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Abstract

Cryo-electron tomography (cryo-ET) provides 3D visualization of subcellular components in the
near-native state and at sub-molecular resolutions in single cells, demonstrating an increasingly impor-
tant role in structural biology in situ. However, systematic recognition and recovery of macromolecular
structures in cryo-ET data remain challenging as a result of low signal-to-noise ratio (SNR), small sizes
of macromolecules, and high complexity of the cellular environment. Subtomogram structural classifi-
cation is an essential step for such task. Although acquisition of large amounts of subtomograms is no
longer an obstacle due to advances in automation of data collection, obtaining the same number of struc-
tural labels is both computation and labor intensive. On the other hand, existing deep learning based
supervised classification approaches are highly demanding on labeled data and have limited ability to
learn about new structures rapidly from data containing very few labels of such new structures. In this
work, we propose a novel approach for subtomogram classification based on few-shot learning. With our
approach, classification of unseen structures in the training data can be conducted given few labeled sam-
ples in test data through instance embedding. Experiments were performed on both simulated and real
datasets. Our experimental results show that we can make inference on new structures given only five
labeled samples for each class with a competitive accuracy (> 0.86 on the simulated dataset with SNR =
0.1), or even one sample with an accuracy of 0.7644. The results on real datasets are also promising with
accuracy > 0.9 on both conditions and even up to 1 on one of the real datasets. Our approach achieves



significant improvement compared with the baseline method and has strong capabilities of generalizing
to other cellular components.

1 Author summary

Cryo-electron tomography has been widely used in structral biology to provide a three-dimensional per-
spective on intracellular structures at sub-molecular resolutions and near-native states in single cells.
Identifying the macromolecules contained in cryo-electron tomograms is an essential step for further
analysis of the structure and function of these macromolecules. Recent studies have shown that su-
pervised learning excels in the classification of macromolecules in subvolumes of tomograms (called
subtomograms). However, since most structures in cells are unknown to us, labeling macromolecules in
subtomograms is time-consuming, labor-intensive, and hard to implement, which brings difficulties to
supervised learning. We proposed a computational method to distinguish the macromolecules in subto-
mograms with few labeled data. We trained our model on some well-annotated structures and apply
the model to classify new structures with few labeled examples. We conducted experiments on both
simulated datasets and real datasets, and our results suggest that our method could achieve competitive
classification accuracy on new structures with no more than five samples for each class. Our method can
help to quickly and accurately detect newly-discovered structures from cryo-electron tomograms with
few examples, accelerating subsequent research on the structures, and thus possibly promoting further
interpretation of cellular functions.

2 Introduction

Most biological processes in cells are orchestrated by intricate networks of molecular assemblies and
their interactions. Analysis of the structural features and spatial distribution of these assemblies in situ
is an indispensable step in deciphering cellular functions. As a powerful technique to extract 3D vi-
sulization of cellular macromolecular structures in a near-native state and at a sub-molecular resolution
in single cells, cryo-ET has been gaining a more prominent part in structural biology in sifu, and suc-
cessful applications of cryo-ET to the study of considerable important macromolecular structures has
been proposed [1]. In principle, cryo-ET captures the near-native structure and spatial organization of
all macromolecules under the field of view, potentially providing unprecedented insights on the cellular
functions that these macromolecules involve. However, low signal-to-noise ratio (SNR) and the compli-
cated intracellular environment remain an immense obstacle to the systematic analysis of macromolec-
ular structures in cryo-ET images. Structural discrimination of macromolecules is particularly difficult,
because of the generally small sizes (only slightly larger than the nanometer resolution of cryo-ET),
different conformations and assemblies compositions depending on the functions executed. In the gen-
eral image-processing workflow, subvolumes (also referred to as subtomograms) of three-dimensional
cryo-ET images will be extracted, each potentially containing one macromolecule. Then subtomogram
classification is conducted to divide all subtomograms into more homogenenous subsets that may con-
tain the same structures[2]. Therefore, effective algorithms for subtomogram classification is urgently
needed.

Early works focused on identification of different macromolecules in cellular cryo-ET images through
template matching. Though successfully applied to the detection of some isolated assemblies [3} |4 15]],
this kind of method is significantly influenced by tomogram-specific parameters as well as the target-
specific parameters [6], and is limited to the detection of known particles. For the recovery of novel struc-
tures in cryo-electron tomograms, reference-free approaches for subtomogram averaging, classification
and pattern mining have been developed, including methods based on maximum likelihood [[7], methods
using rotation invariant subtomogram features [8], methods that rely on iterative successive alignment
and classification steps [9], and methods using Fourier space constrained fast volumetric matching [10].
These methods work in an unsupervised clustering way and do not rely on the labeled training data of
structural classification. However, these approaches suffer from certain limitations in terms of scalibil-
ity, consideration of missing wedge effect and discrimination ability under low SNR. The template-free
structural pattern mining method proposed by Xu et al[[11] is one of the representatives of unsupervised



methods in recent years to identify unknown structural densities in cryo-tomograms. It is able to extract
structural patterns, but the patterns are not automated classified as specific structures unless manual com-
parison and identification. Moreover, the method is still in the traditional way instead of learning-based
methods, leading to somewhat lack in performance.

As discussed in SHREC’ 19 Track[12], “learning-based methods are increasingly more popular with
cryo-ET researchers. Not without a reason: the learning-based methods show better performance”. With
the development of imaging technology and automatic data acquisition, the scale of cellular cryo-ET
data expanded significantly and thus deep-learning based methods have gained improving attention in
annotating cryo-ET data. Chen et al. developed a segmentation method based on convolutional neural
network (CNN) [13]] to automatically identify subcellular structural features. And Li et al. proposed
an algorithm for automatic identification and localization of cellular components in cryo-tomograms
through Faster RCNN[14]. Deep learning-based subtomogram classification also becomes a new crave
to allow high-throughput macromolecules structure identification [[15} 16, [17]]. Although the supervised
classification based on convolutional neural network (CNN) model exhibits superior performance in
feature extraction and has significant improvement of speed and robustness to noise and missing wedge
effect [[15]], by design it does not directly identify unseen structures not included in the training data.
Moreover, it is not feasible to obtain a large amount of annotated data for training given the reality
that the native structures of most of macromolecules are unknown [[18], indicating a shortage of these
high-throughput classification methods for detecting such unknown structures.

To tackle this problem, we propose a few-shot learning based method, which is able to conduct
subtomogram classification on unseen structures with few (or even one) labeled subtomograms from
each kind of these structures, while retaining the superior abilities of the CNN model. Few-shot learning
is proposed to address the problem of recognizing new categories with very little labeled data provided.
In the few-shot learning problems, there is usually a training set including considerable labeled data to
provide prior knowledge and a test set consist of instances from new categories that do not appear in the
training set. The test set can be divided into two subsets: a support set with a few labeled samples from
each category, and a query set with unlabeled samples from the same categories with the support set. The
task is to make predictions about unlabeled samples in the query set based on the few labeled samples in
the support set and the knowledge learned from the training set. An M -way N-shot classification task in
few-shot learning means taking M categories with [NV labeled samples for each category as the support
set, and that is the sampling strategy during training as well, in which way the training set is randomly
subsampled as mini-batches called episodes. Each episode contains a support set (M categories with N
labeled samples for each category) and a query set (the same M categories with unlabeled samples) so
as to conform to the expected few-shot classification task [19]].

The basic idea of few-shot learning is to learn from samples of seen classes with ample labels in
the training data, and gain the ability to make inferences on samples from unseen classes with only few
labeled examples provided. Thus, when a novel structure is discovered, it can be distinguished from a
large amount of unlabeled subtomograms given only a small number of labeled samples of the structure,
as long as we pre-trained the model on subtomograms of some well-studied structures whose labels
may be relatively easy to obtain. That means we can rapidly detect newly-discovered macromolecular
structures, analyze the characteristics such as spatial organization, and accelerate downstream research.

One main category of few-shot learning approaches focused on learning an embedding for each
instance that maintain necessary features of the data and thus simple classifiers such as nearest neighbor
classifier can be applied in the embedding space. Following this idea, one of the major components
in our approach evolve from prototypical network (ProtoNet) [20]. In the embedding space learned
from ProtoNet, a prototype for each class will be calculated, and the nearest prototype to each sample
should be the one of the class that the sample belongs to. However, the embedding obtained through this
method is a universal embedding learned from all training data, independent of downstream classification
tasks. In other words, this is a task-agnostic embedding. In order to extract useful information from
the classification tasks we are facing and make the embedding more targeted, we add a transformation
step with self attention mechanism inspired by [21]] and obtain a task-specific embedding. We believe
that neither task-agnostic nor task-specific features alone are sufficient to support the classification task.
Therefore, we innovatively combine both kinds of features through combination of both embedding
space and propose a ProtoNet-CE (ProtoNet with Combined Embedding) method as shown in Fig [I]



Moreover, in order to adapt to the property of cryo-ET data, we also implemented a 3D extension and
proposed a mixture training strategy.

Figure 1: The flowchart of our method. Suppose we have a support set with three classes and three
labeled samples of each class. Firstly, each support sample is mapped into a task-agnostic embedding
space through a 3D encoder and the prototype of each class is calculated. Then a task-specific embedding
space is generated through a transformer to focus more on the current classification task, with another set
of prototypes calculated. The query sample z is mapped to both embedding spaces respectively and the
distances between x and prototypes in both embedding spaces are combined as the classification criteria
using a nearest neighbor classifier.

We conducted experiments on simulated datasets with different SNRs as well as on real datasets,
and our model achieved high accuracy on both (5-way 5-shot classification accuracy > 0.86 on the
simulated dataset with SNR = 0.1 and 3-way 1-shot classification accuracy > 0.9 on the real datasets).
Comparison with the baseline method also shows significant improvement, demonstrating the superiority
of our approach.

Our main contributions are summarized as follows:

1. Our work tackles the problem of making predictions on unseen structures with limited labeled
subtomograms, enabling newly-discovered structures to be quickly discriminated and studied through
large-scale cryo-ET data.

2. We tailor the structure of ProtoNet and propose a ProtoNet3D model for cryo-ET data. To the best
of our knowledge, this is the first work to apply few-shot learning to subtomogram classification.

3. We propose a novel few-shot learning based subtomogram classification method that combines
task-agnostic embedding and task-specific embedding called ProtoNet-CE. And our ProtoNet-CE
model achieves even higher accuracy on subtomogram classification than ProtoNet, which is one
of the state-of-the-art few-shot learning methods.

4. We also propose a mixture training strategy to attenuate the effect of noise in cryo-ET data, which
performs well on simulated datasets.

3 Materials and methods

3.1 Datasets
3.1.1 Simulated datasets

The simulated datasets we used are acquired from previous work in [[15], containing simulated subtomo-
grams of 22 macromolecular complexes from the Protein Data Bank [22]. Different noise were added
to achieve different SNR levels and the particles are randomly rotated and translated. In this paper,
we chose three SNR levels that are similar to the real subtomograms including 0.03, 0.05 and 0.1 to
make three simulated datasets. And for each dataset, we randomly selected 100 subtomograms for each
complex and 100 subtomograms containing no macromolecule as the 23rd class. An example of the
simulated dataset is shown in Fig[2]

Figure 2: An example of the simulated dataset. (a) Atomic structure of ferritin (PDB ID: 1LB3). (b)
Examples of simulated subtomograms containing ferritin macromolecule (PDB ID: 1LB3), represented by
several slices of one subtomogram (40 x 40 x 40) in the simulated dataset with SNR = 0.1, 0.05 and 0.03.



3.1.2 Real datasets

Two real datasets were utilized in this paper. One is the 7-class single particle dataset by Noble et al [23]],
with SNR = 0.5 and missing wedge angle of 30 degrees (tilt angle range -60 to +60 degrees). The other
is a 6-class dataset extracted from rat neuron tomograms with SNR = 0.01 and tilt angle range -50 to 70
degrees generated by Guo et al [[17]. Again, 100 subtomograms are randomly selected for each class (if
there were less than 100 samples for some class, all samples of that class will be selected).

3.2 Methods
3.2.1 Instance embedding based on ProtoNet3D

ProtoNet is based on a basic assumption that there exists an embedding space where samples of each
category cluster around a prototype. Thus, in this embedding space, we can find the nearest prototype
and also the category for each sample through a nearest neighbor classifier [20]]. Because the input data
are 3D gray scale images, we design a ProtoNet3D model by replacing the 2D filters with 3D filters in
the ProtoNet model. The model is described as follows.

Suppose there is a support set S with IV samples (i.e. subtomograms) x;, and each sample has a corre-
sponding class label y; (i.e. macromolecule structural class), wherei = 1,2,..., Nand y; € {1,2...., K'}.
An embedding function f4 with learnable parameters ¢ maps each sample to the embedding space. Thus,
a prototype cy, for each class k can be calculated in the embedding space as

1
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Where Sy, = {(zi,v:)|y: = k} is the support set of class k. The prototype ¢, is actually the center of
the embedded samples f,(x;) of class & in the support set. And the probability that a query sample z is
categorized to class k is defined as a softmax function performed on the distances between z and all the
prototypes as shown in Eq[2]
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Where d(z,2') = ||z — 2/||” denotes the squared Euclidean distance between z and 2’. For each episode

in the training process, N¢ classes are sampled with Ng support samples and Ng query samples (as the
query set Q) for each class. The loss for each episode is calculated as:
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The larger the probability of each query sample x catergorized into the right class k, the smaller the loss
of this episode. And the goal of the training process is to minimize the loss function J(¢) so as to learn
the best embedding for the few-shot classification task[20]. The parameters of the embedding function
fe 1s updated according to the loss function in each episode so as to achieve the goal.

3.2.2 Embedding adaptation via transformer

The embedding described above is simply learned from all training samples, regardless of the classifica-
tion task in the test set. Inspired by FEAT [21]], we add an adaptation step to extract task-specific features
via a transformer. For each episode, we define Qo = Csupport U Xquery, Where Cyyppors denotes the set
of the prototypes calculated with the support samples in this episode, and X, denotes the query set
in this episode, and set Qg = Ky = V{. The transformer works with three sets: the set of query points
@, the set of keys K, and the set of values V' defined as:

Q = Wal[fs(wq); Vg € Qo] € R0,
K= W%[fdJ(xk);vxk € Ko| € Rdx\KO\’ @
V = W{ [fy(,); Vo, € Vo] € R&IVL



Where Wq,Wg and Wy, are learnable weight matrices and d denotes the dimension of the points after
mapping. The task-agnostic embedding f,(x4) is mapped again to a new embedding space through those
learnable matrices. The similarity between x, with each ) will be calculated in this new embedding
space as attention and used as the weight for the corresponding x,, with a softmax function:

f¢(xq)TWQK]
Vd -

Then the weighted average of the z,s will be added to the original embedding and the modified embed-
ding is

®)
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The training process of the transformer is similar to that of the ProtoNet described above, with the
embedding function f, changed into f;f. The weight matrices W, Wy and Wy, are updated through
episodes to minimize the loss function. Thus, the features extracted by the transformer will focus more
on the categories in the classification task instead of the whole training set.

3.2.3 Combination of the two embeddings

In order to consider the task-specific features together with the task-agnostic features, we decide to
combine the distances calculated in both embedding spaces above as the final classification criteria.
Therefore, the probability in equation [2|is transformed into

o enp(—(det )
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Where dj, = d(fy(x),cr) and dj; = d(f}(x), cy) (cj; = f;(ck)). And the loss function in equationis
also changed with the new probability

J*(¢):NCNQZ > —logp)(y = klx). ®)

(7

Remark 1 The combination we used in the algorithm is the addition of the two distances because we
considered that addition is one of the most commonly used operation in deep learning and is intuitive
in the concept of combining two distances. Moreover, it is also easy to implement. Other operations
like multiplication or weighted average also have the potential to complete the combination, but they are
relatively complicated to optimize. So we chose the easiest addition for experiment. Other operations
can be explored in our future work.

3.2.4 Implementation details

The original embedding function f4 is implemented through a convolutional neural network, and we
proposed a 3D variant of the original ProtoNet for few-shot subtomogram classification denoted as Pro-
toNet3D. It contains four ConvBlock modules, where a 3D convolutional layer with 64 parallel 3 x 3 x 3
filters is combined with a Batch Normalization layer, a ReLu activation layer, and a 2 x 2 x 2 3D max
pooling layer. The parallel 3D filters are designed to extract different features from subtomograms and
the max pooling layer is for feature selection and dimension reduction. The ConvBlocks are followed by
a Flatten layer which ensures the features are integrated into a one-dimensional embedding.

The transformer is implemented with an attention block concatenating three fully connected layers
as the learnable weight matrices described in Section 2.3, followed by a softmax layer and several matrix
multiplication operations. Then another fully connected layer is designed to obtain the weighted aver-
age of the outputs of the attention block which is then added to the original embedding. The detailed
architectures of our model are shown in Fig

In the training process, the encoder and the transformer are trained respectively. We first train the
encoder as described in Section 2.2, and then train the transformer using the loss calculated through



the new embedding function f while the parameters of the encoder are fixed. The distances in both
embedding spaces are combined only in the test process. For each dataset, an episode in the training
process contains the same size of support set and query set as in the test process described in Section
Results. For example, for the 5-way 5-shot results in Table|l} a training episode contains 5 classes with
5 support samples and 15 query samples for each class. In the test process, each query sample will
be mapped into the two embedding spaces with embedding function f, and f7 respectively, and the
distances of the sample to the prototypes calculated through the support set will be obtained in the two
spaces. The structural label of the sample will be predicted by comparison of the combined distances
through a nearest neighbor classifier.

The network in our model as well as the code for training and test was implemented through PyTorch.
The models were trained using optimizer Adam (Adaptive Moment Estimation) [24] with 5; = 0.9, 52 =
0.999 and learning rate of 1 x 10~*. The baseline method in our experiments is finetuning, where a fully
connected (FC) layer is added to the encoder and the model is trained on the training set and then
fine-tuned with the support set. The finetuning process is similar to training process, but keeping the
parameters of the encoder unchanged. The parameters of the fully connected layer are adjusted according
to the loss calculated through the predicted results of samples in the support set with optimizer Adam.

Figure 3: Architectures of our ProtoNet-CE network. Details of the 3D encoder and the transformer.

Remark 2 Empirically, we take the same number of classes (N¢) in each episode in the training set
and the test set to simplify the experiments. Setting larger N¢ for the training set than the test set may
further improve the accuracy, while take longer time to converge during the training procedure.

4 Results

4.1 Classification results on simulated datasets

The 23 classes for the simulated datasets were randomly split into a training set of 10 classes, a validation
set of 5 classes and a test set of 8 classes. The splits remain consistent between different SNR levels.
Models were first trained on the training set, and then evaluated on the validation set. The model with
best performance on the validation set was finally chosen for the test set. During the test period, the
model were tested with randomly sampled N¢ classes with Ng support samples and Ng query samples
for each class from the test set for 100 times respectively to obtain the mean classification accuracy. The
Ng was set to 15 in our experiments on simulated data. Details of the accuracy and other metrics of
the classification results are provided in[ST File] We have also calculated the macro average precision as
an additional reference as reported in Table A in The experiments were conducted respectively
with the baseline method, the ProtoNet3D model, and the ProtoNet-CE method. The results are shown
in Table[Tl

Table 1: The classification accuracy of the simulated datasets. 5-shot is short for 5-way 5-shot and 1-shot
is short for 5-way 1-shot. The suffix (mix) means that the model is trained on a dataset with mixed SNR.

Methods SNR=0.1 SNR=0.05 SNR=0.03
5-shot 1-shot 5-shot 1-shot 5-shot 1-shot
ProtoNet-CE 0.86124+0.0165 0.7644+0.0216 0.7868+0.0194 0.704040.0214 0.6932+0.0212 0.5696+0.0205
ProtoNet3D 0.843240.0198 0.7480+0.0203 0.756740.0200 0.690140.0236 0.6631+0.0177 0.5287+£0.0192
ProtoNet-CE(mix)  0.858040.0185 0.8163+0.0193 0.8017+0.0196 0.7360+0.0213 0.75124+0.0198 0.6576+0.0224
ProtoNet3D (mix) 0.8616+0.0169 0.7689+0.0253 0.7972+0.0201 0.6808+0.0236 0.75454+0.0213 0.6304+0.0212
Baseline (fine-tune) 0.7658+0.0172 0.5894+0.0215 0.718140.0232 0.4349+0.0225 0.6039+0.0184 0.4039+0.0201

Compared to the baseline method, our model (either the ProtoNet3D or the ProtoNet-CE) demon-
strates superior classification performance. The privilege of our model is especially pronounced for the
1-shot case, where the baseline method may suffer severe overfitting. And the accuracy in the case of



5-way 5-shot is competitive even compared with the result of a CNN model trained on 500 subtomo-
grams for each class as in [15]] (about 0.66 for SNR of 0.03 and 0.77 for SNR of 0.05), considering our
minimal demand for labeled data. Moreover, our ProtoNet-CE model also outperforms the simple Pro-
toNet3D model with at least one percentage mean accuracy on all datasets, which may be explained by
the comprehensive consideration of task-agnostic and task-specific features in the two embedding space.
We have further demonstrated the advantages of combination of the two embeddings in Table 2] with
ablation study. Experiments were conducted using only the task-agnostic embedding distance d, only
the task-specific embedding distance d*, and the combined distance d+ d* for classification respectively.
The results show that the prediction accuracy with combined distance is higher in most cases than using
d or d* alone, indicating that the combined distance is better.

Table 2: The classification accuracy of the simulated datasets with different embedding distance used.

Distance SNR=0.1 SNR=0.05 SNR=0.03
5-shot  1-shot 5-shot 1-shot 5-shot 1-shot
d+d* 0.8612 0.7644 0.7868 0.7040 0.6932 0.5696
d 0.8432 0.7480 0.7567 0.6901 0.6631 0.5287
d* 0.8428 0.7884 0.7648 0.6500 0.6736 0.5524

Remark 3 The computational efficiency: making prediction on a 40 x 40 x 40 subtomogram takes about
0.2s on CPU with our method.

4.2 Mix training strategy

It is also noticed that the accuracy is significantly reduced as the SNR decreases, which indicates that our
model is seriously disturbed by noise. Therefore, we hope to make our model eliminate the interference
of noise and extract the noise-independent features to discriminate different macromolecular complexes.
We proposed a mix training strategy to address the problem. The model was trained on a mixed dataset
where each class includes 100 samples with SNR = 0.1, 0.05, and 0.03 respectively (300 samples in
total). And the test set contains subtomograms with only one SNR level as usual.

For the ProtoNet3D model, the results shown in Table E] exhibit a shift in the classification accuracy
with SNR of 0.03 when trained on the mixed dataset. And there is also a slight increase in the 5-way
5-shot case for the dataset with SNR of 0.05. We may also conclude that this training strategy is helpful
from the evidence that the difference between the accuracy of the test sets with SNR = 0.05 and 0.03 is
reduced (0.0936 to 0.0427 in 5-way 5-shot, and 0.1614 to 0.0504 in 5-way 1-shot), showing less effect
of noise on the classification performance.

To rule out the impact of sample size, we have also conducted experiments with 34,33 and 33 samples
with SNR = 0.1, 0.05, and 0.03, respectively. The results in Table [3| demonstrate that the mix training
also works with the same sample size. The classification accuracy of ProtoNet3D(Mix34) on the dataset
with SNR=0.03 obviously increases than ProtoNet3D(Single). However, in the case of SNR=0.1 and
SNR=0.05, the accuracy increases just slightly or even decreases (in 1-shot case). We speculate that in
ProtoNet3D(mix), samples with higher SNR than the test set play a relatively more important role in
improving accuracy, while samples with lower SNR may also provide some effective information for
learning. Moreover, training with 100 samples with SNR=0.1, 0.05, 0.03 respectively leads to higher
accuracy because of taking full use of all the data available.

We have also applied the mix training strategy to the ProtoNet-CE model for further improvements
on the performance. And the results indicate that the accuracy in 1-shot case significantly improved
while in 5-shot case the accuracy is also close to the highest ones among all the methods.

4.3 Classification results on real datasets

Due to the smaller number of categories in the real datasets, we removed the validation set and randomly
divided them into training and test sets (Noble: 4 classes for training and 3 for testing, Guo: 3 classes



Table 3: The classification accuracy of the simulated datasets with different settings of mix training
strategy on ProtoNet3D. Single means the model trained on the dataset with single SNR. Mix100 means
the model trained on the dataset with 100 samples for each SNR level. And Mix34 means the model trained
on the dataset with 34,33 and 33 samples with SNR = 0.1, 0.05, and 0.03, respectively.
SNR=0.1 SNR=0.05 SNR=0.03
5-shot 1-shot 5-shot 1-shot 5-shot 1-shot

Single  0.843240.0198 0.7480+0.0203 0.756740.0200 0.6901+0.0236 0.66314+0.0177 0.5287+0.0192

Mix100 0.8616+£0.0169 0.7689+0.0253 0.7972+0.0201 0.6808+0.0236 0.7545+0.0213 0.6304+0.0212

Mix34  0.848340.0168 0.7356+0.0224 0.779340.0185 0.6529+0.0235 0.700740.0197 0.5915+0.0240

Methods

for training and 3 for testing). Therefore, the best model for the test set was chosen according to the
performance on the training set directly. The classification accuracy is calculated through 100 episodes
each with randomly sampled N¢ classes and Ng samples for each class. The N¢ here was set to
3 and Ng was still 15. The results for both datasets are shown in Table 4| The ProtoNet3D model
itself already achieved significantly higher accuracy than the baseline method for both datasets and even
achieves 100 percent accuracy with Noble dataset because of fewer categories to recognize and more
obvious distinction between categories. As for our combined model, the results show that ProtoNet-CE
improves the accuracy on the Guo dataset from 0.9227 to 0.9406 (5-shot) and 0.8407 to 0.9153 (1-shot)
compared to ProtoNet3D, and maintain 100% accuracy on the Noble dataset as ProtoNet3D.

Table 4: The classification accuracy of the real datasets of subtomograms.

Dataset Methods 3-way 5-shot 3-way 1-shot
Guo ProtoNet3D 0.922740.0076  0.8407+0.0153
Guo ProtoNet-CE 0.9406+0.0066 0.9153+0.0146
Guo  Baseline (fine-tune) 0.8000+£0.0135 0.5849+0.0152

Noble ProtoNet3D 1.0000+0.0000 1.0000+0.0000

Noble ProtoNet-CE 1.0000+0.0000 1.0000+0.0000

Noble Baseline (fine-tune) 0.8702+0.0208 0.7965+0.0236

In order to prove the efficacy of our classification, we have conducted subtomogram averaging for the
classification results of both simulated and real datasets and the averaged subtomograms are shown in Fig
M] The resolution of these averaged subtomograms as well as the resolution of the original subtomograms
before classification is calculated on the common structure proteasome (3DY4, double capped protea-
some and T20S proteasome) in these three datasets. The results indicate that in all the three datasets, the
averaged subtomograms show improved resolution compared with the corresponding original subtomo-
grams. We have also analyzed the classification performance on different structural classes in
and provided examples of classified subtomograms from the classes with highest/lowest classification
accuracy in the three datasets. The results indicate that the structures with relatively clear outlines and
larger difference between other structures in the test set are more likely to obtain a higher classification
accuracy. As further proof of the superiority of our method, examples of subtomograms that are correctly
classified by our method but wrongly classified by the baseline method are shown in Fig B in
Our method outperforms the baseline method especially on the subtomograms with relatively indistinct
structures.

Figure 4: The results of subtomogram averaging. (a) Averaged subtomograms after classification. (b)
Examples of original subtomograms (before classification) compared to averaged subtomograms (shown in
2D slices).



5 Discussion

In recent years, cryo-ET has emerged as a major tool for the analysis of the structural and spatial or-
ganization of macromolecules inside single cells in situ. However, accurate and efficient classification
of unknown macromolecular strucures in cryo-ET is a major challenge due to structural complexity and
imaging limits. In this paper, we proposed a few-shot learning based method of subtomogram classifi-
cation, which achieved high accuracy with limited supervised information provided. To the best of our
knowledge, this is the first work to apply few-shot learning to subtomogram classification. We have
tailored one of the state-of-the-art few-shot learning networks, ProtoNet, to adapt it to the subtomogram
data, and presented the ProtoNet3D model. As a further improvement, we proposed a novel ProtoNet-
CE model which integrated task-agnostic and task-specific embedding spaces to make more accurate
classification. To address the issue that high level of noise in subtomograms may reduce classification
accuracy, we proposed a training strategy that train the model on datasets with mixed SNR, and verified
the effectiveness through experiments.

Our algorithm has shown excellent capability of generalizing to new classes with only a few samples
labeled. It is practically very useful in rapidly recognizing newly discovered structures from numerous
unlabeled subtomograms given few labeled samples and thus facilitating the follow-up research on those
structures. Compared with the unsupervised methods, our method can directly identify each subtomo-
gram with the specific class of macromolecular structures of interest, and can obtain significantly better
detection accuracy on these specific classes. Compared to other supervised methods, our method needs
much less annotated data and can make accurate predictions about unseen structures in the training data.
Although our method could not totally solve the problem of fully automatically discover novel structures
from subtomograms, our work represents an important step towards automatic and systematic in situ
structural analysis of macromolecules in single cells captured by cryo-ET.

There are some other related issues that might be with practical significance while we could not
address in this paper due to the limitation of data and time. We hope to leave them for future work to
explore as soon as conditions permit.

o The effect of missing edge angles and increment angles on the programs performance, which is
hard to evaluate with the current datasets because each dataset has different configurations. If more
datasets with the same conditions except missing edge angles and increment angles are available
in the future, we could explore this issue in our future work.

e The performance of this method on bacterial tomograms. Relevant experiments are difficult to
conduct for now in total lack of labels of the subtomograms in those bacterial tomograms. By
collecting the necessary annotation data, we may make this attempt in our future work.

e The ability of this method to deal with the same macromolecular complex exhibiting many dif-
ferent coexisting conformations. Theoretically, our method can make correct classification on
different coexisting conformations of the same macromolecular complex with minor structural
differences. However, if the difference between different conformations is too large, the sample
might be too far away from the prototype in the embedding space and cannot be correctly charac-
terized. The performance might be influenced by both the similarity of the conformations and the
differences between these conformations and other structures to be identified. The actual results
need to be verified by further experiments.

6 Supporting information

S1 File. Supplementary Document. Details about the metrics used to evaluate the classification
performance, and additional results with tables and representative figures.
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Supplementary Document

S1 Details about the metrics of classification results

The classification accuracy in our experiments is calculated as:

Rcorrect

nall

accuracy =

Where n.y,rec; notes the number of samples of which the predicted label is the same with the ground truth label. And
ng notes the total number of samples that are predicted. The accuracy is calculated per episode with NcNp samples,
and the mean accuracy and the standard deviation are finally obtained through 100 episodes in the test period.

In the multi-class classification tasks, the accuracy we calculated in this way equals to the micro average precision
since neorrect = Yo TP and ngy = Y4 TP+ FFy.

ZZ 1TPk

precision(micro) = ——~————
Zk (TP +FP;

Where n notes the total number of classes in the test set, TP, notes the truly predicted samples in class k, and F Py
notes the samples that are mistakenly classified as class k.

The macro average precision is calculated as an additional reference for the performance of our methods as listed
in Table A. Since the classes sampled in each episode may be different, we calculate the precision(macro) with all the
samples tested through the test period.

1 n
prectszon macro — Z
n

Pk JrFPk

S2 Additional classification results

We have also analyzed the classification performance on different structural classes in Table B. Experiments were
conducted on the three datasets and we provided examples of classified subtomograms from the classes with high-
est/lowest classification accuracy in Fig A. The results indicate that the structures with relatively clear outlines and
larger difference between other structures in the test set are more likely to obtain a higher classification accuracy. As
further proof of the superiority of our method, examples of subtomograms that are correctly classified by our method
but wrongly classified by the baseline method are shown in Fig B. Our method outperforms the baseline method
especially on the subtomograms with relatively indistinct structures.



Table A: The classification precision(macro) of the simulated and real datasets of subtomograms.

Dataset Methods 5-shot  1-shot
Simulated(0.1)  ProtoNet-CE  0.8727 0.7808
Simulated(0.1)  ProtoNet3D  0.8463 0.7645
Simulated(0.05) ProtoNet-CE  0.7893  0.7102
Simulated(0.05)  ProtoNet3D  0.7792 0.6972
Simulated(0.03) ProtoNet-CE  0.7109  0.5903
Simulated(0.03)  ProtoNet3D  0.6720 0.5511
Guo ProtoNet-CE  0.9400 0.9180
Guo ProtoNet3D  0.9258 0.8472
Noble ProtoNet-CE  1.0000 1.0000

Noble ProtoNet-CE  1.0000 1.0000

Table B: Classification accuracy for different classes (all calculated in 5-shot case). (43: T20S proteasome (EMPIAR
10143); 73: insulin-bound insulin receptor (EMPIAR 10173); 35: DNAB helicase-helicase (EMPIAR 10135))

Simulated(SNR=0.1) Guo Noble

class accuracy class accuracy class accuracy
3DY4 0.8315 ribosome 0.9107 43 1.0000
2BO9 0.9861 mitochondrial membrane  0.9993 73 1.0000
1VPX 0.6495 double capped proteasome ~ 0.9107 35 1.0000
2GLS 0.6687

1QO01 0.8645

4V4Q 0.9941

1A1S 0.9799

1F1B 0.9897
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Figure A: Examples of classified subtomograms shown in 2D slices. a. 4V4Q (highest prediction accuracy in simulated
dataset with SNR=0.1). b. 1VPX (lowest prediction accuracy in simulated dataset with SNR=0.1). c¢. Membrane
(highest prediction accuracy in Guo dataset). d. Ribosome (lowest prediction accuracy in Guo dataset). e. Insulin-

bound insulin receptor (prediction accuracy is 1.0 in Noble dataset). f. T20S proteasome (prediction accuracy is 1.0
in Noble dataset).



Mitochondrial membrane T20S proteasome

L s

Figure B: Examples of subtomograms wrongly classified by baseline method but correctly classified by ProtoNet-
CE (shown in 2D slices).



