed in the
heterologous host Saccharomyces cerevisiae INVScl and cell
free extracts were prepared and utilized for in vitro reactions
with synthetic substrates 7a/7b — 10a/10b. Monitoring of the
reactions by HPLC revealed a surprisingly high degree of prom-
iscuity as several new products were detected (Figure S2-S5,
Table 1).

Substrate Scope of Pyr4 and Mac)’

Pyr4, a cyclase which naturally utilizes the (10S)-configured
epoxide 5 (Figure 1B), was found to accept (10S)-(2E,6E)-5’-
DMOA (7a), (10S)-(2E,6E)-3’-DMOA (8a) as well as
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Figure 3. Synthetic approach and structures of obtained and
tested DMOA substrates (7a/7b — 10a/10b).

Table 1. Overview on productive enzyme substrate combina-
tions.

(2E,6E)-5’-  (2E,6E)-3’- (2Z,6E)-5- (2Z,6E)-3'-
DMOA DMOA DMOA DMOA
Pyrd (10S)-7a (105)-8a - (105)-10a
Mac)’ (108)-7a (10S)-8a - (10S5)-10a
CdmG | (10S)-7a (105)-8a  (105)-9a  (10S)-10a
AndB (108)-7a (10S)-8a (10S5)-9a -
Trl (10S)-7a - (10R)-9b -
(10R)-7blal
Adrl’ (10S)-7a - (10R)-9b -
(10R)-7blal
PrhH (10R)-7blal - - -
NvfL - - - -
AscF - - - (10S)-10a

[a] Native enzyme substrate combination.

(10S )-(2Z,6E)-3’-DMOA (10a) based on the detection of newly
formed peaks in the HPLC chromatogram (Table 1, Figure S2-
S5). To elucidate the structures of the putative new enzyme
products, we carried out large scale enzyme preparations in
which case reaction of Pyr4 with substrate 7a led to the isola-
tion of compounds 11 and 12 (Scheme 1A).

Both products exhibit a chair-chair conformation for the A/B
ring system, as is also found for the natural cyclization to form
pyripyropene E (6). However, the terminating cation-quench-
ing step differs for both products, leading to 11 after C-O bond
formation and 12 after C-C bond formation. These products
were also recently identified from chemical cyclization of rac-
7 by using EtAICI,/Et,AlCl as Lewis acid promoter.!1 The [3.3.1]
bridged structure in 12 is also found in asperterpenes A and B,
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Scheme 1. Structures of isolated meroterpenoids obtained
from Pyr4- and MacJ)’-mediated reactions with A) (10S)-7a; B)
(10S)-8a; C) (10S,3'R)-10a.

recently isolated and potent BACE1 inhibitors from Aspergillus
terreus.?%

As can be delineated from the configuration of position 5’, Pyr4
is able to accept both stereocisomers, (10S,5'S)-7a and
(10S,5’R)-7a, to form 11 and 12, respectively. The findings sug-
gest that Pyr4, which usually accepts the bulkier substrate 5,
exhibits some degree of promiscuity towards changes in the
polyketide portion. This is further demonstrated by the suc-
cessful conversion of (10S,3’R)-8a to 13, as well as (10S,3’S)-8a
to 14. Substrate 8a carries the epoxyfarnesyl chain connected
to the 3’-position of the DMOA-building block instead of the
5’-position as found in 7a. Products 13 and 14 also accessed
from chair-chair substrate conformations, consistent with the
natural substrate conformational control of Pyr4 (Scheme 1B).
Their structures were determined by 1D and 2D NMR analyses,
and further confirmed by the recently developed crystalline
sponge (CS) method which enables ‘crystal-free' X-ray crystal-
lography.?t

We were also interested in the flexibility of Pyr4 towards
changes in the farnesyl chain and therefore subjected sub-
strate analogues 9a/9b and 10a/10b to Pyr4. Indeed, Pyr4 was
able to convert (10S,3’R)-10a to the new meroterpenoid 15
bearing a cis-fused B/C ring system, presumably derived from
a chair-chair substrate conformation (Scheme 1C). The natural
substrate of Pyr4 contains an (S)-configured epoxide function-
ality. Interestingly, all productive enzyme substrate combina-
tions were restricted to the (10S)-series of substrates, as none
of the analogous (10R)-epoxy substrates (10R)-7b, (10R)-8b,



(10R)-9b or (10R)-10b were accepted. This finding indicates a
strict recognition of the epoxide within the substrate binding
site of the enzyme.

In addition, we found that Mac)’ can also produce products 13

and 14 from (10S)-8a and 15 from (10S,3’R)-10a (Scheme 1B/C).

MacJ, naturally involved in the biosynthesis of the drimane
meroterpenoid macrophorin A, is one of the few known Pyr4-
like cyclases which do not require substrate activation by epox-
idation. Instead, Macl is able to directly protonate the terminal
double bond to initiate cyclization (Figure 2, Figure S6A). It is
therefore interesting to note that MacJ also exhibits a clear
preference for the (10S)-stereocisomers of epoxide substrates
evaluated (Table 1, Figure S2-5).

Substrate Scope of CdmG and AscF

A meroterpenoid cyclase which is phylogenetically closely re-
lated to Pyrd is CdmG (Figure 2), utilized in the biosynthetic
pathway towards chrodrimanins from Penicillium verrucu-
losum.*2l Chrodrimanins exhibit strong inhibitory activities
against protein tyrosine phosphatase 1B (PTP1B) and are po-
tential drug candidates for the treatment of type 2 diabetes
and obesity.?2 CdmG naturally catalyzes the formation of 3-
hydroxypentacecilide A (17) from (S)-configured epoxide 16. In
contrast to Pyr4, CdmG controls the substrate conformation in
a chair-boat manner, leading to an inverted stereochemical

outcome for the trans-configured B/C ring system (Scheme 2A).

With this apparent change in conformational control, we were
interested in determining the substrate promiscuity of CdmG
and the putative differences in product formation.

When CdmG was incubated with synthetic substrates, a high
degree of promiscuity was also observed as 7a, 8a, 9a, and 10a
were accepted by CdmG and led to the production of new
products (Figure S2-S5, Table 1). Whereas products from sub-
strate (10S)-7a were found to be too unstable for structural
characterization, products from substrates 8a, 9a, and 10a
were successfully isolated and structurally characterized. Re-
action with (2E,6E)-configured substrate (10S)-8a led to for-
mation of compound 18, the 8,9-epimer of 13, derived from
the (10S,3’S)-8a isomer. The structure of 18 was determined
by 2D NMR analysis and was further supported by X-ray-CS-
diffraction data. The stereochemical outcome of the cycliza-
tion indeed demonstrated a conserved chair-boat conforma-
tional control of the substrate by the enzyme (Scheme 2B).

Reaction of CdmG with (10S5)-9a represents the only case
where two products were found derived from one substrate
stereoisomer, in this case (10S,5’S)-9a, leading to the isolation
of 19 and 20. Whereas 19 is produced from a C-O bond forming
event, product 20 is derived from C-C bond formation. In both
cases, the same trans-cis configuration is observed for the
A/B/C-ring system (Scheme 2C). Compounds 19 and 20 have
also recently been identified from chemical cyclization where
it was further shown that 20 can be rearranged to 19 by formic
acid treatment.[*¥ To confirm the enzymatic origin of 19, 20
was incubated under enzyme reaction conditions (KPP pH 7.4,
16 h, 30°C) but was found to not interconvert to 19.
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Scheme 2. A) Natural Reaction of CdmG and isolated mero-
terpenoids obtained from CdmG-mediated reactions with B)
(10S,3’S)-8a; C) (10S,5'S)-9a; D) (10S)-10a.

Reaction of CdmG with (2Z,6E)-configured substrate 10a pro-
duced the new meroterpenoids 15 and 21 (3:1) derived from a
chair-boat substrate conformation (major) and a chair-chair
substrate conformation (minor), respectively. As observed for
the promiscuity of Pyrd, CdmG also had a strict preference for
the epoxide stereoconfiguration, as none of the (10R)-epox-
ides were accepted by CdmG.

AscF from the ascochlorin pathway (Figure S6B) was found to
also produce 21 from (10S5)-10a as the only accepted substrate
(Table 1, Figure S2-S5) and thus represents a meroterpenoid
cyclase with very low tolerance towards alternative substrates.

Substrate Scope of AndB

The meroterpenoid cyclase AndB (Figure 2) from the andi-
tomin pathway!*3 utilizes DMOA-derived substrate 22 with an
(S)-configured epoxide to produce preandiloid A (23) with
chair-boat conformation. In contrast to the results discussed
for CdmG, which also controls the conformation in a chair-boat
manner, AndB was found to exhibit a differing selectivity based
on the stereocenter at the 3’- and 5’-stereocenters and there-
fore was found to produce different products (Table 1, Figure
$2-S5). Specifically, AndB was found to accept (10S,3’R)-8a to
produce the novel meroterpenoid 24 (Scheme 3). Similar to
CdmG and Pyr4, the native conformational control of the
prenyl chain was conserved, as a chair-boat substrate arrange-
ment was found leading to 24. AndB also accepted the (2Z,6E)-
configured substrate (10S,5'R)-9a leading to the isolation of
meroterpenoid 25. The structure elucidation for 25 was chal-
lenging as 2D NMR analysis did not clearly reveal the
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connectivity between the terpenoid and non-terpenoid por-
tions. Additionally, the relative configuration between the A/B
and C/D ring systems were difficult to determine due to am-
biguous NOESY correlations. However, we were able to fully
establish the structure of 25 using crystalline sponge-X-ray
analysis which revealed the presence of an unprecedented 6-
5-ring system connected to a 5-6 ring system via a single C-C
bond (Scheme 3C).

DFT Calculations for the Formation of 25, 20, CC and 19

The latter finding was surprising, as all reactions in this study
lead to the formation of 6-6-ring systems for the A/B rings and
also no natural cyclization towards 6-5-ring systems has been
reported thus far. To gain further insight into the cyclization
mechanism for the formation of 25 from (10S,5R)-9a by AndB,
we conducted computational studies using density functional
theory (DFT) at the B3LYP-D3(BJ)/6-31G(d,p)//B3LYP/6-
31G(d,p) and CPCM(H,0)-B3LYP-D3(BJ)/6-31G(d,p)//B3LYP/6-
31G(d,p) levels? (see Sl for details). The results (Figure 4) re-
vealed that the first intermediate in the reaction cascade
(modelled here in the absence of enzyme) is the monocyclic
tertiary cation A, generated by an endergonic process via tran-
sition state 9a-TS. A is then converted, after a conformational
change, to 25-H+ by an exergonic concerted process consisting
of formation of the 5-membered B-ring in tandem with nucle-
ophilic attack of the adjacent oxygen functionality via transi-
tion state A-TS. Inclusion of implicit solvent (CPCM(H,0), in pa-
rentheses; single point calculations on previously optimized
geometries in gas phase) led to lower barriers (Figure 4).[241125]
With either a nonpolar (gas phase) or polar (water) surroun-
dings, the barrier for initial cyclization is high for a biological re-
action,?® however, in the absence of enzyme, reactant
(10S,5R)-9a-H+ relaxes to a non-productive conformation with
an internal hydrogen-bond between the alcohol and epoxide;
consequently, conformational preorganization by the enzyme
should lower the barrier and this could be assisted by specific

oriented noncovalent interactions with the transition state
structure. An alternative mechanism for formation of the sec-
ond ring could involve Markovnikov addition to form a 6-6 in-
termediate, followed by ring-contraction in concert with tetra-
hydrofuran ring formation. We find, however, that Markovni-
kov addition leads directly to a “6-6-6-6" product (C) that is not
experimentally observed. We were able to optimize tertiary
carbocation B as a minimum and this species can then undergo
ring contraction to yield 25-H+, but accessing B would require
escape from the deep energy well associated with Cand a large
conformational change. The enzyme would, however, have to
distinguish between A-TS and A’-TS, again by conformational
biasing and/or well-placed noncovalent interactions with the
transition state structure.

Formation mechanisms for 20 and CC from protonated stereo-
isomers of 9a were also subjected to computational analysis.
For both reactions (Figures 5A and B), we find highly asynchro-
nous but concerted pathways in which no discrete carbo-
cationic intermediates are formed. Similar concerted polycycli-
zations have been reported for related systems.!?”) Both reac-
tions also are predicted to be essentially barrierless once pro-
ductive reactant conformations are attained, suggesting that
preorganization controls which product is formed by a given
enzyme. Conversion of 20-H+ to 19-H+ is predicted to be an
endergonic process (Figure 6; neutral19is predicted to be sev-
eral kcal/mol lower in energy than neutral 20, however), but
an appropriately positioned base in a restricted enzyme active
could selectively deprotonate 19-H+. The barrier for the 20-
H+ to 19-H+ interconversion is also less certain than others de-
scribed above, since this reaction involves asynchronous bond-
breaking, C—C bond rotation, and bond-making that leads to a
“loose” transition state for which entropy and the effects of
externally-imposed conformational constraints are difficult to
estimate.

Substrate scope of Trtl, Adrl’, PrhH, and NvfL

Another phylogenetic clade is formed by Trt1, Adrl, Adrl’, AusL,
and PrhH (Figure 2). These enzymes share the DMOA substrate
(10R,5’R)-7b, but differ with regard to their product specificity.
Trtl catalyzes the formation of preterretonin (27) via a chair-
chair-chair substrate conformation forming intermediary cat-
ion 26, followed by Wagner-Meerwein rearrangement and a
terminating deprotonation of H,. Adrl shares the intermediary
cation 26 and rearrangement, but differs in the terminating
deprotonation side (Hy) producing andrastin E (28). AusL and
PrhH both catalyze the formation of protoaustinoid A (29) from
26 after direct deprotonation of H, (Scheme 4A). NvfL from the
novofumigatonin pathway utilizes a highly similar substrate as
Trtl, Adrl, AusL, and PrhH, carrying a free carboxylic acid in-
stead of the methyl ester in the DMOA-unit. The free acid is
crucial for enzyme function and the protein catalyzes for-
mation of a spiro-center (Figure S6C). Consistent with the ob-
vious tight recognition of the polyketide portion necessary to
achieve these sophisticated and distinct reactions, a compara-
ble low promiscuity for this group of integral membrane-
bound enzymes was observed. Whereas PrhH and NvfL did not
accept any of the tested unnatural substrates, both Trtl and
Adrl” accepted (2Z,6E)-9b, with the natural 5’-substitution
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Figure 5. DFT calculations for the cyclization mechanism for the formation of A) 20 and B) CC. Computed (B3LYP-D3(BJ)/6-
31G(d,p)//B3LYP/6-31G(d,p) (on top), CPCM(H,0)-B3LYP-D3(BJ)/6-31G(d,p)//B3LYP/6-31G(d,p) (in parentheses) and
MPW1PW91/6-31G(d,p)//B3LYP/6-31G(d,p) [in brackets]) relative free energies (kcal/mol, italics) for minima and transition state
structures (TSSs) and IRC traces for the respective TSSs. Bond distances are in Angstroms (A).
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Figure 6. DFT calculations for the interconversion of 20-H+ to
19-H+.  Computed (B3LYP-D3(BJ)/6-31G(d,p)//B3LYP/6-
31G(d,p) (on top), CPCM(H,0)-B3LYP-D3(BJ)/6-
31G(d,p)//B3LYP/6-31G(d,p) (in parentheses) and
MPW1PW91/6-31G(d,p)//B3LYP/6-31G(d,p) [in brackets]) rel-
ative free energies (kcal/mol, italics) for minima and transition
state structures (TSSs). Bond distances are in Angstroms (A).

pattern in the polyketide portion (Table 1, Figure S2-S5).

However, for these cases products were found to be too un-
stable for structure determination. To our surprise, we found
that Trt1 as well as Adrl’ were able to convert (10S5)-7a, the na-
tive substrate with inverted stereochemistry with respect to
the epoxide functionality. We succeeded in the isolation of the
Trtl-mediated product from (10S,5’R)-7a and the structure
was determined to be 3-epi-preterretonin (30). The formation
of this product can be envisioned to occur via a boat-chair sub-
strate conformation (Scheme 4B).128!

Enzyme Kinetics of Trtl

To shed additional light on the substrate promiscuity of mero-
terpenoid cyclases, we were interested in the comparison of
the Kw values of the natural substrate to unnatural substrate
analogous. Synthetic (10R,5'R)-7b is the natural substrate of
Trtl, which was also found to accept unnatural (10S,5'R)-7a,
and (10R)-9b. Since Trtl and other meroterpenoid cyclases
cannot be purified, the integral membrane bound enzyme was
used as a crude enzyme preparation. To ensure a comparable
enzyme concentration, Trtl was freshly prepared and used for
all kinetic assays on the same day. The results revealed an ap-
parent Ku value of 34 uM for the natural substrate 7b, whereas
a 3-fold (95 uM) and 5-fold (144 pM) higher value was found
for substrates 7a and 9b, respectively. The Vmax values were
determined as 22 uM/min, 7 uM/min and 0.5 uM/min, for 7b,
7a and 9b, respectively. These findings indicate that the unnat-
ural substrates have a lower affinity for the enzyme, but the
values are of the same order of magnitude and thus further
demonstrate the promiscuity observed for this enzyme class.

Summary and Conclusion

In summary, we have demonstrated chemoenzymatic access
to twelve complex, unnatural DMOA-derived meroterpenoids
of which eight represent novel compounds

via

(10S,5R)-Ta 30 (6% yield)

Scheme 4. A) Natural reaction of Trtl, Adrl/Adrl’ and
AusL/PrhH. B) Isolated meroterpenoids obtained from Trtl-
mediated reactions with (10S,5’R)-7a.

by exploiting the surprisingly high promiscuity of fungal mero-
terpenoid cyclases.

Synthetic 3,5-dimethylorsellinic acid (DMOA)-containing sub-
strates were prepared using dearomative alkylation and eval-
uated against nine meroterpenoid cyclases. The results
demonstrate tight recognition of the epoxide functionality by
the cyclase panel, but tolerance towards the polyketide por-
tion. The conserved cyclization mechanism initiated by epox-
ide protonation and rigid control of the substrate confor-
mation in the cyclase active site cavity led to the formation of
several variations of naturally occurring meroterpenoid scaf-
folds, as well as generation of a completely new scaffold, alt-
hough the number of cyclization steps that are concatenated
into concerted processes appears to be system-dependent.
The challenging structure elucidation and determination of rel-
ative and absolute configurations for the obtained enzyme
products was solved by combining 2D NMR data analysis with
the recently developed method of crystalline-sponge-X-ray dif-
fraction analysis. This method allowed us to access the crystal-
lographic data of non-crystalline enzyme products such as 25
for unambiguous structure determination and thus represents
a powerful technique in combination with second generation
natural product discovery.

The knowledge obtained in this study can be used for the de-
sign of artificial pathways by recombining biosynthetic genes
in a suitable heterologous production host. Whereas produc-
tive enzyme combinations with naturally occurring substrates
such as 7a and 7b provide a straightforward access by recon-
stituting known pathways towards these substrates and inter-
changing the introduced meroterpenoid cyclase, access to
(2z,6E)-configured prenyl substrates require further engineer-
ing efforts, for example, by employing a known bacterial
(2Z,6E)-selective FPP synthase from Mycobacterium®® and op-
timization of downstream enzymes towards substrates like 9a
and 9b. Furthermore, the new meroterpenoids obtained can
be evaluated as substrates for downstream tailoring enzymes
such as a-ketoglutarate-dependent dioxygenases. Since sev-
eral protein crystal structures have been reported in recent



years, protein engineering by either rational strategies or di-
rected evolution represents an exciting opportunity to create
novel “unnatural” meroterpenoids with valuable biological
properties.B%
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